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Abstract 
Soil moisture is essential to the terrestrial carbon and water cycles and land–atmosphere 

interactions. There are various types of soil moisture data, and each type has the distinct 
spatiotemporal strengths and limitations, depending on the diverse applications and retrieval 
methodologies of different data types (Li et al., in review; The PNNL-82151 FY23 Report). 
However, the limitations of different soil moisture data in terms of accuracy and spatiotemporal 
coverage hinder our ability to further understand the soil moisture dynamics across scales. To 
have a gap free soil moisture data product with a fine spatiotemporal coverage and vertical 
profiles, we train extreme gradient boosting (XGBoost) models by using (1) in-situ soil moisture 
measurements from the International Soil Moisture Network (ISMN), (2) soil moisture from the 
ECMWF reanalysis (ERA) at the 9 km and sub-daily spatiotemporal resolution, (3) the Daymet 
meteorological fields, and (4) data products that characterize surface conditions, including soil 
texture, organic content, topography, vegetation type, and rooting depth. We use the trained 
XGBoost models that have consistent performance across seven soil layers, i.e., 0–5 cm, 5–10 
cm, 10–20 cm, 20–40 cm, 40–60 cm, 60–100 cm, and 100–200 cm, and the gridded model 
predictors to generate a soil moisture data at the 1 km and daily spatiotemporal resolution for the 
Continental United States (CONUS) from 2001–2020. This dataset can be broadly used for Earth 
system model benchmark, monitoring extreme weathers, making informed decisions regarding 
agriculture, water resource management, climate change mitigation, and ecosystem preservation.   
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Summary 
 This study develops a gap free soil moisture data product at the 1 km and daily spatiotemporal 
resolution with seven soil layers over the Continental United States (CONUS) during 2001–2020. 
To develop this data, we train machine learning (i.e., XGBoost) models by using existing datasets, 
including in-situ soil moisture measurements, a reanalysis soil moisture dataset at the 9 km and 
sub-daily spatiotemporal resolution, meteorological fields from Daymet, and data products that 
characterize surface conditions, such as soil texture, organic content, topography, vegetation type, 
and rooting depth. The XGBoost models have a high performance and are used to generate the 
daily, 1km soil moisture data over CONUS. This CONUS based soil moisture data product can 
enhance the fundamental understanding of the carbon and water interactions and land–
atmosphere feedback under the varying climate and extreme weather conditions at a fine 
spatiotemporal resolution. The data product can be adequately used to benchmark and 
parameterize Earth system models, such as the Energy Exascale Earth System Model (E3SM) 
developed by Department of Energy (DOE).   
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Acronyms and Abbreviations 
CONUS: Continental United States 
DOE: Department of Energy 
E3SM: Energy Exascale Earth System Model  
ESM: Earth system models 
ML: Machine learning 
ERA: The ECMWF reanalysis  
ISMN: International Soil Moisture Network  
SHAP: SHapley Additive exPlanations  
XGBoost: Extreme Gradient Boosting 
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1.0 Introduction 
Soil moisture is a key to the terrestrial carbon and water interactions, and determines the 

water and energy fluxes, which are essential to the land–atmosphere feedback (Humphrey et al., 
2021; Liu et al., 2022; Ochsner et al., 2013; Seneviratne et al., 2010). To develop soil moisture 
products with high data quality and accuracy, both the observational and modelling communities 
have been working on the enhancement of soil moisture monitoring and simulation (e.g., Chan et 
al., 2016; Dorigo et al., 2013; Rodell et al., 2004). Therefore, there are a variety of types of soil 
moisture data sources, including in-situ soil moisture measurements, remote sensing products, 
land surface model output, reanalysis data, and machine learning data products (Li et al., in 
review). These data types show distinct strengths and limitations, reflecting their diverse 
applications and methodologies.  

Soil moisture observational methods include in-situ soil moisture sensors and remote-
sensing. In-situ soil moisture has high temporal but limited spatial coverages (Dorigo et al., 2021), 
thus it is insufficient to use in-situ data to represent soil moisture changes at the kilometer (e.g., 
the gridcell sizes of Earth system models [ESMs]), regional, and global scales. Remote sensing 
can monitor surface soil moisture from the regional to global scales. However, remote-sensing 
data samplings are limited by the spatial resolution, revisiting time frequency, and penetration 
depth of instrumental design. For example, due to the failure of the radar of the Soil Moisture 
Active Passive [SMAP]), SMAP can only monitor surface (i.e., 0–5 cm) soil moisture at the 9 km 
spatial resolution with a global survey per 2–3 days. Therefore, there is still a lack of data coverage 
and consistent resolution across both time and space of soil moisture measurements. 

 By using meteorological conditions and surface features, land surface models can solve 
water and energy balance equations and simulate soil moisture in different soil layers (e.g., 
Schaake et al. 2004). Reanalysis systems, on the other hand, can use existing soil moisture 
measurements and the land surface model frameworks to generate soil moisture data products 
with continued spatiotemporal coverages (e.g., Balsamo et al., 2013; Lievens et al., 2017). 
However, these datasets also have relatively coarse spatial resolutions (e.g., from 9 km to 0.25 
deg; Li et al., in review) and large uncertainties determined by the input data and the physics and 
parameterizations of the host models of the reanalysis systems. All these limitations hinder our 
ability to accurately evaluate ESMs and make informed decisions regarding agriculture, water 
resource management, climate change mitigation, and ecosystem preservation. 
  To develop high quality soil moisture data with high spatiotemporal coverage, this study 
uses both in-situ and gridded data from a variety of sources to train machine learning (ML) models 
(Section 1.1), and develops a 1 kilometer and daily soil moisture dataset with seven layers, 
ranging from the surface to a depth of 2 meters for the contiguous United States (CONUS) over 
the period 2001–2020. This report summarizes methods used for generating of this dataset, 
discusses the broader impacts and future directions of this research.   
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1.1 Methods and Deliverables 

  To develop a gap free soil moisture data product with multiple vertical layers at the 1 km 
and daily spatiotemporal resolution, we train extreme gradient boosting (XGBoost) models by 
using data from several sources: (1) in-situ soil moisture measurements from the International 
Soil Moisture Network (ISMN), (2) hydrological features (e.g., soil moisture, runoff, snow water 
equivalent, groundwater table depth) obtained from ECMWF reanalysis (ERA) at the 9 km and 
sub-daily spatiotemporal resolution, (3) the Daymet meteorological fields, and (4) data products 
that characterize surface conditions, such as soil texture, organic content, topography, vegetation 
type, and rooting depth. The predictors used for the ML model include meteorological conditions 
(e.g., precipitation, air temperature, shortwave radiation), soil properties (i.e., sand percentage, 
organic content), hydrological features (e.g., multi-layer soil moisture, snow water equivalent, 
water table depth, evapotranspiration), vegetation related features (e.g., LAI, rooting depth, land 
cover), and topography (i.e., elevation, slope, aspect). The target variable is the in-situ soil 
moisture data collected from ISMN at seven different depths, i.e., 0–5 cm, 5–10 cm, 10–20 cm, 
20–40 cm, 40–60 cm, 60–100 cm, and 100–200 cm. Separate models are trained for each soli 
layer. We use the trained XGBoost models that have consistent performance in seven soil layers, 
and the grided model predictors, and generate our soil moisture data over CONUS for the period 
2001–2020 (Figure 1).  
 

 
Figure 1. The workflow of this study.  

  Due to the large data volume (~11 terabyte), the process of running the ML code for data 
generation is still ongoing. We show the soil moisture training and testing results and a one-day 
(August 1st, 2010) soil moisture record in Figures 2(a)–(d). Figure 2(a) shows the robustness of 
the testing statistics. In Figures 2(b)–(c), the dots represent the locations of all the ISMN sites with 
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0–5 cm soil moisture measurements, and the coefficient of determination (R2) values and root 
mean square errors (RMSE) further show that the ML model trained for the 0–5 cm layer performs 
well, spatially. In addition, the performance of the ML models varies across different soil layers 
because of the differences in the number of available ISMN soil moisture sites that can be used 
for ML model training (Figure now shown). Here, we use a one-day 0–5 cm soil moisture spatial 
map to indicate that our research framework (Figure 1) is well established for soil moisture data 
development, and we will further perform data validation spatially and temporally using the in-situ 
(e.g., AmeriFlux) soil moisture datasets.     
  We also use SHapley Additive exPlanations (SHAP) to gain an in-depth interpretation of 
the contributions of different XGBoost model predictors to soil moisture (Figure 1). The SHAP 
analysis is based on the five predictor types, and the results show that the hydrological features 
and soil characteristics are the top two most important factors influencing the 0–5 cm soil moisture 
(Figure 2(e)). The importance of different factors varies across soil layers. Overall, soil 
characteristics (i.e., percentage of sand and organic content) are the most important predictors in 
determining soil moisture profiles (i.e., soil moisture in the 5–200 cm layers; figure not shown). 
This research implies the substantial needs of enhancing the spatial and vertical coverage of both 
in-situ and remote sensing soil moisture measurements.  
 

 
Figure 2. The results of ML model training and testing (a)–(c), (d) the developed soil moisture 

product (the day of August 1st, 2010 is shown here as a demonstration), and (e) the 
SHAP analysis based on the five types of predictors (Figure 1) in the 0–5 cm layer 
over CONUS.  
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2.0 Boarder Impacts and Future Directions  
  Most of the existing ML based soil moisture products focus primarily on the surface soil 
moisture (Li et al., 2024, in review). However, soil moisture at the rooting zone determines the 
carbon–water–energy exchanges between the land and atmosphere through the root systems 
with varying complexity across ecosystems (Fan et al., 2017). The existing large-scale soil 
moisture measurements are limited to the surface due to the remote-sensing instrument 
penetration capacity and the soil moisture retrieval methods (Wang et al., 2024). Thus, 
observational based studies that quantify the relationships between soil moisture and gross 
primary production (GPP) at the regional scale mostly rely on surface soil moisture due to the lack 
of products that can represent root zone soil moisture (e.g., He et al., 2017). By using a set of 
algorithms dedicated to the estimation of terrestrial evaporation and root-zone soil moisture from 
satellite data, Marten et al. (2017) developed the Global Land Evaporation Amsterdam Model 
(GLEAM) soil moisture, which has root zone soil moisture. However, the GLEAM soil moisture is 
at a relatively coarse spatiotemporal resolution, i.e., 0.25 degree and monthly. Therefore, the 
existing soil moisture products limit the comprehensive understanding of soil moisture dynamics 
at high spatiotemporal resolutions across different soil layers.  
  The soil moisture product developed by this study provides 20 years (2001–2020) of soil 
moisture data records at the 1 km and daily spatiotemporal resolution to the depth of 2 meters 
over CONUS. This invaluable dataset can be used to enhance the understanding of the carbon–
water interactions (e.g., soil moisture induced GPP changes) across different biomes of CONUS. 
This dataset allows for advanced investigation of soil moisture dynamics under water stressed 
conditions, including drought, flash drought, heatwave, and fire weathers. Thus, we can use this 
data to further study the soil moisture dynamics under pre- and post-water stresses with various 
severity, which facilities a comprehensive understanding of the carbon–water–energy interactions 
and land–atmosphere feedback.  
  This data product can significantly benefit the modelling community. By solving water and 
energy balance equations, ESMs or their land components simulate soil moisture in different soil 
layers, and can develop spatially- and temporally- continuous records with vertical profiles of soil 
moisture (e.g., Schaake et al., 2004). As ESMs are progressively advancing towards the kilometer 
scale (Li et al., 2024), this data can be broadly used by the modelling community for model 
evaluation and uncertainty quantification. Due to the high spatiotemporal resolution of this data, 
which have high computational demands for running the ML models and data archiving, we use 
CONUS as the testbed for data development of this study. The ISMN has soil moisture sensors 
installed over the globe (Dorigo et al., 2017). Since our ML models have demonstrated feasibility 
and success over CONUS, in our next step, we will use this framework to develop a kilometer 
scale global soil moisture dataset with vertical soil layers. The development of a global dataset 
will fundamentally enhance the soil moisture research for both the observational and modelling 
communities.  
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