
PNNL-ACT-10125

Energy Northwest – Horn
Rapids Solar and Storage
A Techno-economic Assessment

August 2022

X Ma
D Wu
A Crawford

Prepared for the U.S. Department of Energy
Under contract DE-AC05-76RL01830





PNNL-ACT-10125

Energy Northwest – Horn Rapids Solar and
Storage
A Techno-economic Assessment

August 2022

X Ma
D Wu
A Crawford

Prepared for
the U.S. Department of Energy
Under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352



PNNL-ACT-10125

Executive Summary
Chartered in 1957 as a joint action agency of the state, Energy Northwest is a consortium of 27
public utility districts and municipalities across Washington state. Energy Northwest takes
advantage of economies of scale and shared services to help utilities run their operations more
efficiently and at lower costs, to benefit more than 1.5 million customers. Energy Northwest
develops, owns, and operates a diverse mix of electricity-generating resources, including hydro,
solar, and wind projects, along with the Northwest’s only active nuclear energy facility. These
projects provide enough reliable, affordable, and environmentally responsible energy to power
more than a million homes each year, and that carbon-free electricity is provided at the cost of
generation. The agency continually explores new generation projects to meet its members’
needs.

In 2017, as part of the second round of funding from the Washington State Clean Energy
Fund (CEF), the Washington State Department of Commerce granted up to $3 million in
matching funds to develop an estimated $6.3 million project to deploy a 1 MW/4 MWh1 battery
energy storage system (BESS) in Richland, Washington. The BESS is paired with a 20-acre
4 MW direct current solar generating array of photovoltaic (PV) panels that can provide enough
energy to power about 600 Richland homes. The combination of PV and BESS will provide a
predictable, renewable generating source and serve as a training ground for solar and battery
technicians throughout the nation. The project offers Washington state its first opportunity to
integrate a large-scale solar and storage facility into its clean mix of hydro, nuclear, and wind
resources.

In 2018, Pacific Northwest National Laboratory worked with Energy Northwest to perform a
preliminary assessment of the integrated PV and BESS for representative use cases that could
benefit the City of Richland. Between March and May 2022, extensive testing was conducted,
and the results were used to assess the technical performance of the BESS subjected to actual
field operations. The economic assessment was updated to reflect the actual cost and
measured technical performance of the integrated system. This report documents the use
cases, modeling and analytical methods, and final economic assessment results. The following
key lessons and implications can be drawn from the analysis:

1. The benefits were estimated and compared to the costs of the deployed system in the base
case to understand the cost-effectiveness of the project, as plotted in Figure ES.1. Benefits
from outage mitigation are excluded because microgrid capability was not built into the design
of the deployed system. As can be seen, the total present value benefits are $7.15–7.39
million, depending on the assumption and dispatch strategy used for assessment. Among all
the benefits, demand charge reduction and load shaping charge reduction account for 46%
and 45%, respectively, while the remaining 9% comes from transmission charge reduction.
In particular, PV production contributes to 98% of load shaping charge reduction benefits.
The benefit-cost ratio (BCR) of the deployed system is around 0.57. With the $3 million
grant from the CEF, the outstanding cost for the City of Richland becomes $9.8 million. The
corresponding BCR increases to around 0.74.

2. The yearly optimal dispatch method assumes perfect foresight of load and PV generation
for the entire year. The estimated benefits using this method represent a theoretical upper
bound of the integrated system and were used as a benchmark to quantify the impacts of
operational uncertainties and to evaluate the proposed operational dispatch method.

1The deployed lithium-iron-phosphate battery is designed with 5.5 MWh of total usable energy. While about 4.3
MWh can be discharged within the recommended 10–90% state of charge range, the allowed daily discharged energy
is limited to 4 MWh according to the capacity maintenance agreement.
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Figure ES.1. Present value benefits vs. costs of the deployed system in the base case.

3. To come up with a more realistic estimate, a practical operational dispatch method was
proposed to model and address operational uncertainties. Advanced load modeling and
forecasting methods were developed to generate the required inputs. Different thresholds
were explored to examine the demand reduction effectiveness and the associated battery
degradation. It was found that a threshold of 3% yields the best results, recovering about
97% of the benefits estimated using the yearly dispatch method. Specifically, load shaping
reduction benefits decrease from $3.31 million to $3.26 million, and demand charge reduction
benefits decrease from $3.40 million to $3.22 million. The BESS is cycled about 20% less
frequently than the yearly optimal dispatch method. Therefore, the proposed operational
dispatch helps mitigate BESS degradation, and can be used to identify the most appropriate
capacity maintenance agreement with the optimal cycle life to maximize the net benefits..

4. To understand the potential benefits of the integrated system with a different design, we
evaluated a hypothetical microgrid scenario where outage mitigation is considered in addition
to the use cases for electricity bill reduction of the deployed system in the base case. The
estimated benefits versus costs are plotted in Figure ES.2. The additional cost required
for enabling microgrid operation was estimated at $0.85 million in present value. With the
microgrid capability, the system can also be operated in island mode to mitigate the impacts
of an outage from the main grid. Even though the BESS paired with PV can only partially
mitigate an outage event, it could help the City of Richland avoid about 3 MWh of unserved
load each year and bring in an additional $3.70 million of benefits in present value. With
the outage mitigation benefits included, the total present value benefits become about $11
million. With the $3 million grant from the CEF, the corresponding BCR for the City of Richland
increases to 1.03.

5. In the preliminary assessment performed at the planning stage, typical BESS performance
and cost parameters were used, and the operation and maintenance (O&M) cost was not
explicitly considered. Compared to the preliminary assessment results, the present value
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Figure ES.2. Present value benefits vs. costs in a hypothetical microgrid scenario.

benefits and cost in the final assessment results increase by $0.35 million and $0.64 million,
respectively. The BCRs estimated in the preliminary analysis were 0.56 and 0.74 without and
with considering the $3 million grant from the CEF, respectively, close to the numbers in the
final assessment results.
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Acronyms and Abbreviations

BCR benefit-cost ratio
BESS battery energy storage system
BPA Bonneville Power Administration
C&I commercial and industrial
CDQ contract demand quantity
CEF Clean Energy Fund
CSP customer system peak
DCR demand charge rate
HLH heavy load hour
LLH light load hour
MPC model predictive control
O&M operation and maintenance
PNNL Pacific Northwest National Laboratory
PV photovoltaic(s)
RHWM rate period high water mark
RMS root mean square
SOC state of charge
TSP transmission system peak
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Notation

Sets

D A set that contains hours from the beginning of a month to the current time
K A set that contains all hours within the optimal dispatch time frame
L A set that contains all month indices
O A set that contains all minute indices during an outage event
T A set that contains all transmission peak hours
W A set that contains all hours within the receding time horizon

Indices

k Hour index
l Month index
m Minute index
t Transmission peak hour index

Parameters

clim BESS annual cycle limit
Ebatt
max BESS energy capacity

Eday
max Maximum discharged energy every day

Lk System native load at hour k
Lact
k Actual load at hour k

Lfor
k Forecasted load at hour k

Lm System native load at minute m during an outage event
pbattmax BESS rated power
ppvmax PV rated power
rpvk Normalized generation per unit rated power of the PV at hour k
Smin BESS minimum SOC
Smax BESS maximum SOC
TH Threshold for the peak-day probability
δT Variation around the temperature break point
∆T Time step size
η+ BESS discharging efficiency
η− BESS Charging efficiency
λk Energy charge rate at hour k
µl Demand charge rate of month l

νt Transmission charge rate at peak hour t
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Decision Variables

Cop Total cost of the electricity bill
dl Peak demand of month l

ebattk Energy stored in the BESS at the end of hour k
ebattm Energy stored in the BESS at the end of minute m during an outage event
Lnet
k System net load at hour k

L′
unserv Total unserved load without the integrated system during an outage event

L′′
unserv Total unserved load with the integrated system during an outage event

p+k BESS discharging power at hour k
p−k BESS charging power at hour k
pbattk BESS power output at hour k
ppvk PV power output at hour k
poutk Power output of the integrated system at hour k
psolk Dispatch solution at hour k
pbattm BESS power output at minute m during an outage event
ppvm PV power output at minute m during an outage event
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C H A P T E R 1

Introduction

The Washington State Clean Energy Fund (CEF) is a publicly funded program that provides
grants to support the development of clean energy technologies in Washington state. Since
2013, the Washington State Legislature has authorized $122 million for the fund (Kirchmeier,
2018), including Energy Revolving Loan Fund Grants, Smart Grid and Grid Modernization
Grants to Utilities, Federal Clean Energy Matching Funds, and Credit Enhancement for
Renewable Energy Manufacturing. The funding levels for the first three rounds are plotted in
Figure 1.1. In 2021, the Washington State Department of Commerce announced $3.9 million in
grants as part of the fourth round of CEF funding for the early-stage project development of 18
grid modernization projects led by utilities across the state to advance a variety of renewable
energy technologies and electricity system innovations. To date, CEF funds have been
distributed to electric utility companies, vendors, universities, and research organizations for
projects that integrate intermittent renewables, improve grid reliability, expand grid
modernization activities, reduce the costs associated with distributed energy resource
deployments, and lower emissions. Additional information on CEF and the Grid Modernization
Program can be found in Washington State Department of Commerce (2017, 2021).

Figure 1.1. Washington State Clean Energy Fund funding levels.

Chartered in 1957 as a joint action agency of the state, Energy Northwest is a consortium of
27 public utility districts and municipalities across Washington state that takes advantage of
economies of scale and shared services to help utilities run their operations more efficiently and
at lower costs, to benefit more than 1.5 million customers. Energy Northwest develops, owns,
and operates a diverse mix of electricity-generating resources, including hydro, solar, and wind
projects, along with the Northwest’s only active nuclear energy facility. These projects provide

Introduction 1



PNNL-ACT-10125

enough reliable, affordable, and environmentally responsible energy to power more than a
million homes each year, and that carbon-free electricity is provided at the cost of generation.
The agency continually explores new generation projects to meet its members’ needs.

In 2017, as part of the second round of funding from the CEF, the Washington State
Department of Commerce granted up to $3 million in matching funds to develop an estimated
$6.5 million project to deploy a 1 MW/4 MWh lithium-iron-phosphate battery energy storage
system (BESS) in Richland, Washington. The BESS is paired with a 20-acre 4 MW direct
current solar generating array of photovoltaic (PV) panels that can provide enough energy to
power about 600 Richland homes. The combination of PV and BESS will provide a predictable,
renewable generating source and serve as a training ground for solar and battery technicians
throughout the nation. The project offers Washington state its first opportunity to integrate a
large-scale solar and storage facility into its clean mix of hydro, nuclear, and wind resources.

In 2018, Pacific Northwest National Laboratory (PNNL) worked with Energy Northwest to
assess the PV paired with BESS for representative use cases that could benefit the City of
Richland. Construction began in February 2020 and completed in the fall of 2020. The
deployed combination is shown in Figure 1.2. The project energized in November 2020.
Between March and May 2022, extensive testing was conducted, and the results were used to
assess the technical performance of the BESS subjected to actual field operations. PNNL has
worked closely with Energy Northwest in assessing the economic benefits of the integrated
system that combines PV and BESS. This report documents the economic assessment of the
integrated system, including the definition of use cases and applications, collection and
preparation of data and input parameters, development of modeling and optimization methods,
case studies, and analysis results.

Figure 1.2. Large-scale PV and BESS at Horn Rapids.

Introduction 2
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C H A P T E R 2

Use Cases

The combination of PV and BESS can be used for various grid and end-user services. PNNL
has previously developed an energy storage valuation taxonomy that includes bulk energy,
ancillary, transmission, distribution, and customer energy management services (Balducci et al.,
2018). The potential use cases and applications of energy storage vary by stakeholder and
typically require different modeling and analytical methods (Wu and Ma, 2021). In this project,
PNNL has worked with Energy Northwest to identify a list of high-value applications intended to
benefit the City of Richland.

The City of Richland purchases energy from the Bonneville Power Administration (BPA) and
is subject to BPA’s rate structure. The City of Richland’s monthly electricity bill includes four
components: i) customer base charge, ii) load shaping charge, iii) demand charge, and iv)
transmission charge.

• The customer base charge is independent of the monthly peak demand and the time when
energy is consumed. Instead, it is a pre-calculated amount based on a forecasted load. For
this reason, the customer base charge remains unaffected regardless of BESS operations.
Hence, it will not be described in detail here, as it is simply a previously established charge
that the City of Richland must pay each month.

• The load shaping, demand, and transmission charges would be affected by BESS operations.
The load shaping and demand charges are components of the City of Richland’s electricity
bill from BPA that fluctuate every month. Load shaping appears as either a charge or a credit,
depending on whether the City of Richland purchases more or less energy than the amount
expected by BPA. On the other hand, the demand charge is a fee the City of Richland incurs
that is tied to energy purchases during the utility’s most load-intensive hour each month. The
transmission charge is a small monthly charge that depends on the City of Richland’s total
MWh energy usage during BPA’s transmission system peak (TSP).

Therefore, the following three use cases were identified for the deployed system to reduce the
electricity bill paid by the City of Richland: 1) load shaping charge reduction, 2) demand charge
reduction, and 3) transmission charge reduction. Note that microgrid capability was not built into
the design of the deployed system. Microgrid controllers and associated upgrades are required
to operate BESS and PV to support the local load as an islanded microgrid when there is an
outage from the main grid. To capture the potential benefits of the BESS and PV for
strengthening the distribution resilience and reducing power interruptions of critical facilities, an
alternative scenario is designed to include outage mitigation. Each of these use cases is
described as follows.

Use Cases 3
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2.1 Load Shaping Charge Reduction
BPA offers its customers a tiered rate structure that consists of multiple levels, each of which is
differentiated by a MWh energy usage quantity and priced individually. The cutoff at which it
crosses from a lower level to the next is established to align with the current generation
capabilities of BPA’s system. Tier 1 is a lower price level in BPA’s structure, and the City of
Richland is allocated a limited quantity of energy (in MWh) that they may purchase at this rate.
The reasoning behind the purchase cap is that Tier 1 is constrained by BPA’s total current
generation capability and the level of demand it can readily meet with available resources. Tier
2 rates, on the other hand, are established to cover the City of Richland’s remaining demand
beyond what is covered under Tier 1, and are higher as they are priced according to the cost of
BPA obtaining more generation to meet the additional demand. The amount of energy that the
City of Richland has to purchase at Tier 2 rates is called the above rate period high water mark
(RHWM) obligation. It is set at a fixed amount based on a forecast of how much Tier 2 energy
BPA expects the City of Richland to require. The combination of PV and BESS can effectively
affect monthly energy consumption during different hours and thereby can be used to reduce
load shaping charges. The calculation of heavy load hour (HLH) and light load hour (LLH) load
shaping charges are described as follows, with all parameters listed in Table 2.1.

Table 2.1. The City of Richland’s Monthly Load Shaping Charge Parameters

HLH Shaped LLH Shaped HLH above RHWM LLH above RHWM HLH Rate LLH Rate

Month Load (MWh) Load (MWh) Obligation (MWh) Obligation (MWh) ($/MWh) ($/MWh)

Jan. 44,471.193 27,510.022 5,563.200 4,784.352 29.30 23.94

Feb. 37,275.805 21,734.829 5,340.672 4,005.504 28.54 23.94

Mar. 44,181.462 25,684.985 6,008.256 4,325.388 23.75 20.80

Apr. 43,185.688 23,966.131 5,563.200 4,450.560 19.67 17.54

May 62,805.228 35,735.314 5,785.728 4,561.824 16.63 11.25

June 50,860.875 26,885.009 5,785.728 4,228.032 17.71 9.31

July 44,631.845 23,635.566 5,563.200 4,784.352 24.66 19.05

Aug. 50,582.801 25,026.089 6,008.256 4,339.296 28.11 22.61

Sept. 43,786.989 24,711.659 5,563.200 4,450.560 27.94 22.19

Oct. 44,874.570 24,119.334 5,785.728 4,561.824 26.74 22.49

Nov. 53,730.386 31,540.835 5,563.200 4,464.468 27.27 24.74

Dec. 52,481.838 31,765.377 5,563.200 4,784.352 30.28 26.60

2.1.1 Heavy Load Hour Load Shaping Charge

This is a monthly charge or credit to customers that depends on whether their total energy
demand during all HLHs is greater or less than expected each month. HLHs are all hours
between 6 a.m. and 10 p.m., Monday through Saturday, excluding holidays. For customers that
purchase less than expected, they receive a credit on their bill, whereas customers that
purchase more are penalized. In this work, holidays are not differentiated from other days in
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modeling for simplicity as they would have a minimal impact on the results.
The monthly HLH load shaping charge/credit can be calculated as:

HLH load shaping charge =
(
HLH energy −HLH above RHWM obligation

−HLH shaped load
)
×HLH load shaping rate, (2.1)

where

• HLH energy is the total amount of energy purchased during all HLHs in a month, which is
the only non-predetermined value that is affected by PV and BESS.

• HLH above RHWM obligation is the monthly amount of HLH energy that the City of Richland
has made the obligation to purchase at higher Tier 2 rates. This energy will be charged in a
separate part that the combination of PV and BESS cannot affect. It must be subtracted from
this calculation so that only Tier 1 amounts are included. The HLH above RHWM amount is
different each month and is calculated as the product of the total number of HLHs that month
and the set Tier 2 amount of energy the customer has agreed to pay per hour.

• HLH shaped load is the total amount of energy across all HLHs that BPA expected the City
of Richland to purchase that month. This value changes monthly but is predetermined for
each month of the year and is based on the percent of BPA’s total system cost the customer
makes up.

• HLH load shaping rate is the price at which the HLH billing determinant is charged/credited.

2.1.2 Low Load Hour Load Shaping Charge

Similar to the HLH load shaping charge, this is a monthly charge or credit to customers that
depends on whether their energy demand is greater or less than expected during LLHs, which
include all other hours on those same days as well as all hours on Sundays and holidays. The
LLH load shaping charge/credit for each month can be determined by:

LLH load shaping charge =
(
LLH energy − LLH above RHWM obligation

− LLH shaped load
)
× LLH load shaping rate, (2.2)

where LLH energy is the only non-predetermined value that is affected by PV and BESS. The
description of other parameters are similar to those of the HLH and is thereby omitted.

2.2 Demand Charge Reduction
The City of Richland faces a demand charge on its bill every month. The monthly demand
charge is determined by four factors: i) its customer system peak (CSP), ii) its Tier 1 average
HLH load, iii) its contract demand quantity (CDQ), and iv) BPA’s demand charge rate (DCR).
These four components come together through the following formula:

demand charge =
(
CSP − above RHWM − aHLH − CDQ)×DCR, (2.3)

where
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• CSP is the City of Richland’s single highest demand each month. It does not get adjusted to
a Tier 1 value, but is simply the peak itself. CSP is a decision variable that can be affected
by PV and BESS operations.

• above RHWM follows the same logic as the above RHWM obligation for the load shaping
charge: a portion of the demand charge must be separated out to be charged at Tier 2 rates.
This value is constant at 13,908 kW each month, which is the amount the City of Richland is
obligated to purchase at Tier 2 rates on a per-hour basis.

• aHLH is the average HLH load in a given month. This component requires a Tier 1 adjust-
ment and can be calculated by dividing all Tier 1 HLH energy by the number of HLHs that
month. Taking October 2018 as an example, the City of Richland’s total energy consumption
during all HLHs in that month was 42,145.683 MWh. To obtain a Tier 1 portion of that value,
the Tier 2 amount must be subtracted out, and then the difference is divided by the total
number of HLHs, giving the overall average:

aHLH =
HLH energy – HLH above RHWM obligation

total number of HLHs in the month

=
42, 145.683 MWh – 5, 785.728 MWh

416 hours
= 87.404 MW

• CDQ is the amount of demand that is set in the City of Richland’s original energy contract
with BPA. This value is preset but can be different each month of the year, as listed in Table
2.2.

• DCR is the price at which the demand charge billing determinant is charged. This value
changes monthly but is predetermined, as listed in Table 2.2.

Table 2.2. The City of Richland’s Monthly Demand Charge Parameters

Month CDQ (kW) DCR ($/kW)

Jan. 36,106 11.45

Feb. 46,079 11.15

Mar. 28,189 9.28

Apr. 19,141 7.68

May 30,020 6.49

June 33,452 6.92

July 28,305 9.63

Aug. 28,121 10.98

Sept. 25,628 10.91

Oct. 28,360 10.45

Nov. 37,921 10.65

Dec. 25,476 11.83
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2.3 Transmission Charge Reduction
The City of Richland incurs a small transmission charge each month of $2.103/kW that is
dependent on its energy purchases during BPA’s TSP. By using the PV and BESS to reduce
load during TSP, costs can be reduced. For example, the economic benefits of reducing 500
kW during TSP are $1,050 per month or $12,600 per year.

2.4 Outage Mitigation
Microgrid capability was not built into the design of the deployed system. Therefore, in addition
to the deployed BESS, PV, and existing control and communication infrastructure, microgrid
controllers and associated upgrades are needed to enable islanding and transiting between
grid-connected mode and island mode. Provided that the system is capable of forming a
microgrid, the combination of PV and BESS can be used to serve the local load when there is
an outage of the main grid. This would result in benefits accruing for the City of Richland’s
customers located in the area of the outage and can be monetized in terms of avoided loss of
load. According to the City of Richland, approximately 80% of its customers are large
commercial and industrial (C&I), and 20% are small C&I.

Historical outage events at Horn Rapids (Feeder 113) and relevant data has been collected
from 2014 to 2017, as summarized in Table 2.3, to evaluate outage mitigation benefits. Based
on the historical events, outage statistics in terms of timing and duration can be extracted. On
average, Feeder 113 experienced three unplanned outages affecting 23 customers annually,
with each outage lasting 98 minutes. Note that all outage events could only be partially
mitigated because the feeder load exceeds the capacity of PV and BESS.

Table 2.3. Historical Outage Events at Horn Rapids

Year Date Start Time Duration (Hours) Customers Affected

2017 12/2/17 16:00 2.167 4

2016 5/15/16 07:00 2.500 1

2016 1/29/16 09:36 0.783 100

2015 11/17/15 15:26 1.833 1

2015 10/26/15 04:45 2.250 5

2015 8/30/15 05:52 1.167 1

2015 6/27/15 04:59 0.000 80

2015 2/24/15 08:15 4.500 1

2014 1/26/14 07:50 1.667 22

2014 1/22/14 14:50 0.667 22

2014 1/22/14 08:00 1.333 22

2014 1/20/14 08:45 0.750 22
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C H A P T E R 3

System Modeling and Optimal Dispatch

This chapter presents the mathematical modeling of the integrated system, along with an
optimization-based assessment framework proposed and used to assess the integrated system.
In particular, two dispatch and assessment methods are proposed to quantify the economic
benefits:

• The first method assumes perfect knowledge of the system load information for the entire year.
A large optimization problem is formulated with hourly BESS dispatch as decision variables.
The optimization problem is solved to determine optimal hourly operations of BESS for the
entire year and to maximize the annual benefits, subject to BESS operational and cycling
constraints. Because scheduling a BESS over a year is impractical, this method generates
a theoretical upper bound of the economic benefits.

• The second method simulates daily or hourly operational dispatch typically used in practice.
Dispatch decisions are made based on i) the day-ahead load forecast and ii) a prediction
about when the monthly peak demand will occur. An optimal dispatch method based on
model predictive control (MPC) is proposed and used to incorporate operational uncertainties
into modeling and valuation. A flow chart is provided in Figure 3.1 to illustrate the proposed
method. Specifically, we predict the probability that the monthly peak demand will occur during
the next day, which is named as peak-day probability. A threshold is designed and used to
control whether to activate BESS dispatch: if the predicted peak-day probability exceeds the
threshold, the BESS will be dispatched on the operating day. Otherwise, the BESS will not
be used for demand charge reduction. A higher threshold leads to less usage of the BESS
and therefore slower degradation. In this way, we can achieve a good balance between peak
demand reduction effectiveness and battery degradation.

The two optimal dispatch methods are compared in Table 3.1. While the yearly optimization
based on the load and PV profile throughout a year helps us understand the potential value, the
operational dispatch method better models and addresses operational uncertainties and
estimates practically achievable benefits. The former formulates all 8760 hourly BESS
operations within a single optimization problem, while the latter repeatly formulate and solve
smaller operational dispatch problems with a 24-hour look-ahead window for 24 × N(TH)
times, where N(TH) denotes the number of active days and depends on the preset threshold
TH. In an extreme case when TH is set as zero, for example, the BESS will be activated
every day for demand charge reduction. Therefore, we have N(0) = 365. If we increase the
threshold TH, the value of N(TH) will decrease monotonically, which means that the BESS
has more time to be set aside and thus degrades slowly.

The rest of this chapter is organized as follows. The BESS and PV models used for optimal
dispatch and assessment are provided in Section 3.1. Section 3.2 presents the load forecasting
method that is used to generate the required inputs for the operational dispatch method. The
two assessment methods are detailed in Section 3.3. Finally, Section 3.4 presents a model for
calculating the benefits of outage mitigation.
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Figure 3.1. A flow chart of the practical operational dispatch.

Table 3.1. Comparisons between Two Optimal Dispatch Methods

Yearly Optimal Dispatch Practical Operational Dispatch

System Load Information perfectly known forecast load with uncertainties

Number of Optimizations 1 24 × N(TH)

Time Horizon (in Hours) 8760 24

Peak-day Probability No Yes

3.1 BESS and PV Models
A BESS can be modeled as a scalar linear dynamical system that resembles simplified energy
state dynamics parameterized by charging and discharging power limits, energy state limits,
and efficiencies (Wu et al., 2021). To capture one-way efficiencies, two non-negative auxiliary
variables p+k and p−k can be introduced to represent discharging and charging power at the point
of common coupling, respectively. The discharging and charging power ranges are given by:

0 ≤ p+k ≤ pbattmax, 0 ≤ p−k ≤ pbattmax, ∀k ∈ K, (3.1)
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where pbattmax is the BESS rated power and K is a set that contains all scheduling hours. The
BESS power output can be expressed as:

pbattk = p+k − p−k , ∀k ∈ K, (3.2)

where a positive pbattk means discharging. The dynamics of the BESS energy state can be
modeled as:

ebattk = ebattk−1 − (p+k /η
+ − p−k η

−)∆T, ∀k ∈ K, (3.3)

where ebattk is the energy state at the end of hour k, η+ and η− are discharging and charging
efficiencies, respectively, and ∆T is the hour size. A range for the energy state is given by:

SminE
batt
max ≤ ebattk ≤ SmaxE

batt
max, ∀k ∈ K, (3.4)

where Ebatt
max is the BESS energy capacity, and Smin and Smax, respectively, are the minimum and

maximum requirements for the state of charge (SOC) of the BESS. The total amount of BESS
discharged energy during all hours should also be bounded by:∑

k∈K
p+k ∆T/η+ ≤ climEbatt

max, (3.5)

where clim is an annual cycle limit, i.e., a given upper bound to restrict how many cycles we can
use the BESS annually. Moreover, to add a constraint on daily discharged energy, we have:

24d∑
k=24(d−1)+1

p+k ∆T/η+ ≤ Eday
max, ∀d = 1, · · · , 365, (3.6)

where Eday
max denotes a maximum discharged energy allowed each day. A range of the PV

power output can be expressed as:

0 ≤ ppvk ≤ rpvk ppvmax, ∀k ∈ K, (3.7)

where rpvk is the normalized power output in maximum power point tracking mode at hour k,
and ppvmax is the PV rated power. Finally, the power output from the integrated system into the
grid becomes:

poutk = pbattk + ppvk , ∀k ∈ K. (3.8)

3.2 Load Forecasting
PNNL has developed a probabilistic load forecasting model to capture operational uncertainties
in the optimal dispatch and economic assessment. On each given day, the load forecasting
model predicts the hourly load for the remainder of the month based on calendar variables such
as hour of the day, day of the week, and day of the year, as well as the outdoor temperature.
The error from the load model and the uncertainty in predicting temperature are incorporated to
produce a model that predicts the probability of a given hour being the monthly peak hour. This
is valuable for demand charge reduction, as the demand charge is based on the maximum load
of the entire month, while a typical look-ahead scheduling can only cover one or a few days.

Hourly load profiles for all the feeder meters from 2015 to 2019 were obtained from the City
of Richland and then aggregated to estimate the total load from the City of Richland. Hourly
temperature over the same time period was scraped from Weather Underground Weather
Underground (2022). These were combined into one time series dataset of aggregate load and
temperature.
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3.2.1 Load Modeling

The load forecasting model is a weighted multilinear regression of time and temperature
variables, which are explained and defined in this section. Several aspects of the model are
chosen to minimize out of sample error, which is defined and discussed in Section 3.2.1.4.

To capture the periodicity of the load with respect to the hour of the day, a Fourier series is
utilized, and these terms are defined in (3.9). It was found that the first five frequencies
minimize model error prediction out of sample.

Fdaily =

5∑
n=1

(
cos

2πnt

24h
+ sin

2πnt

24h

)
. (3.9)

To capture the periodicity of the load with respect to the time of the year, we again utilize a
Fourier series as per (3.10). It was found that the first three frequencies minimize model error
prediction out of sample.

Fyearly =
3∑

n=1

(
cos

2πnt

1yr
+ sin

2πnt

1yr

)
. (3.10)

We use exponential weighted time series points in the multilinear regression, as shown in
(3.11), in which the recent data points are assigned a greater weighting, whereas past data
points are assigned less weighting:

W = exp
(
t

τ

)
, (3.11)

where τ is a characteristic time used for weighting. The smaller τ is, the more heavily a recent
data point is weighted compared to an older data point. If τ is too large, the model does not
respond quickly enough to the most recent load data. If τ is too small, the model reads too
much into recent changes and is at risk of overfitting to noise. In our model, τ was designed to
minimize the out of sample error.

The model also incorporates the hourly temperature of the City of Richland to predict load,
which is scraped from Weather Underground (Weather Underground, 2022). Ideally, the model
would use the hourly temperature forecast instead of the observed temperature. Nevertheless,
historical load forecast is not available and therefore observed temperature was used. In the
following sections, we describes three different models depending on how the temperature is
used for load forecast. The temperature-based model uses the observed temperature as a
predictor, and therefore has perfect knowledge of future temperatures. The climate-based
model does not explicitly use any temperature information, and therefore has zero knowledge of
future temperatures. The realistic case is somewhere in the middle, and therefore we also
introduce an ensemble model that mixes the two. The ensemble model is the most realistic and
hence was used in the economic assessment.

3.2.1.1 Temperature-Based Model

We observed a piecewise linear dependence of load on temperature, which makes physical
sense, as Newton’s law of cooling predicts the heat flow between a building and its
surroundings is linearly proportional to the temperature difference. Therefore, the load required
to operate the heater or air conditioning and keep the building at room temperature should also
be proportional to this temperature difference. The break point for this piecewise linear function
was found using the segmented package in R, a programming language for statistical
computing and graphics. This break point is subtracted from the temperature to produce δT ,
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such that δT = 0 corresponds to this break point. The temperature terms are given in (3.12),
and include quadratic and cubic terms around this break point:

Tterms = δT (δT > 0) + δT (δT ≤ 0) + (δT )2 + (δT )3. (3.12)

We also included temperature smoothing to account for lag between ambient temperature and
load required for heating or cooling. We use exponential smoothing, with the exponential factor
chosen to minimize out of sample error. The smoothed temperature was fed into (3.12) to
produce the same terms for smoothed temperature.

With these time and temperature terms defined, we combine this into our temperature-based
load model, given in (3.13):

Load = t+ Fdaily ×
(
Fyearly +Weekday + Tterms + Tterms,smooth

)
. (3.13)

where t is used to capture the average load increasing linearly with time, and Weekday is a
category capturing the day of the week. We also include the interaction terms, so the load
dependence on the weekday, day of the year, and temperature can vary over the course of a
day.

3.2.1.2 Climate-Based Model

One weakness of the temperature-based model is that it takes for granted perfect knowledge of
temperature. This is unrealistic, as when deployed, only temperature forecasts are available.
Temperature forecasts have higher uncertainty the further out you are predicting, and after a
number of days, a climate-based forecast based on historical average temperatures is more
accurate than a weather forecast. Since we are interested in predicting load toward the end of
the month, it is vital to develop a forecast model that does not fully rely on perfect knowledge of
temperature.

To address the challenge, a climate-based model is proposed, as given in (3.14):

Load = t+ Fdaily ×
(
Fyearly +Weekday

)
. (3.14)

The model is the same as (3.13), but with the temperature-dependent terms removed. The
climate-based model is a temperature-ignorant model, only depending on historical load data
and calendar variables.

3.2.1.3 Ensemble Model

The temperature-based model assumes perfect prediction of hourly temperature, which is
unrealistically optimistic. On the other hand, the climate-based model assumes zero knowledge
of hourly temperature, which is unrealistically pessimistic. The true measure of the model’s
uncertainty is somewhere in the middle.

We therefore combined these two models into an ensemble model, which is a weighed
average of the temperature-based model and the climate-based model. The weights vary based
on how many days ahead the model is predicting. We discovered that the ability to forecast
temperature only beats historical averages up to 10 days ahead. The root mean square (RMS)
error of temperature forecast error is about half of the historical average error when predicting
only one day ahead. As an approximation, we weighed the two models in the ensemble to
capture this, with the weight for the climate-based model increasing from approximately 0.5 at 1
day ahead to 1 for 10 days ahead, and the temperature-based model weight decreasing from
0.5 at 1 day ahead to 0 for 10 days ahead. The ensemble model gives the most realistic
depiction of operational uncertainty and is used for optimal dispatch and economic assessment.
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3.2.1.4 Validation

The model was validated by using a rolling time horizon. For each day in the dataset, the
model was trained on all previous days, and used to predict the next 1–31 days. This is
because the application of this model was to predict the rest of the month’s load, and hence
this is the relevant horizon for forecasting the load. This is repeated for each day of the year to
fully evaluate the model’s predictive capability.

The modeling error (the predicted load minus the actual load) is organized by how many
days ahead the model was predicting. This gives us a distribution of modeling error for 1 day
ahead, 2 days ahead, etc. As expected, the error range is wider the further ahead the model
predicts.

To evaluate the model, all the modeling error for 1–31 days ahead is consolidated into the
RMS error. When choosing parameters such as exponential weighing factor, temperature
smoothing factor, or number of Fourier terms to use, we seek to minimize the out of sample
RMS error so we can optimize the model’s predictive capability. All continuous hyperparameters
(such as the smoothing factor and weighing factor) are optimized using the Nelder-Mead
algorithm.

3.2.2 Probabilistic Modeling

To deploy this model for economic assessment, it must predict the probability of each remaining
hour of the month being the peak load for the month. This section describes the procedure for
using the load model to produce a probabilistic model that predicts the probability of each hour
being the peak load for the month.

For each day of the month, the load for the remainder of the month is forecast using the
ensemble model, giving a deterministic load forecast. Next, the error distribution corresponding
to each prediction period (such as 1 day ahead, 2 days ahead, etc.) is obtained. The out of
sample error distribution for each time period of prediction of the ensemble model is given in
Figure 3.2. This demonstrates the error distribution spreading out the further into the future the
model has to predict, and the increase in accuracy the weather forecast allows over a period of
several days.

By bootstrapping from the actual error distribution, we have to make far fewer assumptions
about the properties of the error distribution than if we used Gaussian noise. Each of the
forecast hourly load has an error randomly drawn and added to its load to represent the
uncertainty. This is repeated with 1000 trials.

After the 1000 trials have been performed, each hour is evaluated to determine the fraction
of trials for which it is the peak load (considering both the predicted loads, and the loads
observed earlier in the month). This is returned as the probability of this hour being the peak
load for the month. This procedure is repeated for each day of the month, giving an updating
estimate of the probability of each remaining hour being the peak load for the month.

3.3 Optimal Dispatch
Two methods were proposed for optimal dispatch and economic assessment of the combination
of BESS and PV: i) a yearly optimal dispatch and ii) an operational practical dispatch. Both
methods rely on the models presented in Section 3.1. While the yearly optimal dispatch method
requires perfect knowledge of the load profile, the operational practical dispatch takes load
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Figure 3.2. Ensemble load forecasting model prediction error for predicting 1, 3, 7, 14, and 28
days ahead.

forecast produced by the ensemble model and probabilistic modeling in Section 3.2 to make
charging/discharging decisions over a 24-hour time window.

3.3.1 Yearly Optimal Dispatch

The yearly optimal dispatch assumes to know a perfect load profile and considers all hourly
system operations throughout the year as its decision variables. Mathematically, it optimizes
over a time span K := {k | k = k1, k2, · · · , kn}, with k1 < k2 < · · · < kn being n consecutive time
step indices within a year. We define L := {l | l = l1, l2, · · · , lm}, with 1 ≤ l1 < · · · < lm ≤ 12, as
a set including m month indices that correspond to the same time span of K. For each month
index i = 1, · · · ,m, we further define s(li) and e(li), respectively, as the starting and ending
hour indices of month li. More specifically, we should have s(l1) ≤ k1 and kn ≤ e(lm). Let ti
denote the index of the transmission peak hour that occurs within month li, for all i = 1, · · · ,m.
We define T := {t | ti ∈ K} as a set that collects all of these transmission peak hour indices
contained in K.

Given the native load Lk and the integrated system’s output poutk , the net load Lnet
k is:

Lnet
k = Lk − poutk , ∀k ∈ K. (3.15)

The monthly peak dl of month l can be expressed as:

dl = max{Lnet
k : s(l) ≤ k ≤ e(l)}. (3.16)

Written in an epigraph form, constraint (3.16) can be equivalently transformed into:

dl ≥ Lnet
k , for all s(l) ≤ k ≤ e(l). (3.17)
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The total electricity bill over the time span K is given by:

Cop =
∑
k∈K

λkL
net
k +

∑
l∈L

µldl +
∑
t∈T

νtL
net
t , (3.18)

where λk, µl, and νt denote the energy charge rate at hour k, DCR for month l, and
transmission charge rate for peak hour t, respectively. Finally, the yearly optimal dispatch can
be formulated as a linear programming problem:

(P0) minimize (3.18)
subject to (3.1)− (3.8), (3.15), (3.17).

3.3.2 Operational Practical Dispatch

Different from the yearly optimal dispatch, the operational practical dispatch uses load forecast
and optimizes over a 24-hour time span. The inputs are the load and peak-day forecast
produced using the methods presented in Section 3.2. We also set a threshold for the peak-day
probability to control whether or not to activate the dispatch. More specifically, at the beginning
of each day, the peak-day probability is compared to the threshold. If the probability exceeds
the threshold, it means that the monthly peak demand will occur during that day with a high
likelihood and therefore the MPC-based dispatch is executed to reduce the peak demand.
Further, if the peak-day probability does not exceed the threshold, but a predefined transmission
peak hour will occur during the day, we run a regular daily dispatch without considering the
peak demand reduction. Otherwise, if neither of the two conditions occurs, the BESS will not be
cycled. When a BESS dispatch is activated on an operating day, in each hourly dispatch, the
actual load for the current hour and all previous hours is known. Imperfect forecast can be
generated for all the remaining hours of the look-ahead scheduling window. We obtain the
BESS dispatch for the entire look-ahead window but only execute dispatch for the current hour.

The dispatch and control procedures are summarized in Algorithm 1. To execute the
algorithm, one has to solve two optimization problems, (P1) and (P2), which are described as
follows.

3.3.2.1 MPC-Based Dispatch for Peak Days

Suppose the peak-day probability of a given day exceeds the threshold, and the MPC-based
optimal dispatch is activiated. The time span set K, in this special case, can be written as
K = {k1, · · · , k24}, which include all 24 hour indices within the day. The set L only contains one
month index, i.e., L = {l1}, with l1 being the current month. Let t1 denote the transmission peak
hour index corresponding to month l1. If t1 ∈ K, we have T = {t1}. Otherwise, we have T = ∅.

At the beginning of each hour kh, for all 1 ≤ h ≤ 24, we repeatedly solve the optimal dispatch
(P1) over a receding prediction horizon:

W =

{
{kh+1, · · · , k24}, if 1 ≤ h ≤ 23

∅, if h = 24.

The MPC-based optimal dispatch takes the actual load to calculate the net load for the
current hour and all previous hours. Either day-ahead or hour-ahead forecast load is used for
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Algorithm 1 Daily Dispatch Algorithm with MPC
Input:
1) BESS parameters such as energy/power capacity, round-trip efficiency, etc.
2) Actual/forecast load profile and peak-day prob.
3) Energy charge rate, DCR, and transmission charge rate
Output:
An annual dispatch of the BESS

1: Initialization
2: Set a threshold TH for the peak-day prob.
3: for day i = 1 to the last day of the year do
4: Find all sets K, L, T , and peak-day prob. for day i

5: if day i’s peak-day prob. ≥ TH then
6: for all hour h = 1 to 24 do
7: Define the prediction horizon W
8: Solve the proposed MPC-based dispatch (P1) with prediction horizon W
9: Implement the dispatch solution psolkh

only
10: end for
11: else
12: if transmission peak will occur then
13: Solve the simplified optimal dispatch (P2)
14: Implement all the dispatch solution
15: end if
16: end if
17: end for
18: Post processing: Record all optimal dispatch solutions for the year

the remaining hours of the day. Therefore, the load balance equations can be written as:

Lnet
k =


Lact
k − psolk , ∀k ∈ K \ (W ∪ {kh})

Lact
k − poutk , for k = kh

Lfor
k − poutk , ∀k ∈ W ,

(3.19)

where psolk , for k ∈ K \ (W ∪ {kh}), is the dispatch decision for the previous hour k (“\” denotes
the subtraction of two sets). The net load variable Lnet

k can be used to update the first and third
terms in the objective function (3.18).

Next, we explain how to calculate the monthly demand charge. As we mentioned earlier, the
L set only contains one element l1 for the daily dispatch. Let s(l1) denote the starting hour
index of month l1, with s(l1) ≤ k1, and D := {k | s(l1) ≤ k ≤ k24} be a set that contains all the
hour indices from the beginning of month l1 to the end of that given day. The monthly peak
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demand can be expressed as:

dl1 ≥


Lact
k − psolk , ∀k ∈ D \ (W ∪ {kh})

Lact
k − poutk , for k = kh

Lfor
k − poutk , ∀k ∈ W .

(3.20)

Finally, the MPC-based optimal dispatch for peak days can be formulated as:

(P1) minimize (3.18)
subject to (3.1)− (3.8), (3.19), (3.20).

3.3.2.2 Dispatch without Demand Charge Reduction

There exists another situation where the peak-day probability does not exceed the threshold,
but a transmission peak is expected to occur on an operating day. In this case, the BESS
dispatch is not as complicated as the MPC-based dispatch. Instead of running the MPC-based
dispatch 24 times with receding prediction horizons, we only need to run a regular optimal
dispatch for the entire day based on the predicted system peak hours.

Let K = {k1, · · · , k24} denote the hour index set and T = {t1} denote the transmission peak
hour index set. Excluding demand charge reduction, the objective function (3.18) becomes:

Cop =
∑
k∈K

λkL
net
k +

∑
t∈T

νtL
net
t . (3.21)

Moreover, based on the load forecast, net load can be expressed as:

Lnet
k := Lfor

k − poutk , ∀k ∈ K. (3.22)

The daily optimal dispatch for transmission charge reduction can be formulated as:

(P2) minimize (3.21)
subject to (3.1)− (3.8), (3.22).

3.4 Outage Mitigation
This section describes how we monetize the economic benefits of outage mitigation using the
BESS and PV models presented in 3.1. We first estimate the cost of unserved load during an
unplanned outage event. Based on the Interruption Cost Estimate (ICE) Calculator developed
by Lawrence Berkeley National Laboratory (2018), we have developed a cost estimation
function for the City of Richland through regression:

y = −4× 10−13x5 + 2× 10−9x4 − 3× 10−6x3 + 2.3× 10−3x2 − 0.7574x+ 140,

where y denotes the cost of unserved load (in $/kWh) and 0 ≤ x ≤ 300 is the outage duration
(in minutes). With this function and the historical outage events listed in Table 2.3, we can
estimate the outage cost without and with the BESS and PV, and thereby estimating the
benefits of outage mitigation.

We record the starting time and duration for each outage event and check the available
BESS energy level when an outage occurs. In particular, the available BESS energy level is
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determined by the BESS’ dispatch results in grid connected mode. Then we can simulate how
BESS and PV can be used to serve the local load by following the procedure described below.

Suppose that an outage event i lasts for Ni minutes. Let Oi = {m1, · · · ,mNi} be a set that
contains all minute indices during this outage event. Without using the integrated system, the
total unserved load (in kWh) during this outage can be calculated as:

L′
unserv =

∑
m∈Oi

Lm

60
, (3.23)

where Lm is the system load (in kW) at minute m. When the integrated system is considered,
on the other hand, the total unserved load can be expressed as:

L′′
unserv =

∑
m∈Oi

Lm − pbattm − ppvm
60

, (3.24)

where pbattm and ppvm , respectively, are the power output (in kW) of the BESS and PV at minute
m. Here, the BESS and PV operations at minute m are characterized by:

pbattm =

{
min

(
Lm, pbattmax, 60ebattm−1

)
, if ebattm−1 > SminE

batt
max,

0, if ebattm−1 ≤ SminE
batt
max,

(3.25a)

ebattm = ebattm−1 −
pbattm

60η+
, ∀m ∈ Oi, (3.25b)

ppvm = rpvm ppvmax, ∀m ∈ Oi. (3.25c)

Based on the difference between the unserved load with and without the integrated system, we
can estimate the outage mitigation benefits as y(L′

unserv − L′′
unserv).
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C H A P T E R 4

Case Studies and Assessment Results

Various tools have been developed for energy storage valuation (Vinod et al., 2022). The
Energy Storage Evaluation Tool developed at PNNL was customized and used for this analysis.
This chapter presents the economic assessment results for the solar and storage system at
Horn Rapids, along with the key findings and insights. Since the microgrid capability was not
built into the deployed system, we first present the economic benefits of the deployed system in
the base case without considering outage mitigation. Two optimal dispatch methods, i.e., the
yearly and practical operational dispatch, were used to simulate the integrated system and
estimate the corresponding benefits. By assuming perfect foresight of the system load
information, the former method generates results representing a theoretical upper bound of the
benefits. The latter provides an estimate of practically achievable benefits. Next, we present the
assessment results in the microgrid scenario where the cost for enabling a microgrid and the
potential benefits from outage mitigation were included. Lastly, the preliminary analysis results
are presented and compared with the final assessment results.

4.1 Assumptions and Inputs

4.1.1 Economic Parameters and Assumptions

The economic life is assumed to be 25 years and the discount rate is assumed to be 4%. The
inflation rate for both energy cost and annual O&M cost is assumed to be 5%.

4.1.2 System Costs

The costs include both capital cost and O&M cost. The BESS capital cost is $6,343,322,
including Energy Northwest labor and overhead, legal support, Small Generator Interconnection
Application, engineering, archaeological survey and State Environmental Policy Act (SEPA),
owner’s engineer, PNNL analytics, site infrastructure, BESS’ engineering, procurement, and
construction (EPC) contract, construction, warranty, equipment, BPA interconnection, and City
of Richland interconnection. The CEF grant from the Washington State Department of
Commerce is $3,000,000. Therefore, the BESS outstanding cost for the City of Richland is
$3,343,322. According to Potelco, Inc., the company that provides utility construction services
for this project, the capital cost of Horn Rapids’ PV system is $4,200,000. The total capital cost
of the BESS and PV is $10,543,322. The O&M cost is approximately $85,000 and escalates
each year. This includes the annual maintenance payment $18,000 to Doosan, weed control,
transmission costs, labor and overhead, lease payment, decommissioning, etc. With the 5%
escalation rate, the O&M cost over 25 years is $2,297,368 in present value. Summing them up
yields a total project cost of $12,840,690 in present value.
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For the hypothetical microgrid scenario, the cost associated with microgrid controllers has to
be estimated and included on the top of the deployed system. Microgrid project and controller
costs are reviewed and summarized in Giraldez et al. (2018). The cost varies much by the type
of distributed energy resources, market segment such as campus, commercial, community, and
utility, and control complexity level. The average cost of microgrid controllers for energy storage
and PV with load management capability is about $162,477 per MW, leading to $812,385 for
the 1 MW BESS and 4 MW PV system. The average microgrid controller cost was also
estimated at 7% of the total project cost. Based on this percentage, the additional cost for
microgrid controllers is $898,848 for the deployed system at Horn Rapids. In this study, we
assume that the additional cost for microgrid capability is $850,000.

4.1.3 BESS Parameters

We have incorporated the BESS testing results and measured performance (Crawford et al.,
2022) into the economic assessment. The key parameters of the linear BESS models are
summarized as follows. The BESS rated power is 1 MW. The BESS is designed with 5.5 MWh
of total usable energy. While about 4.3 MWh can be discharged within the recommended
10–90% SOC, the allowed daily discharged energy is limited to 4 MWh according to the
capacity maintenance agreement for 25 years. To guarantee this, we constrained the BESS to
operate between 10% and 90% SOC with no more than 4 MWh of discharged energy each day.
The BESS round-trip efficiency is 87.6%, with the same charge and discharge efficiencies.
Therefore, we have η+ = η− = 93.6%.

4.1.4 PV Parameters

Figure 4.1. PV generation at Horn Rapids on an example summer day.

The DC power rating of the solar panel is 4 MW and the AC power rating at the grid
connection point is about 3.2 MW. Locational normalized PV generation profiles are generated
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for Horn Rapids using the pvlib library (Holmgren et al., 2018), which is a
community-supported tool for simulating the performance of PV systems. The required input
parameters of pvlib include PV module and inverter parameters, PV installation parameters,
as well as parameters that depend on weather conditions. The parameters such as hourly clear
sky global horizontal irradiance, direct normal irradiance, ambient temperature, and wind speed
are generated using a stochastic model with historical weather data from National Solar
Radiation Database (Wilcox, 2012) as inputs.

The PV generation at Horn Rapids on an example summer day is shown in Figure 4.1,
where the y-axis represents a normalized generation per unit rated power of the PV system. PV
generation is available between 7 a.m. and 8 p.m., with the peak output occurring around 1–2
p.m. According to pvlib simulation, the average hourly PV generation is 0.6 MWh and about
5,221 MWh annually.

4.1.5 System Load

The City of Richland’s system load from 2015 to 2019 were obtained and used for load modeling
and economic assessment. The 2018 load plotted in Figure 4.2 was used to simulate the
system operation and assess the economic benefits. In particular, in the yearly optimal dispatch
method, the 2018 load was used for both dispatch decision making and benefit calculation. In
the practical daily or hourly dispatch method, the load forecast and peak-day probability were
used for dispatch decision making while the 2018 load was used for benefit calculation. The
average load is 108 MW. The system peak is 189 MW, which occurred around mid-August.

Figure 4.2. The City of Richland’s 2018 load profile.
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4.2 Base Case
This section presents the economic assessment results in the base case considering the
electricity bill reduction use cases only. Outage mitigation is excluded because microgrid
capability was not built into the design of the deployed system. We first estimate the benefits
using the yearly optimal dispatch method, where the City of Richland’s system load in 2018 was
used to determine the optimal dispatch for the entire year at once. With the perfect foresight of
load information, the economic assessment results using this method inform us of the
theoretical upper bound of the benefits.

An economic assessment was also performed using the practical operational dispatch,
without assuming perfect knowledge of the load. In this case, the City of Richland’s system load
from 2015 to 2019 was obtained and used for load modeling and forecast to capture
operational uncertainties in the BESS dispatch decision-making process. The 2018 load was
used to simulate the system operation after dispatch decisions were made and to assess the
corresponding economic benefits. Different thresholds were explored and evaluated, and the
optimal threshold was selected to maximize the benefits.

4.2.1 Benefits vs. Costs

The present value benefits and costs evaluated using both dispatch methods in the base case
are plotted and compared in Figure 4.3. A detailed breakdown of costs can be found in
Section 4.1.2. Key findings are highlighted as follows:

Figure 4.3. Present value benefits vs. costs in the base case.

• Using the yearly optimal dispatch, the total present value benefits from electricity bill reduction,
including load shaping charge reduction, demand charge reduction, and transmission charge
reduction, are $7,386,098. In particular, demand charge reduction and load shaping charge
reduction together account for 91% of electricity bill reduction.
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– Without considering the CEF grant and outage mitigation benefits, the present value net
cost is $5,454,592, and the benefit-cost ratio (BCR) is 0.58.

– With the $3,000,000 grant from the CEF, the outstanding cost of the BESS and PV for
the City of Richland becomes $9,840,690. The corresponding present value net cost
become $2,454,592, and the BCR increases to 0.75.

• Using the practical operational dispatch with a 3% threshold, the total estimated benefits from
electricity bill reduction are $7,154,748 in present value. Compared with results yielded from
the yearly dispatch method, the benefits received from load shaping reduction decrease from
$3,312,950 to $3,257,155. The demand charge reduction benefits decrease from $3,392,924
to $3,217,370. Such decreases of benefits are mainly caused by the imperfect load forecast
and peak-day prediction.
– Without considering the CEF grant, the present value net cost is $5,685,942, and the

BCR becomes 0.56.
– With the $3,000,000 CEF grant, the corresponding present value net cost becomes

$2,685,942, and the BCR increases to 0.73.

Note that an appropriate threshold needs to be determined to maximize the total benefits
when using the practical operational dispatch. Results with different thresholds are plotted in
Figure 4.4 together with the benefits estimated using the yearly optimal dispatch. As can be
seen, the benefits increase and then decrease as the threshold increases from 0 to 1 using the
practical operational dispatch. The best performance is achieved with a threshold of 3%, which
recovers more than 95% of the electricity bill reduction benefits estimated using the yearly
optimal dispatch.

Figure 4.4. Annual electricity bill reduction using the practical operational dispatch method
with different thresholds.
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4.2.2 Annual Electricity Bill Reduction Breakdown

Figure 4.5 visualizes a breakdown of the savings in the City of Richland’s electricity bill using
the yearly optimal dispatch method. The breakdown of results obtained using the operational
dispatch method is similar and therefore is omitted to save space.

Figure 4.5. A breakdown of the electricity bill reduction using the yearly optimal dispatch.

Using the yearly optimal dispatch, the annual benefits of load shaping charge reduction are
$122,909, which are equivalent to $3,312,950 in present value, accounting for 45% of the total
benefits in electricity bill reduction. In particular, about 98% of these benefits are received from
PV production. The present value benefits from demand and transmission charge reductions
are $3,392,924, and $680,224, respectively. In general, it is difficult separate benefits between
the BESS and PV for demand and transmission charge reductions, as the two subsystems are
coupled in the two use cases.

Using the practical operational dispatch with the 3% threshold, the present value benefits
received from load shaping charge, demand charge, and transmission charge reduction are
$3,257,155, $3,217,370, and $680,224, respectively. These numbers are very close to the
theoretical upper bounds estimated using the yearly optimal dispatch, suggesting that the 3%
threshold is indeed an optimal. Due to such small differences between the two results, we will
only present the yearly optimal dispatch results as an example to explain how these benefits
are generated.

Note that PV production has the effect of increasing demand charges by reducing load during
HLHs. Such impact is due to the presence of the aHLH component in the demand charge
calculation described in Section 2.2, where a lower value of aHLH leads to a more significant
deviation between CSP and aHLH and thereby increases the basis of the demand charge.

The BESS can be used to shift load from HLHs to LLHs to take the advantage of different
charge rates considering BESS cycling losses, and thereby reducing the overall load shaping
charges. The monthly LLH and HLH load are plotted in Figures 4.6 and 4.7, respectively.
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Figure 4.6. LLH load for each month.

Figure 4.7. HLH load for each month.

In both figures, net load without and with BESS are compared. It was found that the total
monthly LLH load increases by 89 MWh on average, while the monthly HLH load decreases by
78 MWh. The changes are small compared to the baseline and thereby are difficult to observe
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in the plots. The BESS provides load shifting only when the ratio between LLH and HLH rates
(see Table 2.1) is lower than its round-trip efficiency, so the benefits received from load shifting
can cover the BESS cycling losses. In months such as March, April, November, and December,
their corresponding ratios between LLH and HLH rates are all higher than 0.87, and thereby the
BESS does not provide load shifting during these months. On the other hand, the BESS mainly
shifts loads during the summer months (from May to August). In the meantime, the optimal
BESS dispatch solutions also balance the trade-offs between load shifting and demand charge
reduction, not making a high value of aHLH to affect the demand charge reduction benefits.

Demand charge reduction represents a significant value stream, since the DCR is much
higher than the load shaping or transmission charge rate. Figure 4.8 compares the original
monthly system peaks to those equipped with the integrated system. With perfect knowledge of
the system load, the optimal BESS dispatch strategy can accurately capture all monthly peak
demand.

Figure 4.8. System peak demand for each month.

Table 4.1. Peak Demand Reduction for Each Month

Month Jan. Feb. Mar. Apr. May June

Peak Day & Hour 1/4 8:00 2/21 8:00 3/7 8:00 4/27 17:00 5/22 18:00 6/21 18:00

Reduced Peak (MW) 1.00 1.16 1.67 1.27 1.37 1.00

Month July Aug. Sept. Oct. Nov. Dec.

Peak Date & Hour 7/30 18:00 8/9 17:00 9/7 18:00 10/22 8:00 11/20 18:00 12/6 8:00

Reduced Peak (MW) 1.69 1.85 1.00 1.19 1.00 1.00

Case Studies and Assessment Results 26



PNNL-ACT-10125

Table 4.1 also lists detailed information about when the system peak occurred in each month
of 2018 and how much reduction can be provided by the integrated system. Note that all
monthly peaks of 2018 occurred either in the early morning (8 a.m.) or late afternoon (5–6
p.m.), during which the PV production was usually weak. As a result, PV does not contribute
much to the demand charge reduction. The integrated system can reduce the monthly system
peak by 1.27 MW on average, with a maximum reduction of 1.85 MW in August and a minimum
reduction of 1 MW in January, June, September, November, and December, because the PV
production was zero during the peak hour in all these five months. The annual benefits from
demand charge reduction are $125,876, about $3,392,924 in present value.

Lastly, the benefits received from transmission charge reduction can be easily calculated.
We also assume here the perfect knowledge about when the BPA’s transmission peak hours
occur. Under such an assumption, the integrated system can reduce the transmission charge
by $25,236 annually, equivalent to $680,224 in present value.

4.2.3 BESS Usage

The annual BESS usage statistics in the operational dispatch (by thresholds) and the yearly
dispatch method are compared in Figure 4.9. As can be seen, the BESS is dispatched on 255
days using the yearly dispatch method. Using the practical operational dispatch method, the
annual BESS usage decreases monotonically as the threshold increases. For example, when
the threshold is set to 0, any peak-day probability is bigger than the threshold and the BESS is
activated every day. When the threshold is set to be 1, the BESS is only used for 12 days in a
year. With a threshold of 3%, the BESS is dispatched on 199 days, 22% less than the yearly
dispatch method.

Figure 4.9. Annual BESS usage using the practical operational dispatch method with different
thresholds.
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4.3 Microgrid Scenario
When equipped with microgrid controllers and associated updates, the integrated system can
form a microgrid to serve the local load when there is an outage of the main grid. To
understand the benefits of the integrated system with a different design, we evaluated a
hypothetical microgrid scenario where outage mitigation was considered in addition to the use
cases for electricity bill reduction in the base case. Additional benefits and costs associated
with outage mitigation are estimated using the approach proposed in Section 3.4. The total
present value benefits and costs in this scenario are plotted below in Figure 4.10, from which
we can observe:

Figure 4.10. Present value benefits vs. costs in the microgrid scenario.

• The additional cost was estimated at $850,000 to enable microgrid operation, and the total
project cost becomes $13,690,690 in present value. With the $3,000,000 grant from the
CEF, the outstanding cost for the BESS and PV becomes $10,690,690. On the other hand,
the estimated annual benefits from outage mitigation is $239,042, which is equivalent to
$3,734,333 in present value.

• With outage mitigation benefits included, the total present value benefits estimated using the
yearly dispatch become $11,120,432, increased by 50.6% compared to the base case.
– Without considering the CEF grant, the present value net cost is $2,570,258, and the

BCR becomes 0.82.
– With the $3,000,000 grant from the CEF, the corresponding present value net cost be-

comes $429,742, and the BCR increases to 1.04.

• With outage mitigation benefits included, the total present value benefits estimated using the
operational dispatch become $10,889,082, increased by 52.2% compared to the base case.
– Without considering the CEF grant, the present value net cost is $2,801,608, and the

BCR becomes 0.80.
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– With the $3,000,000 CEF grant, the corresponding present value net cost becomes
$198,392, and the BCR increases to 1.02.

The estimated unserved load without and with the PV paired with BESS are summarized in
Table 4.2. The difference between the two is the total unserved load avoided using the
integrated system as a microgrid. Recall that the cost of unserved load is estimated using a
curve-fitting calculator described in Section 3.1, which represents a nonlinear relationship
between the unserved load cost and outage duration. The BESS initial energy level is obtained
from our simulation using the yearly optimal dispatch. On average, the integrated system can
help the City of Richland to avoid 3.3 MWh of unserved load each year, with an annual benefit
of $239,042. This results in $3,734,333 benefits in present value from outage mitigation.

Table 4.2. Outage Events and Unserved Load

Date Start Duration Cost of Unserved BESS Initial Unserved Load w/o Unserved Load w/

Time (Hours) Load ($/kWh) Energy (kWh) PV & BESS (kWh) PV & BESS (kWh)

12/2/17 16:00 2.167 74.37 4,838 264,827 262,660

5/15/16 07:00 2.500 69.00 2,538 256,706 254,706

1/29/16 09:36 0.783 109.19 538 85,928 85,581

11/17/15 15:26 1.833 80.82 4,838 184,035 182,202

10/26/15 04:45 2.250 72.93 4,538 204,849 202,599

8/30/15 05:52 1.167 97.26 3,538 120,531 119,364

6/27/15 04:59 0.000 0.00 4,850 0 0

2/24/15 08:15 4.500 54.18 1,538 571,050 570,050

1/26/14 07:50 1.667 84.45 1,538 217,129 216,129

1/22/14 14:50 0.667 113.19 538 74,701 74,138

1/22/14 08:00 1.333 92.68 1,538 169,804 168,804

1/20/14 08:45 0.750 110.31 538 91,726 91,726

4.4 Comparison with Preliminary Assessment
At the project planning stage in 2018, a preliminary economic assessment was performed using
typical BESS performance and cost parameters. The cost, service life, and performance
parameters used in the preliminary analysis are different from those of the deployed system
reported in Section 4.1. For example, in the preliminary analysis, the project life was assumed to
be 20 years, and the BESS was modeled as a 1 MW/4 MWh vanadium redox flow battery with
no constraints on its operational SOC range. The BESS O&M cost was not explicitly modeled.

The preliminary assessment results are plotted in Figure 4.11. The capital costs of BESS
and PV were estimated at $5,515,265 and $6,681,683, respectively, leading to a total project
cost of $12,196,948. Without considering outage mitigation, the total present value benefits
were estimated at $6,803,134. These benefits were primarily driven by demand and load
shaping reduction, which were about $2.5 and $3.8 million, respectively. Outage mitigation
could bring in additional benefits of $3.9 million.
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Without considering the CEF grant and outage mitigation benefits, the BCR was 0.56. With
outage mitigation benefits included, the corresponding BCR increased to 0.88. With the
$3,000,000 grant from the CEF, the outstanding cost for the BESS and PV became $9,193,541.
The corresponding net benefits were $1,536,775 and the BCR increased to 1.16. These net
benefits/cost and BCR obtained in the preliminary assessment are close to the updated results.
The preliminary versus final assessment results are detailed in Table 4.3.

Figure 4.11. Present value benefits vs. costs from the preliminary economic assessment.
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C H A P T E R 5

Conclusions

This report presented economic assessments of an integrated PV and BESS system deployed
at Horn Rapids in the City of Richland, considering various use cases in grid-connected mode
and outage mitigation in island mode. The system configuration and use cases were detailed.
To define technically achievable benefits, advanced modeling and optimal dispatch methods
were developed to capture the technical characteristics and operational constraints of the
integrated system, rules and requirements of different use cases, as well as their couplings.
Comprehensive analyses were performed to understand the cost-effectiveness the integrated
system, considering the coupling among various use cases. It was found that the total benefits
of the deployed integrated system are $7.2 million. With the $3 million grant from the CEF, the
outstanding cost for the City of Richland is $9.8 million and the corresponding BCR is about
74%. It was also found that with an appropriate threshold, the practical operational dispatch can
reduce BESS cycling by 20% compared to the yearly optimal dispatch and help mitigate BESS
degradation. The proposed method and assessment results can be used to determine the
optimal cycle life that maximizes the net benefits, and thereby help select the most appropriate
capacity maintenance agreement. Compared to the preliminary assessment results, the present
value benefits and cost in the final assessment results increase by $0.35 million and $0.64
million, respectively. The BCRs estimated in the preliminary analysis are close to the numbers
in the final assessment results.

Conclusions 32



PNNL-ACT-10125

C H A P T E R 6

References

Balducci, P., J. Alam, T. Hardy, and D. Wu 2018, June. Assigning value to energy storage systems
at multiple points in an electrical grid. Energy & Environmental Science 11(8), 1926–1944.

Crawford, A., V. Viswanathan, D. Wu, and A. Santos 2022. Energy Northwest – Horn Rapids
solar and storage: An assessment of battery technical performance. Technical report, Pacific
Northwest National Laboratory.

Giraldez, J., F. Flores-Espino, S. MacAlpine, and P. Asmus 2018. Phase I microgrid cost study:
Data collection and analysis of microgrid costs in the United States. Technical report, National
Renewable Energy Laboratory.

Holmgren, W. F., C. W. Hansen, and M. Mikofski 2018. Pvlib Python: a Python package for
modeling solar energy systems. Journal of Open Source Software 3(29), 884.

Kirchmeier, B. 2018. Clean Energy Funds: 2013–18. Available online at <https://
energyleadershipsummit.com/wp-content/uploads/2A_Kirchmeier.pdf>.

Lawrence Berkeley National Laboratory 2018. The Interruption Cost Estimate (ICE) Calculator.
Available online at <https://www.icecalculator.com/build-model?model=interruption>.

Vinod, S., D. Wu, D. Wang, and X. Ma 2022. Energy storage valuation: A review of use cases
and modeling tools. Technical Report DOE/OE-0029, U.S. Department of Energy.

Washington State Department of Commerce 2017. Clean Energy Fund. Available online at <http:
//www.commerce.wa.gov/wp-content/uploads/2017/04/Commerce-Clean-Energy-Fund-2017.
pdf>.

Washington State Department of Commerce 2021. Grid Modernization Program. Available
online at <https://www.commerce.wa.gov/growing-the-economy/energy/clean-energy-fund/
energy-grid-modernization/>.

Weather Underground 2022. Historical Weather. Available online at <https://www.wunderground.
com/history>.

Wilcox, S. M. 2012. National solar radiation database 1991-2010 update: User’s manual. Tech-
nical report, National Renewable Energy Laboratory.

Wu, D. and X. Ma 2021. Modeling and optimization methods for controlling and sizing grid-
connected energy storage: A review. Current Sustainable/Renewable Energy Reports 8, 123–
130.

References 33

https://energyleadershipsummit.com/wp-content/uploads/2A_Kirchmeier.pdf
https://energyleadershipsummit.com/wp-content/uploads/2A_Kirchmeier.pdf
https://www.icecalculator.com/build-model?model=interruption
http://www.commerce.wa.gov/wp-content/uploads/2017/04/Commerce-Clean-Energy-Fund-2017.pdf
http://www.commerce.wa.gov/wp-content/uploads/2017/04/Commerce-Clean-Energy-Fund-2017.pdf
http://www.commerce.wa.gov/wp-content/uploads/2017/04/Commerce-Clean-Energy-Fund-2017.pdf
https://www.commerce.wa.gov/growing-the-economy/energy/clean-energy-fund/energy-grid-modernization/
https://www.commerce.wa.gov/growing-the-economy/energy/clean-energy-fund/energy-grid-modernization/
https://www.wunderground.com/history
https://www.wunderground.com/history


PNNL-ACT-10125

Wu, D., X. Ma, P. Balducci, and D. Bhatnagar 2021, March. An economic assessment of behind-
the-meter photovoltaics paired with batteries on the Hawaiian Islands. Applied Energy 286.
116550.

References 34





Pacific Northwest
National Laboratory
902 Battelle Boulevard
P.O. Box 999
Richland, WA 99352
1-888-375-PNNL (7665)

www.pnnl.gov


	Executive Summary
	Acknowledgments
	Acronyms and Abbreviations
	Notation
	Introduction
	Use Cases
	Load Shaping Charge Reduction
	Heavy Load Hour Load Shaping Charge
	Low Load Hour Load Shaping Charge

	Demand Charge Reduction
	Transmission Charge Reduction
	Outage Mitigation

	System Modeling and Optimal Dispatch
	BESS and PV Models
	Load Forecasting
	Load Modeling
	Temperature-Based Model
	Climate-Based Model
	Ensemble Model
	Validation

	Probabilistic Modeling

	Optimal Dispatch
	Yearly Optimal Dispatch
	Operational Practical Dispatch
	MPC-Based Dispatch for Peak Days
	Dispatch without Demand Charge Reduction


	Outage Mitigation

	Case Studies and Assessment Results
	Assumptions and Inputs
	Economic Parameters and Assumptions
	System Costs
	BESS Parameters
	PV Parameters
	System Load

	Base Case
	Benefits vs. Costs
	Annual Electricity Bill Reduction Breakdown
	BESS Usage

	Microgrid Scenario
	Comparison with Preliminary Assessment

	Conclusions
	References

