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Abstract
ARES was in part motivated by the determination of President’s Council of Advisors on Science
and Technology (PCAST) on May 13th, 2023 that published a set of inquiries:

In an era in which convincing images, audio, and text can be generated with ease on a
massive scale, how can we ensure reliable access to verifiable, trustworthy information? 
How can we be certain that a particular piece of media is genuinely from the claimed source?
What technologies, policies, and infrastructure can be developed to detect and counter
AI-generated disinformation?
In an effort to automatically analyze and patch/optimize code the work in this report describes
various neural Machine Learning (ML) analysis engine implementations to assist in situations
where source code is deficient or completely lacking to decompile (lift) binary code to ’C’. The
goal is to gradually reduce human intervention. To this end, two Large Language Model (LLM)
variants (Code LLama 2, LLama 3.1 and Starcoder1, Starcoder 2) where finetuned with
’before/after’ code pairs on the OpenBLAS library. LLama trained on the lowering process,
Starcoder trained on the lifting process with National Security Agency’s (NSA) open-source
Ghidra decompiler assist. The inferencing test results indicate correctness for only very short
sequences for Starcoder 2. Moving forward, the experiments conclude with a set of
recommendations of required resources and technologies.
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1.0 Summary
ARES was in part motivated by the determination of President’s Council of Advisors on Science
and Technology (PCAST) on May 13th, 2023 that published a set of inquiries:

In an era in which convincing images, audio, and text can be generated with ease on a
massive scale, how can we ensure reliable access to verifiable, trustworthy information? 
How can we be certain that a particular piece of media is genuinely from the claimed source?
What technologies, policies, and infrastructure can be developed to detect and counter
AI-generated disinformation?

To assist a code analysis engine in situations where source code is deficient or completely
lacking, as in cases of binary-library code patching, reoptimization or machine retargeting,
ARES lifts code from object code to C. Given a function in object-code, the ‘Abstraction Lifter
(AL) will translate code to C by applying ML decompilation inferencing. The goal is to gradually
reduce classical decompilation techniques that heavily rely on human intervention. Ideally, AL
can discern and separate business logic from scheduling logic; hereby relaxing subsequent
recompilation that is unencumbered by existing optimization constraints. In the best case
scenario, AL would be able to directly apply patches/reoptimization or retargeting without any
ancillary support.

The following studies explore neural decompilation strategies publicly available at time of
writing and indicate a path forward for future work. Two Large Language Model (LLM) variants
(Code LLama 2, LLama 3.1 and Starcoder1, Starcoder 2) where finetuned with ’before/after’
code pairs on the OpenBLAS library. LLama trained on the lowering process, Starcoder trained
on the lifting process with National Security Agency’s (NSA) open-source Ghidra decompiler
assist. The inferencing test results indicate correctness for only very short sequences for
Starcoder 2.

The ML landscape is changing fast. In fact, during the course of the one-year project,
pretrained models and pretrained datasets sourced externally changed multiple times.
Nevertheless, the performed experiments and literature search inform some recommendations
going forward, including the extent of ample staff and resource requirements to achieve the ML
decompilation goal. Additionally, current research in the community would indicate the
possibility of a principled approach toward a successful LLM decompiler by leveraging
automated correctness provers.

Summary 1
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3.0 Introduction

3.1 Retrospective

ARES was in part motivated by the determination of President’s Council of Advisors on Science
and Technology (PCAST) on May 13th, 2023 that published a set of inquiries:

In an era in which convincing images, audio, and text can be generated with ease on a
massive scale, how can we ensure reliable access to verifiable, trustworthy information? 
How can we be certain that a particular piece of media is genuinely from the claimed source?
What technologies, policies, and infrastructure can be developed to detect and counter
AI-generated disinformation?

3.1.1 Original Proposal Aims

Artificial Intelligence (AI) enables new data analysis capabilities that accelerate society’s
transition in all its forms – including science – from a first principles, rules-based base to a data
driven approach. In particular, the transition driven by Machine Learning (ML) harbors great
opportunities, as well as risks. An inherent risk of data driven outcomes results from weakness
explaining or deriving ML models and input data with sufficient rigor such to warrant a certain
level of trust. While active research is under way to shed some light into black box AI modeling,
the work proposed here seeks to attack the ‘lack-of-trust’ problem by a systems approach via
an analysis engine.

3.1.1.1 Base Goal: Data Analysis for Identification of Forgeries

• signature generation & watermarking [5]

• integrity & security checking [4, 2]

3.1.1.2 Stretch Goal: Code Analysis

The analysis engine can be expanded to capture execution runs at multiple scales. At the
dataflow scale, a large set of potential optimizations can be entertained – constant folding,
common subexpression elimination, control simplification, superfluous ops removal, algebraic
simplifications [14]. At ISA scale, a formulation that separates the concerns of algorithm and
schedule would provide a basis for automatic optimization [6].

3.1.1.3 Goal Evolution

At inception of the one-year project, the ’Base Goal’ was outsourced to another project –
’Advanced Memory to Support AI for Science - AMAIS’ – with an exemplar of image integrity
checking, called ’Disharmony: Data Forensics using Reverse Lighting Harmonization’,
spearheaded by Philip Wootaek Shin, Vijaykrishnan Narayanan, Jack Sampson from
Pennsylvania State University and mentored by Mahantesh Halappanavar and Andrés
Márquez. The work was submitted to ’IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) 2025’, and is under review as of the date of this report’s submission.

The reminder of this report discusses research performed on ’Code Analysis’.

Introduction 6
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(a) Binary to C Lifting (b) Binary to C Lifting and Optimization Tunneling

Figure 1: Abstraction Lifter (AL)

4.0 Code Analysis

4.1 Approach

To assist the analysis engine in situations where source code is deficient or completely lacking,
as in cases of binary-library code patching, reoptimization or machine retargeting, ARES lifts
code from object code to C (Figure 1a). Given a function in object-code, the ‘Abstraction Lifter
(AL) will translate code to C by applying ML decompilation inferencing [26, 17]. The goal is to
gradually reduce classical decompilation techniques that heavily rely on human intervention.
Ideally, AL can discern and separate business logic from scheduling logic; hereby relaxing
subsequent recompilation that is unencumbered by existing optimization constraints [6]. In the
best case scenario, AL would be able to directly apply patches/reoptimization or retargeting
(Figure 1b) without any ancillary support. The following studies explore neural decompilation
strategies publicly available at time of writing and indicate a path forward for future work.

Code Analysis 7
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4.2 Datasets

4.2.1 OpenBLAS

OpenBLAS [29] is a portable, open-source (BSD) implementation of the Basic Linear Algebra
Subprograms (BLAS) and Linear Algebra Package (LAPACK). It is a fork of GotoBLAS2 1.13
BSD. It is written in Modern Fortran, C and Macro Assembler, the latter specific to a variety of
target microprocessor architectures, including X86, POWER, MIPS, SPARC, ARM, RISC-V and
IBM-Z variants. The total corpus entails 7111 object files for a specific target after compilation.

4.2.2 BLIS

Similar to OpenBLAS, BLIS [35] is a more recent refactoring of GotoBLAS2. It is written in
Modern Fortran, C++, C and Macro Assembler and X86, POWER, ARM, RISC-V variants. A
typical corpus for a target comprises 371 object files. It received the prestigious J. H. Wilkinson
Prize for Numerical Software in 2023.

Code Analysis 8
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4.3 Direct Abstraction Lift - Code LLama - Object Code to C
(T. J Stavenger)

4.3.1 Fine tuning LLM models to optimize assembly code

In an effort coordinated with other parts of the project, this task looked at fine tuning generative
AI models for optimizing assembly code. Broadly, the concept was to build a tool that would
perform an automated abstraction lift and optimization of code. Ideally such a tool could identify
parallelization strategies and memory allocation improvements. Other tasks focused on the
abstraction lift, while this researched the feasibility of training an LLM to recognize assembly
and offer suggestions for performance improvements. The approach taken was to use existing
decompilers to produce assembly, use this dissembled code as training data, fine tune a model,
and then test how well the model generalized the performance optimizations using test data.

4.3.1.1 Approach Detail

The OpenBLAS library includes the ability to compile its software to optimized binaries for
selected CPU architectures. By using this build feature, and decompiling each into assembly,
we produced a training dataset of unoptimized and optimized assembly code pairs. Our data
set was split into 29k function pairs for training, 3k for test, and 3k for validation. The training
data set pairs were placed into ’Code Llama’ and ’Llama 3.1’ prompt templates for fine tuning
and then tuned on Nvidia A100 80GB GPU.

4.3.1.2 Implementation

The team in initially did not have extensive experience in fine tuning LLMs, so early
implementation steps involved becoming familiar with the typical LLM fine tuning workflow. The
team chose to use the autotrain-advanced package to limit the coding requirements for fine
tuning, allowing the typical coding approach to be applied as completed within this package.
Autotrain-advanced provides a “no-code” solution to fine tuning LLMs, giving researchers the
ability to provide the train/test/validate data, the base model, and tuning parameters without
having to write the code to perform the fine tuning. As the team worked on the task, the
available LLMs for code progressed and evolved dramatically. The team began fine tuning
’Code Llama 2’ and finished with a fine tuned ’Llama 3.1’ model.

4.3.1.3 Results

Initial fine tuning jobs against Code Llama produced poor results. Runs with ’Code Llama’ were
hampered by poor choice of learning rates and epochs, and possible less flexibility for ’Code
Llama’ to work with assembly code. The result was an over-trained model that often produced
no assembly code at all to optimization prompts.

Subsequent attempts at fine tuning ’Llama 3.1’ were more successful, producing a loss rate
curve that did not indicate as much overtraining, see Figure 2. This model still struggled with
responses to test and validation data. While it did provide assembly code, the provided
assembly code was not functionally equivalent to that provided.

Code Analysis 9
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4.3.1.4 Future Work

Figure 2: Code Lama LossRate: Object Code to C Lifting

.

As the team
was approaching the end of the
work completed, Meta released its
LLM Compiler that has the ability to
suggest Opt parameters to optimize
binary size of provided intermediate
representation code. The paper
for the model tuned on 546B tokens
of LLVM-IR and assembly code
using over 1.4M A100 GPU hours.
PNNLs internal resources likely
would not be able to match this
scale of data or compute time, as
such future work in this area would
likely be best applied to starting with
models like Meta’s LLM Compiler as
its base and working from there on
targeted areas related to sponsor
mission needs. Broad scope like
that researched on this project may
continue to struggle with finding
significant results without first focusing the scope or scale of the work.

Code Analysis 10
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4.4 Assisted Abstraction Lift - Starcoder1/2 - P-Code to P-Code
(A. Márquez)

4.4.1 LLM Choice

As another choice for LLM, we chose the gamut of Starcoder code transformers from
Huggingface [17], applying the versions that became available during execution of the project.
’Starcoder 1’ came out right before ARES started, Starcoder 2, mid-year during the project.
Starcoder’s largest LLM model is 15B, trained on 1T+ tokens. ’Starcode 2’ is also a 15B model,
trained on 4+T tokens. The context window is 214 tokens and the sliding window is 212 tokens.
The Starcoder family offers an interesting comparison point to the Code LLama option:
Starcoder is open and the pretraining datasets (’The Stack 1/2’) are permissively-licensed
source code files covering 30 programming languages, publicly available and open to
introspection. This contrasts with LLama and other commercial code LLM options that might
allow for model introspection to some extent but whose training sets are kept opaque. The
’Stack 2’ comprises 67.5TB of raw data, after deduplication and curation 32.1TB remain.
Introspection allows for analysis of the make-up of the various codes used in the training. The
share of assembly code is unfortunately low [3]. We assume this to be the case for all LLM
publicly available that target code transformations.

4.4.2 Decompilation Assist: Ghidra + SLEIGH

Starting from the understanding that code LLM are trained to compile – not decompile – and
that the corpus of assembler codes is commonly scant, we decided to boost the LLM with
traditional decompilation techniques, following established approaches in the field.

Figure 3: Starcoder 2 assisted by Ghidra

.

Ghidra is a reverse engineering
tool developed by the National
Security Agency (NSA). The
binaries were released at the RSA
Conference in March 2019 [1]. It
encompasses SLEIGH, an internal
language representation (IR)
to describe various architectures
uniformly to facilitate generalized
disassembly and decompilation. It’s
derived from SLED (Specification
Language for Encoding and
Decoding). SLEIGH Instructions
are described in P-code across the
various architectures. To support
uniformity, no ISA side-effects, with
the exception of memory operations,
are allowed. We therefore chose
Ghidra to assist the LLM by mapping object code to P-code and creating various decompilation
pairs to train the LLM. This offers various benefits creating training data sets, see Figure 3.

• The training occurs on object code/decompilation pairs, as opposed to source/compiled object
code

Code Analysis 11
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(a) fig:Grad Norm (b) Loss

(c) Epoch (d) Global Step

(e) Learning Rate

Figure 4: Finetuning runs Starcoder2-3B: Typical Run

• A unifying object code representation (P-Code) offers a larger corpus, as opposed to object
code binned for multiple architectures

4.4.2.1 Approach Detail and Implementation

Similar to 4.3.1.1 and 4.3.1.2, we use OpenBLAS with the same training, testing and validation
split to finetune ’Starcoder 1/2’ 3B models on a Nvidia A100 80GB GPU – the minimum amount
of memory. The training pairs for the transformer comprise P-code instantiations at different
levels of optimization. Ghidra/Sleigh is used to produce these pairs. The highest level of
P-code optimization can be transformed to ’C’ and hence could be construed as equivalent to
the experiments on ’Code LLama 2’ and ’LLama 3.1’ described in 4.3. Our factorial design
experiment sweeps over output token window sizes of (150, 300, 500, 750) tokens with 50 input
token and ’lift levels’ of (⊥, ⊤). As metric we chose precise matching since code, as opposed to
natural languages, is brittle to semantic outcomes as a function of syntax and keywords.

4.4.2.2 Results

Figures 4 show a typical finetuning run on a Nvidia A100 80GB GPU. The loss function
(Figure 4b), after less than 2k epochs, quickly plateaus to zero, with the gradient norm

Code Analysis 12
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(a) Lift Level ⊥ -> ⊤, Token Window 50 -> 150 (b) Lift Level ⊥ -> ⊤, Token Window 50 -> 300

(c) Lift Level ⊥ -> ⊤, Token Window 50 -> 500 (d) Lift Level ⊥ -> ⊤, Token Window 50 -> 750

Figure 5: Inference Results: Lift Levels ⊥ -> ⊤, Output Token Window Sweep from 150 to 750

(Figure 4a) exhibiting some noise. Overall, the learning rate, approaches zero at ∼10k epochs
(Figure4e).

Figures 5 depict the precise matching results of the factorial design experiment with inputs
drawn from the test set source binaries converted to P-code (⊥), to the lifted output in P-code
with maximum decompilation mustered by Ghidra by applying ∼500 term-rewriting rules (⊤).
The output is equivalent to rudimentary ’C’. Each input/output pair is plotted or binned as a
function of the maximum matching string index. Figure 5a is plotting a binned histogram,
showcasing close to 90% input/output pair maximum matching for lengths up to 150 token.
Figures 5b, 5c, 5d plot each input/output pair separately. The figures give a good visual cue
on how more outputs eventually fail to reach maximum matching with increasing output length.

4.4.2.3 Future Work

While the results are somewhat encouraging, some major problems remain that would indicate
some revised course of action:

• The results indicate lengths of 500-750 token, corresponding to short ’C’ functions. The
conclusion is that larger functions or code segments spanning multiple functions will not
decompile correctly.

• Publicly available models are not pretrained towards decompilation. Using Starcoder, which
is pretrained for ’in-the-middle’ code completion on high-level source codes – with a large
emphasis on Python – is not an ideal pretrained model for decompilation finetuning.

• While Transformers hold promise, ML that captures long range token dependencies, beyond
of what is normally found in natural language processing (NLP), are necessary. An obvious
choice is to exploit the inherent structure of codes, usually represented as graphs in compiler
analysis, such as: Abstract Syntax Trees (AST), Control Flow Graphs (CFG), Dataflow Graphs
(DFG) or Program Dependence Graphs (PDG). This would indicate the need for some Graph

Code Analysis 13
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ML or very large Transformer windows.

• Tokenization and embedding for decompilation will require dedicated engineering.

• Presumably, further training data homogenization and curation, specifically for storage loca-
tions, would greatly improve training results.

• There is no guarantee of correctness in the neural decompilation process. Using a decom-
piler like Ghidra with its large set of transformation rules should yield, with a sufficiently large
training corpus, an ML that implicitly learned these rules. Yet, this is not sufficient. Auto-
mated correctness provers would need to flank the decompilation and optimization process
as described in the next section 4.5

Code Analysis 14
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Figure 6: The procedure of extracting data flow given a source code. The graph in the rightmost
is data flow that represents the relation of ”where-the-value-comes-from” between variables [13].

4.5 Proposal for a More Principled LLM Compiler/Decompiler
(T. C Fujimoto)

4.5.1 Capturing Code Structure

Ideally, we want an interpretable tool for compilation and/or reverse engineering. For example,
if we want to decompile low-level code to a high-level language, we want the output to preserve
the semantic intent of the low-level input. Current LLM compiler research seems to take the
typical route of training large transformer neural networks as if code text is not significantly
different from natural language text. Adding code structure to the finetuning of LLM code
generators might improve performance. Some ideas include adding graph-based structure to
the training data to help improve performance. As a simpler alternative to abstract syntax trees,
GraphCodeBert [13] ignores syntactic structure and uses graphs to represent dependency
relations between variables (see Figure 6). This method has been shown to improve
performance in transformer code generators.

4.5.2 Augmenting LLM Compilers with Automated Theorem Provers

LLM proof assistants have become popular and can guarantee formal correctness [34, 16].
LLM compilers, inspired by proof assistants, would suggest several operations that make it easy
to convert code in a high-level language to a lower-level language (and vice versa). Like a
proof, this LLM would take an expression and translate it to a new expression using rules that
guarantee the preservation of the expression’s meaning. LLMs have also been applied to
automated theorem provers [31, 32], which is more appropriate for LLM compilers. Unlike
mathematical proofs, there is less need for human intervention during the intermediate steps.
Following this rule-based methodology ensures correctness of the code, which is more
important for critical systems.

4.5.2.1 LLM Automated Theorem Provers

While much of LLM research focuses on LLM proof assistants [16, 34], automated theorem
provers are more relevant to building an LLM compiler. Currently, the most capable models for

Code Analysis 15
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Figure 7: An overview of DeepSeek-Prover. The steps in this process are (1) autoformalization,
(2) model scoring and hypothesis rejection (quality filtering), (3) statements proving, and (4) fine-
tuning (refinement) [31].

automated theorem proving (ATP) are the DeepSeek-Prover models. The first model, called
DeepSeek-Prover [31], has four key steps (see Figure 7):

1. Autoformalization. Using a large dataset of Lean 4 code back-translated into natural language
problem descriptions with GPT-4, the authors finetune DeepSeek-Prover using a mathemat-
ical problem solving LLM [20] to translate mathematical descriptions in natural language to
formal expressions.

2. Quality Filtering. First, the authors develop a scoring criteria for statement quality using chain-
of-thought. Second, the authors discard false statements by using the DeepSeek-Prover to
prove the statement leads to a ”False” conclusion in Lean 4.

3. Statement Proving. The model searches for proofs from the assumptions. The authors
use concurrent proof searches between a statement and its negation to accelerate proof
synthesis.

4. Iterative Refinement. Up to a point, finetuning on the model on newly generated data seems
to improve the model’s theorem proving performance.

The same group also introduced an improved model, called DeepSeek-Prover 1.5 [32],
which is augmented with reinforcement learning (RL) and Monte Carlo tree search (MCTS)
(Figure 8) inspired by AlphaGo [21]. These additions, along with balancing multi-pass
proof-step generation and single-pass whole-proof generation, led to DeepSeek-Prover 1.5
achieving a success rate of around 60% in the MiniF2F benchmark [36] (compared to 50% by
the previous DeepSeek-Prover) .
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Figure 8: DeepSeek-Prover-V1.5 is trained through pre-training, supervised fine-tuning, and re-
inforcement learning [32].
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4.5.3 LLM-Augmented Compiler Outline

The following is a rule-based LLM-based compiler application that automates the compilation
steps. We split the process into the traditional steps (LLMs are not necessary at every step):

1. Lexical Analysis

2. Syntactic Analysis

3. Semantic Analysis (can benefit from a rule-based LLM)

4. Intermediate Representation (can benefit from a rule-based LLM)

5. Code Generation (can benefit from a rule-based LLM)

6. Optimization (can be fine-tuned using reinforcement learning on an objective measure of
efficiency)

While LLM code generators have made impressive advancements, these models are still far
from perfect. For example, Meta AI’s LLM compiler is not dependable and efficient enough to
be a practical replacement for current compilers [9]. The main assumption behind this outline is
that the levels of abstraction indicated above compound the risk of inaccurate LLM code
generation. In particular, we reduce the complexity of the task by having the LLM compiler only
on a subset of steps. In particular, steps 1 and 2 can be satisfied by established algorithms.
Hence, the LLM compiler only needs to be used for steps 3 through 6. Verified LLM code lifting
and transpilation have been done before [7, 33], but reliable LLM compilation/decompilation
with low-level programming languages is still an open problem [24]. The difficulty on the LLM is
diminished if there are less levels of abstraction in the LLM compilation process.

4.5.4 Advantages of the Principled LLM Compiler

1. Except for syntactic and semantic correctness, the form of the low-level language expression
does not matter. Mathematical proofs require deriving the exact form of the conclusion.
Compilation to low-level languages only requires that the derived expression is well-formed
in the intended language. Unlike in mathematical proofs, the exact form of the conclusion is
not important.

2. We can finetune on openly available LLM compilers on Huggingface to accomplish steps 3
through 6 above. This will be more efficient than finetuning on other LLM code generators
not trained on an adequate amount of assembly code.

3. Even if unsuccessful in translating an expression from one language to another, using the
techniques from automated theorem proving will provide more interpretability by showing
the steps the LLM is taking. This information can be useful in improving the LLM compiler
because the typical LLM approach hides how the code is translated in the forward pass of
the neural network.
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4.5.5 Anticipated Difficulties

1. Translating the success from mathematical theorems to code compilation/decompilation. This
would involve subtle engineering to apply the strategies from the automated theorem proving
research to programming language compilation. This involves converting one expression to
another equivalent expression. We also need to build the right framework that accepts code
as input instead of mathematical expressions.

2. Deciding on the theorem proving language. Most work on LLM proof assistants and auto-
mated theorem provers are implemented in the Lean 4 interactive theorem proving language
[18]. However, an open-source formally verified compiler, called CompCert [15], is imple-
mented in a different language called Coq [25]. If CompCert is beneficial for a LLM compiler,
it might be more advantageous to use Coq. We will have to weigh the pros and cons between
the two languages.

3. For disassembly, we need to develop ways that ensure correctness without strict supervised
fine-tuning. Unlike low-level languages, we care about high-level language readability. It is
unclear how scalable reinforcement learning from human feedback (RLHF) [8] will be in this
application.

4.5.6 Novelty

Current approaches to LLM compiler projects approach the problem through the typical “data +
compute = LLM” paradigm. The current trend likely won’t lead to compilation/decompilation
frameworks that are as reliable as established tools. LLMs with formal rules of code generation
might subvert that trend. LLM-based applications that use a more principled approach to the
compilation process is a more promising approach. LLM proof assistants and automated
theorem proving will provide more secure LLM code generation. The novelty of using methods
of formal verification is (1) ensuring correctness not guaranteed with typical LLM code
generation, and (2) avoiding reliance on flawed scores that depend on arbitrary similarities
between generated text that are not necessarily relevant to syntactic or semantic correctness
[27, 10]. LLMs also have the ability to improve using RLHF [8]. Instead of human preferences,
we use reinforcement learning to maximize desirable properties like FLOPs/sec or minimize
energy usage.

4.5.7 Proposal for Time Frame and Team Formation

To accomplish this task, here is the proposed team formation:

• Generative AI researchers (1-2 people) to clearly define the problem, map out the software
to be built, and propose the training/evaluation framework of the LLM compiler.

• Automated theorem proving researcher/experts (1-2 people) to extend past LLM theorem
prover research to the LLM compiler. They must also coordinate with other team members
to ensure the theorem proving portion of the software works with the ML portion. Some data
scientists in NSD might fit this role.

• Compiler researchers/engineers (1-2 people) to direct the AI/ML researchers/engineers as
domain experts, lead the data collection for training, and provide expertise on how to evaluate
performance.
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• Software engineers (2-3 people) who can either (i) train and evaluate LLMs, (ii) integrate
theorem proving (in Lean 4 or Coq) with ML training/inference, or (iii) gather and clean
programming language data for LLM finetuning.

During the first year, we can leverage the openly available LLM compilers and automated
theorem provers. These pretrained models should make steps 3 through 5 easier. We will also
decide on some preliminary benchmarks for compilation and disassembly. The hardest part
would be to successfully integrate the theorem proving and ML training parts into a principled
LLM compiler. During the second year or later, we can choose between multiple research paths:

1. Perfecting compilation. Here, we investigate how to formally integrate CompCert [15] with the
LLM compiler. Since CompCert is implemented in Coq, this depends on the LLM compiler
being able to interact with a Coq application.

2. Improve decompilation. We look at past methods of disassembly and reverse engineering
[19, 28]. We combine this with past LLM decompile methods and models [30, 24]. For the
decompiler, we also want desirable properties like interpretability and code readability.

3. Improve Efficiency. We would focus on step 6 of the principled LLM compiler and optimize
efficiency metrics. Past work on RL and energy efficiency will guide this path [11].

4.6 Discussion

This principled approach shows more promise toward a successful LLM compiler than past
efforts. By breaking the process into the typical steps of compilation, we can build an
application that correctly and efficiently compiles code from one language to another. Other
research organizations are pursuing LLM compilers. US National labs (LLNL, Argonne) and
large tech companies (Google, Meta, Tencent) are investing in LLM low-level programming
language compilation/decompilation [12, 9, 30].

One extra benefit of the automated theorem proving approach is discarding the distinction
between compilation and decompilation. The tools of compilation and decompilation have
always been split in two. Currently, there are the standard compilers like the GNU Compiler
Collection, and the standard decompilation tools for reverse engineering like Ghidra. Both are
large software projects that needed years to build and still require funding for future
maintenance. The current LLM approach, proposed by groups like Meta AI [9], is an architecture
similar to a backbone encoder-decoder transformer neural network. Here, the engineering
complexity is transferred to the training instead of maintaining a codebase with large technical
debt. We are still required to split the compiler and disassembler to encoder and decoder
respectively. In the proposed principled LLM compiler, this distinction would no longer exist.
Ideally, we would have only one transformer neural network, with a sufficient set of rules/tactics,
that generates both the compilation/decompilation steps needed to reach the desired language
representation. That is, one takes the rules for both compilation and decompilation, and
combines them into a single list of rules for the LLM prover to use for transforming any
expression. This would follow the trend from AlphaGo [21], to AlphaGo Zero [23], and finally
AlphaZero [22], where two neural networks trained on human data were initially used, but the
framework was improved to elegantly rely on only one neural network with no human data.
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