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Abstract 
The use of benchmark datasets has become an important engine of progress in machine 
learning (ML) over the past 15 years. Recently there has been growing interest in utilizing 
machine learning to drive advances in research-level mathematics. However, off-the-shelf 
solutions often fail to deliver the types of insights required by mathematicians. This suggests the 
need for new ML methods specifically designed with mathematics in mind. The question then is: 
what benchmarks should the community use to evaluate these? On the one hand, toy problems 
such as learning the multiplicative structure of small finite groups have become popular in the 
mechanistic interpretability community whose perspective on explainability aligns well with the 
needs of mathematicians. While toy datasets are a useful benchmark for initial work, they lack 
the scale, complexity, and sophistication of many of the principal objects of study in modern 
mathematics. To address this, we introduce a new collection of benchmark datasets, Algebraic 
Combinatorics Benchmarks (ACBench), representing either classic or open problems in 
algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from 
abstract algebra. After describing the datasets, we discuss the challenges involved in 
constructing “good” mathematics benchmarks, describe baseline model performance, and 
discuss some of the insights these datasets can provide that may be of interest even to those 
who are not interested in mathematics research itself. 
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1.0 Introduction 
Modern approaches to machine learning (ML) have been shown to be capable of extracting 
sophisticated patterns from large and complex datasets. As this capability has grown, there is 
increasing evidence that ML can be used as a tool to advance scientific discovery. Notable 
successes include AlphaFold [20] for predicting protein folding and machine learning for event 
generation and simulation-based inference in high-energy physics [10]. Beyond the natural 
sciences, a growing community of researchers are also looking at ML as a tool to aid the 
research mathematician. Some of this research explores the use of LLMs and related models to 
aid in proof writing and higher mathematical reasoning [34,40]x, but there is also a need for 
models to help analyze (what we call) ‘raw' mathematical data. This data, which often takes the 
form of (very) long lists of examples, is used by the mathematician to develop intuition and 
formulate conjectures. Though the popular perception is that research mathematics takes place 
at a level of abstraction beyond individual instances, the manual examination of examples (data) 
constitutes a fundamental part of the mathematician’s workflow for many problems. For 
example, when trying to better understand the coefficients of a particular family of polynomials 
(e.g., Kazhdan-Lusztig polynomials in Section 2.0), a mathematician may look through 
countless examples to either generate conjectures or build evidence for existing conjectures 
that they have. 

Existing applications of machine learning to raw mathematics data tend to fall into one of two 
types. The first are toy problems that are simple enough that we can hope to explicitly describe 
how the model is solving the problem. Example tasks include: modular addition [40, 29], 
multiplication of small symmetric groups [28], and other arithmetic tasks [27]. These are used by 
AI researchers in the interpretability community (particularly mechanistic interpretability) as 
small, self-contained, and tractable problems where at least one solution is very well 
understood. By design these do not represent (or even aim at) open problems in mathematics. 
The other cluster of works focus on solving very specific problems in research-level 
mathematics [13,39]. These works tend to come from the mathematics community and often 
come with a high knowledge barrier, requiring the reader to already be relatively familiar with the 
underlying domain (an exception is [45]). For these, machine learning is often just one of 
several tools used when solving the problem of interest and is not the primary contribution of the 
paper.  
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Figure 1: A visualization of the tasks included in ACBench. 

Unfortunately, neither of these types of works satisfy the needs of a benchmark. While toy tasks 
like modular arithmetic are ideal for mechanistic interpretability research, they do not represent 
the kinds of problems that mathematicians work on. On the other hand, papers coming from the 
mathematics community each use different datasets and require extensive background 
knowledge to understand. To fill the need for accessible benchmarks that represent modern 
mathematics research but are structured for machine learning research we present Algebraic 
Combinatorics Benchmarks (ACBench)1 a collection of 9 datasets designed for the development 
of machine learning tools to advance research mathematics. Our benchmark includes both open 
problems and classic problems whose solution is a major result in the field. Algebraic 
combinatorics is an area of mathematics that studies discrete structures arising from abstract 
algebra (including algebraic geometry and representation theory). We chose to focus on this 
domain because: (i) it requires less background theory to understand, making it generally more 
accessible than, for instance, algebraic topology, differential geometry, or analysis, while still 
remaining absolutely fundamental to cutting-edge mathematics, (ii) there already exist 
specialized software libraries (e.g., Sage [36]) designed to efficiently compute many quantities 

 
1 Datasets and associated code can be found at https://github.com/pnnl/ML4AlgComb 
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of interest in algebraic combinatorics, and (iii) by nature of being discrete, the objects of interest 
in algebraic combinatorics tend to be more amendable to representation on a computer.  

We believe that three communities will find this benchmark useful. The most obvious are 
researchers from either machine learning or mathematics that are interested in accessible 
problems that can be used when developing methods for mathematics research. The second is 
interpretability researchers, since finding a solution to an open problem through the 
interpretation of a performant neural network would be a major accomplishment for the field. 
Finally, ‘science of deep learning’ researchers may be interested in datasets representing 
complex tasks for which one can generate an arbitrary amount of data and make data of 
arbitrary input dimension and complexity, adding to existing resources in this direction (e.g., 
[38]). 

In summary our contributions in this paper include 

• The introduction of the Algebraic Combinatorics Benchmark which contains a range of 
machine learning tasks around both open problems and seminal results in the 
mathematical discipline of algebraic combinatorics.     

• Descriptions of all datasets including relevant background, mathematical context, open 
problems around the dataset (if any) and the significance of existing solutions (if not).     

• A discussion of the challenges involved in developing mathematics-based ML 
benchmarks and interesting aspects of training models on ACBench datasets such as 
dependence on size parameters and apparent difficulty of each task. 

1.1 Background and Datatypes 

The field of combinatorics studies a broad range of problems in mathematics centered around 
discrete objects (e.g, partial orders, graphs, permutations, partitions) [35,36]. Ideas and tools 
from combinatorics play an essential role in many other fields of mathematics and continue to 
have a strong impact on computer science and physics. Algebraic combinatorics is a subfield of 
combinatorics that applies combinatorial methods to problems arising from abstract algebra, 
particularly algebraic geometry and representation theory. In this section we review datatypes 
that play a central role in the field and that appear in ACBench.  

Partitions: We use the word partition in this work to mean an integer partition. An integer 
partition of 𝑛𝑛 ∈  ℕ>0 is a sequence of positive integers (𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑘𝑘) such that 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2 +
⋯+ 𝑛𝑛𝑘𝑘 and 𝑛𝑛1 ≥ 𝑛𝑛2 ≥ ⋯ ≥ 𝑛𝑛𝑘𝑘. We use the standard notation 𝜇𝜇 ⊢ 𝑛𝑛 to denote that 𝜇𝜇 is a partition 
of 𝑛𝑛. A partition (𝑛𝑛1, … ,𝑛𝑛_𝑘𝑘) is often visualized as a Young diagram, with 𝑛𝑛1 left justified square 
cells in the first row, 𝑛𝑛2 left justified square cells in the second row, etc. See Figure 2. 
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Figure 2: (Left) A Young diagram for the partition (3,2,2). (Center) A standard Young tableaux 
for the partition (3,2,2). (Right) A semistandard Young tableaux for the partition (3,2,2). 

Young tableaux: We noted above that a partition can be visualized as a Young diagram. 
Surprisingly, including extra decorations on the cells in a Young diagram can capture 
fundamental combinatorics in representation theory and other fields. A Young tableau 
corresponding to a Young diagram 𝜆𝜆 ⊢ 𝑛𝑛 is a labeling of the cells of 𝜆𝜆 by an alphabet of 
symbols. In this work we will consider two types of Young tableau. A standard Young tableau 
corresponding to partition 𝜆𝜆 ⊢ 𝑛𝑛 is a labeling of the cells of 𝜆𝜆 by 1, 2, … ,𝑛𝑛 such that the integers 
strictly increase as one moves down a column or left to right across a row. See Figure 2 (center) 
for an example of a standard Young tableau for the partition (3,2,2) of 7. The definition of a 
semistandard Young tableau is analogous except that the entries are only assumed to weakly 
increase as one moves from left to right along a row (see Figure 2 (right)). 

Permutations: Permutations are familiar in machine learning from their central role in computer 
science as well as their relevance to symmetries in many neural networks [16,2,19] and as a 
symmetry in graphs [24] and set-based problems [40,26]. There are many ways to represent a 
permutation. In this paper we use one-line notation, which is best illustrated through an 
example. Suppose that 𝜔𝜔 is the permutation of the set of elements {1,2,3,4} that swaps 1 and 2 
and 3 and 4. Then in one-line notation we would write 𝜔𝜔 = 2 1 4 3. 2 is in the first position since 
1 is sent to 2, 1 is in the second position since 2 is sent to 1, 4 is in the third position since 3 is 
sent to 3, and 3 is in the fourth position since  4 is sent to  3. 

Permutations can be written as sequences of transpositions of adjacent elements. For instance, 
the permutation 𝜎𝜎 = 3 1 2 can be formed by swapping  1 2 3 → 1 3 2 → 3 1 2. If we denote a 
transposition of the 𝑖𝑖th and  (𝑖𝑖 + 1)st element as 𝑠𝑠𝑖𝑖 and read from right to left (as is the 
convention) then 𝜎𝜎 can be written as  𝑠𝑠1𝑠𝑠2. A sequence of adjacent transpositions 𝑠𝑠𝑖𝑖1𝑠𝑠𝑖𝑖2 … 𝑠𝑠𝑖𝑖𝑘𝑘 
corresponding to a permutation 𝜎𝜎 is called a reduced word if there is no other representations 
that uses fewer than 𝑘𝑘 adjacent transpositions to represent  𝜎𝜎. Finally, two reduced words are 
considered commutation equivalent if one can be obtained from another by swaps of the form 
𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 ↦ 𝑠𝑠𝑗𝑗𝑠𝑠𝑖𝑖 where |𝑖𝑖 − 𝑗𝑗| > 1. A descent in a permutation 𝜎𝜎 = 𝑎𝑎1𝑎𝑎2 … 𝑎𝑎𝑛𝑛 is a pair (𝑎𝑎𝑖𝑖, 𝑎𝑎_𝑗𝑗) such 
that 𝑖𝑖 < 𝑗𝑗 but 𝑎𝑎𝑖𝑖 > 𝑎𝑎𝑗𝑗. The descent set of 𝜎𝜎 is simply the set of all descents. A related notion is 
that of a  3412 pattern. This is a quadruple (𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑗𝑗,𝑎𝑎𝑘𝑘 ,𝑎𝑎ℓ) such that 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 < ℓ but 𝑎𝑎𝑘𝑘 < 𝑎𝑎ℓ <
𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗. Descents and patterns have deep connections to algebra and geometry. 

In the discussion above we implicitly thought of permutations of 𝑛𝑛 as bijective functions from 
{1,2, … ,𝑛𝑛} → {1,2, … ,𝑛𝑛}. Using this perspective, one can define the composition of two 
permutations. The symmetric group, denoted 𝑆𝑆𝑛𝑛, is defined as the group of permutations on 𝑛𝑛 
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elements using composition as the group operation. (The sequence 𝑠𝑠1𝑠𝑠2 from the previous 
paragraph gave an example of the composition of two permutations). 

Posets: A partially ordered set (poset) is a set 𝑃𝑃 of objects equipped with a binary relation, 
typically denoted ≤ , that is reflexive, antisymmetric, and transitive. This means that for all 
elements 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝑃𝑃: (1) 𝑎𝑎 ≤ 𝑎𝑎, (2) If 𝑎𝑎 ≤ 𝑏𝑏 and 𝑏𝑏 ≤ 𝑎𝑎, then 𝑏𝑏 = 𝑎𝑎, and (3) if 𝑎𝑎 ≤ 𝑏𝑏 and 𝑏𝑏 ≤ 𝑐𝑐, then 
𝑎𝑎 ≤ 𝑐𝑐. Unlike total orders which are more familiar (e.g., ℤ), in a partial order some pairs of 
elements may be incomparable. An example of a partially ordered set is the set of all subsets of 
{1,2,3,4}, ordered by inclusion. This is a partial order and not a total order because {1,2} is not 
comparable to {2,3} or to {2,3,4}, for example. In a poset, 𝑦𝑦 covers 𝑥𝑥 if 𝑦𝑦 is greater than 𝑥𝑥 with 
respect to the ordering, and there is no element 𝑧𝑧 such that 𝑦𝑦 >  𝑧𝑧 > 𝑥𝑥. In this example, {1,2,4} 
covers {1, 2}, {2, 4}, and {1, 4}, but not {1}, {2}, or {4}. 
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2.0 Datasets 
2.1 Partial orders on lattice paths (open problem) 

[33] defines two order relations on NE lattice paths from (0,0) to (𝑎𝑎, 𝑏𝑏) called the matching 
ordering (≤𝑀𝑀) and the Lagrange ordering (≤𝐿𝐿), and proposes studying these partially ordered 
sets. The matching ordering assigns a number to each lattice path based on the number of 
perfect matchings of an associated snake graph, while the Lagrange ordering assigns a number 
to each lattice path equal to the Lagrange number of a continued fraction. These numbers each 
define the respective partial order. An open question related to the matching and Lagrange 
orders is whether we can find a simple way of determining whether two paths 𝑤𝑤 and 𝑤𝑤′ have the 
same relationship in both orders (𝑤𝑤 ≤𝐿𝐿 𝑤𝑤′ and 𝑤𝑤 ≤𝑀𝑀 𝑤𝑤′) or different relationships in both orders 
(𝑤𝑤 ≤𝐿𝐿 𝑤𝑤′ and 𝑤𝑤 ≥𝑀𝑀 𝑤𝑤′) or vice versa) [43].  

Dataset: Pairs of NE 1 (𝑤𝑤,𝑤𝑤′)  on a grid of size 𝑛𝑛 × 𝑛𝑛 − 1 where 𝑤𝑤’ covers 𝑤𝑤 in either the 
matching or Lagrange order (but not both). We include 𝑛𝑛 = 10, 11, 12, 13. 

Task (classification): Train a model that can predict whether (𝑤𝑤,𝑤𝑤′)  is a covering pair in 
Lagrange or matching order. 

2.2 Weaving patterns (open problem) 

Weaving patterns are (𝑛𝑛 × 𝑛𝑛 − 1)-matrices with {0,1}-entries introduced by Felsner [17] to study 
the number of reduced decompositions of the permutation 𝜎𝜎 = 𝑛𝑛,𝑛𝑛 − 1, … , 1 up to commutation 
equivalence. The number of such objects also counts the number of parallel sorting networks, 
the number of rhombic tilings of regular polygons, and is connected to the study of the higher 
Bruhat orders.   

Weaving patterns can be enriched by replacing the {0,1}-entries to the matrix with {1,2, … ,𝑛𝑛}-
entries that track the element being swapped. An 𝑂𝑂(𝑛𝑛2) algorithm for determining if a given 0-1 
matrix is a valid weaving pattern exists but gives no additional insight into the structure of 
weaving patterns and correspondingly the asymptotics of reduced decompositions. 

The enumeration of reduced decompositions up to commutation equivalence has been studied 
by many including Knuth and Stanley. 

An exact formula is likely out of reach, so asymptotic upper and lower bounds are of great 
interest. ML models that can detect necessary or sufficient conditions for a matrix to be a valid 
weaving pattern have the potential to lead to substantial improvements in the upper bound. 

Dataset: A mixture of enriched weaving patterns and non-weaving pattern matrices with 
{1, 2, … ,𝑛𝑛}-entries. 

Task: Classify whether a matrix in the dataset is a weaving pattern or not. 

2.3 Mutation equivalence of quivers (open problem) 

Quivers and quiver mutations are central to the combinatorial study of cluster algebras, 
algebraic structures with connections to Poisson Geometry, string theory, and Teichmuller 
theory. Leaving precise definitions for the Appendix, quivers are directed graphs, and a quiver 
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mutation is a local transformation of the graph involving certain vertices and arrows that 
produces a new quiver. A fundamental open problem in this area is to find an algorithm that 
determines whether two quivers are mutation equivalent. Currently, no such algorithm exists for 
quivers on more than three vertices.  

Recent work has explored whether deep learning models can learn to correctly predict if two 
quivers are mutation equivalent [4]. Our dataset aims to facilitate continuation of this work. In [4] 
and in our dataset, quivers are represented using adjacency matrices.  

Dataset: Adjacency matrices for seven quivers, each with 11 vertices, labeled by mutation 
equivalence class. 

Task: Classify which mutation equivalence class an adjacency matrix corresponds to. 

2.4 Symmetric group characters (classic result) 

One way to understand the algebraic structure of permutations (symmetric groups, 𝑆𝑆𝑛𝑛) is 
through their representation theory [31], which converts algebraic questions into linear algebra 
questions that are often easier to solve.  

A representation of group 𝐺𝐺 on vector space 𝑉𝑉, is a map 𝜙𝜙:𝐺𝐺 → 𝐺𝐺𝐺𝐺(𝑉𝑉) converts elements of 𝑔𝑔 to 
invertible matrices on vector space 𝑉𝑉 and which respects the compositional structure of the 
group. A basic result in representation theory says that all representations of a finite group can 
be decomposed into atomic building blocks called irreducible representations. Amazingly, 
irreducible representations are themselves uniquely determined by the value of the trace, 
𝑇𝑇𝑇𝑇(𝜙𝜙(𝑔𝑔)), where 𝑔𝑔 ranges over subsets of 𝐺𝐺 called conjugacy classes. These values are called 
characters.  

The representation theory of symmetric groups has rich combinatorial interpretations. Both 
irreducible representations of 𝑆𝑆𝑛𝑛 and the conjugacy classes of 𝑆𝑆𝑛𝑛 are indexed by partitions of 𝑛𝑛 
and thus the characters of irreducible representations of 𝑆𝑆𝑛𝑛 are indexed by two partitions of 𝑛𝑛. 
For 𝜆𝜆, 𝜇𝜇 ⊢ 𝑛𝑛 we write 𝜒𝜒𝜇𝜇𝜆𝜆. This combinatorial connection is not superficial, there are algorithms 
(e.g., the Murnaghan-Nakayama rule), which allow calculation of irreducible characters via 
simple manipulation of the Young diagrams for 𝜆𝜆 and 𝜇𝜇 without any reference to algebra.  

Dataset: Pairs of integer partitions of 𝑛𝑛, 𝜆𝜆, 𝜇𝜇 and the corresponding symmetric group character 
𝜒𝜒𝜇𝜇𝜆𝜆. 

Task: Given partitions 𝜆𝜆 and 𝜇𝜇, predict the irreducible symmetric group character 𝜒𝜒𝜇𝜇𝜆𝜆. 

2.5 The coefficients of Kazhdan-Lusztig polynomials (open problem) 

Kazhdan-Lusztig (KL) polynomials are integer polynomials in a variable 𝑞𝑞 that (for our purposes) 
are indexed by a pair of permutations [23]. We will write the KL polynomial associated with 
permutations 𝜎𝜎 and 𝜈𝜈 as 𝑃𝑃𝜎𝜎,𝜈𝜈(𝑞𝑞). For example, the KL polynomial associated with permutations 
𝜎𝜎 = 1 4 3 2 7 6 5 10 9 8 11 and 𝜈𝜈 = 4 6 7 8 9 10 1 11 2 3 5 is 

𝑃𝑃𝜎𝜎,𝜈𝜈 = 1 + 16𝑞𝑞 + 103𝑞𝑞2 + 337𝑞𝑞3 + 566𝑞𝑞4 + 529𝑞𝑞5 + 275𝑞𝑞6 + 66𝑞𝑞7 + 3𝑞𝑞8 
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(this example comes from [1]). KL polynomials have deep connections throughout several areas 
of mathematics. For example, KL polynomials are related to the dimensions of intersection 
homology in Schubert calculus, the study of the Hecke algebra, and representation theory of the 
symmetric group. They can be computed via a recursive formula [23], nevertheless, in many 
ways they remain mysterious. For instance, there is no known closed formula for the degree of 
𝑃𝑃𝜎𝜎,𝜈𝜈(𝑞𝑞). 

One type of question of special interest is the value of coefficient on the terms of 𝑞𝑞 in 𝑃𝑃𝜎𝜎,𝜈𝜈(𝑞𝑞). 
Perhaps most well-known is the question of the coefficient on term 𝑞𝑞ℓ(𝜎𝜎)−ℓ(𝜈𝜈)−1/2 (where ℓ(𝑥𝑥) is 
a statistic called the length of the permutation), which is known as the 𝜇𝜇-coefficient. Better 
understanding of this and other coefficients has the potential to shed considerable light on other 
aspects of this family of polynomials.  

Dataset: Each instance in this dataset consists of a pair of permutations on 𝑛𝑛, 𝜎𝜎 and 𝜈𝜈, along 
with the coefficients of 𝑃𝑃𝜎𝜎,𝜈𝜈(𝑞𝑞). We provide 𝑛𝑛 = 8,9,10. 

Task: The task to predict the coefficients of 𝑃𝑃𝜎𝜎,𝜈𝜈(𝑞𝑞) given 𝜎𝜎 and 𝜈𝜈. 

2.6 The mHeight function of a permutation (intermediary result) 

The mHeight function is a statistic associated with a permutation that relates to all 3412-patterns 
in the permutation (see Section 3 for the definition of a 3412-pattern). It plays a crucial role in 
the proof by Gaetz and Gao [18] which resolved a long-standing conjecture of Billey and 
Postnikov [8] about the coefficients on Kazhdan-Lusztig polynomials which carry important 
geometric information about certain spaces, Schubert varieties, that are of interest both to 
mathematicians and physicists. The task of predicting the mHeight function thus represents an 
interesting opportunity to understand whether a non-trivial intermediate step in an important 
proof can be learned by machine learning.  

Let 𝜎𝜎 = 𝑎𝑎1 …𝑎𝑎𝑛𝑛 ∈ 𝑆𝑆𝑛𝑛 be a permutation containing at least one occurrence of a 3412 pattern. Let 
(𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑗𝑗,𝑎𝑎𝑘𝑘 ,𝑎𝑎ℓ) be a 3412 pattern so that 1 ≤ 𝑖𝑖 < 𝑗𝑗 < ℓ ≤ 𝑛𝑛 but 𝑎𝑎𝑘𝑘 < 𝑎𝑎ℓ < 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗. The height of 
(𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑗𝑗,𝑎𝑎𝑘𝑘 ,𝑎𝑎ℓ) is 𝑎𝑎ℓ − 𝑎𝑎𝑖𝑖. The mHeight of 𝜎𝜎 is then the minimum height over all 3412 patterns in 
𝜎𝜎. 

Dataset: Permutations of size 𝑛𝑛 labeled by their mHeight. We provide datasets for 𝑛𝑛 =
10, 11, 12. 

Task: Predict the mHeight of a permutation. 

2.7 Schubert polynomial structure constants (open problem) 

Schubert polynomials [7, 15, 25] are a family of polynomials indexed by permutations of 𝑆𝑆𝑛𝑛. 
Developed to study the cohomology ring of the flag variety, they have deep connections to 
algebraic geometry, Lie theory, and representation theory. Despite their geometric origins, 
Schubert polynomials can be described completely combinatorially ([9,6]), making them a well-
studied object in algebraic combinatorics. An important open problem in the study of Schubert 
polynomials is understanding their structure constants.  

When two Schubert polynomials are multiplied, their product is a linear combination of Schubert 
polynomials, i.e. 𝒮𝒮𝛽𝛽𝒮𝒮𝛾𝛾 =  ∑ 𝑐𝑐𝛽𝛽𝛽𝛽

𝛼𝛼 𝒮𝒮𝛼𝛼𝛼𝛼 . The question is whether the 𝑐𝑐𝛽𝛽𝛽𝛽𝛼𝛼  (the structure constants) 
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have a combinatorial description or formula. To give an example of what we mean by 
combinatorial description, in the case of Schur polynomials (which can be viewed as specific 
case of Schubert polynomials), the coefficients in the product are equal to the number of 
semistandard tableaux satisfying certain properties. 

Dataset: Each instance in this dataset is a triple of permutations (𝛽𝛽, 𝛾𝛾,𝛼𝛼), labeled by its 
coefficient 𝑐𝑐𝛽𝛽𝛽𝛽𝛼𝛼  in the expansion of the product 𝒮𝒮𝛽𝛽𝒮𝒮𝛾𝛾. Not all possible triples of permutations are 
included; the dataset consists of an approximately equal number of zero and nonzero 
coefficients. We provide datasets for 𝑛𝑛 = 4,5,6. 

Task: The task is to predict the coefficient 𝑐𝑐𝛽𝛽𝛽𝛽𝛼𝛼 . 

2.8 Robinson-Schensted-Knuth correspondence (classic result) 

The Robinson-Schensted (RS) algorithm [30,32] gives a bijection between pairs of standard 
Young tableau of the same shape 𝜆𝜆 ⊢ 𝑛𝑛 and permutations in 𝑆𝑆𝑛𝑛 of conjugacy class 𝜆𝜆, providing 
a bijective proof of a fundamental identity from representation theory. Knuth extended the RS 
algorithm to a bijection known as the Robinson-Schensted-Knuth (RSK) correspondence, which 
maps matrices of non-negative integers to pairs of semistandard Young tableaux of the same 
shape. This correspondence is significant in algebraic combinatorics not only because of the 
connection it provides between the combinatorial structure of Young tableaux and the theory of 
symmetric functions, but also because of the many generalizations and variants it has inspired, 
which has led to substantial progress in the field. 

The goal of this benchmark is to see whether a model can learn the RSK algorithm. That is, for 
a fixed 𝑛𝑛 the model is provided with a permutation 𝜋𝜋 ∈ 𝑆𝑆𝑛𝑛 and required to predict pairs of 
standard Young tableaux. Although the algorithm is known, it would be significant for a model to 
learn this correspondence due to the the intricate combinatorial rules involved. Notably, the RSK 
correspondence can be used to find the length of the longest increasing subsequence, so a 
model that learns this algorithm implicitly must also learn to solve the increasing subsequence 
problem. Additionally, given the numerous generalizations of the RSK correspondence, a model 
that performs well on this benchmark could potentially be investigated for its ability to generalize 
to other related combinatorial settings.  

Dataset: This dataset consists of triples: two standard Young tableau of size 𝑛𝑛 and their 
corresponding permutation (via the RSK algorithm). We include datasets for 𝑛𝑛 = 8, 9, 10. 

Task: Given pairs of standard Young tableau, predict the corresponding permutation. 

2.9 Grassmannian Cluster Algebras and SSYTs (open problem) 

The Grassmann manifold 𝐺𝐺𝐺𝐺(𝑘𝑘,𝑛𝑛) is the set of full-rank 𝑘𝑘 × 𝑛𝑛 matrices up to equivalence of 
elementary row operations (equivalently the space whose points are 𝑘𝑘-dimensional subspaces 
in ℝ𝑛𝑛). Grassmannians are of fundamental geometric importance and are a central tool in a 
model of quantum field theory known as supersymmetric Yang-Mills theory.  

Among the many algebraic-combinatorial properties of Grassmannians is an algebraic structure 
on its coordinate ring making it a cluster algebra. A recent result of Chang, Duan, Fraser, and Li 
[11] parameterize cluster variables of the Grassmannian coordinate ring in terms of equivalence 
classes of semistandard Young tableaux. Not every semistandard Young tableaux indexes a 
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cluster variable and a natural question to ask is which are valid cluster variable indices. A 
necessary condition is that the tableaux is of rectangular shape. We follow the set-up set up of 
[12] who first applied machine learning to this problem, though we choose a different method of 
sampling tableau that do not index cluster variables. 

Dataset: A collection of rectangular semistandard Young tableau each with a label indicating 
whether they index a cluster variable or not. 

Task: Predict whether a Young tableaux indexes a cluster variable. 
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3.0 Discussion 
3.1 Challenges when generating mathematics benchmarks 

Generating useful benchmark datasets for mathematics problems presents a number of 
challenges. Some of these are common to many scientific domains while others are more 
specific to mathematics. In the former case, imbalance is an issue in several ways. On the one 
hand, traditional class imbalance comes up frequently. For instance, if the symmetric group 
character training dataset for 𝑛𝑛 = 18 is treated as a classification problem, it has 46,285 
instances where the character value is 0 and only two instances where the character value is 
16,336,320. 

Besides class imbalance, there can also be imbalance in terms of how interesting examples of a 
dataset are. For a given task, it may be the case that the vast majority of randomly sampled 
instances are uninteresting because they can be predicted or classified for straightforward 
reasons. In these cases, individual instances do not capture the mathematics that we care 
about. When enough data exists, one way to mitigate this situation is to subsample for harder 
examples. This is what we did for a number of the datasets in ACBench including Weaving 
Patterns where we imposed some additional constraints on the non-weaving pattern {1,2, … ,𝑛𝑛}-
matrices to make them harder to distinguish from true weaving patterns. Similarly, after training 
on our initial version of the Grassmannian Cluster Algebras dataset (created by [12]), 
interpretability methods showed that our models (which performed very well) had simply 
identified that one can't have a 3 in the top right and a 10 in the bottom left. We revisited our 
negative sampling algorithm to create a problem where a model would be forced to learn 
features that were more interesting. 

Finally, the choice of input representation can have large downstream impacts on how hard it is 
for a model to learn to solve a task. For example, there are many equivalent ways to represent a 
permutation. Similar to other parity prediction tasks [20], prediction of permutation parity is a 
hard task for transformers. However, these models do substantially better when input 
permutations are represented via their inversion vector rather than one-line notation. At an 
intuitive level, this feels unsurprising since the process of calculating parity is much easier if one 
already has the inversion set. Thus, one can often change the difficulty of a problem (with a 
known solution) by optimizing the input representation. Since one of the goals of this benchmark 
is to try to help develop ML methods that can be applied to open problems where we do not 
know the best representation, we have usually opted to represent datatypes in a standard way. 
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Figure 3: Baseline performance of two model types: logistic regression and transformers 

 

3.2 Baselines 

We ran our initial baselines on all datasets in the benchmark using transformers and logistic 
regression. Our results are summarized in Figure 1. As can be seen, the performance of models 
varies considerably on different tasks. Some tasks are quite hard (such as symmetric group 
character calculation) with results that are nearly equivalent to guessing the most populous 
class. Other tasks were considerably easier such as predicting the mHeight function of a 
permutation. 

3.3 Dependence on 𝒏𝒏 

Many problems in algebraic combinatorics have a natural dependence on a parameter 𝑛𝑛. We 
have chosen to structure datasets in ACBench to reflect this, with the majority of datasets taking 
the form of a series of datasets {𝐷𝐷𝑛𝑛}𝑛𝑛≥1. We provide a few values of 𝑛𝑛 and, in many cases, the 
code to generate others.  

There is no reason one could not combine all 𝐷𝐷𝑛𝑛 into a single large dataset, but we decided that 
retaining the dependence on 𝑛𝑛 provided an interesting additional parameter that could be used 
to probe ML algorithms. For instance, generalization from 𝐷𝐷𝑛𝑛−1 to 𝐷𝐷𝑛𝑛 or changes in model 
performance as 𝑛𝑛 grows. 

Generally, there are two properties that change as 𝑛𝑛 → ∞. First, the size of 𝐷𝐷𝑛𝑛 grows as 𝑛𝑛 
grows. The rate of growth depends on the specific problem, with many |𝐷𝐷𝑛𝑛| growing 
exponentially (such as those datasets that depend on the number of permutations of 𝑛𝑛). On the 
other hand, the problems also tend to become more complex. We were curious of how this 
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balance would play out empirically when we trained models on different 𝐷𝐷𝑛𝑛. Experimentally we 
found mixed results. For example, we ran 5 2-layer MLP models for 500 epochs on the Lattice 
Path Datasets corresponding to grids of size 6 × 5, … , 13 × 12. We see in Figure 4 (left) that with 
an interesting exception of moving from 7 × 6 to 8 × 7, performance across a range of 
dimensions improves as 𝑛𝑛 grows. 

On the other hand, we also looked at sampling from greater depth when exploring the Mutation 
Equivalent Quiver dataset (this means allowing a greater number of mutations to be applied to 
the initial quiver). As shown in Figure 4 (center), we find that performance somewhat degrades 
even though the size of the datasets increases. We suspect that exploration of the complexity of 
these problems (where it is known) might be an avenue for shedding light on this phenomenon. 
In either case, it seems safe to say that ML algorithms perform best at a scale which human 
mathematicians would likely have trouble fully absorbing (an algorithm can learn from billions of 
permutations, but humans are more limited in what we can hope to look over).  

 

 

 
Figure 4: (Left) Performance on the Lattice Path Dataset as a function of the width of the 
𝑛𝑛 × 𝑛𝑛 − 1 grid on which lattice paths are constrained to. As 𝑛𝑛 grows in 𝑛𝑛 × 𝑛𝑛 − 1, the training set 
size increases but problem complexity may also grow. (Center) Performance on the type 𝐸𝐸 
versus type 𝐷𝐷 quiver classification task as a function of the depth, which must be specified for 
type 𝐸𝐸 quivers on 𝑁𝑁 = 10, 11, 12 vertices, and (Right) the number of vertices 𝑁𝑁. 
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4.0 Conclusion and Limitations 
In this paper we introduced Algebraic Combinatorics Benchmarks (ACBench), a collection of 
datasets structured for machine learning and designed to facilitate the development of machine 
learning methods for advancing research level mathematics.  While we believe that these 
datasets will provide significant value to the ML community, they also have some limitations. 
Firstly, even within the field of algebraic combinatorics (which is just one subfield of 
mathematics) they only represent a small slice of the total breadth of problems. We hope that 
community feedback will help us to fill some of these gaps. Also, a range of choices needed to 
be made when structuring these datasets (such as choosing the representation of a datatype or 
sampling strategy). While we think we made reasonable choices, the novelty of the field of AI for 
math means that we can't be certain of this. Despite these limitations, we believe that ML tools 
for mathematics is a promising route to a richer and more diverse mathematics. We hope that 
these benchmarks will be useful to researchers looking to make progress in this area. 
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