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Abstract 
Wildfires have shown increasing trends in both frequency and severity across the Contiguous 
United States (CONUS). However, process-based fire models have difficulties in accurately 
simulating the burned area over the CONUS due to a simplification of the physical process and 
cannot capture the interplay among fire, ignition, climate, and human activities. The deficiency of 
burned area simulation deteriorates the description of fire impact on energy balance, water 
budget, and carbon fluxes in the Earth System Models (ESMs). Alternatively, machine learning 
(ML) based fire models, which capture statistical relationships between the burned area and
environmental factors, have shown promising burned area predictions and corresponding fire
impact simulation. We develop a hybrid framework (ML4Fire-XGB) that integrates a pretrained
eXtreme Gradient Boosting (XGBoost) wildfire model with the Energy Exascale Earth System
Model (E3SM) land model (ELM) version 2.1. A Fortran-C-Python deep learning bridge is adapted
to support online communication between ELM and the ML fire model. Specifically, the burned
area predicted by the ML-based wildfire model is directly passed to ELM to adjust the carbon pool
and vegetation dynamics after disturbance, which are then used as predictors in the ML-based
fire model in the next time step. Evaluated against the historical burned area from Global Fire
Emissions Database 5 from 2001-2020, the ML4Fire-XGB model outperforms process-based fire
models in terms of spatial distribution and seasonal variations. Sensitivity analysis confirms that
the ML4Fire-XGB well captures the responses of the burned area to rising temperatures. The
ML4Fire-XGB model has proved to be a new tool for studying vegetation-fire interactions, and
more importantly, enables seamless exploration of climate-fire feedback, working as an active
component in E3SM.
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Summary 
This project focuses on improve the predictability of wildfires over the Contiguous United States 
(CONUS), by developing a hybrid framework that integrates a machine learning (ML) fire model 
with an Earth system model. Due to the complex human activities in both igniting and suppressing 
wildfires, and the impact of climate change altering vegetation growth and fuel flammability, 
wildfire prediction over the CONUS is an ongoing challenge. ML models based on statistical 
relationships bypassing the insufficient physical understanding have been proven overperformed 
process-based fire models. Despite the improved fire predictions, fire impacts on the ecosystem, 
climate, and human community cannot be evaluated without integrating the wildfire process into 
the Earth system. In addition, climate change impacts on the burned area, either directly through 
fire weather conditions, or indirectly through ecosystem productivity, vegetation type, fuel loads, 
and fuel moisture – cannot be fully understood without explicitly representing the complex 
interplays between climate, ecosystems, and fire. Viewing wildfire as an active and interactive 
component in the Earth system is important. In this project, we have developed an integrated 
climate-vegetation-wildfire framework that leverages the Energy Exascale Earth System Model 
(E3SM) land model (ELM) to simulate the response of vegetation to climate change and other 
disturbance, and a pretrained eXtreme Gradient Boosting (XGBoost) wildfire model to predict 
burned area. ELM provides fuel amount and moisture to ML fire model for burned area prediction, 
the burned area, is in turn, passed back to ELM to update the vegetation properties and calculate 
fire emissions. This hybrid framework (ML4Fire) significantly improves burned area prediction in 
terms of both spatial distribution and temporal evolution. Two papers and a dataset are under 
review that describe the ML4Fire framework and evaluate the process fire model. The team also 
presented six presentations on this work.    
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Acronyms and Abbreviations 

CONUS Contiguous United States 
E3SM Energy Exascale System Model 
ELM E3SM Land Model 
ML Machine Learning 
ML4Fire Machine Learning for Fire 
XGBoost eXtreme Gradient Boosting 
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1.0 Project Overview 
Recent wildfire outbreaks worldwide have raised alarms due to wildfires burning longer and more 
intensely in many regions, posing significant threats to human livelihoods and biodiversity. The 
continental United States (CONUS) has emerged as a hotspot for wildfires, where both climate 
change and human activities have fueled a 42% increase in the burned area (Jones et al., 2022). 
Such expansive burned areas release an average of 162 million tons of CO2 and 0.9 million tons 
of PM2.5 annually into the atmosphere, resulting in over $200 billion health costs due to exposure 
to wildfire smoke (Samborska et al., 2024; JEC, 2023). Accurate prediction of wildfire risks has 
become an urgent need.  

Traditional fire models, predominantly process-based models, simulate the behavior of individual 
wildfires using theoretical equations for ignitions and fire spread (Hantson et al., 2016). While 
process-based wildfire models have proven effective in simulating global burned area distribution 
(Hantson et al., 2020), they often fall short of accurately predicting the extent and temporal 
changes of wildfires over the CONUS (Forkel et al., 2019; Teckentrup et al., 2019). Recent 
advances have explored the application of machine learning (ML) techniques in wildfire prediction 
(Zhu et al., 2022). Despite the improved fire predictions, fire impacts on the ecosystem, climate, 
and human community cannot be evaluated without integrating the wildfire process into the Earth 
system. In addition, climate change impacts on the burned area, either directly through fire 
weather conditions, or indirectly through ecosystem productivity, vegetation type, fuel loads, and 
fuel moisture – cannot be fully understood without explicitly representing the complex interplays 
between climate, ecosystems, and fire. 

The goal of this project is to develop a novel hybrid framework to integrate a pretrained ML wildfire 
model with the E3SM land model (ELM) to study the full atmosphere-vegetation-wildfire 
feedbacks. This integration facilitates a dynamic feedback loop where outputs from the ML model 
(i.e., predicted burned areas) inform the land surface processes in ELM, which in turn update the 
inputs for the ML model for subsequent predictions. This approach leverages the detailed physical 
understanding of surface biogeophysical and biogeochemical processes provided by ELM and 
the predictive power of ML-based wildfire models to create a more accurate and robust framework 
for wildfire prediction and impact assessment. 
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2.0 Introducing of the Hybrid Framework 
2.1 Default Wildfire Model in ELM 

The ELM is part of the E3SM project which started with a version of the Community Earth System 
Model (CESM1). The ELM default wildfire module originated from the Community Land Model 
(CLM4.5) (Li et al., 2012). This wildfire model calculates burned areas by multiplying the number 
of wildfires and burned area per fire on a grid-cell level. The number of wildfires (fire count) is 
derived using anthropogenic and natural ignition sources, fuel load and combustibility, surface 
meteorology, and anthropogenic suppression. The natural ignition source is derived from the 
number of cloud-to-ground lightning flashes multiplied by a constant ignition efficiency (Prentice 
and Mackerras, 1977). Anthropogenic ignitions are simply parametrized using a fixed number of 
potential anthropogenic ignitions by a person and population density (Venevsky et al., 2002). 
Humans also suppress wildfires. The capability of fire suppression is assumed to be a function of 
gross domestic product. The ignition efficiency is also altered by fuel conditions, including the fuel 
load (aboveground biomass) and fuel combustibility (approximated using relative humidity, 
temperature, and top or root zone soil moisture). The spread of each fire is approximated using 
an ellipse shape with its length-to-breadth ratio determined by wind speed and fuel moisture 
(Rothermel, 1972). This simple concept well captures the major constraints for predicting the 
global wildfire distribution and seasonal variations (Rabin et al., 2017; Li et al., 2014; Huang et 
al., 2020).  

Like many other process-based wildfire models, the default fire model in ELM benefits from the 
full ecosystem interactions from its hosting land model, as well as the potential to be coupled with 
atmospheric models. With the BGC processes being turned on, ELM-BGC reallocates carbon and 
nitrogen in leaf, wood, root, litter, and soil pools after fire based on plant functional type (PFT)-
dependent carbon combustion and mortality rate. The biogeochemical changes subsequently 
influence biogeophysical properties such as leaf area index (LAI), vegetation canopy height, and 
albedo, disturbing the land-atmosphere exchanges of energy and water fluxes. The post-fire 
vegetation recovery depends on the plant photosynthesis processes and PFT competition 
strategy. The interactions between wildfire and vegetation under historical climate have been 
thoroughly assessed in CLM long-term simulations (Li and Lawrence, 2017; Seo and Kim, 2023). 
The model framework is illustrated in Figure 1. Hereafter the ELM coupled with the process-based 
fire model is referred to as ELM-BGC. 

Besides ELM-BGC, we also obtained burned area from four state-of-the-art process-based 
wildfire models participating the Fire Model Intercomparison Project (FireMIP) (Rabin et al., 2017), 
including the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) 
(Melton et al., 2020), the Simplified Simple Biosphere model coupled with the Top-down 
Representation of Interactive Foliage and Flora Including Dynamics model (SSiB4-TRIFFID) 
(Huang et al., 2020, 2021), the SPread and InTensity of FIRE (SPITFIRE) coupled with the 
Organizing Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) (Yue et al., 2014), and 
the Vegetation Integrative Simulator for Trace gases (VISIT) (Ito, 2019). The burned area 
simulation from the process-based fire model over the CONUS will be used to benchmark that 
from the hybrid framework.   
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Figure 1. Schematic diagram of the hybrid model framework 

2.2 Machine Learning Wildfire Model 

In this study, we tailored a pretrained XGBoost wildfire model to use variables directly provided 
by ELM at each grid cell. XGBoost is a highly efficient and scalable implementation of gradient 
boosting, designed for performance and speed (Chen and Guestrin, 2016). It builds sequential 
decision trees to correct errors from previous models, using techniques like regularization to 
prevent overfitting and parallel processing for faster computation. 

To reduce overfitting, we build a separate ML model for each year from 2001 to 2020 using the 
remaining 19 years’ data. Model performance was evaluated based on its accuracy in predicting 
the spatial distribution and temporal variation of burned areas. Validation metrics included root 
mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2). 
This pretrained XGBoost model is referred to as offline-XGB in the following analysis.  

2.3 Hybrid Modeling Framework 

The pretrained ML wildfire model is integrated with the ELM using the ML4ESM coupling 
framework. The ML4ESM framework offers a robust and flexible solution for integrating ML 
parameterizations into ESMs through a Fortran-Python interface (Zhang et al., 2024). The 
interface leverages C language as an intermediary for efficient data transfer by accessing the 
same memory reference, instead of the extra data copy or through files, minimizing memory 
overhead and computational inefficiencies. In our application, all surface meteorology, lightning, 
and socioeconomic data, alongside the ELM simulated fuel conditions are passed to the 
pretrained ML-based wildfire model to predict the burned area. The burned area is returned to 
ELM to calculate fire impacts and update surface properties.  
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2.4 Model Configuration and ML4Fire-XGB Training Processes 

In ELM-BGC, vegetation properties, including canopy height and LAI, vary with carbon allocation 
and distribution, driven by climate variability and disturbances such as wildfires. To bring the 
model’s carbon and nitrogen pools into equilibrium, we first conduct long-term spin-up simulations 
as suggested by Lawrence et al. (2011). We adopt a two-step approach consisting of a 400-year 
accelerated decomposition (AD) spin-up followed by a 400-year regular spin-up, driven by cycling 
NLDAS-2 meteorological forcing from 1981 through 2000. In the AD spin-up, acceleration factors 
will be applied to accelerate decomposition in soil organic matter pools, and for plant dead stem 
and coarse root mortality. The terrestrial carbon pools and vegetation distribution after spin-up 
simulations reach quasi-equilibrium states after the 800-year simulations. 

Initialized with the quasi-equilibrium state from the spinup simulation, we conduct transient 
simulations with the process-based fire model in the ELM-BGC utilizing NLDAS-2 meteorological 
forcings for the period of 2001-2020. The surface soil moisture, LAI, fraction of each PFT output 
from ELM-BGC transient run are then used to train the offline-XGB prior to the coupled run within 
ELM. Furthermore, we run the coupled ML4Fire-XGB in which the pre-trained XGB model 
provides monthly burned area to ELM to update the land surface properties (LAI, PFT fraction, 
and soil moisture), which are then used as predictors in the ML-based fire model in the next time 
step. The differences in land surface properties input in offline-XGB and ML4Fire-XGB produce 
different burned area simulation, and the divergence accumulates over the 20-year simulation 
period. 

 In addition to the default transient simulations with ELM-BGC and ML4Fire-XGB which represent 
historical burned area, we conduct additionally sensitivity simulations with ELM-BGC and 
ML4Fire-XBG, utilizing the same NLDAS-2 meteorological forcings except for detrended 
temperatures to evaluate the responses of the modeled burned area to raising temperatures, 
which are considered as the primary driver of the increasing burned area over the WUS (Parks 
and Abatzoglou, 2020; Zhuang et al., 2021).  

2.5 Model Evaluation over Ecoregions 

We evaluate the model simulation of the 
burned area for each ecoregion adopted 
from the U.S. Environmental Protection 
Agency (EPA). Ecoregions are areas where 
ecosystems (and the type, quality, and 
quantity of environmental resources) are 
generally similar and generally, wildfire 
properties in each ecoregion are similar. A 
combination of level I and level II ecoregions 
is used and some types have been 
combined to focus on the broad vegetation 
distribution (Fig. 2). Five Ecoregions 
including Western Forested Mountains, 
North American Desert, Great Plains, SE 
Temperate Forests, and Northeast 
Temperate Forests are defined.  

Figure 2. Ecoregions used in fire model evaluation. 
1 – Western Forested Mountains, 2 – NA Desert, 3 
– Great Plains, 4 – SE Temperate Forests, and 5 –
NE Temperate Forests.



PNNL-36676 

Model Evaluation 5 

3.0 Model Evaluation 
3.1 Evaluation of the Burned Area Spatial Distribution 

Figure 3 show the spatial distribution of observed and simulated burned area over 2001-2020. 
The offline-XGB model reproduces the burned area distribution over the CONUS well, with a 
spatial correlation coefficient (𝑅𝑅𝑝𝑝) of 0.96 (𝑝𝑝<0.01) and a small bias (-0.4 Mha yr-1). While 
integrated with ELM, the performance holds (𝑅𝑅𝑝𝑝=0.70, 𝑝𝑝<0.01, bias=1.0 Mha yr-1). This 
degradation is likely due to the vegetation-wildfire feedback. The aboveground biomass and fuel 
moisture from ELM-BGC have been used to train the ML4Fire-XGB prior to the coupled run within 
ELM. In the coupled simulation, ML4Fire-XGB updates the biotic carbon and fuel moisture based 
on the burned area simulated in the previous timestep. Consequently, differences in the simulated 
burned area compared to the process-based models are reflected in the biotic carbon and fuel 
moisture, accumulating over the 20-year simulation period and influencing the burned area 
simulation in subsequent timesteps. 

Figure 3. Observed and simulated burned area fraction (% yr-1) averaged over 2001-2020. The 
dataset names are listed on the top of each panel 

In various eco-regions, the offline-XGB model demonstrates minimal biases, and the ML4Fire-
XGB model consistently outperforms all process-based fire models in predicting annual mean 
burned area. The accurate simulation of burned area over the Western Forest Mountains 
indicates that the ML4Fire-XGB framework generally captures the complex interplays between 
climate, vegetation, and human activities, with both climate forcings and predicted vegetation 
status from ELM-BGC. Meanwhile, the ML4Fire-XGB shows superior performance over the Great 
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Plains, indicating that the ML model effectively describes crop fire thereby utilizing data on crop 
fraction and LAI. 

3.2 Evaluation of the Burned Area Temporal Variability 

We evaluate the model performance in simulating the monthly burned area and depicting fire 
seasons. Fire season is defined as a monthly burned area greater than 1/12 of the annual total 
burned area. Figure 4 shows the monthly burned area over the CONUS and eco-regions. The 
COUNS has two fire seasons, i.e., March-April-May and August-September-October, affected by 
both climate and human activities. The western U.S. fire season spans from early summer to late 
fall, primarily determined by the dry conditions and high temperature during these months. 
Specifically, over the Western Forest Mountains, the fire season includes July to November. 

Figure 4. Monthly mean burned area fraction (% yr-1) over each eco-region. 

Monthly temporal variability in burned areas demonstrates significant regional differences across 
the eco-regions. Over the entire simulation period, the ML-based models generally capture the 
timing of wildfires across the CONUS with a temporal correlation coefficient greater than 0.5 (p < 
0.01), whereas the process-based models exhibit a correlation of only 0.3 (p > 0.01). The ML-
based models also effectively capture the temporal variability across the eco-regions, although 
there is a slight decrease in the ML4Fire-XGB in the Great Plains and eastern U.S. This decrease 
is likely related to the fire-vegetation feedback, which alters the fuel condition differently from the 
training set. In contrast, the process-based models show comparable correlations as the ML-
based models in the western U.S. but fail to accurately predict burned area temporal variations in 
the Great Plains and eastern U.S. Process-based models tend to better describe responses of 
fuel load and combustibility to climate than responses of fire ignition and suppression to human 
activities.  
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4.0 Accomplishments  
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