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Summary iii

Summary 
Recently, a new graph Laplacian, called the inner product Laplacian, was introduced which 
generalizes many existing Laplacians, including the normalized and combinatorial Laplacian 
and their weighted variants. The key observation behind the inner product Laplacian is that by 
defining appropriate inner product spaces on the vertices and edges, the standard Laplacians 
can be recovered as Hodge Laplacians over the simplicial complex formed by the edges and 
vertices.  These inner product spaces form a natural way to incorporate non-combinatorial 
information into the definition of a domain-specific Laplacian.  In particular, in contrast to current 
domain-specific weighting schemes which rely solely on edge weights, information regarding the 
similarity of non-adjacent vertices and arbitrary pairs of edges can be effectively incorporated 
into the Laplacian.  In order to illustrate this approach, we consider the problem of calculating 
the potential energy of an atomistic configuration using Graph Neural Networks. In comparison 
with start-of-the-art approaches, such as SchNet, our approach replaces a learned (via auto-
encoder) representation of the atom types with an inner product space on atoms based on 
scientific knowledge (e.g., electronegativity). Our results show that if there is significant domain 
information that can be encoded into the inner product, replacing the normalized Laplacian with 
an inner product Laplacian can result in over a 10-fold reduction in training loss (which is 
transferable to validation loss).  However, when there is relatively little domain knowledge to be 
incorporated the performance of the standard graph convolutional layers is 2-3 times better (in 
terms of absolute error).  Likely this performance difference highlights the ability of networks like 
SchNet to rapidly “learn” a representation of a small amount of domain knowledge tailored to the 
particular use case.  This hypothesis is reenforced by experiments where the chosen edge inner 
product is tuned to resulting in a 2-fold decrease the error.   

     However, to compute the resulting Laplacian involves a mixture of sparse and dense matrix 
computation and yields a dense matrix as the basis for the graph convolution.  This dense 
convolutional kernel necessitates moving away from the standard message passing framework 
for graph neural networks and increases the computational cost of applying the kernel.  In order 
to mitigate these costs we investigate means of leveraging the mixed sparse and dense 
computations to reduce the overall computational cost and how these approaches can be 
automatically transferred to energy efficient hardware (e.g., field programmable gate arrays 
(FPGAs)). Overall, the size of the training examples (no more than 50 atoms in a molecules) 
means that the overhead of advanced algorithmic approaches results in lesser performance 
both in terms of overall runtime and energy consumption.  However, individual kernels (such as 
the transpose) can benefit from custom accelerators such as FPGA in terms of energy 
performance while still providing comparable runtimes.  We speculate that larger graphs (such 
as those arising from the power grid) may make advanced algorithmic approaches more 
feasible in terms of energy usage and computational time. 
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UNIFYING COMBINATORIAL AND GRAPHICAL METHODS IN ARTIFICIAL

INTELLIGENCE

SINAN G. AKSOY, BO FANG, ROBERTO GIOIOSA, BILL KAY, HYUNGRO LEE, JENNA POPE,

MADELYN SHAPIRO, AND STEPHEN J. YOUNG

Abstract. Recently, a new graph Laplacian, called the inner product Laplacian, was introduced which gen-
eralizes many existing Laplacians, including the normalized and combinatorial Laplacian and their weighted

variants. The key observation behind the inner product Laplacian is that by defining appropriate inner

product spaces on the vertices and edges, the standard Laplacians can be recovered as Hodge Laplacians
over the simplicial complex formed by the edges and vertices. These inner product spaces form a natural way

to incorporate non-combinatorial information into the definition of a domain-specific Laplacian. In particu-
lar, in contrast to current domain-specific weighting schemes which rely solely on edge weights, information

regarding the similarity of non-adjacent vertices and arbitrary pairs of edges can be effectively incorporated

into the Laplacian. In order to illustrate this approach we consider the problem of calculating the potential
energy of an atomistic configuration using Graph Neural Networks. In comparison with start-of-the-art

approaches, such as SchNet, our approach replaces a learned (via auto-encoder) representation of the atom

types with an inner product space on atoms based on scientific knowledge (e.g., electronegativity). We
will illustrate how this approach captures key chemical properties of the molecules and compare the energy

calculations with state-of-the-art neural network approaches.

However, to compute the resulting Laplacian involves a mixture of sparse and dense matrix computation
and yields a dense matrix as the basis for the graph convolution. This dense convolutional kernel necessi-

tates moving away from the standard message passing framework for graph neural networks and increases

the computational cost of applying the kernel. In order to mitigate these costs we investigate means of
leveraging the mixed sparse and dense computations to reduce the overall computational cost and how these

approaches can be automatically transferred to energy efficient hardware (e.g., field programmable gate
arrays (FPGAs)).

1. Introduction

Over the last 10 years, the advent of efficient algorithms and hardware to train large scale neural networks
has spawned an entirely new collection of approaches to scientific discovery, often referred to Scientific
Machine Learning [2, 5]. While scientific machine learning has made great strides in advancing the frontiers
of scientific discovery and continues to show potential to advance the state-of-the-art across a variety of
different disciplines, there are significant obstacles to be overcome before the full potential of scientific
machine learning can be reached; including characterizing epistemic and aleatoric uncertainty arising from
machine learning pipelines, developing methods to identify “hallucinations” in large-scale models, reducing
the size of the data sets needed to train machine learning pipelines, improving the training efficiency of
specializing foundation models, reducing the overall energy usage needed for the training and implementation
of large-scale machine learning models, and enabling the incorporation of extant knowledge into machine
learning pipelines. In this effort, we focused on addressing the latter two challenges within the context of
graph neural networks; in particular, we demonstrate the utility of the inner product Laplacian as a domain-
informed graph convolutional kernel and investigate the methods by which the energy (and computational)
costs of evaluated a dense graphical kernel, such as those given by the inner product Laplacian, can be
reduced. As a motivating problem for our efforts, we will consider the efficient approximation of the potential
energy associated with a molecular configuration. This provides a natural test case for our approach on
multiple fronts; there is a wealth of high-quality data readily accessible (in the form of density-functional
theory calculations of molecular potentials) which will facilitate investigation of the training procedure in
a variety of use cases, neural network approximations for the potential often form the inner-loop of more
computationally intensive workload (such as, molecular dynamics simulations) and so improvement in any
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Figure 1. A 3×3 convolutional kernel applied to a 5×5 input tensor. Image and example
courtesy of [26].

of the accuracy, computational speed, or energy usage will provide an outsized benefit, and finally there is
wealth of readily accessible chemical knowledge which can be incorporated into our framework.

1.1. Graph Neural Networks. Before proceeding to the technical results of this effort, we review the
notion of a Graph Neural Network (GNN). There are several broad classes of GNNs, motivated by our
exemplar problem of of calculating the potential energy of a molecular system, we will focus primarily on
the Convolutional GNNs. To this end, we first give a high level overview of Convolutional Neural Networks
(CNNs) to introduce convolutional GNNs by analogy. For a survey of CNNs, see [21] and for a survey on
GNNs see [25].

1.1.1. Convolutional Neural Networks. CNNs are a type of feed forward neural network that uses local
convolution kernels as a method for averaging data. The archetypical use-case of a CNN is to classify images
by considering average pixel values in small subgrids across a larger image, which is typically represented as
a tensors with two dimensions corresponding to location of a pixel and the third dimension expressing the
activation of various “channels” (e.g., cyan, magenta, and yellow or red, green, and blue). An example of
how a single convolution layer works is illustrated in Figure 1. The 3 × 3 matrix in the middle represents
a particular convolutional kernel applied to the input tensor with fixed (but learned) parameters. In this
case, the learned parameters consist of an “X” of 5 ones with zeros in the other 4 entries. To apply the
convolutional kernel to an input tensor, the Hadamard product of the convolutional kernel and with a
selected subtensor of the input tensor is taken and then the entries are summed. The results are recorded
in a (typically) smaller tensor with entries corresponding to distinct blocks in the input tensor (in this case
the output is a 3× 3 tensor corresponding to the collection of distinct 3× 3 subtensors of the input tensor.

CNNs provide a valuable tool for coalescing data when data which is close (in the euclidean sense) is
expected to be similar. In the motivating example of image processing, pixels are largely near similarly
colored pixels. Within the larger feed forward network, the convolution layers are used to generate a feature
map which is then used as an input to a feed forward network which is reduced in size while capturing the
general feature layout of the data. The architecture of a simple CNN in which several convolutional layers
are used as input to a short fully connected neural network is included in Figure 2.

While CNNs are incredibly powerful tool when locally close data is related, there are a number of use-cases
in which physical proximity does not imply a quantitative similarity. In Section 1.1.2, we describe how the
relational structure of a graph can inform a more general convolutional framework for data which is related
in non-euclidean ways.

1.1.2. Graph Neural Networks. In general, graph neural network have a similar structure as convolutional
neural networks except the convolutional layers are replaced with computational layers which are governed
by a graph structure. Recall that, formally, a graph G = (V,E) is a relational structure where:

• V is a set of objects (called vertices). The size of V is commonly denoted by n.
• E is a set of (unordred) pairs of vertices (called edges). The size of E is commonly denoted by m.

In practice, graphs are useful models of object of interest (represented by V ) when pairwise relationships
between those objects are important. A canonical example of a graph model is that of a social network, where
V represents users of the social network and E represents when two members of the network are linked. In
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Figure 2. The architecture of a simple CNN. The violet layer corresponds to the input to
the neural network, the mauve layers correspond to two convolutional layers being applied
to the input, the teal layers constitute a fully connected (FC) neural network, and the yellow
nodes correspond to the output layer. Image and example courtesy of [21].

our application, we will use a graph to model the relationships between distinct atoms in a molecular system.
Each atom in the molecular system is a vertex and the edges represent a relationship between the atoms,
either the presence of a bond or (as is the case in section 1.2) physical proximity of the atoms. In the case of
the power grid, each vertex could model one of a variety of different pieces of electrical infrastructure (power
bus, transformer, generator, switched shunt, etc.) and the edges would model the electrical connections
between the various portions of the electrical infrastructure.

Given a data set related by a graphical model, we now describe how to perform convolution as a general-
ization of the methods described in Section 1.1.1. To this end, we will introduce notation we will use herein.
Let V = {v1, v2, . . . , vn} be an enumeration of the vertices of G. For v ∈ V , we denote the neighborhood of
v by N(v) := {v′ : {v, v′} ∈ E}. That is, the neighborhood of v is the set of vertices which are adjacent to
v. In the example of a molecular system, the neighborhood of an atom is the set of other atoms which are
bonded with that atom or are within some prescribed physical distance. The neighborhood will be important
in describing how to perform convolution in a graph network.

Graph convolutional layers generalize classical convolutional layers by averaging information from vertices
which are close, rather than data which is spatially close.1 Irrespective of the averaging operation used, each
vertex v is equipped with a state vector xv and associated with each graph convoluational layer is a (learned)
weight matrix W which is compatable with the state vectors. The simplest form of graph convolution
combines information from adjacent vertices iteratively via the update:

x′
v =

∑
u∈N(v)∪{v}

Wxu

where x′
v is the new state associated with the vertex v. This is often times discussed (and implemented)

in terms of a message passing interface. That is, instead of viewing the update operation as each vertex
pulling information from their neighborhood, one could image every vertex sending its current state out to
its neighbors and each vertex combining the recieved states with their current state. There are a myriad
of normalizations and modifications of this general framework [25], the most common being a normalizing
factor which controls for the degree of a vertex v, where deg(v) := |N(v)| as follows:

x′
v =

∑
u∈N(v)

1√
deg(u) deg(v)

Wxu.

Here we remark that traditional convolutional neural networks can be cast as graph convolution on grid
graphs, illustrated in Figure 3.

1.2. Neural Network Potentials. Traditional methods for simulating atomic interactions in molecular
and materials systems include quantum mechanical approaches like density functional theory (DFT) and
empirically derived interatomic potentials (e.g., Lennard-Jones, embedded atom method). While DFT pro-
vides high accuracy, it is computationally expensive and scales poorly with system size. Conversely, empirical

1The following example is adapted from an informative article on Towards Data Science [20].
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Figure 3. (a). Traditional convolution performed on a graph convolutional neural network.
(b). General graph convolution. Image and example courtesy of [25].

interatomic potentials are computationally efficient but often lack the accuracy necessary to model complex
materials systems. Interatomic potentials derived from neural networks, called neural network potentials
(NNPs), provide an intermediate method, giving near-quantum mechanical accuracy while retaining compu-
tational efficiency comparable to empirical potentials [19, 17, 10]. NNPs are trained on quantum mechanical
data, typically from DFT calculations, to learn the relationship between an atomic configuration and the sys-
tem’s corresponding energy. This relationship is then used in tasks such as molecular dynamics simulations,
property prediction, and modeling chemical reactions.

Geometric NNPs are a class of machine learning models that utilize GNNs to predict interatomic interac-
tions [11]. In these geometric NNPs, atoms are represented by nodes and the edges are defined based on the
distance between atom pairs. Typically, a maximum distance cutoff is applied to limit the number of edges
in the graph. Notably, geometric NNPs inherently respect the underlying symmetries of chemical systems,
namely translation, rotation, and permutation invariances.

The typical network architecture of geometric NNPs is composed of three sequential phases: 1) node
embedding, 2) node interactions, and 3) property readout. The node embedding step generates an initial
internal representation hi based on atom-level features, such as the atomic number. The interaction layers
further refine the internal representation of each node through graph convolutions, as described above. The
readout phase is typically composed of a multi-layer perceptron (MLP), which is a series of dense layers
that transform the internal node representations to a scalar value. The scalars are then summed to provide
system-level properties, in this case the potential energy. Backpropagation over the network with respect to
the atomic coordinates provides the forces acting on each atom.

Figure 4 shows the basic architecture of the SchNet geometric NNP [24]. While SchNet considers only pair-
wise properties, specifically the Euclidean distance between atoms, newer architectures, such as DimeNet++
[13] and GemNet [12], incorporate 3- and 4-atom properties in terms of angles and dihedrals into the inter-
action block.

1.3. Inner Product Laplacians. As noted in Section 1.1.2, the defining features of a graph convolutional
layer in a neural network are the graph, which defines a notion of neighborhood, and an averaging (or
smoothing) operation over those neighborhoods. This smoothing operation can take many forms depending
on the nature of the neural network structure. As noted in 1.1.2, one common smoothing function averages
the neighborhood around v by weighting the contribution of the vertex u by 1√

deg(v) deg(u)
. If, instead of

thinking of this smoothing operation acting on a per-vertex basis, but rather on all vertices simultaneously
it can be recast as

X′ = D−1/2AD−1/2XWT

where D is the diagonal degree matrix for the graph and A is the adjacency matrix of the graph. Those
familiar with modern spectral graph theory will immediately notice the similarity of this matrix to the
normalized Laplacian of the graph. Indeed, the normalized Laplacian L is the positive semidefinite matrix

4
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Figure 4. The architecture of the SchNet geometric NNP. Image courtesy of [14].

defined by I − D−1/2AD−1/2.2 This choice of aggregation function has several notable advantages; firstly,
the spectral (i.e., linear algebraic) properties of L (and hence I − L) have been shown to be tightly related
to variety of underlying combinatorial properties of the graph. See [4] and [8] for a survey of such results.
Additionally, since the spectrum of the normalized Laplacian is entirely contained with in [0, 2], the spectrum
of I − L is contained in [−1, 1]. In particular, this means that applying D−1/2AD−1/2 to the state matrix
X can not increase the overall size of the state matrix, that is, the Frobenious norm of X′ is bounded by
the Frobenious norm of X.3 Informally, the boundedness of the spectral norm of D−1/2AD−1/2 may help
mitigate the possibility of exploding gradients in the training process by keeping the overall state space
bounded. It is worth noting that the spectrally similar, “random-walk Laplacian” D−1A shares several of
these advantages while also allowing an interpretation of the graph convolution as a diffusion process. While
we are not aware of any results directly addressing this, we believe that D−1/2AD−1/2 is preferred over D−1A
as the former belongs to the class of the Hermetian matrices which typically have much better numerical
stability properties.

GNNs, and in particular graph convoluational layers, have prove to be extremely useful in a variety of neu-
ral network contexts. For example, the key feature of the SchNet, DimeNEt++, and GemNet architectures
for neural network potential is the use of a graph convolutional layer based on an interaction defined by the
locations of molecules. Similar approaches could be used in the context of the power-grid to solve AC Opti-
mal Power Flow equation [9] by exploiting the under graphical structure of the grid [22]. However, despite
their successes, there are significant limitations of GNNs and GCLs in particular. Specifically, in contrast to
modern physics informed neural networks or neural operator networks, there are a limited methods for in-
corporate domain knowledge directly into the architecture or training. Indeed, currently the state-of-the-art
methods for incorporating domain information into a graph convolutional layer is to use domain information
to adjust the edge weights of the interaction graph to reflect domain knowledge. However, for many classes
of domain information there is no obvious approach to encode this information into the interaction graph.
For instance, for neural network potentials it would seem to be advantageous to directly encode the atom
type in the graph convolutional layer as similar atoms should be have similarly electrically. But as various

2It is worth noting that other aggregation functions can also be seen as a closely related to other graph Laplacians such as
the combinatorial Laplacian, D −A.

3This observation doesn’t imply that the norm of the state associated with a particular vertex is not increasing, just that

the sum of the squared-norms over all states is not increasing

5
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atoms can be well-separated in the molecule there is no obvious way to introduce edge weights which capture
this similarity.

Recently Aksoy and Young [1, 27] introduced a framework for constructing Laplacians on simplicial
complexes (including graphs) which provides an alternative approach to incorporate domain knowledge into
a graph convolutional layer. Although their approach generalizes to arbitrary simplicial complexes, we focus
on the restriction to graphs (which are 1-dimensional simplicial complexes). In order to build the Laplacian
defined Aksoy a nd Young o n a  g raph G  =  (V, E ) we w ill r equire two p ositive d efinite si milarity matrices
MV and ME . As these matrices are positive definite, they may b e thought o f as defining an  inner product
space on the vector spaces defined by the vertices and edges o f G . Because o f this, the r esulting Laplacian
is refered to as an inner product Laplacian.

In order to define the inner product Laplacian, it is necessary to note that since MV and ME are positive
definite there exists positive definite matrices QV and QE such that Q2

V = QT
V QV = MV and Q2

E = QT
EQE =

ME . The final ingredient in the definition of the inner product Laplacian is a edge-vertex incidence matrix
B, defined so that Bev ∈ {−1, 1} if and only if v ∈ e and is zero otherwise. The choice of signs for B is
such that each row has precisely one +1 and one −1, thus B may be thought of as describing an arbitrary
orientation of the graph G.4 With these pieces, the inner product Laplacian is defined by Aksoy and Young
as LIP = Q−1

V BTMEBQ−1
V . Much like the normalized and combinatorial Laplacian the spectral properties

of the inner product Laplacian are closely tied to the combinatorial properties of the G, except now the
“size” of the sets of edges and vertices are measured in terms of the inner product spaces defined by MV

and ME . In particular, Aksoy and Young show that there are analogues of common isoperimetric results
for the normalized and combinatorial Lapalcian, such as the Cheeger inequality and the expander mixing
lemma [1]. Additionally, they show that the spectrum of the inner product Laplacian can be (approximately)
bounded as a function of the maximum ratio between the size of the set of edges incident to a vertex and
the size of the vertex (as measured by the respective inner product spaces). This observation will be helpful
in Section 2.2 when attempting to design inner product spaces which perform well in graph convolutional
neural networks.

2. IPLnet

In this section we detail our experimental setup for comparing the inner product graph convolutional
layers with standard convolutional layers (as used in the SchNet architecture), specifying the neural network
architecture in Section 2.1, the various inner products considered between the molecules and the edges in
Section 2.2, the overall training framework in Section 2.3, the molecular data sets 2.4, and concluding with
our results in Section 2.5.

2.1. IPLnet Architecture. IPLnet follows a similar architecture to that of SchNet architecture, depicted
in Figure 4, but with the distance expansion replaced with LIP and the message propagation layer replaced
with a dense convolutional layer. The specific definitions of the vertex and edge inner products are given
below. Throughout this work we compare the training of IPLnet with that of SchNet to examine how
incorporation of LIP affects training. Both models have comparable hyperparameters, and so we use the
same values to maintain consistency: 6 interaction layers, 128 hidden channels and filters in the interaction
layers, and a message size of 50. Edges are placed between nodes if the distance between the two atoms
are within 10 Å. Despite using the same hyperparameters when defining the model architecture, IPLnet has
455,909 trainable parameters and SchNet has 594,149 trainable parameters.

2.2. Molecular Inner Products. Before describing the similarity matrices investigated in this work, we
briefly highlight some of the challenges (and potential approaches) in defining a similarity matrices which
are positive definite. Recall that a (real) matrix M is positive definite if it is symmetric and xTMx > 0
for all non-zero vectors x. Alternatively, the condition xTMx > 0 can be rephrased in terms of the strict
positivity of all eigenvalues of M . However, both of these conditions are computationally challenging to
verify accurately due to numerical issues, especially if M has eigenvalues that are close to 0. An alternative
criteria for testing the positive definiteness of symmetric matrices is known as Sylvester’s criterion, which

4It is worth noting that if ME is not a diagonal matrix than the exact form (and the spectrum) of LIP is dependent on the
choice of orientation of G.
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states that a symmetric matrix is positive definite if for all of the leading principle minors the
determinant is positive. While this criteria is relatively easy to verify computationally5, the challenge 
with Sylvester’s criterion is that it doesn’t provide insight on how to define the similarity between
elements (i.e., the value of an off-diagonal entry in the similarity matrix) in a way that ensures that the
resulting matrix satisfies Sylvester’s criterion.

Thus, rather than relying an alternative necessary and sufficient criteria for positive definiteness of the
matrices, we will limit the class of similarity matrices somewhat and only consider similarity matrices which
can be shown to be positive definite using the Greshgorin disk theorem.

Greshgorin Disk Theorem. Let M ∈ Cn×n and let ri =
∑

j≠i |Mij |. If Di is closed disk in the complex

plain of radius ri and centered at Mii, then the spectrum of M is contained in
⋃
Di.

Thus, in order to create a positive definite similarity matrix M it suffices to determine the off-diagonal
entries and then fix Mii = ϵ+

∑
j ̸=i |Mij | for some ϵ > 0. In what follows, ϵ is chosen to be one for simplicity.

2.2.1. Vertex Inner Product. For the vertex inner product we encode the similarity based on the chemical
properties of the various atoms in the network. This echoes the behavior of the SchNet, except that for
SchNet the similarity encoding must be learned through an encoding process rather than being directly
provided by subject matter expertise. More concretely, we specify one of three elemental properties: Pauling
electronegativity, which describes the tendency of an atom to attract electrons; valency, which is the number
of electrons an atom has in its outermost shell available for bonding; or block membership, which describes
an atom’s characteristic orbital based on its azimuthal quantum number. The choice of chemical property
associates a value xv to each vertex v which is the used to define the similarity of two distinct vertices u
and v as e−|xu−xv|. The diagonal entries are then determined by the Greshgorin disk theorem as discussed
above, resulting in a matrix M . As a final step in determining MV , a diagonal matrix N is chosen (based
on the edge inner product and the observed graph) so that MV = N−1MN−1 is such that the expected
spectral radius of LIP is 2.

Figure 5. The dihedral angle between a quartet of
atoms. The molecule is rotated so that the center
atoms align, and the dihedral angle is computed. Im-
age courtesy of [18].

2.2.2. Edge Inner Product. As the dihedral angles
between pairs of molecules is known to have signif-
icant impact on the electrical potential (with cer-
tain dihedral angles being energetically preferred)
we base the edge similarity measure on these an-
gles. Recall that in the SchNet architecture (and
hence in the IPLnet architecture) each atom in the
molecule is equipped with a position in R3, denoted
p1, . . . , pn and the there is an edge between i and j
if d(pi, pj) ≤ c where c is a tuneable cut-off thresh-
old. In order to calculate the similarity between two
edges e and f we first define the dihedral angle, θef ,
between the edges, and then define the similarity as
a function of θef and a tuneable scaling parameter s
If the dihedral angle between two edges is undefined,
then we will say the similarity of e and f is 0.

The simplest case for the dihedral angle is the
case where the vertices of e and f all lie in the same
plane, or equivalently, e ∩ f = {v}. In this case, we assume without loss of generality that e = {u, v} and
f = {v, w} and define

θef = arccos

(
(pu − pv)

T (pw − pv)

∥pu − pv∥2 ∥pu − pw∥2

)
,

that is, the angle between the edge e and f in the unique plane defined by pu, pv, pw. In this case, Mef =
cos (sθef ) .

5Numerical issues can still arise from small eigenvalues, however they are less prevalent as the determinant can be evaluated

by using algorithms which are generally numerically stable such as Gaussian elimination. Additionally, there exists algorithms

to evaluate the determinant which are division-free [3].
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(a) Angle scaling factor of 1 (b) Angle scaling factor of 5 (c) Angle scaling factor of 10

Figure 7. Heatmap of the entries in convolution layer associated with the inner product
Laplacian for a caffeine molecule.

In the case where all the end points do not lie in the same plane, we need first to define a reference plane
to measure the dihedral angle in. To this end, suppose that e = (u, v) and f = (x, y) and that

d(pv, px) = min {d(pv, px), d(pv, py), d(pu, px), d(pu, py)} .

That is pv and px are the closet pair of vertices with one belong to e and the other belonging to f . If
d(pv, px) > c, then we will say that the dihedral angle is undefined and the corresponding entry in ME is 0,
while if d(pv, px) ≤ c we define θef as the angle between the edge e and f when projected on to the plane

normal to pv − px, see Figure 5. More concretely, we define the normal vector n = pv−px

∥pv−px∥2
and define

ve = pu − pv − (pu − pv)
Tn and vf = py − px − (py − px)

Tn. The dihedral angle between e and f is then

θef = arccos

(
vTe vf

∥ve∥2 ∥vf∥2

)
.

Finally, we define the similarity between e and f as
(
1− d(pv,px)

c

)
cos (sθef ). We note that the scaling factor

in front of the similarity is chosen to ensure that the edge similarity is a continuous function of the vertex
positions.6 The diagonal entries of ME are set to be one more than the absolutive value of the row-sum,
ensuring that ME is positive definite by the Greshgorin disk theorem.

Figure 6. Heatmap of the entries in con-
volution layer associated with the normal-
ized Laplacian for a caffeine molecule.

In order to illustrate the effect of the inner product Lapla-
cian on the GNN, we present in Figures 6 and 7 heatmaps of
the matrix associated for to the convoluational layer for a caf-
feine molecule (C8H10N4O2). In Figure 6, the heatmap depicts
entries of I−L which are the entries corresponding to the con-
volutional layer associated with the caffeine bond graph. As
we can see all entries of the convolutional layer are positive
and there are relatively few entries. In Figure 7 we present
the heatmaps associated with the convolutional layer for the
inner product Laplacian (I − LIP ) using electronegativity for
the vertex inner product and three different scalings (1,5,10) of
the dihedral angle for the edge inner product. In contrast to
the normalized Laplacian convolutional layer, these matrices
are significantly denser and have smaller values overall. While
there is only minor variation readily visiable as the scaling value
for the dihedral angle changes, we will see in Section 2.5 that
changes in this scaling value have a significant effect on the
performance of IPLnet.

6Note that any continuous function of
d(pv,px)

c
which is 0 when d(pv , px) = c and 1 when d(pv , px) = 0 would suffice.
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ID Hyperparameter Value
1 VIP feature valence, electronegativity, block
2 Cutoff distance 3, 4, 5, 6, 10
3 Optimizer Adam, AdamW, RMSprop
4 Learning rate 1e-5, 1e-4, 5e-4, 1e-3, 5e-3
5 Learning rate scheduler ReduceLROnPlateau, StepLR
6 Scheduler patience epochs 0, 10, 25
7 Learning rate factor 0.1, 0.4, 0.8
8 Epochs 10, 20, 100, 500, 1000
9 Batch size 32, 128
10 Scaling factor of dihedral angle 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Table 1. Optuna settings for Hyperparameters

Model MAE (100 epochs)
IPLnet (Angle scaling factor of 1) 14.357485
IPLnet (Angle scaling factor of 5) 7.231942
IPLnet (Angle scaling factor of 10) 7.426400
SchNet 13.328036

Table 2. Performance of IPNnet with angle scaling factor of 1, 5, and 10

2.3. Neural Network Training Framework. We used the PyTorch Geometric (PyG) framework to load
graph-based datasets and PyTorch to train the model with GPU accelerator. Optuna was used to search
for optimal hyperparameters, while default settings were applied for all other training configurations, as
detailed in Table 1. The models were trained on an NVIDIA A100 GPU with PyTorch 2.3, PyG 2.5.3, and
Optuna 4.0.0. The Adam optimizer, with a learning rate of 1e-5, was selected to minimize MAE, and the
ReduceLROnPlateau scheduler was used with a patience value of 10. A default batch size of 128 was used.

2.4. Molecular Datasets. In order to compare the performance of IPLNet and SchNet we trained both
models on three different data sets of electrical potential for organic molecules. These standard data sets
have varying number of molecules in different (generally static) conformations and the associated electrical
potentials.

2.4.1. QM9. QM9 is a benchmark dataset composed of 134k organic small molecules made up of H, C, O,
N, and/or F atoms that are minima on the potential energy surface (i.e., the forces on all atoms are 0)
[23]. Along with atomic coordinates, scalar molecular properties, such as energy, enthalpy, and free energy
of atomization, are given. All properties were computed by DFT (B3LYP/6-31G(2df,p)).

2.4.2. MD17. The MD17 dataset is composed of drug-like organic small molecules, such as benzene, toluene,
naphthalene, ethanol, uracil, and aspirin, generated through ab initio molecular dynamics (AIMD) simula-
tions [6]. A revised subset of the data was re-calculated with improved DFT parameters (PBE/def2-SVP
level of theory) [7]. Because the structures were generated through AIMD, all are non-minima, meaning that
non-zero forces are present on some or all atoms, and the same molecule is repeated with slightly different
geometry and energy, in contrast to QM9 where each structure represents a unique molecule.

2.4.3. ZINC. The ZINC database was developed to aid virtual screening for drug discovery and contains
structural properties of 728k drug-like small molecules [16]. The AGZ7 subset of the ZINC dataset includes
optimized (minima) atomic coordinates and energies computed by DFT (B3LYP/cc-pVTZ) for a subset of
140k molecules [15]. Notably, ZINC and the AGZ7 subset contain a wider variety of atoms than QM9 or
MD17: H, B, C, N, O, F, Si, S, P, Cl, Br, I, and Sn.
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Figure 8. Comparison of IPLnet and SchNet on QM9, MD17, and ZINC datasets.

2.5. Comparison of IPLnet and SchNet. We conducted comparisons on several datasets, including QM9,
MD17, and ZINC. The results show that IPLnet outperforms the baseline SchNet on the ZINC dataset using
the angle scaling factor, with improvements observed from the first 100 epochs (which are summarized in
Table 2 and Figure 9), while still delivering reasonable performance on the other two datasets. For the QM9
dataset, we compared IPLnet with SchNet for the internal energy property (U 0), showing a mean absolute
error (MAE) of 0.32 after the first 100 epochs, compared to 0.057 MAE from SchNet. For the MD17 dataset,
using a combined set of molecules from a revised subset of data, IPLnet achieved an MAE of 4.5 compared
to SchNet’s 1.32. In the ZINC dataset, the performance gap between the models was much narrower, with
MAEs of 14.35 and 13.32, respectively. We applied different scaling factors to the ZINC dataset, which
reduced the MAE by 7.12 and 6.85 when using scaling factors of 5 and 10, respectively. Notably, IPLnet
outperformed SchNet by reducing the MAE by up to 45.7% when using these scaling factors. A summary
of the comparison results is provided in Figure 8.

Taken together, these results illustrate the significant potential of the IPLNet architecture while highlight-
ing the inherent challenges of this approach. In particular, we first observe that after the first 100 epochs,
the MAE error is ∼ 6× and ∼ 2× worse in IPLNet as in SchNet, while with the AGZ7 subset of the ZINC
database the best scaled IPLNet instance is has approximately half the MAE as SchNet. While it is chal-
lenging to precisely identify the root cause of the difference in the behavior, it is natural to suspect that the
richer collection of atoms provides a significant advantage to IPLNet. In particular, QM9 has only 5 atom
types while MD17 has only 4 atom types (with N only appearing in one molecule class), in contrast there
are 13 different atoms represented in the AGZ7 subset. As a consequence, there is significant more domain
information that SchNet has to recover from the data while with the appropriate choice of inner product
this can be directly encoded into the IPLNet framework. Indeed, after approximately 10 iterations the MAE
error IPLNet is over an order of magnitude smaller than in SchNet. However, this advantage does not hold
up for large number of epochs, as after 500 epochs the MAE error for IPLNet is approximately twice that of
SchNet, and at 1000 epochs the ratio increases to approximately 3. This change is almost entirely driven by
the slow and steady decrease in MAE for SchNet compared to a long plateau in the performance of IPLNet.
While we do not currently sufficiently have enough data to justify this conclusion, one may suspect the initial
rapid decrease in error may be from the ability of IPLNet to directly exploit the domain knowledge through
the explicit representation given by the inner products. In contrast, SchNet in some sense needs to build that
representation before attempting the learn the mapping between molecules to energy potential. However, in
SchNet as training progresses the representation of individual atoms can be further refined to the task while
IPLNet it must be fixed at the beginning of training. This suggests that the behavior of IPLNet could be
refined by instead of defining a single inner product for the vertices and edges, a parameterized family is
defined that can be tuned to the particular data instance to improve performance. In fact, that is what we
see with the edge inner product in Table 2 and Figure 9. The addition of the scaling parameter to the edge
inner product allows two-fold decrease in the MAE error. This suggests that future development of IPLNet
should focus on designing families of inner products which can be tuned to capture the relevant features for
a given task.
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Figure 9. IPLnet Performance with angle scaling factors.
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Figure 10. clBlas, the linear algebra library for
OpenCL, shows significant performance advantage
over the manual optimization efforts.

The primary objective of leveraging Graph Neu-
ral Networks (GNNs) and Graph Convolutional
Neural Networks (GCNNs) to replace computation-
ally intensive first-principles chemistry methods is
to expedite scientific discoveries while maintaining
satisfactory accuracy and fidelity. In parallel to ac-
celerating chemistry methodologies through AI/ML
surrogates, further enhancements can be achieved
by optimizing the training and inference processes
of GNNs and GCNNs through hardware advance-
ments, algorithmic improvements, and compiler op-
timizations. This section explores these opportuni-
ties in the context of accelerating the Inner Prod-
uct Laplacian (IPL) model and discusses the lessons
learned.

3.1. IPL Acceleration. This section outlines our
efforts to accelerate the Inner Product Laplacian

(IPL) model. We explored multiple approaches, including: (1) Hardware acceleration on GPUs, (2) Al-
gorithmic improvements, and (3) Compiler optimizations.

3.1.1. Hardware Acceleration. The majority of the performance gains observed in both scientific and AI
domains over the last decade have been driven by offloading key computational tasks to GPUs. Given that
most modern supercomputers (such as those powered by NVIDIA, AMD, and Intel GPUs) utilize GPUs
as their primary computational resources, it is a logical progression to explore GPU acceleration for IPL.
Specifically, we aim to optimize the evaluation of the expression:

X′ = (I − LIP )XWT .

Two distinct strategies can be employed to achieve this optimization. One option is to develop a custom
GPU kernel using CUDA or OpenCL for the entire expression. Alternatively, we can develop linear algebra
primitives that interconnect in a dataflow manner. We selected the latter approach, as it allows these
primitives to be reused for other problems and also facilitates their application to non-GPU accelerators, such

11



as FPGAs. The key linear algebra operations to develop include matrix-matrix multiplication, transposition,
and matrix inversion, all of which are well-studied with several existing implementations.

To leverage the diverse capabilities of various GPU architectures, we conducted several studies aimed at
understanding the impact of specific optimization techniques on the performance of matrix-matrix multipli-
cation. Following these investigations, we compared the results with the performance metrics of commonly
used linear algebra libraries. In Figure 10, our findings with clBlas on AMD GPUs are presented. This
OpenCL-based library for General Matrix Multiply (GEMM) operations is relatively less explored compared
to cuBLAS, the CUDA-based linear algebra acceleration library for NVIDIA GPUs. We meticulously ap-
plied several optimization techniques to matrix-matrix multiplication, including tiling for local memory with
varying tile sizes, one-dimensional and two-dimensional register blocking, among other methods. Our results
indicate that the clBlas library consistently achieves the shortest time-to-solution, underscoring the efficiency
of such libraries.

Figure 11. By combining multiple adjacency matri-
ces into a larger one, a larger block-sparse matrix is
constructed to reduce the relative overhead of data
transfer to GPUs.

3.1.2. Algorithmic Improvements. As previously de-
tailed, the adjacency matrix A is too small to
yield performance enhancements on GPUs; the over-
head of data transfer to and from the GPU device
outweighs the benefits of accelerated computation.
However, it is feasible to amalgamate different input
matrices into a larger matrix, as illustrated in Fig-
ure 11. The resultant matrix is constructed by the
juxtaposition of all the adjacency matrices along the
diagonal, each representing a distinct problem. A
similar approach is employed for solving power grid
problems, where matrices representing various sce-
narios are arranged along the diagonal. As depicted
in the figure, the resulting matrix exhibits a block-
sparse format. Additionally, each block (i.e., the
original adjacency matrix) displays certain sparsity
patterns. Nonetheless, as discussed in prior sections,
the matrix’s size remains insufficient to leverage the
advantages of sparse computation.

Figure 12 illustrates that by amalgamating a suf-
ficient number of small matrices into a larger block-
sparse matrix and employing sparse linear algebra
implementations, significant speedups over dense representations and dense linear algebra operators with
the same inputs can be achieved.

Furthermore, a performance comparison of matrix multiplication using different sparse matrix formats is
presented. As depicted in Figure 13, the Blocked-ELL format consistently outperforms the CSR format in
matrices with hardware-friendly choices of block sizes. This highlights a future challenge of determining the
optimal block size based on aggregated graph data and specific hardware characteristics.

3.1.3. Compiler Optimizations. The fusion of operators and the implementation of inter-operator optimiza-
tions represent promising approaches for reducing the number of temporary variables, minimizing arithmetic
operations, and enhancing data locality. The concepts of loop and kernel fusion have been extensively ex-
plored in the literature. In this project, we applied kernel fusion for operations involving sparse-matrix-dense
matrix multiplication followed by dense-matrix-dense matrix multiplication, specifically,

X′ = ((I − LIP )X)WT .

The COMET compiler incorporates optimizations for matrices stored in compressed-row format (CSR).
However, the original adjacency matrices are too small to benefit significantly from such optimizations (since
kernel fusion introduces additional complexity, there is a trade-off between the additional code complexity and
the reduction of temporaries and arithmetic operations) or from sparse computations in general. Fortunately,
the COMET team has been developing support for an adaptive block-sparse storage format, where the blocks
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of the block-sparse matrix are not required to have uniform shapes, and each block can employ a different
sparse storage format to leverage the specific sparsity patterns of the data.7 The exploration of this new
feature is left as future work.

7This work is currently under submission.
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import numpy as np

N = 1024

M = 1024

K = 4096

A = np.ones((M,K), dtype=np.float32)

B = np.ones((K,N), dtype=np.float32)

C = np.zeros((M,N), dtype=np.float32)

Cref = np.dot(A,B)

(a) NumPY

PNNL-36839 
import numpy as np
import PyMCL as mcl
import PyMCL.linalg as la
N = 1024
M = 1024
K = 4096
A = np.ones((M,K), dtype=np.float32)
B = np.ones((K,N), dtype=np.float32)
C = np.zeros((M,N), dtype=np.float32) 
Cref = la.dot(A,B)

(b) PyMCL

Figure 14. Standard NumPy code vs PyMCL. Note that, although the code appears very
similar, with the only evident difference of using PyMCL operators instead of NumPy oper-
ators, under the hood, the MCL runtime can decide to execute the computation on GPUs,
FPGAs, or any other available device.

BT

T1 T2

T3

Out

Figure 15. Computation directed acyclic graph
(DAG) for the PyMCL computation described in Fig-
ure 16b. Each node on the DAG represents a compu-
tation task, while each edge represents a data depen-
dency.

3.2. PyMCL. In our experience with the PNNL
MARS initiative, we have observed that integrating
emerging technologies, such as FPGAs and data-
flow architectures, as well as multi-GPU systems,
into complex codebases can be challenging. Most
system software and programming models devel-
oped for these emerging technologies are based on
C/C++ or proprietary solutions (e.g., CUDA, Sam-
baFlow, Xilinx HLS) provided by individual ven-
dors. Conversely, modern code authored by compu-
tational scientists, particularly in the fields of AI and
ML, predominantly utilizes Python (e.g., SchNet).

To bridge this gap and facilitate the integra-
tion of emerging technologies and custom acceler-
ators within Python code, we developed PyMCL.
PyMCL is a Python package designed to serve as a
drop-in replacement for NumPy, enabling the execu-
tion of NumPy operations on hardware accelerators.
PyMCL is built on the Minos Computing Library
(MCL) developed at PNNL, which is an asynchronous task-based system software and programming model
for highly heterogeneous systems. Users of PyMCL do not need to interact directly with MCL; instead, they
can rely on the familiar NumPy interface while providing additional hints to the MCL runtime if necessary.

Figures 14a and 14b present equivalent code written in standard NumPy and PyMCL, respectively.
The main code in both examples appears very similar, with the only significant difference being the use
of the .dot() method from PyMCL.linalg instead of the standard numpy package. However, utilizing
PyMCL.linalg.dot() results in the initiation of an asynchronous MCL task that can be executed on various
computing devices, including GPUs, FPGAs, and data-flow accelerators.8

Using PyMCL, the code can be rewritten using mcl.linalg primitives, as shown in Figure 16b.9 While
the code is relatively straightforward, it conceals two important aspects: first, the algebraic primitives can

8The specific device on which the task will execute is determined at runtime by the MCL scheduler, based on the implemented
scheduling policy (e.g., locality-aware, power-saving, maximum throughput, balanced, etc.). However, users can specify a class
of devices for the MCL to execute the task by using the dev parameter. For instance, to execute the matrix multiplication in

Figure 14b on a GPU-class device, the code can be modified with the statement: Cref = la.dot(A, B, dev = mcl.TASK GPU).
9Currently, PyMCL does not support custom Python operators, only library-based calls.

14



out = Q_Vinv @ B @ edge_ip

@ np.transpose(B) @ Q_Vinv

(a) IPL implementation using standard NumPy

PNNL-36839

BT = la.transpose(B, sync=True)
T1 = la.dot(Q_Vinv, B)
T2 = la.dot(edge_ip, BT)
mcl.wait_all()

T3 = la.dot(T1,T2, sync=True)
out = la.dot(T3, Q_Vinv)

(b) IPL implementation with PyMCL

Figure 16. IPL implementation using standard NumPy and PyMCL.
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Figure 17. Performance, power, and energy-to-completion comparisons between AMD
GPU and Xilinx FPGA for the GEMM and Transpose kernels used in the IPL compu-
tation. GPUs are generally highly optimized for GEMM-like computation, yielding superior
performance and energy efficiency, albeit with high average power consumption. FPGAs
outperform GPUs in terms of energy efficiency for irregular computations. Despite the
lower performance of the transpose kernel on FPGA compared to GPU, its lower average
power consumption results in greater energy efficiency.

be executed on heterogeneous devices; second, tasks without dependencies can be executed in parallel. For
instance, tasks T1 and T2 can be executed concurrently. Data dependencies are specified either through the
sync parameter in library calls or by enforcing a barrier with mcl.wait() or mcl.wait all(). Figure 15
illustrates the directed acyclic graph (DAG) for the IPL computation depicted in Figure 16b.

3.3. Energy Efficiency. As previously discussed, the input to the IPL computation may be too small
to benefit significantly from heterogeneous resources that are “far away” on the I/O bus, such as GPUs
connected to the host through the PCIe bus, since the overhead of data transfer outweighs the advantages
of accelerated computation. Instead of exclusively targeting performance improvements, we investigated
opportunities to enhance energy efficiency. This is a critical consideration: according to current trends in
the size and computational and memory requirements of contemporary AI/ML models, progress will stagnate
unless we significantly reduce the energy cost of training and inferencing on these models.

3.3.1. Analysis of Energy-to-Completion. We compared the performance, power consumption, and energy-to-
completion of two fundamental kernels in the IPL computation — the matrix-matrix multiplication and the
matrix transpose — on AMD GPUs and Xilinx FPGAs, and present the results in Figure 17. As Figure 17a
demonstrates, the GPU outperforms the FPGA in terms of execution time. For matrix-multiplication kernels
(GEMM), the speedup is significant: GPUs have been extensively optimized to perform GEMM kernels
efficiently over the years, which is a key factor in recent advancements in AI/ML. Despite the GPU consuming
much more power (see Figure 17b), the energy-to-completion is still lower than that of the FPGA due to
the GPU’s rapid execution (see Figure 17c). The transpose kernel also performs better on the GPU than on
the FPGA, though the gap is not as wide as for the GEMM kernel. Transposes involve more irregular/large
stride memory accesses compared to GEMM, and GPUs are not as well optimized for these patterns. In
contrast, FPGAs allow for custom programming of memory access patterns, resulting in better performance.
Although the FPGA’s execution of the transpose kernel is slower than the GPU’s, the margin is narrower than
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. . .

mcl_start = time.time()

out = roc.ilp(Q_Vinv, edgp_ip, B, dev=mcl.TASK_ILP)

mcl.wait_all()

. . .

Figure 19. PyMCL implementation of the IPL product using the IPL processor. MCL
recognizes a new type of processor with distinct inputs and outputs, as opposed to a conven-
tional FPGA implementing various kernels, resulting in even simpler code than the previous
version.

for GEMM. However, the FPGA’s significantly lower average power consumption results in a lower overall
energy-to-completion compared to the GPU. These results suggest that to achieve lower energy consumption
while maintaining acceptable performance, one could map the GEMM kernel to the GPU and the transpose
kernel to the FPGA. These scenarios are precisely what MCL is designed for. Moreover, the MCL runtime
optimizes data movement among the CPU, GPU, and FPGA. Thanks to PyMCL, this feature is available
to domain scientists working in Python environments, and it is what we employed in this project.

T

M

B

Qinv

Edgeip

M

M

M out

Figure 18. Block diagram representing the intercon-
nection of algebraic primitives in the IPL processor
implementation on FPGA.

3.3.2. The custom IPL processor. FPGAs promise
higher energy efficiency compared to GPUs, albeit
at the cost of reduced performance. However, FP-
GAs are fully programmable, allowing for the design
of a custom processor for the IPL based on the al-
gebraic primitives explored in the previous section.
The primary objective of designing an IPL proces-
sor is to minimize data movement across the PCIe
bus and leverage the dataflow capabilities of FP-
GAs. We designed and synthesized such a processor
on an FPGA based on the fundamental kernel prim-
itives of the IPL. Figure 18 illustrates the intercon-
nection of blocks and the data flow from one block
to another. Within the FPGA, data flow between
blocks, with only the input and final output being
transferred to/from the host, thereby reducing data movement to/from the host.

When utilizing the custom IPL processor we designed, users interact directly with the custom processor
rather than managing the execution and data dependencies of individual kernels within the IPL processors,
as illustrated in Figure 19. The resulting code is even simpler than before, as shown in Figure 16b.
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accurate energy-conserving molecular force fields, Science advances, 3 (2017), p. e1603015.

[7] A. S. Christensen and O. A. Von Lilienfeld, On the role of gradients for machine learning of molecular energies and
forces, Machine Learning: Science and Technology, 1 (2020), p. 045018.

[8] F. R. Chung, Spectral graph theory, vol. 92, American Mathematical Soc., 1997.

[9] W. Dong, Z. Xie, G. Kestor, and D. Li, Smart-pgsim: Using neural network to accelerate ac-opf power grid simulation,
in SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, 2020, pp. 1–15.

[10] T. T. Duignan, The potential of neural network potentials, ACS Physical Chemistry Au, 4 (2024), pp. 232–241.

[11] A. Duval, S. V. Mathis, C. K. Joshi, V. Schmidt, S. Miret, F. D. Malliaros, T. Cohen, P. Lio, Y. Bengio, and
M. Bronstein, A hitchhiker’s guide to geometric gnns for 3d atomic systems, arXiv preprint arXiv:2312.07511, (2023).

[12] J. Gasteiger, F. Becker, and S. Günnemann, Gemnet: Universal directional graph neural networks for molecules,

Advances in Neural Information Processing Systems, 34 (2021), pp. 6790–6802.
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