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Abstract 

Smart grid technologies have rapidly become one of the largest and most comprehensive 
sources of data for the modern utility. For the most part, data streams are seen as an essential 
tool that enable utilities to carry out their day-to-day business operations, but they also create 
the need for efficient and secure data management strategies. In the context of the smart grid, 
ensuring data privacy is becoming an increasing concern due to a combination of factors that 
range from shifts in operational paradigms and rapid technology evolution to changes in 
legislation. Furthermore, researchers have highlighted the risks associated with improperly 
protected energy records. For example, energy consumption data from homes could be used to 
infer the behaviors and habits of home occupants through activity recognition or user profiling 
(Fan, 2017), which may lead to unfair service pricing, targeted advertising, or other personal 
security violations. Similarly, Electric Vehicles’ (EVs) charging metadata could be used to reveal 
private information about the owner such as their payment methods, preferred charging 
stations, and other locational and timing information that could be used to reconstruct the 
vehicle owner’s behaviors.  

The privacy of user data, even when used for statistical analysis or machine learning training 
processes, also needs to be carefully considered, as an individual’s private traits may still be 
vulnerable if their inclusion/exclusion greatly impacts the result or could be linked to a public 
dataset through cross-reference. The breach of user privacy also has severe impacts for 
organizations that store, transmit, or work on the data in the form of diminishing the public’s trust 
in them while potentially incurring legal consequences (e.g., fines and suspensions under the 
European Union General Data Protection Regulation, Health Insurance Portability and 
Accountability Act, etc.). Because of these risks, several privacy-preserving mechanisms are 
available to help organizations comply with privacy legislations and prevent the unauthorized 
and malicious use of user data. 

In light of these concerns, this report focuses on performing a computational review of privacy-
preserving mechanisms that have received a significant amount of interest in literature. It 
specifically focuses on 1) homomorphic encryption, 2) zero-knowledge proofs, 3) differential 
privacy, and 4) federated learning. It is worth noting that although many of the methods 
presented in this document rely on cryptographic primitives, their intent is not to provide perfect 
secrecy, but rather to enable users to maintain privacy, and thus they shall not be compared or 
equated to other constructs that are aimed to address cybersecurity constructs. 
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Summary 

  As the grid moves away from traditional architectures to one that consists of distributed energy 
resources (DERs), smart meters, and other devices capable of transmitting and receiving data 
across the network, there is a growing need to ensure the privacy of the data. This data can contain 
information about a user’s energy consumption/production, billing information, and other personal 
information. A malicious actor that obtains this data could use it for activities that range from learning 
customer behaviors (e.g., identifying vacation periods) to implementing unfair pricing or marketing 
strategies. From the grid perspective, if a malicious actor is able to access operational data that has 
not being adequately sanitized or privatized, malicious actors may use it to identify systematic 
weaknesses or vulnerabilities that, if exploited, could lead to operational consequences. While there 
are examples of how a malicious actor could cause damage to the grid (e.g. overloading 
transmission lines by tampering with the network topology to cause cascading outages and 
blackouts (Mousavian, 2013)), to the authors’ knowledge, there has not being an example of the 
grid system being exploited that leads to operational consequences as a direct result of privacy 
violations. This however does not imply that such events do not create (or will not create) impacts. 
For the utility provider, the leakage of user data can have severe consequences in the form of fines 
and other penalties for violating local laws and regulations (e.g., European Union General Data 
Protection Regulation (GDPR)). A data breach would also erode the public’s trust in them, and other 
organizations may be less inclined to collaborate with them. 

 Various privacy-preserving mechanisms can be applied to existing frameworks to protect the 
data of the user and the grid. Homomorphic encryption (HE) is a form of encryption that allows 
ciphertexts, obtained from applying mathematical algorithms and an encryption key to plaintext data, 
to be worked on without the need to first decrypt them back into plaintext. This greatly reduces the 
number of situations where a plaintext can be viewed in the clear and enables collaboration with 
entities that would otherwise not have access to the data due to privacy concerns. Its main 
drawback is that it is more computationally expensive than other privacy-preserving technologies, 
especially in the case of Fully Homomorphic Encryption (FHE) that can perform an unlimited 
number of operations for an unlimited number of applications at the cost of requiring a relatively 
expensive bootstrapping process that re-encrypts the ciphertext (Acar, 2018). Zero-knowledge 
proofs (ZKP) grant one entity (i.e. the prover) the ability to prove that they know a secret to another 
entity (i.e. the verifier) without leaking any information other than the fact that they know the secret 
(Chen, 2023). The use of ZKPs allow entities to remain anonymous during authentication 
processes, and the overhead is relatively low when compared to other public key infrastructures. 
One of its drawbacks is the tradeoff between efficiency and privacy when using a trusted third party 
in the authentication process (Sun, 2021). Differential privacy (DP) is an approach to protecting 
privacy when statistical analysis is performed on a dataset containing data from a group of 
individuals (Dwork, Differential privacy, 2006). It provides privacy guarantees that the inclusion or 
exclusion of an individual’s dataset in the analysis will not affect the results greatly enough for an 
adversary to gain any meaningful information about them. Its primary drawback is that it cannot 
provide complete privacy preservation on its own and requires the use of other privacy-preserving 
mechanisms (Husnoo, 2021). Federated learning (FL) is a method of training a machine learning 
global model that doesn’t require the clients to upload their raw data to a central server. The server 
instead sends a global model to clients, who then train the model on their local raw data and upload 
the updated model parameters to the server for aggregation. The heterogeneity of the devices on 
the network and the costs of communication are some of the drawbacks to FL (Banabilah, 2022). 
There is also no standardized method of benchmarking in the field of FL, which makes comparing 
various algorithms difficult (Almanifi, 2023). This paper provides more details on these privacy-
preserving technologies and their benefits, applications, challenges, and computational overhead.  
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1.0 Introduction 

 The smart grid is often seen as a necessary component for building a more efficient, 
reliable, and sustainable grid (Kumar, 2019). In its simplest form, the smart grid can be defined 
as a network of highly interconnected assets that constantly communicate with each other in 
order to satisfy a wide variety of operational goals. Despite its relatively simple definition, the 
smart grid is a complex system of systems that must be broken into subcomponents before it 
becomes feasible for engineers and operators to understand and manage its inner workings. 
Based on this premise, the smart grid is often divided into subdomains that align with other 
existing regulatory and organizational structures that are present in the energy industry. For 
simplicity, this work adopts the NIST domain classification, which can be summarized as 
follows: 

• The function of the bulk generation domain is to generate electricity for the consumers 
(Dileep, 2020). It is electrically connected with the transmission domain and has strong 
data interdependencies with the transmission, markets, and operations domains through 
multiple shared interfaces. Traditional information flows focus on acquiring operational 
information that can be used to assess system performance and to ensure any potential 
issues are rapidly addressed (e.g., generator failure).  

• The transmission domain transfers the electricity generated from bulk generation units to 
the distribution system via a network of transmission lines and substations. An 
independent system operator (ISO) or regional transmission organization (RTO) is 
responsible for balancing supply and demand over the network. Typical examples of 
operational data collected include data from phasor measurement units and state 
variables obtained via Supervisory Control and Data Acquisition (SCADA) systems. 
These data streams may be complemented with economic indicators under the market 
domain. 

• The distribution domain is responsible for taking the electrical energy obtained from the 
transmission domain and allocating it to the consumers/prosumers. It consists of objects 
such as capacitor banks, storage devices, and sectionalizers. It coordinates with the 
operations domain to manage the power flows or with the market domain to signal 
prices.  

• The consumers/prosumers domain consists of customers who can control their energy 
consumption and generation. Traditionally, this domain mostly interacts with the services 
domain via smart meters or local controllers. However, as technologies such as Inverter 
Based Resources ,  Electric Vehicles (EVs) , among other Distributed Energy Resources 
(DERs) continue to emerge, advanced energy services interfaces may enable this 
domain to more actively interact with other domains. 

• The services domain is usually tasked with billing and account management.  The 
services domain communicates with the operations domain to maintain system control 
and situational awareness, and the consumers/prosumers and markets domains for 
economic growth through the creation of new products and services. It is envisioned to 
eventually support the emergence of advanced grid services across all domains. 

• The operations domain typically includes supervisory agents and other regulatory 
stakeholders that are responsible for maintaining optimal operation of the power system.  
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• The markets domain consists of actors that balance supply and demand using economic 
signals. Due to their importance, a series of regulatory protections are often added to 
ensure all processes remain fair and efficient while mitigating risks.  

Traditionally, attention was set on the generation, transmission, and distribution domains; 
however, as more DERs continue to be added, the consumer/prosumer domain is expected to 
increase its importance. In addition, the service domain eventually may play a more active role, 
supporting the emergence of decentralized grid services, which may enable a greater degree of 
system resiliency while also empowering the consumer/prosumer domain to more actively 
engage in satisfying grid objectives. Such capabilities are expected to build upon the 
communication capabilities of the smart grid and will almost certainly leverage information 
exchange as the main mechanism to achieve multi-agent coordination. 

 Although the grid of the future may still be under development, the current generation grid is 
already experiencing high levels of interdependency, requiring a constant exchange of 
information to function appropriately. Traditionally, such exchanges involved a limited set of 
actors, i.e., a local utility company exchanging data with an RTO/ISO. In addition to the limited 
number of actors, these data exchanges are often subject to strict regulatory and organizational 
policies that dictate exchanges based on business needs, conferring a certain level of inherent 
protections against potential data misuse. However, as consumers continue to play a more 
active role in grid operations (e.g., via DERs) and new service providers continue to emerge 
(e.g., DER aggregators), it has become apparent that existing data management practices may 
not provide the necessary privacy protections to ensure all system participants operate on equal 
ground, and, specifically, the topic of privacy has been identified as a key enabler. 

 The concept of privacy is by itself is a complex, multi-disciplinary term that has no 
universally agreed-upon definition, but it can generally be defined as “the ability of individuals to 
control the terms under which their personal information is acquired and used” (Culnan & Bies, 
2003). Despite the lack of a formal definition, for the purposes of this work, the term privacy will 
be used to refer to digital privacy, a subset of information privacy that “focuses on the proper 
handling and usage of sensitive data that are generated and transmitted within digital 
environments”1 (IEEE digital privacy group, 2023). At a high level, the successful adoption of 
privacy features in the smart grid is expected to: 

• Encourage innovation while appropriately protecting the privacy and confidentiality of all 
participants. Thereby enabling access to reliable and sustainable energy while also 
addressing societal aspects. 

• Provide participants with the ability to manage their own data. This may include 
determining the "Who, What, When, Where, and Why” in the context of their data 
(Sebastian Cardenas, Mukherjee, & Ramirez, 2023). 

 Clearly, privacy is a desirable system property that, if well implemented, could be used as a 
tool to enable the grid of the future. However, privacy is a complex topic that requires a multi-
disciplinary approach for its implementation to be successful. Within the context of this report, 
focus will be placed on analyzing the computational tools (i.e., Privacy Enhancing Technologies) 
that could be used to address the privacy requirements of the smart grid. As illustrated by 
Figure 1, Privacy Enhancing Technologies represent one of the foundational constructs that can 

 
1 Although the citation is verbatim, “the proper handling and usage of sensitive data” does not have a 
universal answer, because the answer depends on the domain, the stakeholder preferences and other 
local regulations and perspectives (which themselves shift with time). 
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enable the emergence of secure, scalable, and flexible smart grid deployments by providing the 
necessary technical constructs that allow application designers to build and maintain privacy-
aware solutions.  

 Privacy Enhancing Technologies (PETs) is a broad term used to encompass a series of 
computational and mathematical methods that have been engineered to address specific 
privacy threats (e.g., to prevent dataset disaggregation) or to enable a new capability (e.g., to 
prove an attribute without revealing the original data set). Due to their specialized nature, each 
PET must be carefully selected based on a combination of application-specific needs and PET-
specific characteristics to maximize compatibility and to ensure that the resulting data artifacts 
meet the necessary privacy needs. 

Privacy Enhancing Technologies

Differential Privacy

Secure Multiparty 
ComputationsHomomorphic Encryption

Zero Knowledge Proof

ServicesOperationsMarkets

Bulk 
Generation

Transmission Distribution
Consumers/
Prosumers

Decentralized 
Hierarchical 
Coordination Communication plane

Distributed Energy resources/ EVs/ Controllable loads

Sensors/Data Streams, Communication networks

Grid ServicesEdge grid markets
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e 
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r 
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k

Other technical needs [Outside this report scope]
 

Figure 1: Privacy Enhancing Technologies as an enabler for the modern smart grid. 

 As discussed above, each privacy technology introduces its own set of requirements and 
potential drawbacks that must be considered before they are integrated into a smart grid 
application. In alignment with this need, this report seeks to present a technical review of 
various PETs and offer application engineers the necessary guidance for a successful 
application deployment. In the future, this report is expected to be complemented by follow-up 
guides that will continue to support decision makers in the deployment of secure, scalable, and 
reliable privacy-aware applications. 

1.1 Privacy in the Traditional Power Grid 

 Under the traditional operational paradigm, system reliability was largely supported by a 
predictable demand and supply growth that enabled system planners to develop and schedule 
infrastructure upgrades before any reliability issues became apparent (Currie, 2023). However, 
with the wide-spread adoption of DERs and the ongoing electrification process that is currently 
happening across many other economic sectors (e.g., EVs in the transportation domain), there 
is a growing need for methods that can react to the rapid changes that arise from the variability 
and ad-hoc nature of such systems. In this context, remote sensing technologies, such as the 
smart meter, are seen as key enablers for a more responsive grid (Dileep, 2020). Although 
primarily used for billing purposes, smart meters can be leveraged to fulfill a wide variety of 
tasks that range from supporting improved grid observability to enabling advanced pricing 
strategies that can be used for dynamic grid control. From a utility perspective, their “on-
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demand” communication capabilities can provide multiple operational benefits (e.g., rapid 
outage detection and accelerated restoration), but they can also be used to offer improved 
customer experiences that go beyond the grid's operational objectives. This may include 
providing access to granular consumption records and other advanced analytics that enable 
customers to optimize their energy use. However, these capabilities have also raised privacy 
concerns due to the amount of personal information that may be extracted or inferred outside of 
their intended usage applications (e.g., behavioral patterns such as household occupancy and 
appliance usage, etc.) (Currie, 2023). Such risks could further increase if records are made 
publicly available (e.g., due to system compromise), which may enable malicious agents to infer 
information that is potentially harmful to the household. 

 In accordance with these risks, multiple researchers have proposed a series of mechanisms 
and tools that could be used to limit the potential risks associated with the collection, transport, 
and storage of grid data. For example, in (Finster, 2015), the researchers propose to address 
the problem of securing data privacy in the smart grid by first classifying its end use as either an 
authoritative or informative data source and then applying appropriate mitigations. An 
authoritative role may be relevant when the information is used to produce an accurate billing 
statement, while an informative role may be relevant when the meter data is used to 
complement or augment an existing data stream (e.g., to improve grid visibility). Under such a 
classification system, billing-like applications could implement a trusted third party that oversees 
the behavior of customers, with each customer being responsible for computing their own bill 
(e.g., via trusted computing or cryptographic functions) and then reporting the net cost back to 
the utility without revealing unnecessary data. In (Asghar, 2017), the researchers provided an 
overview of the challenges, recommendations, and research directions for preserving the 
privacy of smart meter data during its transmission and management phases. The researchers 
focused on both a trusted operator model (where the operator collects and stores the data) and 
a non-trusted operator model (where all entities are untrusted, and the data must be 
manipulated in some way to preserve privacy). The authors identified a series of systematic 
issues that ranged from the user’s inability to verify data usage according to the agreed consent, 
to risks inherent to the mechanisms used to audit energy consumption.  

 In (Abdalzaher, 2022), the researchers described vulnerabilities in smart meters and 
evaluated eleven trust models designed to preserve data privacy, while also providing 
recommendations on which models should be used based on their evaluation. The models 
included game theory, clustering, Bayesian, entropy, fuzzy logic, differential privacy, machine 
learning, Kullback-Leibler Divergence, generative adversarial privacy, data aggregation and 
pseudonyms. A further, high-level overview of techniques that have been used in literature to 
enhance the privacy attributes of the smart grid can be observed in Table 1. 

Table 1: Privacy Enabling Technology Applications to Smart Grid 
Citation PETs used  Overall application or problem being solved. 

(Taïk, 
2020) 

Federated 
Learning (FL)  

A short-term demand forecasting scheme was assembled based on 
FL. The proposed scheme was tested using demand data from 200 
homes that featured similar characteristics. Four scenarios were 
used to evaluate the accuracy vs privacy benefits of FL, this was 
done by changing the number of homes used to train the global 
model [5,20] and varying number of rounds used for local training 
[1,5]. The results found that model accuracy is dependent on 
household characteristics, and that pre-clustering and post-
retraining (local) could improve accuracy.  

(Badr, 
2023) 

Federated 
Learning, Inner-

The researchers developed a FL-based energy prediction system 
aimed at achieving high accuracy while preserving the customer’s 
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Product 
Functional 
Encryption 

private information.  Inner-product functional encryption (IPFE) was 
used on the parameters of the customer’s model so that the data 
could be sent to the utility provider anonymously. The scheme used 
by the researchers enabled the utility provider to use the encrypted 
parameters to build a global model.   

(Wang, et 
al., 2022) 

Elliptic-curve 
Cryptography, 
Digital 
Watermark 

The researchers presented a method for hiding sensitive smart 
meter data (e.g., user ID, location) using elliptic-curve cryptography 
(ECC) and digital watermarks. Sensitive information is first 
encrypted with ECC. Measurements appear as regular floating-point 
numbers (encoded in base64), but the mantissa contains a 
watermark. The smart meter determines the content and order in 
which the watermark is to be embedded. Once encoded, the 
modified data is repacked into a new sequence to be transmitted to 
the control center. Order is randomly generated based on UNIX time 
to prevent watermark manipulation, preserving privacy. 

(Streppara
va, 2022) 

Homomorphic 
Encryption (HE) 

The researchers demonstrated that anonymous aggregation of 
energy production and consumption data was possible through a 
cryptographic protocol based on HE. The protocol was deployed on 
an add-on computing module attached to the meter’s optical port. 
The test results showed that the computational burdens were 
acceptable for encoding, but due to their cost, decoding should be 
reserved for auditing purposes. The researchers suggested the use 
of zero-knowledge proofs when access to exact values were needed 
(e.g., for billing purposes). 

(Syed, 
2020) 

Partially 
Homomorphic 
Encryption 
(PHE), Fully 
Homomorphic 
Encryption (FHE) 

The use of PHE and FHE was used to train classical and deep 
learning Artificial Intelligence (AI) models. The classical model 
performed linear regression for load forecasting purposes by 
leveraging PHE to protect the training data. The load forecasting 
application showed that the Root Mean Square Error (RMSE) was 
0.0352 MWh under their framework (vs 0.0248 MWh without 
encryption). The deep learning model was used to create a fault 
classification and localization application using FHE to protect the 
underlying data. Tests performed by the researchers determined 
that the AI model was able to perform fault localization with an 
accuracy of 97-98% under their framework (vs 98-99% when the 
model was trained on plaintext data).  

(Xu, 2023) Fully 
Homomorphic 
Encryption (FHE) 

A privacy-preserving framework using the Lattigo FHE library was 
proposed and evaluated by researchers to determine its ability to 
compute statistical measures in residential energy. Computations 
intended to represent a household were simulated with a MacBook 
Pro with a CPU speed of 2.3 Ghz and 4GB of DDR3 RAM. 
Computations calculated by all other parties were done on a 
Windows laptop with a processor speed of 1.90 Ghz and 16 GB of 
RAM. With an encryption key length of 128 bits, the researchers 
found that summation took 58,235 ms and variance calculation took 
127,423 ms to process 100 households.  

(Pop, 
2020) 

Zero-Knowledge 
Proof (ZKP), 
Blockchain, 
Distributed 
Ledger 
Technology 
(DLT) 

A decentralized implementation of demand response program based 
on blockchain and ZKPs was presented by the researchers. ZKPs 
are utilized to obscure the prosumer’s energy data and requested 
flexibility profiles. The blockchain stores the deviation quantities and 
performs ZKP validation to verify the deviation is correctly 
computed. According to the researchers, the scheme effectively 
safeguarded the integrity and confidentiality of the prosumers while 
also improving a demand response programs audit and financial 
settlement capabilities. 
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(Hassan, 
2019) 

Differential 
Privacy (DP) 

 

 

 

A DP-based real time load monitoring approach was used to 
preserve the privacy of the user’s routines and their renewable 
energy usage. The scheme aggregates the net demand for a given 
timeframe (denoted as 𝑆). If 𝑆 is greater than 0, then:  

𝑆𝑁 =  𝑆 +  𝑁 +  𝐸𝑋 

Where 𝑁 is the Laplacian noise being added, and 𝐸𝑋 is an offset 
value. 𝑆𝑁 is compared with a pre-defined maximum peak load value 

𝑃, and if 𝑆𝑁 is greater than 𝑃, the value of 𝑆𝑁 is set to 𝑃 and 

transmitted to the utility. The value of 𝑆𝑁 – 𝑃 is stored in 𝐸𝑋, which 
is the offset for the next timeframe. Their scheme was evaluated 
using the Residential Energy Consumption Survey for the Midwest, 
and the solar and wind energy dataset from the Hong Kong 
Observatory. The data was iterated over 31 days at a 10-minute 
interval. The monthly results showed that their scheme achieved an 
error rate of only 1.5%. (When P was 1.2 kWh, the total energy 
reported was 4.84 kWh and the masked value was 4.91 kWh). 

(Tran, 
2022) 

Differential 
Privacy (DP) 
through noise 
generation and 
distribution 

The researchers demonstrated a privacy system whose goal was to 
anonymize electricity consumption collected by smart meters. The 
proposed mechanism seeks to prevent attackers from inferring the 
resident’s habits and home appliances used. The system used two 
separate algorithms to generate noise at the smart meter and at the 
Distribution System Operator (DSO) endpoint. The noise is 
generated using a private noise distribution protocol called nn-PND, 
which is a noisy neural network model that seeks to maintains data 
utility while preserving privacy. 

 Based on the research presented in Table 1 it is clear that a wide variety of PETs have been 
proposed to address the data privacy challenges introduced by the adoption of smart grid 
technologies. Despite its potential advantages, some of the proposed PETs may require 
significant changes to the existing operational paradigm before they can be successfully 
adopted by the industry, while others may be infeasible to adopt in their original form due to 
scalability issues or other performance bottlenecks. Hence it is imperative that potential 
adoption barriers are identified and addressed to further accelerate the deployment of privacy-
aware grid solutions. In alignment with this need, this paper focuses on analyzing the 
computational overheads of some of the most employed privacy-preserving mechanisms found 
in literature. In particular, this report focuses on: A) homomorphic encryption (Section 2.0); B) 
zero-knowledge proof (Section 3.0); C) differential privacy (Section 4.0); and D) federated 
learning (Section 5.0). Noise-based digital watermarking was initially considered in the scope of 
this report, but the effort was abandoned due to the limited amount of research detailing its 
computational complexity and a lack of security guarantees that could lead to potential abuse 
(See Appendix A). Each section of this report introduces the privacy-preserving mechanism, 
followed by its benefits, applications, challenges, and computational overheads (if applicable). 
Finally, Appendix B provides additional information on the notation used to express time and 
space complexities, as well as simple numerical examples of each technology being covered. 

 As stated earlier, this report seeks to provide a technical analysis of the computational 
overheads involved in the adoption of PETs in the context of smart grid-related applications. 
Specifically, this document aims to present a series of quantitative and qualitative comparisons 
that enable application engineers to identify a method’s strengths, risks, and potential 
limitations. These comparisons are aimed to foster a questioning attitude that promotes fair 
comparisons between different technology approaches and ensures that solutions remain 
secure, scalable, and efficient in the long term.  
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2.0 Homomorphic Encryption 

 Modern encryption represents a set of methods and mechanisms used to provide data 
confidentiality, ensuring data can only be accessed by parties who hold the appropriate 
credentials. Although privacy and confidentiality are interrelated, they are not necessarily equal, 
yet maintaining a certain level of confidentiality is one of the key requirements towards 
achieving a comprehensive privacy solution. At its core, encryption ensures data confidentiality 
by transforming human-readable data (called the plaintext) into a random string of characters 
(called the ciphertext). An encryption algorithm and an encryption key (which is a random string 
of characters itself) is applied to the plaintext to transform the input and generate the ciphertext. 
To reverse the process (i.e., to recover the plaintext) a decryption algorithm and a decryption 
key are applied to the ciphertext. One of the limitations with traditional encryption methods, 
however, is that computations (e.g., mathematical operations) can only be done over the 
plaintext, requiring all parties involved in such computation to have access to the encryption key 
(Alharbi, 2020). This introduces opportunities for malicious actors to exfiltrate or abuse the data 
being shared, or to misuse the decryption keys (e.g., sharing a key with unauthorized users). 
These problems tend to grow as the number of involved parties expand or as conflicting role 
dynamics arise. For example, if there are 𝑛 number of entities that need to work on the data, 

then there are 𝑛 locations that may leak or abuse the underlying data streams. Another common 
concern is that parties may continue to access past and future data unless the key is changed 
and the previously encrypted data is destroyed (Acar, 2018).  

 To address these challenges, Homomorphic Encryption (HE) has introduced a set of 
features that enable computational operations to be performed without requiring an implicit 
decryption step (Acar, 2018). By leveraging HE, data-producing agents can freely share data in 
its encrypted form with entities that can apply functions and transformations without any key 
sharing, theoretically eliminating the risks associated with untrusted third-party processors. 
Since the cleartext is only available at the encryption or decryption stages, the only relevant 
threat entry points are the source and receiver system. At the time of writing, HE is still an 
emerging research topic, and hence some limitations exist in the number and types of 
operations available due to a combination of scalability and performance limitations. Many 
common operations such as addition, subtraction, multiplication, and division (i.e., by multiplying 
by 1/scalar) are already well-understood and are available to application developers. However, 
it is worth providing a quick classification of different HE methods according to their processing 
capabilities. These are: 

• Partially homomorphic (PHE): These methods enable users to perform a single operation or 
family of operations infinitely. For example, a method may support an infinite number of 
cumulative additions (and subtractions), but without multiplication support, or vice versa. 

• Somewhat homomorphic (SWHE): Multiple operations can be applied a limited number of 
times. For example, a SWHE algorithm may offer the ability to support an infinite1 number of 
additions followed by a finite number of multiplications.  

 
1 Some SWHE algorithms introduce a non-trivial amount of noise while performing operations, potentially 
limiting the number of same-type operations and combinations thereof (which may also impact the order 
that these can be applied). Further details will be presented during the bootstrapping discussion. 
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• Fully Homomorphic (FHE): Any operation can be applied infinitely. The types and number of 
operations are unbounded, but practical limits may exist due to computational overheads or 
impractical message lengths.  

 Some examples of PHE schemes that are in use today include Rivest–Shamir–Adlema 
(RSA), El-Gamal1, and Paillier. RSA is a multiplicative PHE scheme that was introduced in 
(Rivest, 1978). It has been applied to banking and credit card transactions (Doan, 2023), where 
it is used in the transport layer security (TLS) protocol to encrypt sensitive data and for 
authentication (Soram, 2015). An example of this scheme is detailed in Appendix B.2. The 
security of the scheme relies on the difficulty of factoring the product of two large prime 
numbers. El-Gamal is another multiplicative PHE scheme that was introduced in (ElGamal, 
1985) that provided improvements over the traditional Diffie-Hellman Key Exchange algorithm 
(Diffie, 1976). The security of El-Gamal relies on the difficulty of solving discrete logarithms. 
Paillier is an additive PHE that was first described in (Paillier, 1999), which has been used in e-
voting mechanisms. Its security is based on the composite residuosity problem (Doan, 2023).  

 Despite the limited number of applications in which PHE capabilities are directly applicable, 
their theoretical potential rapidly became a driver for developing powerful constructs that could 
satisfy the needs of real-world applications. This initiated a wave of research that resulted in a 
first generation of SWHE algorithms that included algorithms such as the Polly Cracker scheme, 
which enabled additive and multiplicative operations to be carried on ciphertexts. Unfortunately, 
its main drawback was that the ciphertext’s size grew exponentially which in turn led to 
increased computational times, resulting in poor scalability (Fellows, 1994). Subsequent SWHE 
schemes sought to address some of these performance drawbacks, leading to schemes such 
as the Boneh-Goh-Nissim (BGN) which was introduced in (Boneh, 2005). BGN’s security model 
is based on the subgroup decision problem and allows an unlimited number of additive 
operations and a single multiplication over ciphertexts while maintaining the size of the 
ciphertext as a constant. Despite these advancements, schemes such as BGN lacked a 
sufficient level of generalization to be applicable in real-world scenarios. 

 Driven by these limitations, the first feasible implementation of a FHE scheme was proposed 
as a reusable blueprint in (Craig, 2009). The blueprint relies on the iterative application of a two-
stage process, referred to squashing and bootstrapping. The first stage seeks to create a 
simplified representation of the ciphertext (referred to as squashing) by adding auxiliary 
information to the ciphertext, helping to reduce the computational complexity associated with 
performing an evaluation. Bootstrapping performs a “refresh” that removes or “resets” the noise 
introduced during the computation process by essentially applying another encryption function 
over the old ciphertext (without decrypting it first), enabling FHEs to achieve an unlimited 
number of operations over the ciphertext. The bootstrapping process is the main drawback of 
FHE, since it adds a noticeably large amount of computational cost. Some commonly used FHE 
schemes are BFV (Brakerski, Fan, and Vercauteren), BGV (Brakerski, Gentry, and 
Vaikuntanathan), and CKKS (Cheon, Kim, Kim, and Song). CKKS is a notable FHE scheme 
because it performs computations on ciphertexts containing real or complex values (Doan, 
2023). The security of many FHE schemes is based on the Ring-Learning With Errors (R-LWE) 
assumption (Podschwadt, 2022). As expected, HE methods’ strengths rely on their ability to 
balance confidentiality with the ability to efficiently carry out operations, hence the majority of 
these schemes must be described and proven using strong mathematical language, a feature 
that can limit their target audience. To help bridge the gap between theory and practice, works 

 
1 El-Gamal is also referred as ElGamal and El Gamal, this work has adopted the former to ensure 
consistency. 



PNNL-36774 

Homomorphic Encryption 17 
 

such as (Acar, 2018) may serve as an initial reference to application developers seeking to 
familiarize themselves with a method’s principle of operation, operational assumptions, and 
typical use cases. 

2.1 Benefits and Applications of Homomorphic Encryption 

 A major benefit of using HE is that it reduces the number of instances in which the data can 
be viewed in plaintext, thus improving its security. By maintaining the ciphertext in an encrypted 
form, a large number of computational operations can be performed while ensuring the plaintext 
is never exposed. This property of HE is especially useful in protecting user data privacy in 
cases where large amounts of data must be processed by untrusted parties, such as in machine 
learning applications, where a model’s accuracy may be dependent on the availability to access 
large amounts of data (Marcolla, 2022).  

 By offering data processors the ability to compute functions without having raw data access, 
HE may assist business and organizations in complying with laws and policies regarding data 
privacy (e.g., EU General Data Protection Regulation, California Consumer Privacy Act, etc.). 
While violations of these laws can result in severe fines and other penalties, there are 
secondary impacts to an organization, such as diminished trust and negative publicity, 
potentially resulting in fewer businesses or clients willing to collaborate with them. HE could also 
enable collaboration between mutually-distrusting parties by providing each party with strong 
guarantees that assert their data cannot be extracted or re-shared in a meaningful manner with 
third parties. Due to these characteristics, HE has been proposed in multiple applications, 
across the domains of energy, healthcare, machine learning, finance, smart homes, and more. 
Table 2 lists some real-world applications of HE.  

Table 2: Applications of HE Across Various Domains 
Citation Keywords Overview 

(Yuan, 
2024) 

Electronic Voting, 
Paillier, Partial 
Knowledge Proof, 
Timed-Release 
Encryption 

The researchers proposed a timed-release e-voting system that 
implemented Paillier PHE and partial knowledge proofs. Paillier was 
used to maintain confidentiality while tallying votes and to ensure 
plaintext information could not be accessed before a previously 
agreed-upon time. Partial knowledge proofs were used to preserve 
the privacy of the ballot’s content while still verifying its legitimacy. 
The researchers also conducted a security and performance 
analysis on their scheme. The security analysis determined that an 
eavesdropper could not break the semantic security of the time-
delayed HE scheme in order to decipher ciphertexts. The 
performance analysis showed that their scheme could be applied to 
practical e-voting scenarios. 

(Vengadap
urvaja, 
2017) 

Healthcare, 
Medical Images, 
Cloud 
Computing, FHE 

The researchers proposed a method based on HE to encrypt and 
perform computations on medical images to preserve the patient’s 
confidentiality. The method consists of transforming the image into a 
matrix and sending the separate elements to the HE algorithm to 
generate public and private keys. The keys are then used for 
encrypting the matrix elements that can be stored in a public cloud. 
When needed, the matrix elements are sent to the decryption 
algorithm and then converted back into the original image for 
medical diagnosis. Analysis of the key space (2150) determined that 
the proposed method was resistant to brute force attacks. 

(Lee J.-W. 
H., 2022) 

Privacy-
Preserving 
Machine 

The researchers implemented a standard ResNet-20 model (an 
image recognition engine) via RNS-CKKS FHE and applied 
approximation methods and bootstrapping techniques to improve 
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Learning, 
(Residue Number 
System), RNS-
CKKS FHE 
Scheme 

the accuracy of the model while preserving data privacy. The 
approximation methods were used to evaluate non-arithmetic 
functions with adequate precision. The bootstrapping technique was 
utilized to allow the evaluation of “an arbitrary deep learning model 
on encrypted data.” The proposed model was tested with the 
CIFAR-10 dataset (an image training repository) and found that it 
accurately replicated 98.43% of the results produced by a non-
privacy-aware ResNet-20 model.  

(Yu, 2021) Road Distance, 
Road Network 

In order to preserve the privacy of a user’s location data when 
performing road distance computations, two HE schemes were built 
and evaluated by the researchers. The first approach relied on the 
Paillier algorithm, while a second approach based on the Fan-
Vercauteren (FV) scheme (a SWHE-based scheme), which was 
combined with a custom road model. The two schemes were 
evaluated on a city’s road network which consists of 21,048 vertices 
and 21,693 edges. The results of the simulations found that the 
proposed solutions were able to compute the road distance with an 
88-95% accuracy without requiring accurate location information. 

(Yucel, 
2019) 

Electric Vehicle, 
Vehicular 
network 

Researchers used the Paillier PHE and the Bichromatic Mutual 
Nearest Neighbor (BMNN) algorithms to provide customers with 
locational privacy in vehicle-to-vehicle (V2V) applications. To 
demonstrate the proposed method, a privacy-aware matching 
engine that allows users to find potential matches in V2V charging 
applications was developed. The proposed matching algorithm was 
simulated with 100 requestors and 100 suppliers operating over a 
1km2 area. The results determined that there were lower average 
waiting times and less overhead when compared with a classical, 
centralized matching approach. 

(Cheng Z. 
F.-Y., 
2021) 

Energy 
management 
system, optimal 
power flow 

A private, collaborative distributed energy management system (P-
CoDEMS) was developed and evaluated by the researchers with the 
goal of preserving user privacy when solving an AC optimal power 
flow (AC-OPF) problem. P-CoDEMS utilized a custom optimization 
technique and the Homomorphic Encryption for Arithmetic of 
Approximate Numbers (HEAAN) scheme. It was tested on four 
representative distribution systems (22-bus, 69-bus, 85-bus, and 
141-bus); The results showed that their proposed system computes 
the AC-OPF while preserving user privacy. 

(Sambasiv
arao, 2024) 

Secure Energy 
Trading, 
GreenTrade 
Platform, 
Blockchain, DLT, 
Simulation 
Framework 

The researchers proposed an energy trading framework using HE to 
preserve the privacy of energy trade data and increase the security 
and efficiency of energy trading on the GreenTrade platform. The 
framework was tested on data simulated via Python. The simulation 
involved randomizing energy needs, supply, and prices to mimic 
realistic transactions. The simulations showed that the addition of 
HE produced minimal computational overhead. However, the 
researchers noted that their evaluation focused on a limited set of 
performance metrics, and did not account for real-world conditions 
(e.g., network latency, communication overhead).  

(Lei, 2022) Smart Grid, 
Smart Meter 

The researchers implemented a privacy-aware, energy trading 
platform. Hyperledger Fabric channel-isolation capabilities were 
leveraged to fragment and isolate network members. Paillier was 
used to encrypt, and thus protect private data (e.g., account 
balance). Multiple performance tests were carried out to determine 
timing overheads. When using a key length of 4,096 bits, encryption 
took about a second on a single core machine. When a batch 
encryption was performed over 1000 records, the operation took 
approximately 82 seconds. On a separate test, a 16-core system 
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completed the same operations in 5.3 seconds. Since production 
systems will likely be multi-core, the researchers determined the 
added computational cost of Paillier is an acceptable tradeoff. 

2.2 Challenges and Attacks Against Homomorphic Encryption 

 The biggest issue with FHE schemes is that squashing and bootstrapping procedures are 
required to transform a SWHE scheme into a FHE scheme, which significantly increases the 
computational and storage costs of adopting these methods (Acar, 2018). These processes are 
needed because additive and multiplicative operations add “noise” to the ciphertext, which is a 
needed feature to guarantee that the ciphertext maintains its intended levels of security. 
Additive operations increase the “noise” linearly, while multiplicative operations increase it 
exponentially, imposing limits on the overall number of operations that can be carried out. Once 
a certain threshold is reached, the ciphertext can no longer be successfully decrypted. As 
mentioned earlier, squashing is the process of reducing a decryption algorithm’s complexity, a 
process that must be tied to the bootstrap phase (Craig, 2009). The bootstrapping process 
involves re-encrypting the bootstrappable ciphertext to obtain a new ciphertext and thus reset 
the noise level. Although the concept of bootstrapping is a relatively simple operation to 
understand, implementing an efficient, functional algorithm remains a subject of active research 
that has resulted in significant time improvements (e.g., from hours to seconds) and storage 
reductions (from GB to KB) over the last decade. 

 On the other hand, PHE-based methods are usually efficient. However, due to only 
supporting one type of operation (which may be applied infinitely, in some cases), PHE 
schemes present an adoption challenge where a combination of multiple or complex 
computations are required (Awadallah, 2020). This property may force application developers to 
manually string multiple PHE schemes before they can be adopted in their application (if at all 
possible). Another issue facing PHE schemes is that large key and message sizes can 
introduce processing delays that render the system unusable.  

 Despite the benefits of HE schemes, certain applications may not be aligned with the 
features provided by HE due to scalability concerns (e.g., excessive computation delays) or 
mismatches between the application’s needs and the scheme’s capabilities (Marcolla, 2022). 
For example, most HE schemes are designed to operate in applications that use a single, 
common key. Hence, implementation barriers may arise if multiple keys are used to encrypt the 
input dataset. This means, for example, that if an averaging function is to be applied to a 
dataset that aggregates data from multiple users, and each user record is protected by a unique 
user key, then HE mechanisms cannot be used without introducing additional logic (such as 
Proxy ReEncryption).  

 Proxy ReEncryption (PRE) is a computing technique that uses an intermediary or proxy 
entity to convert the ciphertext of one user (delegator) into a ciphertext of another user 
(delegatee). The delegator’s key is not exposed to the delegatee, but the delegatee can still 
successfully decrypt the converted ciphertext. By not exposing the delegator user’s keys or 
plaintext, the proxy mechanism ensures privacy is maintained. However, there exists a risk that 
the proxy replaces the data or uses a deliberately weak key without the delegator knowing. 
Hence, there must exist an implicit level of trust towards the intermediary. Such risks may not 
always be manageable. For example, although the original PRE method incorporated 
mechanisms to mitigate against these types of risks (Craig, 2009), later analysis revealed that it 
was vulnerable to collusion attacks (Marcolla, 2022). This means the delegator’s private key can 
be left exposed if the delegatee and proxy collude. Subsequent research introduced 
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Hierarchical Proxy Re-Encryption (HPRE) schemes that are resilient to weak collusion1 attacks 
but are still vulnerable to strong collusion attacks. Another known issue of HPRE schemes is 
that they are only secure against chosen plaintext attacks (CPA), which lowers the number of 
scenarios they’re appropriate for. 

 One security issue with all known FHE schemes is that the bootstrapping process requires 
access to the data generator’s public key, which may introduce cybersecurity risks for entities 
that outsource the encryption process (e.g., to cloud-based services). Although sharing a public 
key in public key cryptography does not reveal the original data, its use is still considered a 
subject of debate (Leluc, Chedemail, Kouande, Nguyen, & Andriamandratomanana, 2022). 
Another vulnerability of the unbounded FHE schemes is that they are vulnerable to 
indistinguishability under chosen ciphertext attack 1 (IND-CCA1)2. 

2.3 Computational Overhead of Homomorphic Encryption Schemes 

 Due to the significant amount of computational overhead incurred in the use of HE, several 
literature surveys have been carried out in order to better characterize the processing delays, 
key lengths, and message sizes required to implement a feasible HE solution. One such survey 
was presented in (Doan, 2023). Among the PHE schemes reviewed, the list included Rivest-
Shamir-Adleman (RSA), Paillier, and El-Gamal schemes. As summarized during the 
introduction, RSA enables unlimited multiplicative operations to be performed, whose security 
relies on the complexity of solving the prime number factoring problem. Paillier allows an 
unlimited number of additive computations and is based on the composite residuosity problem. 
The El-Gamal scheme is also multiplicative, and its security relies on the difficulty of solving 
discrete logarithms.  

 The paper also dives into more modern (and complex) algorithms that are based on the R-
LWE problem assumption. This includes the Cheon-Kim-Kim-Song (CKKS) scheme, which is a 
SWHE scheme that can approximate results of additive and multiplicative operations on 
complex numbers; as well as other similar schemes, such as the Brakerski-Fan-Vercauteren 
(BFV), Brakerski-Gentry-Vaikuntanathan (BGV), Fast Fully Homomorphic Encryption (TFHE), 
and Fastest Homomorphic Encryption in the West (FHEW) schemes.  

 All HE algorithms were executed using applicable HE libraries on a computer equipped with 
an Intel(R) Core(TM) i7-10700 CPU running at 2.90GHz under Ubuntu 20.04 (Doan, 2023). The 
computational overhead time (in microseconds) was calculated from the average time taken by 
the operation over the span of 1,000 iterations. The encryption operation time encompasses the 
duration taken to generate random values for message inputs, along with the time required for 
encoding and decoding the batches (Doan, 2023). All algorithm parameters were selected to 
provide the equivalent of a 128-bit encryption security level and bootstrapping was not applied 
to FHE algorithms. 

 
1 Collusion attacks occur when multiple parties pool their information to gain unauthorized access to the 
encrypted data. The term weak is used to describe when a non-majority number of agents collude. 
2 In IND-CCA1, the adversary obtains a public key from the verifier. The adversary sends two different 

plaintexts to the verifier, who randomly encrypts one of them and sends back the result (referred to as the 
challenge). The goal of the adversary is to determine which of the plaintexts were encrypted. The 
adversary can send an unlimited number of ciphertexts to a decryption oracle to decrypt before the 
challenge is sent, after which, queries are disallowed. A system that is IND-CCA1 secure ensures that an 
adversary cannot accomplish their goal with a probability significantly higher than 50%. 
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 The time overheads and space requirements (encrypted message size) were obtained for 
various HE algorithms using the Homomorphic-Encryption Library (HeLib), PALISADE, Simple 
Encrypted Arithmetic Library (SEAL), and the Homomorphic Encryption for Arithmetic of 
Approximate Numbers (HEAAN) open-source libraries. HeLib uses BGV and CKKS schemes 
with ciphertext packing techniques and Gentry-Halevi-Smart optimizations. PALISADE supports 
the BGV, BFV, CKKS, FHEW, and TFHE schemes, with multi-party extensions for some HE 
schemes. SEAL supports the BFV, BGV, and CKKS schemes, and it contains optimizations 
intended to lower its initial learning curve. HEEAN supports only the CKKS scheme and 
provides addition and multiplication operations on fixed-point values and approximate 
operations on rational numbers. The PHE schemes tested were implemented by the 
researchers themselves (Doan, 2023). Figure 2 and Figure 3 illustrate the results of the various 
operations performed by the PHE schemes tested by (Doan, 2023). The data used to obtain the 
graphs can be viewed in Table 3-Table 5 (also computed by (Doan, 2023), but reproduced in 
this report for convenience). In Table 3 and Table 4, 𝑃 is the plaintext modulus, 𝑁 is one factor 

in the encryption keys, and log2(𝑁) is the number of bits in 𝑁.  

 
Table 3: Multiplicative PHE Scheme Comparison From (Doan, 2023) 

 HE Parameters 

Scheme 𝑃 𝐿𝑜𝑔2(𝑁) KeyGen Enc Dec Mult 

RSA 1032193 109 1484.327 1.062 5.399 2.237 

El-Gamal 1032193 109 31063.45 4.486 4.336 3.151 

RSA 1032193 218 1931.446 1.669 7.803 0.396 

El-Gamal 1032193 218 135618.53 16.748 15.476 9.74 

RSA 786433 438 3490.179 2.496 37.265 0.853 

El-Gamal 786433 438 773368.775 66.794 32.56 18.388 

RSA 786433 881 8366.837 6.865 205.38825 2.178 

El-Gamal 786433 881 5354554.333 403.448 203.7188 8.651 

RSA ℤ𝑛 3072 180255.34 61.599 6327.537 2.934 

El-Gamal ℤ𝑛 3072 >15 minutes    

RSA ℤ𝑛 4096 433348.8 88.372 14327.857 9.792 

El-Gamal ℤ𝑛 4096 >15 minutes    

 
Table 4: Paillier PHE Scheme Time Complexities From (Doan, 2023) 

HE Parameters (for Paillier) 

𝑷 𝐿𝑜𝑔2(𝑁) KeyGen Enc Dec Add 

1032193 109 1072.014 265.509 6.738 4.255 

1032193 218 1537.688 279.664 22.872 4.053 

786433 438 3081.14 367.893 141.012 6.08 

786433 881 7903.175 1013.957 950.735 10.868 

ℤ𝒏 3072 183774.01 20237.659 26364.306 232.136 

ℤ𝒏 4096 4297885.6 42868.889 55843.731 212.978 
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In Figure 2, 𝑡 is the time in microseconds. In Figure 2 and Figure 3, 𝑁 is one factor in the 
encryption keys, and 𝑙𝑜𝑔2(𝑁) is the number of bits in 𝑁.  
 

 
Figure 2: Time Complexity of PHE Schemes for Key Generation, Encryption, and Decryption 

Computations 

 
Figure 3: Time Complexity of PHE Schemes for Addition/Multiplication Operations 

 
 As shown in Figure 2, Paillier and RSA have similar key generation times when 𝑁 <  900, 

with Paillier being slightly faster than RSA. However, when 𝑁 >  900 and a 128-bit level of 
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security is required (as seen by viewing Table 3 and Table 4), Paillier becomes much slower at 
key generation than RSA, while El-Gamal takes longer than 15 minutes. For example, when 
𝑙𝑜𝑔2(𝑁) is 3,072, Pailler takes 3,518.67 𝜇𝑠 longer than RSA, and when 𝑙𝑜𝑔2(𝑁) is 4,096, Pailler 
takes ≈3.864 seconds,536.8 μs longer than RSA. RSA performs encryption the fastest among 

the three PHE schemes presented. RSA and El-Gamal have similar decryption speeds when a 
security level of 128 bits is not guaranteed. When 128-bit level of security is guaranteed, the 
time for key generation, encryption, and decryption all increase in Paillier. For example, when 𝑁 
is 4096 bits, generating a single key takes nearly 4.3 seconds. When the value of 𝑙𝑜𝑔2(𝑁) is 
881, El-Gamal takes longer than 5 seconds to generate key pairs. As displayed in Figure 3, 
RSA outperforms El-Gamal for speed of multiplicative operations. 
 
In Table 5 – Table 7, 𝑁 is the dimension of the ciphertext, and 𝑄 is the maximum ciphertext 
modulus.  
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Table 5: BFV Scheme Comparison From (Doan, 2023) 

Library 

HE Parameters 

𝑁 𝐿𝑜𝑔2(𝑄) KeyGen Enc Dec Add Mult 

SEAL 4096 109 1028.119 1263.528 276.045 1.298 3274.257 

PALISADE 4096 120 1137.556 1160.459 283.99 0.237 4296.438 

SEAL 8192 218 3003.509 3269.548 1179.682 144.531 11663.16 

PALISADE 8192 180 3170.82 2881.717 921.646 187.703 13585.75 

SEAL 16384 438 10260.45 11378.441 5434.016 415.662 54918.967 

PALISADE 16384 420 13507.743 11288.5535 3298.9775 1086.105 76565.506 

SEAL 32768 881 40251.496 41297.274 17442.857 1536.587 246427.201 

PALISADE 32768 840 55941.007 45587.262 17171.713 7046.362 427795.343 

 
 

 
Figure 4: Time complexities associated with Key Generation, Encryption, Decryption, and 

function computation (multiplication) via the BFV Libraries 
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Figure 5: Time Complexity of Addition (BFV Libraries) 

 
 As the dimension of the ciphertext 𝑁 increases, the time to execute the operation increases 

as well. For both libraries, each time the current ciphertext dimension 𝑁 is doubled, the 
multiplicative operation takes approximately four times longer. For example, when 𝑁 =  4096, 

SEAL takes 3274.257 𝜇𝑠 to perform multiplication, and when 𝑁 =  8192, SEAL takes 11663.16 
𝜇𝑠. The average execution time of the multiplicative operation in SEAL is less than PALISADE 
because SEAL performs the re-linearization step as a separate computation, while PALISADE 
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always counts the re-linearization step as part of the multiplication function. Overall, SEAL does 
better than PALISADE in most cases with regards to time complexities (except for decryption).  

 
Table 6 BGV Scheme Comparison From (Doan, 2023) 

Library 

HE Parameters 

N Log2(Q) KeyGen Enc Dec Add Mult 

SEAL 4096 109 2424.838 1091.586 259.842 42.541 1509.681 

PALISADE 4096 96 3023.297 1145.76 368.375 42.116 570.952 

HElib 4096 100 168300.764 2257.432 138092.51 32.064 2347.865 

SEAL 8192 218 11426.94 3137.433 992.5 79.952 6673.09 

PALISADE 8192 144 10981.757 3043.417 1007.424 57.322 2396.688 

HElib 8192 100 470367.195 4533.877 549616.633 480.44 4492.487 

SEAL 16384 438 70869.416 11179.579 3791.998 292.17 35650.547 

PALISADE 16384 240 51708.9 8902.513 3547.961 289.751 13642.014 

HElib 16384 100 1348552.91 9917.878 2265994 289.706 10778.79 

SEAL 32768 881 433638.89 41716.827 18156.642 866.2635 215414.681 

PALISADE 32768 480 376273.9767 34662.558 20727.674 3313.547 116248.311 

HElib 32768 100 1967110.87 14080.4445 2340201.2 209.039 17477.661 

 

 
Figure 6: Key Generation, Encryption and Decryption Time Complexities (BGV Libraries) 
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Figure 7: Time Complexities of Addition and Multiplication (BGV Libraries) 

 
 
    SEAL and PALISADE perform much better than HElib for key generation and decryption. 
HElib offers better execution times over SEAL and PALISADE for multiplication. HElib also 
overtakes them in encryption and addition execution times as the dimension of the ciphertext 
increases.  
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Table 7: CKKS Scheme Comparison From (Doan, 2023) 

Library 

HE Parameters 

N Log2(Q) KeyGen Enc Dec Add Mult 

SEAL 8192 200 2507.607 3910.8775 109.5735 271.207 452.792 

PALISADE 8192 102 2305.699 2652.975 21650.503 81.117 3129.505 

HElib 8192 (119, 
157.866) 

11008.069 2659.019 22065.082 272.865 19712.186 

HEAAN 8192 119 2282102.44 634268.04 41491.42 39877.65 614878.85 

SEAL 16384 432 11959.254 18847.575 721.076 1777.956 2077.872 

PALISADE 16384 141 6542.385 7093.977 51639.085 194.05 9584.286 

HElib 16384 (358, 
129.741) 

91768.896 8252.838 107935.827 1502.701 104850.697 

HEAAN 16384 358 2294477.86 624440.22 93658.41 17826.4 994892.6 

SEAL 32768 881 39749.74 66061.559 2589.904 2221.2535 4741.014 

PALISADE 32768 342 31630.72 29936.449 248985.192 3291.783 66603.916 

HElib 32768 (558, 
128.851) 

164575.383 23730.201 364743.317 11576.171 215878.991 

HEAAN 32768 558 2251482.12 657943.99 114587.91 45690.59 1332368.41 

 

 
Figure 8: Key Generation and Decryption Time Complexities (CKKS Libraries) 
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Figure 9: Encryption Time Complexities (CKKS Libraries) 

 

 
Figure 10: Addition and Multiplication Time Complexities (CKKS Libraries) 
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 HEAAN does far worse than the other schemes on all operations except for decryption when 

the dimension of the ciphertext being decrypted is larger than ≈ 2𝑥104. SEAL and PALISADE 
perform similarly on key generation, addition, and multiplication operations. However, SEAL 
offers the best decryption and multiplication times, as well as addition when the dimension of 

the ciphertext is greater than ≈ 2.6𝑥104. Overall, SEAL performs better than the other libraries 
when using the CKKS algorithm.  
 
 The computation times for key generation, encryption, decryption, addition, and 
multiplication operations between BFV, BGV, and CKKS schemes are shown in Figure 11 and 
Figure 12. The data for Figure 11 and Figure 12 were obtained from the Microsoft SEAL library 
entries in Table 5 – Table 7. The Microsoft SEAL library was chosen to take the measurements 
from because it performed better overall than the other libraries for two of the three schemes. 
For the BFV scheme, it only performs worse than Palisade in decryption times. For the CKKS 
scheme, Microsoft SEAL performs similarly to or better than Palisade, which are both better 
than the other libraries for most operations except decryption, where Microsoft SEAL performs 
better than all other libraries tested. There is no single library that performs better than the rest 
for the BGV scheme, thus, the Microsoft SEAL data was used for consistency. While BFV and 
BGV can obtain a security level of 128-bits with a ciphertext dimension of 4096, CKKS requires 
a ciphertext dimension of 8192. Thus, the ciphertext dimension of 4096 is omitted from Figure 
11 and Figure 12. 
 

 
Figure 11: Key Generation, Encryption and Decryption Time Complexities of BFV, BGV, and 

CKKS Schemes Using SEAL Library 
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Figure 12: Time complexities associated with the Addition and Multiplication functions under the 

BFV, BGV, and CKKS Schemes (SEAL Library) 
 
 BFV and CKKS have similar key generation times that are better than BGV. BFV and BGV 
have similar encryption execution times that perform better than CKKS, however CKKS is much 
better at decryption times. BGV offers the best performance involving addition, while CKKS is 
superior to the other schemes involving multiplication. No scheme has a clear overall advantage 
over the others. CKKS does the best overall with regards to execution time if the total number of 
operations it executes quicker than or performs similarly to (time within ± 2,000 μs) the other 

schemes is considered. 
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3.0 Zero-Knowledge Proofs 

 A zero-knowledge proof (ZKP) is a verification protocol that allows one entity to prove to 
another entity that they have knowledge of secret data without revealing anything besides the 
fact that they have that knowledge (Sun, 2021). The entity providing the proof is known as the 
prover, and the entity they are trying to convince is known as the verifier. The framework for a 
ZKP scheme consists of three phases: 

1. Witness Phase – The prover sends a calculated proof containing its statement to the 
verifier. 

2. Challenge Phase – The verifier sends questions to the prover.  

3. Response Phase – The prover sends back responses to the questions to the verifier, 
who uses them to accept or reject the proof. 

 The protocol has the properties of completeness, soundness, and zero-knowledge. The 
completeness property states that if the prover’s statement is true and they can prove it, then 
the verifier will always accept it. The soundness property states that if the prover’s statement is 
false, then there is only a small probability that they will be able to convince the verifier that it is 
true. The zero-knowledge property provides the guarantee that the prover does not expose any 
information to the verifier other than the fact that their statement is true (See Annex B.3 for a 
numerical implementation of ZKPs).  

 A ZKP scheme can be interactive or non-interactive (Deng, 2019). In an interactive ZKP, the 
prover and verifier need to communicate a minimum of three times to complete the necessary 
challenge and response phases. Since the two entities must communicate with each other, 
there is no support for offline operation, which causes the algorithm to be inefficient. An 
interactive ZKP can be converted into a Non-interactive ZKP (NZKP) through a heuristic 
technique (e.g., Fiat-Shamir). A NZKP removes the challenge phase from the framework (Sun, 
2021). For example, in the Zero-Knowledge Succinct Non-Interactive Argument of Knowledge 
(zkSNARK) scheme, a trusted third party generates proving and verification keys that are sent 
to the prover and verifier respectively. These keys are used to construct the proof and verify it 
without the need for the verifier to ask the prover further questions. This reduces execution time 
and enables offline verification via asynchronous communication between the prover and 
verifier. More advanced methods, such as NZKP’s (e.g., Bulletproofs) have further removed the 
need for a trusted third party to setup the keys. 

 A common use for ZKPs is providing verifiable proof for the exchange of a tangible good 
(Sun, 2021). A ZKP can be utilized to verify that the prover has enough resources to complete a 
request through a process that can be summarized as follows: 

1. A proof is created with the prover’s claim that they have enough resources and is sent to 
the verifier. 

2. The verifier applies predefined computations on the proof to obtain a decidable outcome 
and evaluates whether the statement is accepted or rejected.   

No information about the prover’s specific resources is revealed by the interaction. Either the 
prover doesn’t have the necessary resources and the value becomes negative, or they do have 
the resources and the value remains positive.  
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3.1 Benefits and Applications of Zero-Knowledge Proofs 

 Due to their self-attestation capabilities, ZKPs provide a number of advantages when 
compared against traditional authentication schemes that depend on third-party attestation 
mechanisms, such as those typically found in public key infrastructure (PKI) solutions (Chen, 
2023). For example, the zero-knowledge property allows entities to maintain anonymity by 
removing the need for an authoritative registration process, while still enabling individuals to 
prove their identity (or other intrinsic property) to their peers. This capability opens the door to a 
wide variety of potential applications that range from being able to verify past behaviors to 
proving new functions or capabilities without publicly disclosing how these will be accomplished. 
Although some of these features could be implemented using traditional methods, a ZKP 
approach naturally enables the creation of decentralized systems, which tend to simplify the 
challenges associated with deploying and maintaining large-scale systems. This unique 
capability enables ZKPs to be well positioned to address the operational needs that are typically 
associated with managing and operating large, autonomous sensor networks. ZKPs also help to 
reduce the attack surface associated with traditional authentication schemes because they do 
not store any authentication data that could be stolen. These characteristics enable ZKPs to 
avoid most of the common attacks associated with authentication-based systems (e.g., identity 
impersonation) because instead of binding users to credentials, it relies on internal properties to 
assemble a credible proof that reflects the original subject. Another advantage of ZKPs is that 
they have a relatively low overhead when compared to PKI-based systems, a feature that may 
be relevant in resource constraint systems. Furthermore, there are specialized techniques 
available to lower the complexities associated with the computation and communication stages, 
such as reducing the proof lengths, which may be useful in Internet of Things (IoT) 
environments because it removes the need for managing a large (and often complex) identity 
and authentication management (IAM) system, a challenge that is further compounded when 
millions of IoT enabled devices must operate over the same network.  

 Due to their capabilities, ZKPs have been proposed as a viable tool to address the 
challenges associated with implementing a wide array of applications that range from 
anonymous voting applications to securing the exchange of digital assets, securing biometric 
authentication, and creating secure auction platforms (Sun, 2021). Although each case is 
unique, the typical use case seeks to decouple the identity and private attributes from a 
reportable attribute, thereby ensuring privacy and security while providing means to validate and 
optionally quantify the attribute under scrutiny. For example, in a voting application, the identity 
and the associated vote must be kept protected while still enabling the vote to be counted 
towards the net tally.  

 Another frequently cited example that benefits from adopting ZKP methods is on the 
implementation of digital asset exchange platforms that aim to maintain privacy. This may 
include preventing users from having to disclose their true identity, to providing mechanisms 
that prevent others from monitoring past activities or determining the assets being held (Sun, 
2021). A correct implementation of ZKP could hence provide the necessary proofs to validate 
that an asset exchange has taken place without further data leakage. Some relevant examples 
of such applications include Zerocash, Hawk, and Bolt which operate over blockchain networks 
to ensure exchange records are permanently recorded while also providing support for 
automated transactions. In particular, Zerocash aims to protect the private information of the 
transaction amount, source, and destination by supporting anonymous transactions. In the 
Hawk scheme, the final outcome of the smart contract can be verified with NZKP, but the actual  
transaction history is kept hidden. Bolt offers a bidirectional channel for secure payment that 
utilizes ZKP and blind signatures to avoid exposing the linkage of the users’ payments. To 
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further illustrate the wide diversity of applications on which ZKP can be applied, Table 88 
provides a high-level summary of various research efforts found in literature. 

 
Table 8: Applications of ZKP Across Various Domains 

Citation Keywords Overview 

(Gaba, 
2022) 

Internet of 
Healthcare 
Applications 
(IoHA), Internet 
of Things (IoT), 
ZKP-based 
authentication 
and key 
agreement 
protocol 

The researchers developed a ZKP-based Authenticated Key 
Agreement (AKA) protocol for IoHA. In the protocol, the healthcare 
professional (user) and the IoT sensor node are registered using a 
ZKP algorithm. During the process, temporary identities are given to 
the user and sensor node to maintain anonymous communication. 
When the user wants to exchange data with the sensor node, the 
legitimacy of the user, user device, sensor node, and gateway are 
first validated. The benefits of the proposed scheme are that it 
provides untraceable and anonymous communications in the public 
channel and withstands attacks such as man-in-the-middle, replay, 
and impersonation. 

(Singh R. 
A.-W., 
2023) 

Privacy-
Preserving 
Healthcare 
Financial System, 
Blockchain 

A decentralized healthcare finance system based on blockchain 
(DLT) and ZKP was proposed by the researchers to preserve the 
privacy of the system user’s data. The data exchanged includes 
transaction amounts and the identities of the parties involved. 
Several ZKPs used in their system to validate values are within a 
certain range, or have a certain balance, while also providing proof 
of consistency to ensure the correctness of transactions and 
eliminate the double spending problem. The proposed scheme 
enables basic statistical queries (e.g., sums, averages, variance, 
and skewness) without leaking additional information. The validation 
of the transactions is stated to be completed in milliseconds.  

(Liu J. K.-
K., 2020) 

Privacy-
Preserving 
COVID-19 
Contact Tracing, 
Healthcare` 

The researchers proposed a ZKP-based protocol to perform COVID-
19 contact tracing while protecting locational and personal contact 
information. The protocol consisted of four phases: registration, 
meeting, medical treatment, and tracing. In the first phase, users 
upload their public keys. In the next phase, the user’s smartphone 
periodically broadcasts a beacon. Once enough beacons are 
received, a pairing occurs that mutually validates and generates a 
credential that proves that a close contact occurred. In the medical 
treatment phase, the proof is presented to a doctor who is unable to 
learn their identities, or other private attributes. The doctor signs the 
ZKP using their secret key and posts the signature and proof to a 
public bulletin board. Finally, in the tracing phase, each user 
periodically checks the bulletin board for exposure tracing. 

(Liu S. G., 
2023) 

Power System, 
Anonymous 
Authentication 

The researchers developed an anonymous authentication protocol 
to preserve the real identity of users in a power system. The protocol 
combined elliptic curve cryptography (ECC) and the Fujisaki-
Okamoto commitment protocol. The framework consisted of 
registration, mutual authentication, and revocation stages. ECC was 
used in the registration and authentication stages to handle the large 
amount of data in the power system. A certificate authority is used in 
the revocation phase. The researchers provide proofs of user 
anonymity, mutual authentication, validity of anonymity, and 
immunity to replay attacks.  

(Pop, 
2020) 

Blockchain 
(DLT), Prosumer 
Energy Data 

A decentralized implementation of a demand response program 
based on blockchain and ZKPs was presented by the researchers. 
ZKPs were utilized to obscure the prosumer’s energy data and 
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Privacy, Demand 
Response,  

requested flexibility profiles. The blockchain stored the deviation 
quantities and performed ZKP validation to verify the deviation was 
correctly computed. The researchers determined that their scheme 
was secure against malicious entities that are a part of the 
blockchain network because the actual energy values are not stored 
on the blockchain. The scheme may also improve the demand 
response program’s audit and financial settlement, which could lead 
to implementation of micro-grid level consensus algorithms. 

(Yang R. 
H., 2024) 

Virtual Power 
Plant, Attribute-
Based 
Encryption, 
Attribute Hiding 

The researchers proposed an attribute-hiding ZKP (AH-ZKP) to 
conceal the identities and attributes of users during the authorization 
and authentication processes found in a virtual power plant (VPP) 
system. Potentially sensitive information that can be extracted from 
VPP systems includes customer information, power consumption 
values, electrical equipment specifications (e.g., type, brand, model), 
and energy usage patterns. The researchers performed a security 
analysis on the scheme and determined that their scheme is robust 
against man-in-the-middle and replay attacks and offers attribute 
indistinguishability and tamper resistance. Comparative 
experimental analysis found that the attribute-based encryption and 
ZKP steps added a 1 second computation burden, which 
outperforms existing methods in time and space efficiency.    

(Gabay, 
2019) 

Electric Vehicles 
(EV), EV 
Charging 
Process Privacy 
Preservation, 
Blockchain 

A privacy-preserving, decentralized EV scheduling tool based on 
ZKP was proposed by the researchers. The proposed approach 
addresses the challenges associated with centralized EV Service 
Providers (EVSP), which could enable access to the driver’s 
personal information, travel patterns and habits. In their scheme, the 
EVSP generates a secret function and a proving key that is given to 
the EVs. The EV uses the proving key and result from solving the 
secret function to create a proof that is presented to an Ethereum 
(blockchain) network for authentication. A smart contract then 
generates a service-token that can be used for anonymous 
scheduling. According to the researchers, time and cost overheads 
were acceptable for real-life applications. 

(Ho, 2021) Smart Parking, 
Zero-Knowledge 
Set Membership 
Proof, Bluetooth 
Low Energy 
(BLE) Beacon  

The researchers retrofitted ZKP to an on-street parking system, 
enabling users to maintain privacy by anonymously authenticating 
with the server. The ZKP was combined with a commitment scheme 
and Merkle tree to accomplish this goal. Users first register their 
vehicle data and national ID, along with the hash of their public key 
with the authority server, which is stored in an identity commitment 
Merkle tree. To authenticate, users query the server for the values 
required to construct the proof. The proof is sent to a nearby 
roadside unit, who interacts with the server to verify the proof and 
approves the parking request. The researchers determined their 
new scheme improved the robustness of their previous system 
against identity forgery, replay attacks, and masquerade attacks.  

3.2 Challenges Faced by Zero-Knowledge Proofs 

As with other engineering tools, ZKPs have become highly specialized, resulting in a wide 
variety of implementations that seek to solve specific challenges. For example, the Zero-
Knowledge Range Proof (ZKRP) scheme provides a verifiable proof that a value (integer or 
binary) lies within a specific range (Morais, 2019). Under the ZKRP scheme, integer proofs can 
be achieved by leveraging two main methods that are based on the square decomposition 
problem and digital signatures. The first approach breaks down the secret value into a sum of 
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squares while with the latter approach, each element within the interval is signed, enabling the 
prover to provide a proof that demonstrates knowledge of the signature (Boudot, 2000). For 
binary values, multi-base decomposition and two-tiered homomorphic commitments are used. In 
multi-base decomposition, the secret value is converted into its bit representation and Boolean 
arithmetic is used to verify that it belongs to a specific interval. ZKRPs have applications in age 
validation, mortgage risk assessment, electronic voting, electronic auctions, and asset 
procurement  (Morais, 2019). For example, a ZKRP can be used to verify that a user’s age is 
higher than some value (18, 21, etc.) without revealing their actual age, or to verify that an 
individual’s salary meets the mortgage requirements. 

As many other technical constructs, ZKP methods can be designed or at least optimized to 
satisfy specific application needs, such as making them more efficient for real-time 
communications. Despite the benefits of specialization, improperly applied optimizations can 
result in poor security capabilities (Tang, 2024). For example, several ZKP mechanisms rely on 
the Fiat-Shamir Transformation to achieve NZKP functionality. However, there is limited 
guidance on the secure implementation of the Fiat-Shamir Transformation protocols, which can 
lead to flaws and vulnerabilities in the system. As an example of such a vulnerability, 
researchers have identified “Frozen Heart” in a number of implementations (e.g., PLONK, 
Bulletproofs) (Tang, 2024). Said vulnerability enables a malicious actor to forge proofs that pass 
all verifications regardless of the range being queried, essentially rendering ZKP useless (by 
violating the soundness requirement). 

On the other hand, some schemes significantly change the way that ZKP operates and have 
re-introduced requirements that significantly differ from the ZKP foundational concepts. For 
example Ligero has re-introduced third party attestation in order to increase efficiency (Sun, 
2021). Another challenge that is often encountered is on how to merge two distinct schemes 
and combine them to achieve an improved ZKP scheme. For example, the running time of the 
prover algorithm is linear in the Libra scheme (Sun, 2021) but requires a trusted third-party 
setup. In contrast, the Hyrax scheme does not require a trusted third party, but the prover 
algorithm runs in loglinear1 time complexity (Sun, 2021).  

In the domain of blockchain (and more generally DLTs), ZKPs experience several 
challenges that range from enabling adoption and ensuring system maintainability to threat 
mitigation. From an adoption perspective, the key challenge is ensuring that ZKPs do not 
diminish user experience. This may require optimizing execution times (since ZKPs may slow 
down the DLT network or make it unresponsive) and minimizing proof length to help manage 
the ledger growth (Zhou, 2024). From a maintainability viewpoint, ZKP faces the challenge of 
balancing user privacy while complying with regulatory requirements that enable lawful access 
when necessary. Another challenge faced by ZKPs in the domain of blockchain is the need for 
establishing standards and industry-wide protocols that enable data exchange, helping to 
ensure interoperability between various legacy systems and ZKP-enabled blockchains. 
Vulnerability mitigation in ZKP-enabled blockchains presents yet another challenge that must be 
addressed to prevent catastrophic system failure that may render the DLT itself useless (e.g., by 
storing invalid or weak proofs). In order to address this challenge, improvements on the 
integration of ZKP algorithms must be devised to ensure technology-specific vulnerabilities do 
not result in system-wide compromises. 

Lastly, despite the number of potential benefits and optimizations designed to improve their 
performance, implementation barriers still prevent the widespread use of ZKP in resource-

 
1 The subtle differences in time execution complexity are discussed in Appendix B.1 
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constrained environments (e.g. the typical Internet of Things (IoT) device). This is in large part 
due to the limited number of cryptographic functionalities that these environments can efficiently 
support (Chen, 2023). Clearly such systems benefit from optimizations, but incorrectly applied 
cryptographic optimizations could (and have) resulted in system compromises (Chen, 2023). In 
addition, ZKPs, like many other security mechanisms, operate better when used in a layered 
architecture (e.g., there is a security perimeter), a feature that is not always possible in resource 
constrained systems. This may leave ZKPs vulnerable to local malware or backdoors that could 
potentially tamper with the proofs being generated. 

3.3 Computational Overhead of Zero-Knowledge Proofs 

 Partala et al. compiled an in depth-review on the performance and computational 
characteristics of some of the most commonly used ZKP schemes. The article included 
preprocessing (if applicable), proof length, and the prover and verifier complexities (Partala, 
2020). The authors organized their research into five main families of ZKP that covered 
methods based on 1) Probabilistically Checkable Proofs (PCP); 2) Discrete Logarithm Problem 
(DLP); 3) Quadratic Arithmetic Programs (QAP); 4) Proofs for Muggles approaches; and 5) 
Multiparty Computation (MPC). The evaluations performed in the articles were typically based 
on simple computations (e.g., computation of a cryptographic hash function). Each ZKP scheme 
evaluated required that computations be converted into their circuit representations. Although 
manual circuit generation tools can be used to assemble application-specific optimizations, the 
paper preferred the use of automatic or default circuit generators to ensure fairness. The circuit 
generation tool and the size of the resulting circuit has a large impact on the efficiency of the 
schemes, which partially accounts for differences in the circuits among the different schemes. In 
some cases (e.g., arithmetic and Boolean), it is impossible for the circuits to be fixed. Other 
aspects that have an impact on the performance of the ZKP scheme are the number of 
operations that can be performed in parallel, the computation’s input size, the security level 
required, whether the prover and verifier algorithms are optimized, and the nature of the 
computation.  

The ZKP schemes based on PCP include:  

• SCI (Scalable Computational Integrity): An interactive computational integrity protocol that 
does not require a trusted setup to provide publicly verifiable proofs but does not provide 
complete zero knowledge.  

• STARK (Zero-Knowledge Scalable Transparent Argument of Knowledge): A post-quantum 
secure, interactive scheme which can be made non-interactive through the Fiat-Shamir 
paradigm. The security of this scheme is dependent on non-standard cryptographic 
assumptions relating to Reed-Solomon codes. 

• Aurora: A succinct, non-interactive argument scheme based on STARK that is designed for 
rank-1 constraint systems1. It is considered post-quantum secure. 

• Fractal – A pre-processing SNARK (Succinct Non-Interactive Argument of Knowledge) 
whose setup uses public randomness and whose proofs can be recursively composed. 

 
1 In Rank-1 Constraint Systems (R1CS), each constraint is expressed as a rank-1 matrix equation. 

Intuitively this means that a polynomial such as 𝑥1
2 + 𝑥1 + 1 can be expressed using simple operations 

that only involve two terms at a time (𝑢 = 𝑥1 ∗ 𝑥1;  𝑣 =  𝑢 ∗ 𝑥2;   𝑦 = 𝑥1 + 1; 𝑧 = 𝑣 + 𝑦), which itself can be 
represented by a binary tree. A more formal definition can be found in (Tari Labs university 2024) 



PNNL-36774 

Zero-Knowledge Proofs 38 
 

 The ZKP schemes using the “proofs-for-muggles” approach are:  

• CMT: The first practical implementation of the “proofs-for-muggles” method (Partala, 2020). 

• Hyrax: A method that does not require a trusted setup and is based on interactive proofs 
and cryptographic commitment schemes. It is not post-quantum secure due to its 
construction being based on the discrete logarithm problem. 

• Libra: An implementation that requires a trusted setup whose complexity is dependent on 
the circuits input. It is not post-quantum secure because the schemes utilize bilinear pairing 
and knowledge-of-exponent assumptions. 

• Spartan : A method that requires no trusted setup and uses polynomial commitments to 
improve the complexity of verification. 

The ZKP schemes based on DLP include: 

• Groth’s Linear SNARK is a ZKP scheme introduced by Groth in (Groth, 2009) that has a 
communication complexity that is proportional to the square root of the circuit’s size.  

• BCCGP is a NZKP based on the discrete logarithm problem and Groth’s techniques.  

• Bulletproofs is a method based on BCCGP and provides communication-efficient proofs for 
performing transactions confidentially. The scheme can be made quantum secure through 
the Fiat-Shamir heuristic.  

• Groth16 is a ZKP scheme that utilizes elliptic curve pairings and knowledge-of-exponent to 
achieve “perfect completeness and zero-knowledge with computational soundness” 
(Partala, 2020). 

• Sonic utilizes a polynomial commitment scheme, pairings, and arithmetic circuits. PLONK is 
an open-source implementation written in Rust that improves the efficiency of the prover 
algorithm.  

• Marlin is a ZKP method based on Sonic that improves the verification time complexity 
through the implementation of special encoding for the statement. An open-source 
implementation written in Rust is available. 

• Supersonic improves upon the Sonic scheme by introducing a polynomial commitment 
scheme to remove the need for a trusted setup. 

    The ZKP schemes based on QAP are: 

• GGPR: The first ZKP scheme to be applied to QSP or QAP computations. 

• Pinocchio: An implementation based on GGPR that provides the capability for anyone to 
verify proofs. 

    The ZKP schemes from MPC include ZKGC, ZKBoo, ZKB++, and Ligero. ZKGC is based on 
Yao’s garbled circuits and has a proof-of-concept implementation. ZKBoo is built on the “MPC-
in-the-head” approach and provides quick proving and verification processes, at the cost of 
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large proof lengths. It also has a proof-of-concept implementation. ZKB++ has a practical 
implementation and improves upon ZKBoo by reducing the proof length by 50%. Ligero is based 
on symmetric cryptography, MPC, and PCPs. It is considered post-quantum secure. A graphical 
taxonomy of the aforementioned methods, including some of their core capabilities is 
documented in Figure 13. 
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Figure 13: A taxonomy of ZKPs, grouped by their principle of operation. Note that some 

implementations may be based on one or more primary ZKPs but have been grouped according 
to their dominant source. 

 Figure 14 through -Figure 17 illustrate the time complexities of various operations performed 
by the ZKP schemes. Within the figures, |𝐶| is the number of gates in the circuit 𝐶, 𝑥 is the input 
to the circuit, 𝑤 is the witness, 𝑀 is the number of multiplication (AND) gates in the circuit, 𝑑 is 

the depth of the circuit 𝐶, 𝐺 is the width of the circuit 𝐶, 𝑠(|𝑥|) is the amount of memory taken by 
the computation, and 𝑁 is the length of inputs and outputs of the computation. 
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Figure 14: Preprocessing Time Complexities of Applicable ZKP Schemes 
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Figure 15: Taxonomy of Communication/Proof Lengths of ZKP Schemes 
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Figure 16: Time Complexities of Prover Algorithms in ZKP Schemes 
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Figure 17: Time Complexities of Verifier Algorithms for ZKP Schemes 

  

 As illustrated by Figure 14-Figure 17, there is no ZKP scheme that performs all operations 
better than the rest. For example, Sonic has constant communication and proof lengths but has 
𝑂(|𝐶|  ·  𝑙𝑜𝑔|𝐶|) time complexity for its prover algorithm. Hyrax has a better time complexity than 

Sonic for its prover algorithm (𝑂(|𝐶|)), but a worse time complexity (𝑂(𝑑 ·  𝑙𝑜𝑔(𝐺) + |𝑤|1/𝑖)) for 
its communication and proof lengths. For algebraic statements, interactive ZKPs are more 
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efficient than NZKP’s, while they are outperformed by NZKP’s when computations of block 
ciphers or hash functions are required (Partala, 2020). Ligero works best for computations done 
sequentially, while Hyrax performs best on parallel computations. QAP generally performs 
better than QSP on practical computations. 
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4.0 Differential Privacy 

 Differential Privacy (DP) is an approach to formulating privacy goals where the risk to an 
individual’s privacy “should not substantially increase as a result of participating in a statistical 
database” (Dwork, Differential privacy, 2006). This is accomplished by providing relative 
guarantees about data disclosures, rather than absolute guarantees. With DP, any given 
disclosure will not change significantly whether the individual’s data is included in the dataset or 
not, hence ensuring that a user’s participation (or lack of) cannot be inferred by an external 
party1. A DP algorithm is said to achieve 𝜀-DP, where 𝜀 is called the privacy budget, if and only 
if the level of privacy provided by the algorithm satisfies the following equation: 

𝑃𝑟[𝐴(𝐷1) 𝜖 𝑆]  ≤ 𝑒  ε × 𝑃𝑟[𝐴(𝐷2 𝜖 𝑆)]    (𝐸𝑞. 1) 

Where 𝐴 is a randomization algorithm, 𝐷1 and 𝐷2 are adjacent databases (e.g., a dataset with 

and without an individual), and 𝑆 is all the possible outputs of A. Due to its strict mathematical 
requirement, it might be computationally expensive to obtain 𝜀 -DP (Jiang H. J., 2020) and thus 
many practical implementations of DP have used an alternative approach which can be defined 
as:  

𝑃𝑟[𝐴(𝐷1) 𝜖 𝑆]  ≤ 𝑒  ε × 𝑃𝑟[𝐴(𝐷2 𝜖 𝑆)] + 𝛿    (𝐸𝑞. 2) 

The equation shown in Eq. 2 is known as (𝜀, 𝛿)-DP, and offers a relaxation mechanism that can 

be used to approximate the behavior of an ideal 𝜀 -DP algorithm. The numerical parameter 𝛿 
controls the probability of not satisfying 𝜀 -DP, while most of the time (with probability 1 − 𝛿) it 
ensures data remains private. Thus, by varying the 𝛿 parameter it becomes possible for 
application developers to tune the privacy parameters in terms of accuracy and computational 
efficiency. A sensitivity value2, determined by the largest change that results from adding or 

removing a user’s data from the dataset, determines the amount of noise applied to the data. 
The amount of noise that must be applied to the dataset is directly proportional to the sensitivity 
value and the privacy loss (Husnoo, 2021). 

 Various mathematical mechanisms may be used to achieve (𝜀, 𝛿)-DP or (𝜀 -DP). Some of the 

most commonly used mechanisms that can be used to shape the noise behavior include the 
Laplace, Exponential, and Gaussian mechanisms (Husnoo, 2021). The Laplace algorithm can 
be used when individual samples are highly heterogeneous, or when outliers (e.g., extreme 
values) are present and must be masked. The exponential algorithm is useful for situations 
where the output is not a continuous variable (e.g., class bins), or when an actual population 
sample must be returned instead of a synthetically generated result (Near & Abuah, 2024). The 
Gaussian mechanism simplifies understanding of the statistical properties of datasets, 
potentially enabling researchers to combine results from multiple queries due to the additive 
properties of the Gaussian distribution. 

 Like many other privacy constructs, DP can be assembled and combined in complex 
architectures to address application-specific requirements (Jiang H. J., 2020). These DP 

 
1 This property only holds true if the population samples are independent from each other (e.g., all 
sampled values are independent variables) 
2 Sensitivity can be formally defined as 𝛥𝑓 = max

𝐷1,𝐷2

∥ 𝑓(𝐷1) − 𝑓(𝐷2) ∥ for 𝑓: 𝑃 →  𝑅𝑘. In particular, when 

𝑘 =  1 the sensitivity of 𝑓 is the maximum difference in the values that the function 𝑓 may result from a 
pair of profiles that differ by only one record or unit count. 
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algorithms may be applied sequentially on a single dataset or in parallel among separate 
datasets. When applied sequentially, the level of privacy preservation provided is the sum of 
each DP-algorithm‘s privacy budget1. When applied in parallel, the overall level of privacy 
preservation provided is determined by the DP-algorithm with the largest privacy budget. 

 Although DP mechanisms can be adapted to a wide variety of application contexts, two of 
the most commonly architectural variations include a) their ability to handle dependent / 
independent variables; and b) their ability to process (and protect) data in a local or centralized 
manner (Jiang H. J., 2020). Dependent DP mechanisms are required when datasets contain 
attributes that are correlated or dependent on each other (e.g., height and weight). Under a 
standard DP mechanism, the addition, removal, or modification of such tuples could allow a 
malicious actor to infer sensitive information even when the result appears to be DP-protected. 
Examples of implementations that can handle dependent datasets, include  (Liu C. S., 2016), 
(Zhao, 2017), and (Almadhoun, 2020).   

 Local DP processing mechanisms are the preferred solution for scenarios where data is 

collected by an untrusted third-party. This is in stark contrast to global DP schemes, where 

noise is added to the data after it has been sent and curated by a trusted server (Wang T. X., 

2020). In a local DP mechanism, the responsibility of adding noise is assigned to the field agent, 

who applies it to their data stream before forwarding it to the data collector. The random 

response technique is the primary method of perturbing the data in local DP that essentially 

introduces a high-level of uncertainty (e.g., noise), which cannot be reversed by an external 

agent (Jiang H. J., 2020). Although the concept is relatively simple, the amount of noise that the 

local agent must introduce is often based on the worst-case scenario, an assumption that may 

limit data accuracy, potentially rendering the data useless for future analysis2.  A simple 

example of this method is described in Appendix B.4.  

4.1 Benefits and Applications of Differential Privacy 

From a functional perspective, DP can ensure protection against a wide variety of de-
anonymization attacks, hence preventing individuals from being re-identified in most cases 
(Husnoo, 2021). However, from a regulatory perspective, the benefit of DP is that the amount of 
privacy provided to an individual can be measured and controlled. This enables numerical 
comparisons to be performed among distinct privacy preserving implementations, potentially 
enabling benchmarking to be a decisive factor in technology adoption. 

 From a data processing perspective, DP has been used in statistical estimations, data 
publishing, data mining, and machine learning applications (Jiang H. J., 2020). Its data-agnostic 
approach enables DP to be implemented to address a wide range of challenges associated with 
the energy, transportation, and healthcare domains (Husnoo, 2021). In the energy domain, the 
researchers in (Alisic, 2020) determined that a malicious actor could infer information about a 
change in occupancy of a smart home through the sensors placed in the home (Husnoo, 2021). 

 
1 A privacy budget is a value defined by the data curator based on the application’s privacy sensitivity. It 
defines the maximum amount of privacy loss that is permissible while generating or accessing the 
protected dataset (when interactive querying mechanisms are used). 
2 Note that under certain applications, the amount of noise being introduced can exceed the amount of 
noise that a particular application can tolerate. This is by no means a failure of DP, rather it’s a mismatch 
between the target privacy goal, the dataset characteristics and the mechanism employed to provide DP 
(Dwork and McSherry, Differential Privacy – A Primer for the Perplexed 2011). 
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To eliminate this risk, the authors developed a DP scheme that utilized Gaussian noise to 
obscure energy patterns that could be used to predict home occupancy. In (Hossain, 2021), the 
researchers developed a DP scheme that generated Laplacian noise by oscillating the charge 
state of rechargeable batteries used for demand-side energy management, effectively 
protecting their true state while giving others the opportunity to have confidence on the overall 
capacity. In (Gai, 2022), the researchers developed a differentially private data aggregation 
scheme where noise could be added to smart meter data through randomized response. The 
proposed scheme does not require a trusted third party and the results of a performance 
analysis determined it minimized computation and communication overhead.  

 Within the transportation domain, researchers in (Jiang K. D.-L., 2013) developed a DP-
based sampling distance and direction technique to preserve the privacy of ship trajectories 
(Husnoo, 2021). Their analysis of their method showed that it accomplished a good balance 
between privacy and utility while remaining usable when compared to other methods of injecting 
noise into data. In (Qiu, 2021), the researchers proposed a DP dynamic data stream publishing 
mechanism that implemented adaptive sampling, variable windows, privacy budget allocation, 
packet perturbation, and filtering mechanisms to preserve the privacy of EV data (e.g., location, 
driver identity).  

 In the healthcare domain, the researchers in (Guo J. M., 2021) proposed a data publishing 
method based on 𝑘 − 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦 and a temporal DP mechanism to prevent the leakage of 
private information (e.g., heartrate, blood oxygen, etc.) from IoT wearable devices. The 
researchers in (Mohammed, 2015) demonstrated a data management framework for data 
mining that utilized encryption and a DP query interface to preserve the privacy of patient data. 
The framework was evaluated with a publicly available breast cancer dataset consisting of 286 
records with 9 attributes. To further summarize the different types of research, a review of DP-
based solutions is described in Table 9. 

 
Table 9: Applications of DP Across Various Domains 

 
Citation Keywords Overview 

(Chamikara, 
2020) 

Face 
Recognition, 
Machine 
Learning, 
Local DP 

A privacy-preserving face recognition scheme called Privacy 
using EigEnface Perturbation (PEEP) was developed by the 
researchers using local DP. The scheme generates 
eigenfaces of the original image and applies Laplacian noise 
to randomize the image. The noisy image is sent to a third-
party server and a machine learning model is trained on the 
perturbed data. The performance of their scheme was 
evaluated on the open face image dataset that is available 
from the University of Massachusetts website and the large-
scale Celeb-Faces Attributes (CelebA) dataset. 70% of the 
data was used for training and 30% for testing. The results 
showed that the scheme achieved a classification accuracy 
of 70%-90% using standard privacy settings. 

(Yin, 2021) Federated 
Learning, 
Multiparty data 
sharing, 
Functional 
Encryption 

A federated learning method utilizing Bayesian DP was 
developed to protect an individual’s privacy from being 
inferred from the training model parameters (e.g., model 
weights). The method used function hiding, multi-input 
function encryption to obscure the model parameters sent to 
the server. The method was evaluated using a convolutional 
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neural network (CNN) and the MINST dataset splitting 
method. The experiments showed that Bayesian DP can 
achieve a classification accuracy of 91.1%.  

(Jiang B. J., 
2021) 

Smart Home, 
Internet of 
Things, Secure 
Routing, 
Energy 
Efficiency 

The researchers developed an efficient and privacy-
preserving traffic obfuscation (EPIC) framework to mitigate 
traffic analysis attacks that could reveal sensitive information 
about the occupant(s) such as sleep patterns and medical 
conditions. It guarantees strong DP through the use of a 
network of connected smart homes. A smart home’s traffic is 
sent to another smart home’s gateway (to act as a proxy 
gateway) before it is transmitted to the Internet. A directed 
random walk (DRW) scheme was used for uploads and a 
combination of DRW and flooding were used for downloads. 
The framework was evaluated on simulations based on a 
community in Gainesville, Florida, USA that is composed of 
77 total homes in a 640 x 300 m2 area. The results showed 
that their scheme outperformed other DP mechanisms in 
preserving privacy and lowering network energy 
consumption. 

(Hassan, 
2019) 

Smart Grid, 
Renewable 
Energy 
Resources 

A DP-based real time load monitoring (DPLM) approach was 
proposed by the researchers to preserve the privacy of the user’s 
routines and usage of specific renewable energy resources. The 
scheme first calculates the sum, 𝑆, of the energy readings from all 

energy sources for a given timeframe. If 𝑆 is greater than 0, then:  

𝑆𝑁 =  𝑆 +  𝑁 +  𝐸𝑋 

Where 𝑁 is the value of added Laplacian noise and 𝐸𝑋 is an extra 
value. 𝑆𝑁 is compared with a selected maximum peak load value 

𝑃, and if 𝑆𝑁 is greater than 𝑃, the value of 𝑆𝑁 is set to 𝑃 and 

transmitted to the utility. The value of 𝑆𝑁 –  𝑃 is stored in 𝐸𝑋 and 
used for the calculations in the nest timeframe. Their scheme was 
evaluated on real datasets composed of grid energy consumption 
data from the Residential Energy Consumption Survey for the 
Midwest, and solar and wind energy from the Hong Kong 
Observatory. The data was iterated over 31 days with a 
transmission interval of 10 minutes. The monthly output results 
showed that their scheme achieved an error rate of only 1.5% 
when 𝑃 was 1,200 Wh. When 𝑃 was 1,200 Wh, the total energy 
reported was 4,844 kWh and the masked value was 4,916 kWh. 

(Eibl, 2018) Smart Meter, 
Load 
Forecasting 

The researchers designed a DP scheme for load forecasting 
while preserving the privacy of electrical production and 
consumption data of homes. DP is guaranteed by grouping 
households into zones (to avoid requiring individual load 
data and applying the Laplace mechanism to each zone’s 
aggregated load data. HE or masking protocols are used to 
perform the summation of all the household’s data in the 
zone. The scheme was evaluated against three forecasting 
methods and found that each household had an individual 
membership inference risk of less than 60% and only 10% 
over random guessing.  

(Ju, 2023) Electric Vehicle, 
Local DP, Data 

The researchers proposed a privacy-preserving data range 
query (PPQ) scheme based on local DP to protect sensitive 
EV data (e.g., location, charging time, remaining power). The 
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Range Query, 
Vehicle-to-Grid 

scheme is able to resist collusion attacks by removing the 
need for a trusted third party. Additional data protection is 
provided through a data encryption optimization model that 
enables EVs to locally add noise to their data. The scheme 
was evaluated in a vehicle-to-grid simulation over simulated 
datasets (random, normal, Laplace, Zipf) and a real-world 
dataset (EVs – One Electric Vehicle Dataset). The results 
showed that the scheme could successfully balance 
efficiency with accuracy while ensuring data privacy. 

(Parker, 
Hale, & 
Barooah, 
2022) 

Smart meter 
time series, 
Spectral 
Differential 
Privacy (SpDP) 

The authors propose a time-series oriented DP mechanism 
called SpDP. The method aims to protect a signal’s power 
spectral density (PSD), using a frequency-domain approach 
that prevents extracting event signatures typically found in 
demand profiles. Protections can be applied at the edge, 
further increasing its privacy attributes. A key contribution of 

the work is that SpDP guarantees a minimum level of privacy 
(to the PSD) while being independent of the time-series 
duration.  

(Ravi, et al., 
2022) 

DP-enabled K 
means 
clustering, 
Smart meter 
time series 

The researchers developed a 𝐾-means clustering method 
that enable data aggregators to generate representative 
load-shape data profiles while maintaining privacy. This is 
done by using gaussian noise to generate cluster centroids 
that accurately reflect the load-shape behavior of users 
without the risk of releasing an actual demand curve.  The 
proposed algorithm could be used to assemble differentially 
private synthetic load patterns that could be used to obtain 
summary statistics or create labeled datasets. 

4.2 Challenges Faced by Differential Privacy 

 A common challenge faced during the implementation of a DP-based framework is 
determining the ideal 𝜀 -value which defines the balance between utility and privacy (Husnoo, 

2021). If a small 𝜀 -value is selected, more noise is added to the data, helping to increase its 
privacy at the cost of a lower accuracy, which in turn may decrease its utility. However, if a large 
ε-value is chosen, less noise is applied to the data which increases the risk that the privacy will 
be compromised while increasing the overall accuracy (and thus its utility). There are currently 
neither standard guidelines nor methods for choosing the ideal ε-value, hence this value must 
be determined through experimentation1. A similar challenge is faced with determining the 
sensitivity value of the algorithm. Lower sensitivity values provide increased data utility while 
severely compromising its privacy. Likewise, higher sensitivity values increase the privacy of the 
data while reducing data utility. Optimal values have only been found for specific types of 
datasets, but most practical solutions have to self-determine the maximum amount privacy loss 
that is tolerable for their particular use-case. Another challenge found in DP-based solutions is 
that some distributions (e.g., Laplace) may lead to DP-protected datasets that exhibit different 
statistical properties (bias and variability), even if they share the same initial parameters.  

 
1 See https://desfontain.es/blog/real-world-differential-privacy.html for a sample list of 𝜀 values used in 
end-user applications. A more formal discussion is presented in (Dwork, Kohli and Mulligan, Differential 
privacy in practice: Expose your epsilons! 2019) 

https://desfontain.es/blog/real-world-differential-privacy.html
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 A large limitation of DP is that it cannot guarantee complete privacy preservation (Husnoo, 
2021). An example of when DP may fail is when datasets or individual records within have a 
high correlation with each other. A malicious actor can use these correlations to make 
inferences about individuals in the datasets and compromise their privacy. In fact, in 
(Haeberlen, 2011), the researchers exposed vulnerabilities in well-known implementations of 
DP that could be used to leak private information through covert channel attacks. 
Transformation-based methods have been used to address this issue; however, they currently 
only work in specific cases and may compromise data utility in other cases.  

4.3 Computational Overhead of Differential Privacy 

 The standard local DP protocols for frequency estimation on categorical data (i.e., event 
counting) are based on direct perturbation, unary encoding, hash encoding, transformation, and 
subset selection (Wang T. X., 2020). Direct perturbation applies the noise to the data directly 
through randomization. Binary randomized response (BRR) is applicable to situations where 
there are only two possible answers to a query. Generalized randomized response (GRR) is 
utilized when there are more than two possible responses to a query. Encoding the original 
value first into a vector and then applying noise to each bit in the vector is called unary encoding 
(UE). Hash encoding follows the same process as UE but provides randomization differently. In 
basic Randomized Aggregable Privacy-Preserving Ordinal Response (RAPPOR), a permanent 
randomized response is used instead of the real response and an instantaneous randomized 
response reports on the permanent randomized response over time until it’s revealed 
(Erlingsson, 2014). The transformation method is generally used to lower the cost of 
communication (Wang T. X., 2020). For example, S-Hist was developed in (Bassily, 2015) to 
create a histogram of the most frequent values. The communication cost was lowered by 
choosing a random bit from the vector generated from encoding the original value based on 
random matrix projection. In subset selection, 𝜔 is the size of the subset that is randomly 
selected from the total set of items. Table 10 describes the communication costs, error bounds, 
and variances of various algorithms used for frequency estimation.  

 
Table 10: Communication Cost, Error Bound, and Variance of Various Local DP Algorithms 

From (Wang T. X., 2020) 
Encoding 
Method 

Local DP 
Algorithm 

Communication 
Cost 

Error Bound Variance Know 
Domain? 

Direct 
Perturbation 

BRR O(1) 𝑂 (
1

𝜖√𝑁
) 

𝑒𝜖

𝑁(𝑒𝜖 − 1)2
 Y 

GRR O(log k) 𝑂 (
√𝑘𝑙𝑜𝑔(𝑘)

𝜖√𝑁
) 

𝑒𝜖 + 𝑘 − 2

𝑁(𝑒𝜖 − 1)2
 Y 

Unary 
Encoding 

SUE O(k) 𝑂 (
√𝑙𝑜𝑔(𝑘)

𝜖√𝑁
) 

𝑒𝜖/2 

𝑁(𝑒𝜖/2 − 1)2
 Y 

OUE O(k) 𝑂 (
√𝑙𝑜𝑔(𝑘)

𝜖√𝑁
) 

4𝑒𝜖

𝑁(𝑒𝜖 − 1)2
 Y 

Hash 
Encoding 

RAPPOR 
Θ(k) (user) 

Θ(Nk) 
(aggregator) 

𝑂 (
𝑘

𝜖√𝑁
) 

𝑒𝜖/2

𝑁(𝑒𝜖/2 − 1)2
 Y 

O-RAPPOR Θ(k) 𝑂 (
𝑘

𝜖√𝑁
) 

𝑒𝜖/2

𝑁(𝑒𝜖/2 − 1)2
 N 
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O-RR O(log k) 𝑂 (
√𝑘𝑙𝑜𝑔(𝑘)

𝜖√𝑁
) 

𝑒𝜖 + 𝑘 − 2

𝑁(𝑒𝜖 − 1)2
 N 

BLH O(log k) 𝑂 (
√𝑙𝑜𝑔(𝑘)

𝜖√𝑁
) 

(𝑒𝜖 + 1)2

𝑁(𝑒𝜖 − 1)2
 Y 

OLH O(log k) 𝑂 (
√𝑙𝑜𝑔(𝑘)

𝜖√𝑁
) 

4𝑒𝜖

𝑁(𝑒𝜖 − 1)2
 Y 

Transformation 

S-Hist O(log b) 𝑂 (
√𝑙𝑜𝑔(𝑘)

𝜖√𝑁
) 

𝑒𝜖

𝑁(𝑒𝜖 − 1)2
 Y 

HRR O(log k) 𝑂 (
√𝑙𝑜𝑔(𝑘)

𝜖√𝑁
) 

4𝑒𝜖

𝑁(𝑒𝜖 − 1)2
 Y 

Subset 
Selection 

ω-SM O(ω) 𝑂 (
√𝑘𝑙𝑜𝑔(𝑘)

𝜖√𝑁
) 

𝑒𝜖 + 𝑘 − 2

𝑁(𝑒𝜖 − 1)2
 Y 

 In Table 10, 𝑘 is the cardinality of the dataset, 𝑏 is the single bit selected in the S-Hist 

scheme, 𝜔 is the size of the subset of data selected in subset selection methods, 𝜖 is the 
privacy budget value, and 𝑁 is the number of users in the dataset. 

 For datasets where users have a varying number of elements, various mechanisms are 
utilized for frequency estimation which include item distribution estimation, frequent items 
mining, and frequent itemsets mining (Wang T. X., 2020). Item distribution estimation involves 
analyzing the distributions over some number of items. Frequent item mining discovers all the 
items that occur at least some number, 𝜔, times in the dataset. Frequent itemsets mining is 
similar to frequent item mining, the difference being that it works on itemsets rather than 
individual items. New terms discovery is applied to situations where item domain is unknown 
(e.g., finding the most used terms from varying numbers of users with varying responses).  

 
Table 11: Communication Cost of Various Local DP Algorithms on Set-Valued Data From 

(Wang T. X., 2020) 

Task LDP Algorithm Communication Cost Know Domain? 

Item distribution 
estimation 

PrivSet 𝑂(𝑙′) Y 

LDPart 𝑂(|𝑉|𝑚) Y 

Frequent item mining 

TreeHist 𝑂(1) Y 

LDPMiner 𝑂(𝑙𝑜𝑔𝑘 + 𝜔) Y 

PEM 𝑂(𝑙𝑜𝑔𝑘) Y 

Calibrate 𝑂(𝑘) Y 

Frequent itemset mining 
Personalized 𝑂(𝑘) Y 

SVSM 𝑂(𝑙𝑜𝑔𝑘) Y 

New terms discovering 
A-RAPPOR 𝑂(𝑙𝑜𝑔𝑘) N 

PrivTrie 𝑂(|𝑉|𝑚) N 

 In Table 11, 𝑙’ is the output size of randomization, |𝑉|𝑚 is the maximum number of nodes in 

a partition tree that partitions users into different groups, 𝑘 is the total number of items in the 
domain across all users, and 𝜔 is an integer value describing the minimum number of times an 
item has occurred in the items or itemset (e.g., 𝜔 = 7, all items with at least 7 occurrences).  
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 For computing 𝑘-way marginal probability distributions, RAPPOR and several other 
schemes have been developed. As the number of dimensions 𝑘 increases, RAPPOR suffers a 
large drop in efficiency and accuracy. Fanti et al. proposed an expectation maximization (EM) 
based algorithm in (Fanti, 2015) that is limited to 2-way marginals but suffers from high time and 
space overheads as 𝑘 grows larger. In (Ren, 2018), the researchers developed a local DP 
scheme using a Lasso-based regression mechanism and dimension reduction through 
discovering compactly correlated attributes to reduce time overhead and increase data utility 
compared to earlier schemes. The researchers in (Wang T. X., 2019) proposed a DP scheme 
that used Copula theory to resolve the issue of exponential growth as the dimension 𝑘 grew in 

size by reducing the number of estimations from 𝑘 to one and two-marginal distributions. In 
(Cormode, 2018), the researchers developed a local DP scheme that utilized the Hadamard 
transform technique to improve accuracy and reduce communication costs. However, non-
binary attributes must be transformed into binary types, which adds more dimensions to the 
data. In (Zhang Z. T., 2018), the researchers developed a consistent adaptive local marginal 
(CALM) algorithm “that builds 𝑘-way marginals by taking the form of 𝑚 marginals each of size 𝑙”. 
Table 12 provides a summary of the communication costs, variance, time complexity, and space 
complexity of previously discussed local DP schemes.  

 
Table 12: Communication Cost, Variance, Time Complexity, and Space Complexity of LDP 

Algorithms From (Wang T. X., 2020) 
 

LDP 
Algorithm 

Communication 
Cost Variance Time Complexity Space Complexity 

RAPPOR 𝑂 (∏ |Ωj|
𝑑

𝑗=1
) 2𝑑 ∗  𝑉𝑎𝑟 High High 

(Fanti, 2015) 𝑂 (∑ |Ω𝑗|
𝑑

𝑗=1
) 2𝑑 ∗ 𝑉𝑎𝑟 𝑂 (𝑁 ∗ ∑ (

𝑑

𝑖
)

𝑘

𝑖=1
∗ 2𝑖) 𝑂 (∑ (

𝑑

𝑖
)

𝑘

𝑖=1
∗ 2𝑖) 

LoPub 𝑂 (∑ |Ω𝑗|
𝑑

𝑗=1
) 2𝑑 ∗ 𝑉𝑎𝑟 Medium High 

(Cormode, 
2018) 

𝑂 (∑ (
𝑑

𝑖
)

𝑘

𝑖=1
) ∑ (

𝑑

𝑖
)

𝑘

𝑖=1
∗ 𝑉𝑎𝑟 𝑂 (𝑁 + (

𝑑

𝑘
) ∗ 2𝑘) 𝑂 (∑ (

𝑑

𝑖
)

𝑘

𝑖=1
) 

LoCop 𝑂 (∑ |Ωj|
𝑑

𝑗=1
) 2𝑑 ∗ 𝑉𝑎𝑟 Low High 

CALM 𝑂(2𝑙) 
𝑚

𝑁
∗ 2𝑙 ∗ 𝑉𝑎𝑟 𝑂(𝑁 ∗ 2𝑙) 𝑂(𝑚 ∗ 2𝑙) 

 In Table 12, 𝑉𝑎𝑟 is the variance of estimating a single cell in the full table, 𝑙 is the size of 𝑚 

low marginals of the dataset, 𝑑 is the total number of attributes in the dataset, |Ω𝑗| is the 

cardinality of the attribute in the dataset and 𝑁 is the total number of users in the data. 

 As mentioned during this section’s introduction, the exponential mechanism is one of the 
most commonly used methods when a DP query must return a representative sample from a 
database while maintaining privacy. Within the energy space, this problem could represent 
releasing a consumption curve that characterizes a consumer’s daily demand by picking one 
that has a certain resemblance to the consumer’s true demand curve. The exponential 
mechanism was initially defined by (McSherry & Talwar, 2008), and it states that if the loss of 
outputting the statistic X is ℓ(X), the mechanism will output x ∈ X with probability/density 

proportional to e−cℓ(x), where 𝑐 is a constant that depends on ϵ (i.e., the sensitivity) (Ganesh, 
2022). Despite its relatively simple approach, its main challenge is that it requires computing 
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ℓ(𝑋)  for every 𝑥 ∈ 𝑋, and for every possible statistic that may be analyzed in the future. For 
example, if there 1000 customers within a feeder (denoted by 𝑛), and there are 20 metrics (𝑚) 
of interest (e.g., net consumption, peak load, base load, etc.), then the exponential mechanism 
must determine ℓ(𝑋)  over the 𝑚 ∗ 𝑛 space. 
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5.0 Federated Learning 

 Federated learning (FL) is a machine learning framework introduced by Google in 2015 that 
enables the training of a global model by relying on an intermediate model that is used instead 
of the user’s raw data (Banabilah, 2022). This contrasts with other, more standard ML methods, 
where the user’s raw data must be shared with a centralized model creator (e.g., where the 
model weights are trained). Traditional approaches are known to increase the attack surface 
because an adversary could potentially obtain access to the sensitive information while the data 
is in motion or at rest. Even if there are sufficient access control mechanisms, the model creator 
may abuse the data or unintentionally release it as part of the trained model itself (for example a 
large language model may output text fragments that plagiarize published works). 

 Although the implementation details are highly variable, most FL approaches use an 
iterative training algorithm that gradually reconciles a global model with multiple, end-user 
models that are trained at the edge. This can be done, for example, by first sharing an initial 
global model with the users in the network. The users then re-train the global model using their 
local data and send the updated parameters back to the central server. Then the server 
aggregates the received parameters, updates the parameters of the global model, and sends 
the new global model to users who can repeat the process until the model converges. Since the 
raw data never leaves the user’s local environment, greater amounts of privacy and security can 
be achieved. It is important to note that FL is a concept, and it must be complemented with 
other privacy-preserving mechanisms in order to help ensure the privacy and security of the 
users’ data and the global model itself. Broadly speaking FLs, can be categorized into three 
main classes a) vertical FL (VFL); b) horizontal FL (HFL); and c) federated transfer learning 
(FTL) (Banabilah, 2022).  

 VFL is applicable when there are two datasets that contain a large overlap of users while 
only having a few features in common (Banabilah, 2022). For example, a bank whose datasets 
contain information about user income and credit scores can collaborate with an e-commerce 
website whose datasets contain information about user browsing and purchase history to train a 
model on the behaviors of their users (assuming users can be linked by their credit card 
information). The main focus of VFL is preserving privacy. A VFL risk model assumes the 
presence of honest but curious users who collaborate towards the model creation, but which 
may try to infer or extract training data during the process. 

 In contrast, horizontal FL is suitable for situations where two datasets contain similar 
features, but don’t share many of the same users (Banabilah, 2022). For example, two electric 
companies in different regions would have different users in their datasets, but similar features 
exist (e.g., energy usage, payment information). By collaborating, the companies could train a 
more robust model by increasing the number of data samples (e.g., potentially increasing its 
accuracy). HFL’s primary focus is on security, hence algorithms are intended to prevent 
participants from learning from each other.  

 Federated transfer learning is suitable for situations where the two datasets contain little 
overlap of the users and features (e.g., A commercial flight database combined with a fuel 
distribution database in a model that predicts flight prices based on fuel prices)  (Banabilah, 
2022). One dataset (source) generally contains more samples than the second dataset (target). 
The source trains an initial model on feature extraction, while the target uses the trained model 
with their own dataset to further tune the model.  
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5.1 Benefits and Applications of Federated Learning 

 The primary benefit of FL is that it enables collaboration between a large number of users 
that must train a global model while enabling them to keep their raw, private data within their 
own control (Zhang C. Y., 2021). By keeping user data locally, a layer of privacy is intrinsically 
created, which may encourage other users to share their data and improve the model (E.g., an 
increased number of available datasets or records could result in a higher accuracy model). 
Another benefit of this property is that the central server can reduce its computational 
requirements because the training data is being pre-processed at the user’s local device (this is 
especially true as the number of users increases) (Banabilah, 2022). Since the central server 
does not store large amounts of user data, the cost to the service provider is also lowered by 
eliminating the need to purchase and install high-capacity storage. Another benefit of using FL-
based techniques is that their model aggregation properties enable the data processor  to 
comply with privacy laws and regulations (e.g., GDPR) (Zhang C. Y., 2021).  

 FL has found applications across multiple domains, that span the healthcare, transportation, 
finance, and energy fields. In the healthcare domain, FL has been used to securely aggregate 
medical data from various hospitals into a large, global model while preserving the patient’s data 
privacy and adhering to emerging privacy laws (Zhang C. Y., 2021). In another example, the 
researchers in (Lu, 2020) proposed a FL framework that is applicable to the transportation 
domain. In the study, the researchers aimed to mitigate data leakage in vehicular cyber-physical 
systems that, if left unprotected, could endanger the passenger’s safety and privacy, as well as 
result in tangible losses for data providers. In the finance domain, FL can be used for loan risk 
assessment (Cheng Y. Y., 2020). For example, WeBank, China’s first Internet-only bank, uses a 
federated risk control system for small and micro enterprise loans. To further exemplify the role 
of FL in the energy space, a review of smart grid applications that have adopted Federated 
Learning as part of their solution strategy is presented in Table 13. 
 

Table 13: Applications of Federated Learning 
Citation Keywords Overview 

(Su, 2021) Smart Grid, 
Artificial 
Intelligence of 
Things (AIoT), 
Edge-Cloud 
Collaboration 

The researchers proposed a FL-enabled AIoT scheme to preserve 
energy data privacy in edge-cloud collaboration environments. A 
two-layer, deep reinforcement-learning-based incentive algorithm 
was developed to encourage energy data owners (EDOs) to share 
high-quality data models. The scheme was simulated in an 
environment with an aggregator, four energy service providers 
(ESPs), and 50 individual EDOs. The simulation results showed 
that the scheme could improve the ESPs profit and reduce task 
latencies, justifying the value of sharing higher-quality models, 

(Badr, 
2023) 

Energy 
Forecasting, 
Smart Grid 

The researchers developed a federated learning-based energy 
prediction system aimed at achieving high accuracy while 
preserving the customer’s private information. Inner-product 
functional encryption (IPFE) was used to parametrize the 
customer’s model so that the data could be sent to the utility 
provider anonymously. The proposed scheme enabled the utility 
provider to use the encrypted parameters to build a global model. 

(Saputra, 
2019) 

Electric Vehicle, 
Energy Demand, 
Charging Station, 
Clustering 

A federated energy demand learning (FEDL) approach was used 
by researchers to reduce the communication costs between a 
charging station (CS) and its energy provider while preserving the 
privacy of the electric vehicle owner using the CS. A clustering-
based EDL method was implemented using real data obtained from 
charging stations in Dundee city, United Kingdom. The dataset 
consisted of 65,601 transactions and 58 CSs. The results showed 
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that the proposed approach increased energy demand by 24.63% 
and reduced communication overhead by 83.4% (when compared 
to other baseline machine learning algorithms).  

(Wang X. 
X., 2021) 

Electric Vehicle, 
Charging Station 
Recommendation 
System, 
Homomorphic 
Encryption 

The researchers proposed an EV charge point recommendation 
framework based on FL that optimizes infrastructure usage while 
preserving the privacy of the underlying infrastructure and end-user 
user data (including EV-specific). A vertically-federated 
factorization machine algorithm based on HE was used to build a 
model that securely aggregates different data sources (charge 
points, users, and EVs). The results found that their model 

improved the area under the curve1 metric by 6% over a traditional 
regression model while maintaining user privacy.  

(Zhang L. 
J., 2023) 

Photovoltaic 
Power Prediction, 
Concept Drift, 
Broad Learning 
System 

The researchers developed a FL-based incremental broad learning 
system (BLS) and used it to address concept drift in photovoltaic 
(PV) power prediction. Concept drift is an ML term used to describe 
the loss of accuracy as the system evolves over time. The method 
was tested on a public dataset from the Desert Knowledge 
Australia Solar Centre. The results of the experiments found that 

their method greatly improved the prediction accuracy of the model 
and required less training time when compared to state-of-the-art 
learning algorithms while preserving data privacy. 

(Liu Y. J., 
2020) 

Traffic Flow 
Prediction (TFP), 
Deep Learning, 
Gated Recurrent 
Unit (GRU) 

A FL-based Gated Recurrent Unit (FedGRU) algorithm was 
proposed by the researchers to provide accurate forecasting of 
traffic flows while preserving commuter’s privacy (e.g., license 
plates, vehicle location, etc.). Model parameters were transmitted 
using a federated averaging algorithm to lower transmission 
overheads, and a joint announcement protocol was implemented to 
improve scalability. The algorithm was tested on the Caltrans 
Performance Measurement System, a real-world data system with 
39,000 sensors. The study determined that FedGRU reduced 
communication overheads by 64.10% while introducing a mean 
deviation of (0.76 km/h) when compared to state-of-the-art 
centralized methods, while providing data privacy.   

(Li J. Y., 
2021) 

Smart Healthcare 
System, 
Alzheimer’s 
disease detection 

The researchers developed an Alzheimer’s disease (AD) detection 
system (ADDetector) that implemented FL and DP to preserve the 
privacy of users’ raw data and model details during data 
transmission. An asynchronous privacy-preserving aggregation 
framework was developed to secure the model aggregation 
process between the cloud server and client. The proposed system 
was evaluated with the ADReSS Challenge dataset. The results of 
the experiments showed that the proposed system maintained 
more than 78% accuracy in real-world scenarios and the time 
overhead was 0.7 seconds.  

5.2 Challenges Faced by Federated Learning 

 While the user’s raw data is kept under their control and not in a central server, FL cannot 
be considered secure or private by itself because an adversary may still infer information from 

 
1 The AUC is a measure of the true positive rate (sensitivity) against the false positive rate (1-specificity) 
for random samples. Higher values indicate better model accuracy. 
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the final model parameters if data dependencies remain1. Therefore, other privacy-preserving 
mechanisms such as secure multi-party computation, differential privacy, and homomorphic 
encryption must be leveraged in order to provide the necessary security and privacy 
guarantees. This may lead to a series of advantages and drawbacks that must be considered 
under the application-specific context. For example, integrating MPC into a FL scheme can 
reduce the efficiency of computations (e.g., not all algorithms benefit from distributed 
computations) or introduce communication overheads. Introducing DP into FL scheme requires 
application designers to determine the ideal trade-off between privacy vs accuracy, which 
ultimately impacts the model accuracy. When using HE methods, computational efficiency plays 
a key role, but it also requires establishing key management mechanisms (e.g. do all edge 
clients need a unique key pair to share data with the model creator, or can some clients share 
keys?).  

 In addition to the underlying privacy engine considerations, the successful management of 
communication costs and overheads, especially in network constrained environments, is one of 
the main challenges that FL faces in the communication domain (Banabilah, 2022). This is 
particularly true for low-bandwidth systems that contain a large number of participants, which 
require an equally large number of communication paths that could lead to network congestion 
issues. This might be particularly important for current-generation smart meter networks that 
operate at a fraction of the speed and bandwidth of a typical broadband Internet connection. 

 The reliability of end user’s processing systems is another challenge for FL due to the 
heterogeneity of their hardware and network dependability (Banabilah, 2022). For example, 
some devices on the network will compute and transmit their updated model parameters at a 
slower rate than others, while others may drop from the network randomly. This requires FL 
solutions to adopt Crash Fault Tolerance (CFT) architectures that enable them to compute the 
end result while tolerating a certain ratio of non-respondent systems, or failed network links. 
Although CFT may also be used to ignore slow-responding systems and hence speed up 
processing, such optimization could inadvertently exclude slower participants, which may lead 
to underrepresentation and exclusions that disproportionality affect less capable systems. 

 A further, often overlooked issue is maintaining trust in a distributed environment. Although 
mechanisms such as public key cryptography can be used to authenticate participants, model 
updates (e.g., the actual model weights) by design must remain private, potentially leading to 
data poisoning attacks which may reduce the accuracy of the global model (Tolpegin, 2020). 
Such attacks could be mitigated by implementing outlier detectors, maintaining track of 
participating’s historical reputation, or using peer-level reviews to reduce the chances of 
adopting incorrect model updates.  

5.3 Computational Overheads of Federated Learning approaches 

 There are two challenges faced by FL when attempting to determine the computational 
overhead of various algorithms (Almanifi, 2023). The first challenge is that evaluations rely on a 
small pool of common datasets (e.g., MNIST, CIFAR10) that can skew the results to show that a 
FL model has higher prediction accuracy than it actually has for the target use case. This also 
makes it difficult to assess the effects of performance optimizations on the model’s accuracy. 
Perhaps, the main reason is that it is difficult to recreate the “imperfect” nature of real-world 

 
1 Consider this example. If the global average of a group of 9 students is 3.4 and a new student updates 

the global average to 3.3, then the student must have had a GPA of 2.4 (9 ∗ 3.4 + 2.4)/10 = 3.3, clearly 
bypassing any privacy expectations. Further examples are available in (Banabilah 2022) 
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systems, where participants may fail to work collaboratively (either due to random failures or 
lack of engagement). The second challenge is that there is not a standard set of metrics to 
benchmark FLs, other than accuracy metrics, communication characteristics or privacy 
attributes (which are equally hard to compare), which makes it difficult to make fair 
comparisons. The lack of standardization in benchmarking may be due to the heterogeneity of 
the data being modeled, the ML model characteristics, but also due to the devices that perform 
the training and updates. For example, in a smart grid network, the hardware of the smart meter 
may have vastly different capabilities than that of a consumer-grade computer. However, smart 
meters may be highly homogeneous within a service region (e.g., the same hardware vendor) 
making it possible for a utility to optimize a given solution but difficult for another utility to adopt 
the same solution (unless the same vendor is involved). 

Based on this limitation, this report limits itself to discussing typical metrics that can be used to 
gauge a FL method’s potential. Naturally, these metrics may need to be adapted to the unique 
characteristics of the deployment scenario. 

• Time overhead metrics which includes 1) the time (tcomp) required by a client to perform a 
computation and 2) the time (tcomm) taken by the client to communicate with the central 
server (to download/upload model parameters) (Luo, 2021).Typical training time (per round) 
that is composed of tcomp times the number of local training interations summed with tcomm. 

• Energy cost (ecomp) of a client to complete a computation and the energy cost (ecomm) to 
communicate with the central server.  

• Typical energy cost (per round) that is composed of ecomp times the number of local training 
iterations summed with tcomm. 

• Memory consumption of a client completing a computation for a pre-selected number of 
rounds (Gao, 2020).  

• Accuracy of the trained global model (Zhang Z. Z., 2020). 

• Convergence speed and efficiency. 
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6.0 Conclusion and recommendations 

This report presented a review of Privacy Enhancing Techniques in the context of the smart grid 
domain. Each of these techniques was contrasted in terms of their key capabilities, typical uses, 
and known limitations. Such descriptions are intended to enable application engineers to identify 
the technique (or techniques) that are aligned with their use-case needs. Furthermore, this 
report discussed the time and space complexities associated with the adoption of such 
techniques, a discussion that is relevant due to the limited computational and communication 
capabilities that are available in smart grid deployments. The techniques can be summarized as 
follows:  

• Homomorphic encryption uses encryption to enable computations to be performed on 
previously encrypted data without requiring decryption, which lowers its exposure by 
reducing the number of situations in which the data can be viewed in unencrypted form. 
However, this security feature significantly increases the computational overhead when 
compared to other mechanisms. 

• Zero-knowledge proofs (ZKP) are specifically designed to enable a user to prove to an 
external entity that they know a secret without leaking any data other than the fact that 
they know the secret. They offer a relatively low overhead cost when compared to other 
public key cryptographic methods but a limited set of functions that can be implemented.  

• Differential privacy is a formal mathematical construct that guarantees that the inclusion 
or exclusion of a single data point cannot be determined from the aggregated dataset. 
By preventing inferences at the individual level, it grants strong privacy protections. 
However these protections are based on the introduction of noise, which can lower data 
utility, in addition complete privacy can only be guaranteed under certain conditions.  

• Federated learning is a method of machine learning that enables increased privacy of 
user data by not requiring users to upload their raw data to a central server for training. 
Instead, the process of training the global model consists of incremental updates that are 
exchanged between the central server and remote users to assemble a global model via 
collaboration. The main drawback is that it cannot be considered secure by itself, thus 
requiring other privacy-preserving mechanisms to accomplish data privacy. 

Similarly, the main contributions of this work can be summarized as follows: 

• Advocates for the adoption of privacy-preserving mechanisms as an essential tool for 
achieving a holistic approach to data privacy in the smart grid (but also applicable to the 
energy sector in general). 

• Provides researchers, engineers, and system designers with a practical overview of PET 
by summarizing strengths, typical use cases, and known limitations. 

• Presents a comprehensive survey of the computational burdens associated with 
implementing PET technologies under the context of the typical smart grid deployment. 

• Identifies technological limitations that currently act as barriers towards the larger scale 
adoption of these technologies. 
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Based on the current state of the art, this report further recommends: 

• Fostering research and development of privacy-preserving technologies: Support 
the advancement of privacy-preserving technologies that are specifically tailored to 
address the engineering challenges of the smart grid. This may involve addressing the 
communication and computational barriers, streamlining solution integration, and 
developing standardized benchmarking methods. When combined, these efforts will help 
to facilitate the widespread adoption of these technologies. 

• Encouraging the adoption of privacy-by-design principles: Promote the integration 
of privacy-by-design principles throughout an application’s development and operational 
lifecycle. This can be done by communicating both the technical and societal benefits to 
stakeholders, ensuring the value proposition of privacy stands on its own. The aim is to 
foster an ecosystem where user data is not only valuable from an engineering 
perspective but also meets end-user expectations for privacy and security. 

• Advocating for policy development and regulatory compliance: Promote the 
development of new policies and encourage the adoption of regulatory standards within 
the energy sector. The industry can benefit from adapting existing regulatory 
frameworks, such as the Health Insurance Portability and Accountability Act (HIPAA) 
from the healthcare domain, to expedite maturity while minimizing potential missteps. 
Utilities must stay informed about legislative changes and integrate these technologies 
to avoid legal repercussions and enhance public trust. 

Adopting a privacy-aware smart grid will necessitate advances in both policy and technical 

domains. From a technical perspective, it is crucial for researchers to address the inherent 

challenges associated with the practical adoption of privacy-enhancing technologies (PETs). 

This effort needs to be complemented by educational initiatives that raise awareness about the 

advantages and disadvantages of PETs, and how these may impact the end application. 

Furthermore, security considerations must be thoroughly addressed before implementing PET 

algorithms to ensure the resulting applications continue to provide sufficient security guarantees 

over the long term. 

To overcome these challenges, stakeholders need to be well-informed of the capabilities, 

drawbacks, and benefits of PETs. Promoting collaboration among stakeholders can ensure that 

applications are designed and implemented with potential weaknesses in mind. Effective 

approaches will likely start by identifying and prioritizing problems and then finding suitable 

mechanisms to address them. For example, Table 14 provides a list of challenges within the 

smart grid, potential solutions (e.g., the tools that are available), and the limitations or risks that 

may be introduced by adopting a particular solution. Although, the examples are not intended to 

be authoritative, such a list can be further refined by classifying issues according to the 

stakeholders involved or by distinguishing between the different spatio-temporal characteristics 

of the problem. 
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Table 14: An overview of challenges, solutions, and their associated drawbacks in the field of 
energy domain. 

DSO 
model 

Problem Solutions Issues 

Trusted Enabling 
consumers to 
audit if data 
usage aligns with 
prior consent 

Digital/physical 
consent forms 

No automatic guarantee on data usage alignment, 
violations may be legally enforceable. 

Third party 
verifications 

Providing data access to third parties either increases or 
shifts risk. 

Trusted Ensuring data 
integrity (in 
centralized or 
high trust 
environments) 

PKI-based 
digital signing 
approaches 

PKIs are tied to real-world identities, a mapping that 
may be abused. 

Zero Knowledge 
Proofs 

ZKP computation cost may be prohibitive in resource 
constrained environments.  

Both Ensuring data 
integrity (in 
decentralized or 
low trust 
environments) 

Anonymous 
authentication or 
identity stripping 

Compliance may be hard to track, actors may become 
transient. Anonymization does not guarantee privacy. 

Permissioned 
DLT 

Must develop trust metrics (e.g., based on past 
performance). Scalability issues (network size and 
commit throughput) 

Permissionless 
DLT 

Most implementations are energy inefficient, prone to 
sybil attacks (a fake majority overrides consensus) 

Trusted Auditing 
participants (in 
centralized or 
high trust 
environments) 

Digital signed 
events (e.g. via 
PKI certificates) 

PKIs are tied to physical identities, requires periodic 
signing of messages (e.g. every hour) 

Authentication-
based systems 

All data must be transmitted. Although data may be 
encrypted, attacks to these types of systems are 
common. 

Both Auditing (in 
decentralized or 
low trust 
environments) 

Homomorphic 
Encryption 

May come with computational or algorithmic limitations 
that limit its use. 

Zero Knowledge 
Proofs (ZKP) 

The types of audits possible are tied to ZKP-specific 
capabilities. Interactive ZKPs may be abused. 

Differential 
privacy 

May introduce noise that exceeds application’s 
tolerance. 

Threshold 
cryptography 

Probabilistic protection mechanism. Implementing a 
distributed key generation mechanism is hard. 

Both Billing (with load 
hiding 
mechanism) 

Virtual battery 
models or 
physical storage 

May hide peaks or valleys in the demand curve. Once 
(real or virtual) capacity limits are reached, no additional 
protection is possible. 

Delayed 
aggregation 

May reduce the ability for applications to react in real 
time. 

Untruste
d 

Billing (via secure 
computation/priva
cy methods) 

Zero-Knowledge 
Proofs 

Computationally intensive. Interactive approaches may 
be abused, negating the method’s utility 

Homomorphic 
encryption 

The number of supported operations is low (algorithm 
dependent), may limit data repurposing. Significant 
computational overheads 

Differential 
privacy 

Noise added may exceed application tolerance, lowering 
data utility.  

Trusted Billing (via secure 
computation/priva
cy methods) 

Digital signed 
events (e.g., via 
PKI certificates) 

PKIs are tied to physical identities. Message contents 
may be encrypted but do not offer formal privacy 
guarantees.  

Authentication-
based systems 

All data must be transmitted; although data may be 
encrypted, data exfiltration and key theft remain risks.  

Both Enabling 
resource 

Homomorphic 
encryption  

Computationally intensive, hard to share results with 
multiple entities (secure key distribution challenge). 
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coordination (in 
decentralized or 
low trust 
environments) 

Multi-party 
computation 

Must be built upon privacy or security constructs to 
achieve goal. Scalability is algorithm-dependent. 

Differential 
privacy 
 

High noise when the number of aggregated actors or 
values is low or when DP must be applied locally. Noise 
characteristics can be improved via trusted aggregator 

Permissionless 
DLT 

Vulnerable to sybil attacks (i.e. ill clusters manipulate 
consensus). Consensus algorithm defines efficiency. 
Identity anonymization does not equal privacy. 

Permissioned 
DLT (with ledger 
segmentation) 

Identities are known within a segment. Ledger data is 
visible to segment’s participants. Inter-ledger or inter-
segment coordination may introduce centralization. 

Both Real time 
monitoring and or 
supervision 

Centralized 
aggregation with 
cybersecurity 

Insider threats may lead to data exposure. No 
guarantees on the use of data or availability to third 
parties. If leaked, raw data may become publicly 
accessible.  

Cryptography 
based PETs 

Computational efficiency may limit responsiveness and 
scalability. Some mechanisms require key distribution. 

Differential 
privacy 

Trusted aggregators must securely discard raw data and 
correctly apply privacy mechanism. If DP is applied 
locally, greater amounts of noise will be introduced. 

Both Building ML 
solutions (in 
decentralized or 
low trust 
environments) 

Federated 
learning 

Must adopt a privacy construct (in the input and output 
phases) to mitigate against training data extraction. 
Addressing model poisoning is hard. Scalability remains 
an issue due to communication and computation 
overheads. 

Both Ensuring long 
term data storage 

Traditional 
cryptographic 
methods 

Key management is an issue. Once a key is 
compromised, protections afforded by encryption using 
that key are useless (assuming encrypted data is also 
accessible). 

Cryptography 
based PETs 

Key management and zero-day vulnerabilities may be 
an issue. Computational efficiency may become a 
problem of scale.  

Differential 
privacy 

Long-term data series or repetitive querying may 
eventually exceed the allotted privacy budget. Truly 
independent datasets are hard to find, hidden 
dependencies may lower DP effectiveness. 
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Appendix A – Digital watermarking 

Digital watermarking is the process of embedding a hidden signal that is hard to detect or 
modify without knowing the underlying security mechanism.  Most modern approaches leverage 
bit-level modifications that do not degrade or affect the original media intent (e.g., digitally 
encoded images, audio, and video signals) while being able to embed information defined by 
the content creator (Singh P. a., 2013). Watermarks are often used for copyright protection and 
authentication in the media industry, and hence they appeared as a promising solution to 
facilitate data tracking and ensure data use was in accordance with the end-user intended 
consent. Once an in depth-review was commenced, it became apparent that most research on 
“privacy” and “digital watermarks” were with regards to preserving the privacy of the watermark 
itself rather than the data, and many of the applications were related to copyright protection or to 
ensure tamper resistance, with few actual privacy applications. A few examples of articles found 
related to providing access controls were (Kountchev, 2015), (Yang H. a., 2015), and (Guo J. 
W., 2018). In (Kountchev, 2015), multiple fragile watermarks were used as decomposition layers 
in an inverse pyramid decomposition scheme and were applied to medical images. Deeper 
layers in the pyramid provided higher quality images to a user that had the required permissions 
to access it. In (Yang H. a., 2015), the researchers presented a method of applying a binary 
watermark sequence into a visibly watermarked block truncation coding (BTC) compressed 
image to prevent unauthorized users from recovering the original pixels in the watermarked 
region. In (Guo J. W., 2018), a model that embedded access control policies as watermarks 
onto an image was proposed to solve the issue of the image’s original access controls being 
removed when being redistributed by a server. 

 

 

 
  



PNNL-36774 

Conclusion and recommendations 64 
 

 

Appendix B – Examples 

B.1 Asymptotic Notation 

Asymptotic notation (aka 𝑂 notation) is a fundamental concept in computer science used to 
describe the complexity of an algorithm (and thus its efficiency). By using a simple mathematical 
expression, asymptotic notation it is able to capture an algorithm's performance in terms of how 
its runtime or space requirements grow as the input size increases (which is usually denoted by 
𝑛). By abstracting away constants and lower-order terms, asymptotic notation allows for a clear 
comparison of the scalability and efficiency of different algorithms. 

During this report, many tables made use of asymptotic notation to describe an algorithm’s 
expected performance under the average, worst, or ideal conditions. These are commonly 
known by the names Big Theta (𝛩), Big-O (𝑂), and Big Omega (𝛺) respectively. A high-level 
overview of their definition and how they are determined is discussed in the remainer of this 
section.  

B.1.1 Big O notation 

Big-O (𝑂) notation describes the tight upper bound of an algorithm’s runtime and is defined as: 

“Let 𝑓(𝑛) and 𝑔(𝑛) be functions that map positive integers to positive real numbers. We say that 
𝑓(𝑛) is 𝑂(𝑔(𝑛)) if there exists a real constant 𝑐 >  0 and there exists an integer constant 𝑛0  ≥
 1 such that 𝑓(𝑛) ≤  𝑐 ∗ 𝑔(𝑛) for every integer 𝑛 ≥  𝑛0” (McCann, 2009).  

(McCann, 2009) provides the following example of determining whether the function 𝑓(𝑛)  =
 7𝑛 +  8 is 𝑂(𝑔(𝑛)), where 𝑔(𝑛)  =  𝑛:  

7𝑛 + 8 ≤ 𝑐𝑛 ; 𝑙𝑒𝑡 𝑐 =  8 

7𝑛 + 8 ≤ 8𝑛 

7𝑛 − 8𝑛 + 8 ≤ 0 

−𝑛 ≤  −8 

𝑛 ≥ 8 

Thus, there exists a constant 𝑐 =  8 and a constant 𝑛0  =  8 such that 𝑓(𝑛) is 𝑂(𝑔(𝑛))  =  𝑂(𝑛) 
for all integers greater than or equal to 8. Sometimes, the big-O runtime of an algorithm can be 
determined without mathematical proofs. For example, suppose we have an array of n items 
consisting of unique integers and we want to determine if 7 is in the array. An algorithm has the 
worst runtime when 7 is either not in the array or if it is the last item inspected. To describe this 
aspect of the algorithm, we would say it runs in 𝑂(𝑛).  

B.1.2 Big-Omega 

To describe the best-case runtime of an algorithm, big-omega (𝛺) notation is used and is 
formally defined as: 
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“Let 𝑓(𝑛) and 𝑔(𝑛) be functions that map positive integers to positive real numbers. We say that 
𝑓(𝑛) is Ω(𝑔(𝑛)) if there exists a real constant 𝑐 >  0 and there exists an integer constant 𝑛0  ≥
 1 such that 𝑓(𝑛)  ≥  𝑐 ·  𝑔(𝑛) for every integer 𝑛 ≥  𝑛0” (McCann, 2009).  

For example, let 𝑓(𝑛)  =  4𝑛 and let 𝑔(𝑛)  =  𝑛, is 𝑓(𝑛) equal to Ω(𝑛)? 

4𝑛 ≥ 𝑐𝑛 ; 𝑙𝑒𝑡 𝑐 =  3 

4𝑛 ≥ 3𝑛 

We can immediately see that with a constant value 𝑐 =  3, no matter what value we select for n, 
𝑓(𝑛)  =  4𝑛 will always be greater than or equal to 3𝑛. Thus, 𝑓(𝑛)  =  4𝑛 can be described as 

having 𝛺(𝑛) runtime. Like big-O, sometimes we can determine big-omega without mathematical 
proofs. Returning to the example of searching an array of 𝑛 items for the integer “7”, the best 
possible case for the algorithm is when “7” is the first item inspected and found immediately in 
constant time. This gives the algorithm a big-omega time complexity of 𝛺(1). Big-omega is 
generally not used to describe algorithms but is used to define the notation of big-theta (Θ) 
(McCann, 2009).  

B.1.3 Big-theta 

Big-theta describes the situation where the function 𝑔(𝑛) is both the tight upper and lower 
bounds of an algorithm. It is defined as follows:  

“Let 𝑓(𝑛) and 𝑔(𝑛) be functions that map positive integers to positive real numbers. We say that 

𝑓(𝑛) is 𝛩(𝑔(𝑛)) if and only if 𝑓(𝑛)  ∈  𝑂(𝑔(𝑛)) and 𝑓(𝑛)  ∈  Ω(𝑔(𝑛))” (McCann, 2009). 

For example, if 𝑓(𝑛)  =  4𝑛 and 𝑔(𝑛)  =  𝑛, then we know from the previous example that 𝑓(𝑛) is 

𝛺(𝑛). In determining big-O time complexity of 𝑓(𝑛)  =  4𝑛, if the constant value 𝑐 was 5 instead 
of 3, we’d have the equation: 4𝑛 ≤ 5𝑛. Thus, for all values of 𝑛 when 𝑐 =  5, 𝑓(𝑛) is less than or 

equal to 5𝑛. Thus, 𝑓(𝑛)  =  4𝑛 has 𝑂(𝑛) time complexity as well. Since 𝑓(𝑛)  =  𝑂(𝑛) and 𝑓(𝑛) =
 𝛺(𝑛), 𝑓(𝑛) =  𝛩(𝑛). 

B.2 Sample HE 

Using the base example presented in (Mallouli, 2019), which describes the traditional RSA 
algorithm, it is possible to construct a multiplicative HE example. 

The first step in generating the key pair is selecting two prime numbers 𝑝 and 𝑞. 

𝑝 =  5, 𝑞 =  7 

Then a modulus used in both the public and private keys is generated through the product 𝑝𝑞.  

𝑛 = 𝑝𝑞 

𝑛 = 5 ∗ 7;  𝑛 = 35 

A value 𝑚 is calculated as (𝑝 –  1)(𝑞 –  1) and a value 𝑒 is chosen such that it is not a factor of 
𝑚. 
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𝑚 = (𝑝 − 1)(𝑞 − 1) 

𝑚 = 4 ∗ 6;  𝑚 = 24 

𝑒 = 5 

A private key 𝑑 is then calculated as (𝑑𝑒) 𝑚𝑜𝑑 𝑚 =  1. 

𝑑𝑒 𝑚𝑜𝑑 𝑚 = 1  

𝑑(5) 𝑚𝑜𝑑 24 = 1 

𝑑 = 29 

The public key {𝑛, 𝑒} is {35, 5} and the private key {𝑛, 𝑑} is {35, 29} in this example. The 
ciphertext 𝑐 is generated through the computation of the plaintext 𝑀 raised to the power of 𝑒 
mod 𝑛. Given two plaintexts 𝑀1  =  5 and 𝑀2 = 6: 

𝑐1 = 𝑀1
𝑒 𝑚𝑜𝑑 𝑛 

𝑐1 = 55 𝑚𝑜𝑑 35 

𝑐1 = 3125𝑚𝑜𝑑 35; 𝑐1 = 10 

And similarly: 

𝑐2 = 𝑀2
𝑒 𝑚𝑜𝑑 𝑛 

𝑐2 = 65 𝑚𝑜𝑑 35 

𝑐2 = 7776 𝑚𝑜𝑑 35; 𝑐2 = 6 

 

For simplicity, lets assume that an untrusted agent is tasked with multiplying 𝑐1 and 𝑐2, since 

both messages are encrypted then the only thing that the external agent can learn is that 𝑐3 =
𝑐1 ∗ 𝑐2 is 60, but it cannot discover the unencrypted value. 

The decryption of 𝑐3 is obtained through the computation of the ciphertext 𝑐3 raised to the power 
of 𝑑 𝑚𝑜𝑑 𝑛. Give a ciphertext 𝑐 =  60: 

𝑀 = 𝑐𝑑  𝑚𝑜𝑑 𝑛 

𝑀 = 6029 𝑚𝑜𝑑 35; 𝑀 = 60 ∗ 6028 𝑚𝑜𝑑 35 

𝑀 = 60 ∗ (604)7 𝑚𝑜𝑑 35 

𝑀 = 60 ∗ (12960000)7 𝑚𝑜𝑑 35 

𝑀 = 60 ∗ (12960000 𝑚𝑜𝑑 35)𝑚𝑜𝑑 35 
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𝑀 = 60 ∗ 257 𝑚𝑜𝑑 35  

𝑀 = 60 ∗ 6,103,515,625 𝑚𝑜𝑑 35 

𝑀 = 366210937500 𝑚𝑜𝑑 35 

𝑀 = 30 

B.3 Sample ZKP 
A highly simplified example of the inner workings of ZKP is presented in (NIST, 1991) and has 
been reproduced here for simplicity:  
The authority decides on a number 𝑁 used for everyone, e.g., take 𝑁 = 77 (7𝑥11). Everyone 
knows this number. The authority may then choose two numbers which form an ID for Alice. 
Suppose these are {58,67}. Everyone knows Alice's ID. The authority then computes two other 
numbers {9,10} which are given to Alice alone; she keeps these private. The latter numbers 

were chosen because 92  ∗  58 =  1(𝑚𝑜𝑑 77) and  102  ∗  67  1 (𝑚𝑜𝑑 77).   
Now Alice can identify herself to Bob by proving that she possesses the secret numbers {9,10} 
without revealing them. Each time she wishes to do this she can choose some random numbers 
such as {19,24,51} and compute: 

      192  = 53  (𝑚𝑜𝑑 77), 
      242  = 37  (𝑚𝑜𝑑 77), 
      512 =   60  (𝑚𝑜𝑑 77). 

Alice then sends {53,37,60} to Bob. Bob chooses a random 3 by 2 matrix of 0's and 1's, e.g., 

𝐸 =
0 1
1 0
1 1

 

Bob sends E to Alice. On receipt, Alice computes 

19 ∗  90  ∗  101 =   36  (𝑚𝑜𝑑 77), 
24 ∗  91  ∗  100 =  62  (𝑚𝑜𝑑 77), 
51 ∗  91  ∗  101 =  47  (𝑚𝑜𝑑 77). 

Alice sends {36,62,47} to Bob. Finally, Bob can check to see that Alice is who she says she is. 
He does this by checking that: 

      362  ∗  580 ∗ 671 =   53 (𝑚𝑜𝑑 77), 
      622  ∗  581  ∗  670 =  37 (𝑚𝑜𝑑 77), 
      472  ∗  581  ∗  671 =   60 (𝑚𝑜𝑑 77). 

The original numbers {53,37,60} that Alice sent reappear. Actually, this doesn't really prove 
Alice's identity; she could have been an impersonator. But the chances of an impersonator 
succeeding would have only been 1 in 64. 

B.4 Sample DP 

(Jiang H. J., 2020) provides a simple example of the random response perturbation mechanism 
for achieving local DP. Given 𝑛 users with an unknown proportion 𝜋 that are diseased, a survey 

is issued to 𝑛 users to determine 𝜋 by asking if they have a disease, to which a user may 
answer “yes” or “no”. A user can flip a coin that has a probability 𝑝 of landing heads up and a 

probability 1 –  𝑝 of it landing tails up to determine whether they answer truthfully. If the coin 
shows heads, the user will answer truthfully, and they will lie if it shows tails. The level of local 
DP provided by this technique is: 
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𝜖 =  |ln (
𝑝

1−𝑝
)| ; Where 𝜖 is the privacy budget. 

An example of a randomized response process can be observed in Figure B.1, where a subject 
starts by flipping a coin. If the coin lands on heads, they answer the question truthfully. If the 
coin lands on tails, then the subject must flip the coin again and use the result to answer the 
question. Such a process offers the subject the ability to deny any recorded answer (and 
instead assert it was a random response), while still producing meaningful results at the 
population level (e.g., the effects of the coin flip can be cancelled out). 

Start

Answer the 
question truthfully

Flip a coin, is it heads?

Flip a coin, is it heads?

Record 
 Yes 

Record 
 No 

Record 
 Yes 

Record 
 No 

 

Figure B.1.  The probability tree in a randomized response survey, assuming a fair coin is used, 
from (Sebastian Cardenas, Mukherjee, & Ramirez, 2023). 

Based on the probability tree presented in Figure B.1, it can be shown that the expected number 

of true “Yes” answers can be modeled by 𝑃𝑟(𝑦𝑒𝑠) = (
1

4
) (1 − 𝑝) + (

3

4
) 𝑝 =  (

1

4
) +

𝑝

2
. Therefore, for 

a significantly large population, 𝑃 can be estimated as 2 (
#𝑦𝑒𝑠

𝑝𝑜𝑝.  𝑠𝑖𝑧𝑒
 −  ¼). 

 

B.5 Sample FL 

An example of the Federated Averaging (FedAvg) algorithm is described in (Nilsson, 2018) as 
follows: A central server contains a shared global model 𝑤𝑡, where 𝑡 is the current iteration of 
the communication round. The algorithm consists of five hyperparameters that control the 
learning process: the fraction of clients 𝐶 that will be chosen to train the model locally, the local 

mini-batch size 𝐵, the number of epochs 𝐸 that the clients will spend training the local model, a 
learning rate 𝜂, and a learning rate decay of 𝜆. Optimization of the algorithm is performed on the 
client side via Stochastic Gradient Decent (SGD). The algorithm first initializes the global model 
𝑤0 and then each round of communication consists of the following steps: 

1. A subset of clients 𝑆𝑡 are selected such that |𝑆𝑡| = 𝐶𝐾 ≥ 1, where 𝐾 is the total number of 

clients in the network. The server transmits the global model 𝑤𝑡 to the selected clients 𝑆𝑡. 

2. Each client trains their local model 𝑤𝑡
𝑘on their raw data and updates the shared model, 

𝑤𝑡
𝑘  ← 𝑤𝑡, by grouping their local data into batches of size 𝐵 and applying 𝐸 epochs of SGD. 
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3. The client uploads their trained model 𝑤𝑡+1
𝑘  to the server, which generates a new global 

model 𝑤𝑡+1 by calculating the weighted sum of all the selected client’s models through the 
equation:  

𝑤𝑡+1 =  ∑ 𝑘 ∈ 𝑆𝑡  
nk

nσ

 𝑤𝑡+1
𝑘    

Where nk is the number of data points on client 𝐾 and nσ =  ∑ 𝑘 ∈ 𝑆𝑡nk.  
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