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Abstract 
This report includes two main accomplishments of the peer-to-peer communication control for 
resilient operation of networked microgrids project in FY24, which include a scheme for 
cyberattack-aware coordination of networked microgrids for supporting voltages of bulk power 
systems and a scheme for price signal-based operations of EV-rich networked microgrids with 
mixed ownership. The cyberattack-aware scheme enables networked microgrids to distributedly 
determine the amount of reactive power injection to support the voltage of bulk power system 
(BPS) in a fair manner. In this scheme, a risk-informed algorithm is presented to generate the 
peer-to- peer (P2P) communication graph with minimal risk of attack on communication links. To 
deal with cyberattacks on MG controllers, the resilient consensus algorithm (CA) is utilized for 
MG controllers to robustly estimate the total reactive power headroom, from which the MGs can 
accurately provide the needed amount of reactive power injection for supporting the voltage of 
BPS. The CA implementation and performance within the P2P communication framework are 
demonstrated on the IEEE 39-bus system with 6 microgrids contained in the distribution feeder 
under different cyberattack scenarios. On the other hand, the price-based scheme enables the 
usage of the real-time price signal for the operations of electric vehicle (EV)-rich networked-
microgrids with mixed ownership, in which not all the microgrids can communicate with the 
distribution system operator (DSO). In this scheme, a max consensus is introduced to enable 
the real-time price signal to be propagated from the DSO to all the microgrids, from which each 
microgrid controller will manage the DERs to balance the load demand and the power injection 
from the EV charging stations within its microgrid. Numerical results over one day with 288 slots 
of 5-minute intervals on the modified 123-node test feeder including 3 microgrids with high 
penetration of EV are presented to evaluate how the price signal affects the operations of 
networked microgrids under different charging strategies of the EV charging stations. The result 
indicates that our proposed EVCS (dis)charging strategy, which leverages the flexibility of EVs 
to support the grid through discharging during peak demand, proves to be a cost-effective 
solution that reduces operational costs while improving the social welfare of EV charging.  
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Summary 
This report includes two main accomplishments of the peer-to-peer communication control for 
resilient operation of networked microgrids project in FY24, which include a scheme for 
cyberattack-aware coordination of networked microgrids for supporting voltages of bulk power 
systems and a scheme for price signal-based operations of EV-rich networked microgrids with 
mixed ownership.  

In the first accomplishment, the cyberattack-aware scheme enables networked microgrids to 
distributedly determine the amount of reactive power injection to support the voltage of bulk 
power system (BPS) in a fair manner. In this scheme, a risk-informed algorithm is presented to 
generate the peer-to- peer (P2P) communication graph with minimal risk of attack on 
communication links. To deal with cyberattacks on MG controllers, the resilient consensus 
algorithm (CA) is utilized for MG controllers to robustly estimate the total reactive power 
headroom, from which the MGs can accurately provide the needed amount of reactive power 
injection for supporting the voltage of BPS. The CA implementation and performance within the 
P2P communication framework are demonstrated on the IEEE 39-bus system with 6 microgrids 
contained in the distribution feeder under different cyberattack scenarios.  

In the second accomplishment, the price-based scheme enables the usage of the real-time 
price signal for the operations of electric vehicle (EV)-rich networked-microgrids with mixed 
ownership, in which not all the microgrids can communicate with the distribution system 
operator (DSO). In this scheme, a max consensus is introduced to enable the real-time price 
signal to be propagated from the DSO to all the microgrids, from which each microgrid controller 
will manage the DERs to balance the load demand and the power injection from the EV 
charging stations within its microgrid. Numerical results over one day with 288 slots of 5-minute 
intervals on the modified 123-node test feeder including 3 microgrids with high penetration of EV 
are presented to evaluate how the price signal affects the operations of networked microgrids 
under different charging strategies of the EV charging stations. The result indicates that our 
proposed EVCS (dis)charging strategy, which leverages the flexibility of EVs to support the grid 
through discharging during peak demand, proves to be a cost-effective solution that reduces 
operational costs while improving the social welfare of EV charging.  
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1.0 Cyber Attack-aware Coordination of Networked 
Microgrids for Supporting Voltages of Bulk Power 
Systems  

Distributed energy resources (DERs), such as rooftop solar panels and battery energy storage 
systems (BESS), are being increasingly integrated into electric distribution systems to enhance 
utility operations and benefit end-use customers. These resources can be aggregated to form 
microgrids [1] and networks of microgrids [2]. Recently, microgrids and networked microgrids 
have been utilized as a resiliency resource, supporting end-use loads outside the point of 
common coupling (PCC) [3]. As networked microgrids technology becomes more mature, it is 
natural to consider their support to the operations of transmission system [4].  

Recently, it is demonstrated that networked microgrids can support the voltage at the PCC of 
distribution feeder and transmission system [5]. In this peer-to-peer (P2P) communication 
control scheme, each microgrid controller calculates local information including its reactive 
power headroom and receives the sensitivity ∆V/∆Q curve from the distribution management 
system (DMS) in normal condition. During a voltage event, the DMS asks the microgrids for 
support by broadcasting the voltage needed to recover and re-balance the system. The 
microgrid controllers will then exchange information to distributedly determine the fair amount of 
reactive power injections by using the average consensus algorithm (CA). Different schemes for 
the distributed support from networked microgrids to the voltage of BPS is also presented in [6].  

While coordination of microgrids can provide the operational flexibility needed for supporting 
transmission system and end-use demand, the distributed communication among MG 
controllers is vulnerable to cyberattacks on the communication links among controllers, as well 
as on the MG controllers themselves. As such, it is necessary to design resilient control systems 
to support the operations of networked microgrids in the presence of cyberattacks. This project 
further extends the work in [5] by considering the risk of cyberattack on communication links and 
MG controllers when implementing the voltage support scheme.  

In the broader context of cyber-physical systems, various types of cyberattacks have been 
classified in [7] based on factors such as the attacker’s knowledge of the system model, 
resource disclosure, and resource disruption. Recent studies have identified different types of 
attacks, including denial- of-service attacks [8], false data injection attacks [9], replay attacks 
[10], and covert attacks [11]. Consequently, methods for detecting, identifying, and mitigating 
these attacks have been explored in [12]–[15]. However, there is still limited research on 
designing control systems of networked microgrids that can enhance their resilience to 
cyberattacks.  

In this project, a risk-informed algorithm is presented to generate the P2P communication graph 
that have minimal risk of attack on communication links. To deal with cyberattacks on MG 
controllers, the cyberattack-aware scheme using resilient consensus al- gorithm is introduced 
for MG controllers to robustly estimate the total reactive power headroom, from which the MGs 
can accurately provide the needed amount of reactive power injection for supporting the voltage 
of BPS. Simulation results on the IEEE 39-bus system with 6 microgrids contained in the 
distribution feeder under different cyberattack scenarios are presented to demonstrate the 
advantages of this approach, in comparison with the baseline scheme in [5].  
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1.1 Communication architecture 

Consider N microgrids, MG1 , ..., MGN , operating in grid- connected mode. Each microgrid is 
equipped with its own controller, as showed in Fig. 1. Each controller collects information from 
devices within that microgrid and per- forms different control functions. Moreover, the controllers 
can exchange information amongst each other and receive signals from the DMS. These 
controller functionalities can be implemented in commercially available controllers like ORNL 
CEISMIC microgrid controller [16].  

Fig. 1: Electrical and cyber architecture in operations of networked microgrids connected with 
the BPS.  

For the operating infrastructure of networked microgrids connected to the BPS shown in Fig. 1, 
the following cyber layers are typically available:  

• Layer 1 (red dashed lines): The communication at this level is between DMS and
microgrid controllers. To limit information exchange in this communication level, it is
considered unidirectional with the DMS allowed to broadcast signals to the microgrid
controllers, but unable to receive information from them. In this paper, it is considered
that DMS can send the dQ/dV curve, amount of voltage needed in abnormal events, and
the risk-informed P2P communication graph to the MG controllers.

• Layer 2 (blue dashed lines): The communication at this level is realized among MG
controllers through the P2P framework. The individual microgrid controllers exchange
information, but not control signals. In this paper, the exchanged information is the
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reactive power headroom of each microgrid. Interactions at this layer could be a 
traditional mapped Supervisory Control and Data Acquisition (SCADA) approach. But for 
scalabil- ity and for coping with authority in a mixed-ownership environment, the P2P 
communication approach is more appropriate.  

• Layer 3 (black dashed lines): The communication at this level is realized within the
microgrid. Here, the individual MG controller directly gets the information from and sends
control signal to its constituent devices, such as generators, inverters, relays, and
sensors. In this paper, the communication at this level is for each microgrid controller to
send the reactive power setpoints to controllable devices in that microgrid to realize the
reactive power injection determined by the resilient consensus algorithm in the cyber
Layer 2.

In this communication architecture, there are risk of at- tacks on communication links between 
DMS and MG con- trollers, on the coommunication links among MG controllers, and on the MG 
controllers computation process. Since dis- tribution system operator can have its own process 
to harden the communication between DMS and MG controllers, this papers mainly focus on the 
risk of attacks on communication links among MG controllers and risk of attack on the MG 
controllers.  

1.2 Voltage support decision process 

The goal of the voltage support decision process is for microgrid controllers to distributedly 
determine the suitable amount of reactive power injection to support the voltage at the POI. This 
process is implemented in the following steps:  

• Step 1: DMS generates the risk-minimal P2P commu- nication graph and broadcasts it
to MG controllers.

• Step 2: DMS broadcasts global information to all mi- crogrid controllers, which includes
the sensitivity curve ∆V/∆Q sent during normal operation and the needed voltage
support sent after a voltage event.

• Step 3: Microgrid controllers calculate their local infor- mation, including the reactive
power headroom based on its local data, and the total reactive power needed after a
voltage event based on data received from DMS.

• Step 4: Microgrid controller exchanges reactive power headroom with other microgrid
controllers via the risk- minimal P2P communication network.

• Step 5: Each MG controller estimates total reactive power headroom of all MGs by using
the resilient consensus algorithm.

• Step 6: Microgrid controllers locally determine the suit- able local amount of additional
reactive power injection within their headroom, and inject the additional reactive power
into system.

It should be noted that Step 2, Step 3, and Step 6 involve local calculations and information 
broadcasting, which are not vulnerable to cyberattacks. The main risk of cyberattacks appear in 
Step 4 and Step 5 where MG controllers exchange information on the P2P communication 
graph and use the consensus algorithm (CA) to estimate the total reactive power headroom.  
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1.3 Reactive power injection determination 

Note that after Step 3, each MG controller determines the amount of total reactive power 
needed to support the voltage of BPS, denoted as ∆Q. To fairly share this amount of reactive 
power support among MGs, the MG controllers will exchange the reactive power headroom with 
each other, via a P2P communication network, to estimate the total amount of reactive power 
headroom from all MGs in Step 5. Then, the fair amount of additional reactive power injection 
from each microgrid to support the BPS is determined as:  

where N is the number of MGs, 𝑄"! is the reactive power headroom of MG i, and Est(∑ 𝑄"!"
!#$ ) is 

the estimation of total amount of reactive power headroom from all microgrids by the MG 
controller i. Consequently, the total additional reactive power injections from all MGs will closely 
equate the value expected by DMS to ensure the voltage support, as follows:  

It should be noted that the ratio between the additional reactive power injection 𝑄!%&&!'!()%*and 
the reactive power headroom 𝑄"! 	is approximately the same for all MGs as follows:  

1.4 Resilience to cyberattacks on communication links and 
controllers 

When the risk of attack to communication links among MG controllers is deterministic (i.e., if 
there is an attack to the communication link among MG controllers then the DMS knows it), the 
DMS can just request MG controllers not use those attached links for the P2P information 
exchange. However, it is more typical that the DMS only knows that each communication link 
among MG controllers has a probability of getting attack. In this project, a risk-informed 
algorithm is presented for DMS to generate the P2P communication graph for the P2P 
information exchange among MG controllers that have minimal risk of attack on communication 
links.  

Indeed, for each P2P communication graph ε among MG controllers, the risk of attack to the 
communication links of ε is calculated as follows as the total risk of cyberattacks from all its 
subgraphs, i.e., 
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where η is a subgraph of ε and ℙ(η) is the risk of cyberattacks on the communication links of η. 
The risk of attack to η is calculated as 

where ℙ(𝑐!+) is the probability that the communication link 𝑐!+ between MG controller i and MG 
controller j gets attacked.  

As showed in [17], to deal with the risk of cyberattacks on MG controllers, it is necessary that 
the P2P graph has sufficient connectivity, i.e., if there are k MG controllers got cyberattacks, 
then then P2P graph needs to have (2k+1) connectivity. As such, in this paper, we will only 
determine the P2P graph with minimal risk of attacks from the set of all P2P graphs with (2k+1) 
connectivity. Accordingly, the graph ε∗ with minimal risk of getting attacks on the communication 
links is determined as  

where C is the set off all P2P communication graph with (2k+1) connectivity to enable the 
resilient consensus algorithm. The process to determine the P2P graph with minimal risk of 
attack to communication links is in Fig. 2. Generation of P2P graphs with (2k+1) connectivity 
follows graph generation algorithms in [17]. 

Fig. 2: Process for DMS to determine the P2P graph for information exchange among MG 
controllers with minimal risk of attack to communication links.  

To deal with the cyberattack to k MG controllers, each MG controller uses the resilient 
consensus algorithm (Algorithm 1) in [17] and the generated risk-informed P2P graph with 
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(2k+1) connectivity to determine the total reactive power headroom in the presence of 
cyberattacks on the MG controllers. Note that The Algorithm 1 in [17] was used to resiliently 
determine the total supply of all MGs headroom in the presence of cyberattacks on the MG 
controllers, but here it is used to resiliently determine the total reactive power headroom in the 
presence of cyberattacks on the MG controllers in the same manner. 

1.5 Demonstration 

This section demonstrates the effectiveness of the pro- posed resilience scheme through an 
example how the CA can be applied to coordinate a network of microgrids to inject reactive 
power to support voltage of the BPS in the presence of cyberattacks. For this purpose, the IEEE 
39-bus testcase is used to represent the BPS, while 6 microgrids will be placed at one
distribution system connected at one bus, as showed in Fig. 3.

Fig. 3: IEEE 39-bus testcase with 6 microgrids connected to one distribution feeder at bus 20. 

The rated reactive power and the reactive power injection before the voltage event of each 
microgrid are given in Table I, based on which microgrid controllers can calculate the reactive 
power headroom accordingly. It is note that the total reactive power headroom of all MGs is 
451.44 MVAr.  
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TABLE I: Microgrid controllers local calculations [MVAr] 

In the following scenario, it is assumed that the DMS acknowledges a need for ∆Q = 400 MVAr 
to support the voltage at the BPS POI after a voltage event. For a comparison, the baseline 
scheme is chosen as the average CA in [5] to enable MG controllers distributedly determine the 
amount of reactive power injection from each MG in order to provide 400 MVAr support to BPS. 

Two usecases are considered to examine the effectiveness of both algorithms: (i) attacks on 
communication links and (ii) attack on MG controllers. In usecase (i), it is assumed that all the 
communication links between MG controller 1 and other MG controllers have a positive 
probability of getting attack. The scheme in [5] only consider the deterministic risk of attack, and 
hence, the DMS requests MG controllers not to use the communication links between MG 
controller 1 and other MG controllers. Accordingly, the P2P communication graph, generated by 
the DMS in [5], is not connected and the average consensus algorithm in [5] does not converge. 
The risk-minimal P2P graph, generated as in Section III, is still connected since it only considers 
the probabilistic nature of the cyberattacks on the communication links. Accordingly, the risk-
minimal P2P graph for information exchange among MG controllers is generated as in Fig. 4.  

Fig. 4: Risk-minimal P2P graph for information exchange among MG controllers. 
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In usecase (ii), it is assumed that there is a data injection attack to MG controller 4 in a short 
time period resulting in data injection of [20 30 40] MVAr in three updating steps of MG 
controller 4 when it performs the resilient CA and the average CA in the baseline. This data 
injection will eventually propagate to other MG controllers when they exchange information to 
implement the algorithms. For a fair comparison, both algorithms in this usecase will utilize the 
P2P communication graph as in Fig. 4.  

Using the average CA in the baseline and resilient CA, the estimations of total reactive power 
headroom and the additional reactive power injections from MGs are determined in Table II. It 
can be seen that the average CA in the baseline fails to accurately estimate the total reactive 
power headroom due to the data injection attack to MG controller 4, while the resilient CA allows 
all the MG controllers to successfully estimate the total reactive power headroom off all MGs, 
which is 451.44MVAr.  

TABLE II: Comparison of reactive power headroom estimations and additional reactive power 
injections estimated using average CA and resilient CA [MVAr].  

Based on the estimation of total reactive power headroom, the MG controllers calculate the total 
reactive power injections as in Table III. It can be seen that the resilient CA allows MG 
controllers to successfully support the requested amount of reactive power 400 MVAr to bring 
up the voltage of BPS at POI, while the average CA in the baseline does not inject enough 
reactive power to support the voltage of BPS.  

TABLE III: Total reactive power injection from all MGs [MVAr] 
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2.0 Price signal-based operations of EV-rich networked 
microgrids with mixed ownership 

Various distributed energy resources (DER), such as rooftop PV and battery energy storage 
systems (BESS), have been integrated into distribution systems, providing greater flexibility to 
support utility operations and end-use customers [18]. Furthermore, electric vehicles (EV) are 
going to be one of the most predominant flexibility sources in the distribution systems [19]. It is 
estimated that 62% of all vehicles on the US roads will be electric or plug-in electric vehicles by 
2050 [20], [21]. As a point of aggregation for collections of DERs, microgrids will have to adopt 
large penetration of EV, and hence, operating microgrids and networked microgrids with rich EV 
is an important problem. In this paper, a framework using real-time price signals for the 
operations of electric vehicle (EV)-rich networked-microgrids with mixed ownership will be 
presented.  

There are several works pursued on the operations of microgrids in electricity market. An 
optimal bidding strategy was proposed for a microgrid to engage in day-ahead electricity market 
[22]. In [23], a bidding model was developed for a microgrid to take part in day-ahead and real-
time electricity markets considering microgrid reconfiguration and flexible energy sources under 
a hybrid stochastic and information gap decision theory (IGDT) method. A strategic bidding 
model was presented for a hybrid ACDC microgrid to participate in day-ahead and real-time 
markets with a chance-constrained two-stage stochastic programming approach [24]. A peer- 
to-peer bidding strategy was also introduced for energy transactions between networked 
microgrids, considering the uncertainties of renewable energy sources under cartel game [25]. 
Furthermore, a novel blockchain-based transactive model was developed for energy exchange 
between multiple microgrids [26]. Similarly, a distributed framework was developed to facilitate 
energy exchange between several NMs, wherein the each microgrid self-schedules internal 
generation units to satisfy domestic demand while sharing its surplus production with other 
microgrids [27].  

In addition, electric vehicle charging stations (EVCS) in microgrids can be a crucial resource for 
cost-effective operation [28]. The power consumption of EVCS can be flexible by adjusting the 
EV charging schedule, with the objective of meeting the demand of EV owners before their 
departure [29]. Moreover, EVCS can contribute to the microgrid by discharging stored energy 
when electricity prices are high, thereby enhancing cost-effectiveness [30], [31]. While EVCS 
provide economic benefits similar to utility-scale batteries in microgrid operations, a key 
distinction is that EVCS must also consider the power consumption required to meet EV 
demand, which adds additional constraints compared to batteries. This highlights the need to 
develop effective (dis)charging scheduling strategies for EVCS that balance their contribution to 
both the grid and EV owners.  

In this project, real-time price signal will be used for managing the operations of networked 
microgrids, in which the power balance in each microgrid is performed locally with the 
engagement of DERs, the load demand and the power injection from the EV charging stations. 
In particular, the real-time price signal from DSO will be sent to microgrid controllers and then 
distributed to EV charging stations within each microgrid. When all the microgrids belong to an 
owner, it is possible to control all these microgrids by a centralized controller [32]. However, in a 
mixed ownership environment where microgrids can belong to either utility or non-utility owner, 
and hence, not all microgrids can communicate with the DSO. Accordingly, a max consensus 
algorithm is utilized to propagate the real-time price signal from DSO to all microgrid controllers. 
Given the real- time price signal, EV charging stations can utilize different charging strategies to 
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charge and discharge the EVs to satisfy the EV demand. Eventually, the MG controller 
manages the power output of DERs to balance the load demand and the power injection from 
the EV charging stations. While the price signal can only used in a monthly basis in the current 
practice, the proposed framework utilizes the real-time price signal directly at the EV charging 
stations, which enables much faster response by the EV charging station to get benefits.  

In this project, a price signal-based framework is introduced for the operations of networked 
microgrids in mixed ownership environment. Also, a max consensus algorithm is introduced to 
propagate the real-time price signal among microgrid controllers. Demonstration on the 123-
node test feeder with 3 microgrids is provided to evaluate the social welfare (SW) of the NMGs 
under different charging strategies of the EV charging stations.  

2.1 Communication architecture 

Consider a number of microgrids Si,i = 1,...,N, that are operating in the grid-connected mode, 
each of which has one controller, as showed in Fig. 5. Each microgrid controller can collect 
information from devices in that microgrid and perform different controlling objectives. Each 
microgrid can contain generation resources, load, and/or EV charging station.  

Fig. 5: Communication architecture to support the price signal-based operations of EV-rich 
networked microgrids with mixed ownership  

In the operations of networked microgrids connected to the BPS, the following communication 
layers are typically available:  

• Layer 1: Communication between microgrid con- troller and individual devices within a
microgrid. The individual microgrid controller will directly get the information from and
send control signal to individual devices which include generators, inverters, relays, and
sensors.
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• Layer 2: Peer-to-peer communication among micro- grid controllers. The individual
microgrid controllers exchange information, but not control signals. Inter- actions at this
layer could be a traditional mapped Supervisory Control and Data Acquisition (SCADA)
approach. But for scalability and for coping with authority in a mixed-ownership
environment, a peer-to-peer communication approach is more appropriate. In this paper,
peer-to-peer communication among microgrid controllers will be applied.

• Layer 3: Communication between microgrid controllers and DSO. The utility’s centralized
DSO communicates with the microgrid controllers. In a mixed ownership environment, it
is considered that DSO can only communicate with utility microgrid controllers, but
cannot communicate with non-utility MG controllers.

2.2 Price signal-based framework for operating networked 
microgrids 

Leveraging the communication architecture in the previous section, the following framework is 
utilized for using the real-time price signal in the operation of networked micro- grids with mixed 
ownership.  

• Step 1: DSO gets the price from wholesale market in every 5 minute and sends to utility
MG controllers using the SCADA network

• Step 2: The price signal is propagated from utility MG controllers to non-utility MG
controllers via the P2P communication network among MG controllers

• Step 3: Charging station in each MG decides the charg- ing strategy based on the
received price signal, while meeting the EV demand

• Step 4: Each MG controller manages the DERs within that MG to balance the supply-
demand locally in the MG.

2.3 Propagation of real-time price signal via SCADA and P2P 
communication networks 

When all the microgrids belong to an owner, it is possible to control all these microgrids by a 
centralized controller [15]. However, in a mixed ownership environment where microgrids can 
belong to either utility or non-utility owner, and hence, not all microgrids can communicate with 
the DSO. Using SCADA network the real-time price signal can be sent from DSO to utility MG 
controllers. Thanks to the P2P communication network among MG controllers, it is possible to 
propagate the real-time price signal from utility MG controllers to non-utility MG controllers.  

Denote 𝒩! as the set of MG controllers that can communicate with MG controllers i via the P2P 
communication network. Accordingly, the max consensus algorithm is utilized to propagate the 
real-time price signal from DSO to all microgrids controllers:  
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where 𝜆',!
(.) is the estimation of the real-time marginal price at the time period t by the MG i and

updating step m of the consensus algorithm. Note that 𝜆',!
(0)  is the real-time marginal price at the

time period t received by the MG i if MG i is utility MG. 𝜆',!
(0)  = 0 if MG i if MG i is non-utility MG.

It should t,i be noted that if the P2P communication network among MG controllers is 
connected, then the max consensus algorithm quickly converges and all the MG controllers get 
the same value of the real-time marginal price at the time period t.  

2.4 Operations of EV-rich Networked Microgrids 

We consider a system of multiple microgrids (MGs) with DERs and EVCS resulting into a mixed 
ownership structure, as depicted in Fig. 6. In each microgrid k over time t, the load must be met 
at each time t with the interval ∆t. To meet the load, DER generation can be utilized, which is 
controllable. Here, 𝑄',1(𝑝',1)indicates the cumulative generation in descending order of bids 
𝑝',1Additionally, the system includes EVCS, which can be considered as a set of EV batteries. 
The overall capacity is 𝑟',1, which changes by the amount of 𝐷',1and 𝐴',1, indicating the battery 
capacity of departed and arrived EVs at time t, respectively. The total charging power of EVCS 
from/ to the MG is denoted as 𝑒',1, which can be either positive or negative. If EVs are charged 
using power from DERs, 𝑒',1,  is positive. Conversely, if EVCS contributes to satisfying the 
demand by using the power stored in the EV batteries, 𝑒',1,  becomes negative.  

Fig. 6: System Description 

Specifically, the power balance must be maintained at each time t, i.e., 

along with the minimum/maximum boundaries of the DER generations for each MG k. 
Moreover, the participation of EVCS introduces additional constraints to the problem:  
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Here, the first equation indicates the changes in the aggregated capacity of the EV batteries in 
MG k at time t. The capacity 𝑟'2$,1 changes by the charging or discharging energy 𝑒',1∆t, and 
the aggregated battery capacity of arriving and departing EVs 𝐴',1 and 𝐷',1, respectively. 
Consequently, 𝑟',1 is bounded by 𝑅',1.!) and 𝑅',1.%3. Here, 𝑅',1.!) represents the minimum EVCS 
capacity needed to satisfy the overall EV demand, ensuring that all EVs can depart with their 
demand met. The maximum 𝑅',1.%3 implies the maximum charging limit of EVCS in MG k.  

Note that 𝐴',1 and 𝐷',1  can be considered random variables. In our numerical experimentation, 
we utilized a uniform distribution followed by scaling with time-dependent arrival/departure 
ratios. Here, 𝑅',1.!)  is determined based on the estimated values of 𝐴',1 and 𝐷',1.  

2.5  EVCS Operation Strategy 

the demand L is constant at each time t, which leaves the term 
constant. This implies that we can reduce the cumulative generation by reducing the EV 
charging power when the marginal price is high. This helps in reducing the generation cost. 
Moreover, we can even set 𝑒',1 to be negative, implying discharging power from the EV 
batteries if the EVs already have enough charge. This will help reduce the generation cost 
dramatically and increase the total SW.  

Based on this observation, we consider three EV charging strategies: Strategies ’Min’, ’Max’, 
and ’Flex’:  

• Strategy ’Min’: We charge as little as possible while satisfying the EVCS constraints. As
a result, 𝑒',1 can be represented as

• Strategy ’Max’: Contrary to Strategy ’Min’, we charge as much as possible while
satisfying the EVCS constraints. Consequently, 𝑒',1 = 	Δ𝑅1/∆t by following (8).

• Strategy ’Flex’: This strategy is flexible between charging maximum and minimum based
on the marginal price while satisfying EVCS constraints. Once the price threshold is
determined, we will charge to the maximum if the marginal price is less than this
thresthold. Otherwise, we charge to the minimum or even discharge, which can be
represented as
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2.6 Evaluation Metrics 

To evaluate the operations of networked microgrids when the EV charging stations use different 
charging strategies, the social welfare (SW) of the system will be analyzed and compared. Here, 
the SW is defined as  

with	𝑈',1 	and 𝑊',1 	indicate the SW of the customer represented as load demand and EV 
charging, and C(𝑄',1(𝑝',1)) represents the generation cost  

2.7  Demonstration 

To show the effectiveness of the proposed method, we conducted a numerical test on a simple 
three-microgrid system as in Fig. 6 based on IEEE 123-bus feeder [33]. We considered a time 
horizon of one day with EVCS participating in the real-time market, which leads us to consider a 
total of 288- time slots with 5-minute intervals. To simplify the problem, we assume that the 
price signal and the total load of each MG are given as shown in Fig. 9, based on adjusted 
ERCOT data [34].  
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Fig. 9: (a) Electricity price and a total load of (b) MG1, (c) MG2 and (d) MG3 in one day 

In the scenario without an attack on the price signal, we assume that all MGs have accurate 
knowledge of the price. Lastly, 𝑅.!), D, and A are depicted in Fig. 10, considering the trend that 
EV departure and arrival occur most frequently during the afternoon, with the minimum capacity 
requirement R meeting the EV charging demand. Here, the number of arriving EVs at the EVCS 
is greater than the number of departing EVs in hour 12, causing the A to be bigger than D and in 
turn raises the minimum capacity requirement 𝑅.!). Conversely, after hour 12, more EVs depart 
than arrive, leading to a decrease in 𝑅.!) value with D being bigger than A.  
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Fig. 10: Minimum required EVCS charging capacity (Rmin), capacity of EV arrival (A) and EV 
departure (D) of three MGs in one day  

As we discussed, three strategies have been considered: ‘Min’, ‘Max’, and ‘Flex’. In the Flex 
strategy, the price threshold is set at 1.15 times the average marginal price over one day. The 
numerical results using these three strategies are shown in Table IV. We observe that Flex 
shows the best total SW compared to the other two strategies.  

TABLE IV: Numerical test comparisons between three strategies 
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This improvement in SW is due to better SW for EVs than Min and Max, while also reducing 
generation costs compared to other strategies. The Flex strategy leverages the flexibility of EVs 
to adapt to electricity prices. Specifically, when electricity prices are high, EVs discharge to the 
maximum extent possible without causing an EV charging shortfall, similar to Min. Conversely, 
when electricity prices are low, EVs charge to the maximum, similar to Max. This behavior is 
reflected in Fig. 11, where the total capacity for Flex is between those of the other two 
strategies. Initially, Flex follows Max due to low electricity prices, but as prices increase, the 
charging/discharging strategy shifts closer to Min, reducing the total capacity. These differences 
are also visible in Fig. 12, which shows the EVCS charging/discharging power over each time 
period for the three strategies. Min maintains a steady minimum charge that can prevent EV 
charging shortfalls. Max charges significantly more than Min to maximize the charge at each 
interval, but it does not utilize the flexibility of EV charging, resulting in constant power charges 
at each time. In contrast, Flex leverages EV flexibility and frequently adjusts 
charging/discharging to enhance SW. Unlike Max, Flex alternates between charging and 
discharging, resulting in higher SW. Note that although there are frequent fluctuations in EV 
charging/discharging in Flex, there would be no degradation issues with the EV batteries 
because the time interval is 15 minutes.  

Fig. 11. Comparison of total EV capacity between three strategies 

Fig. 12: Comparison of total EV capacity between three strategies 



PNNL-37009 

21 

Finally, we consider the scenario where an attack occurs on the price signal. Specifically, we 
assume that MG1 is a utility MG, while MG2 and MG3 are non-	utility MGs. In this setup, MG1 
directly receives the real-time price signal from the DSO, while the other two MGs estimate the 
price signal using a consensus algorithm. We assume that MG2 estimates the price based on 
information shared by MG1, and MG3 estimates the price based on information shared by MG2. 
During this estimation process, an attack is assumed to reduce the price, leading to the MGs 
underestimating the price. Fig. 10 shows an example of the (estimated) price signals for each 
MG under attack.  

Fig. 13: (Estimated) price signals for each MG under attack 

Similar to the previous sections, we compare the EV charging strategies Flex and ‘FlexAtt’. 
Here, FlexAtt uses the estimated price signals shown in Fig. 13, assuming that an attack exists. 
This differs from Flex, which assumes no attack and perfect price signal estimation by all MGs.  

Table V compares the total SW, load SW, generation cost, and EV SW between Flex and 
FlexAtt. As we can see, the attack causes MG2 and MG3 to have less accurate price estimates, 
leading to a decrease in the total SW. Here, we emphasize the impact of the attack, which 
degrades both load SW and EV SW while increasing the generation cost. This implies that the 
attack undermines the economic efficiency of the system and prevents the agent from 
determining the proper actions for each circumstance. Notably, despite the attack, the total SW 
is still better than the Min and Max strategies shown in Table IV, demonstrating the 
effectiveness of the Flex strategy.  

TABLE V: Numerical comparison between ’Flex’ and ’FlexAtt’ 
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Next, Fig. 14 compares the total EV capacity between Flex and FlexAtt. Consistent with the 
previous results, the attack and the resulting inaccurate price estimations lead to a slight 
decrease in total EV capacity. This is closely related to the EVCS (dis)charging patterns, which 
are shown in Fig. 15. As seen in the figure, FlexAtt underestimates the price due to the attack, 
thereby reducing discharging, as indicated by the values below zero in the plot. Consequently, 
the flexibility of EVs is not fully utilized, leading to a decrease in both EV SW and total SW. 
Nevertheless, the results still show that the Flex strategy is more effective compared to others 
even in the presence of an attack, implying the robustness of our proposed strategy.  

Fig. 14: Comparison of total EV capacity between Flex and FlexAtt. 

Fig. 15: Comparison of EVCS (dis)charging for the three MGs between Flex and FlexAtt. 
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