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Abstract 
Aqueous organic redox flow battery (AORFB) is a promising cost-competitive technology for 
large-scale energy storage. Among existing work, the dihydroxyphenazine (DHP)-based 
AORFB has demonstrated high energy density and low-capacity degradation in 10 cm$^2$ cells 
during lab tests. However, its commercial-scale performance in more complex environments 
remains unknown, posing a barrier to commercialization. To address this gap, this work 
presents a comprehensive performance evaluation of a 780 cm$^2$ DHP-based AORFB by 
combining a physics-based numerical model, machine learning (ML)-based surrogate models, 
and ML-derived sensitivity quantification. Specifically, we first select 12 key battery parameters 
that include 10 physicochemical and 2 operation quantities, then select 6 performance metrics 
that include energy efficiency (EE), discharging capacity, charging energy, and power losses 
due to concentration, activation, and ohmic over-potentials. With such selection, 12800 
combinations of the 12 parameters are subsequently generated using the Latin Hypercube 
Sampling method. Such combinations, together with 38 pre-defined State of Charge, are then 
integrated to a validated AORFB model developed in COMSOL to compute the performance 
metrics. With both input parameters and performance metrics, 60 deep neural network (DNN) 
surrogate models are then trained to approximate the relationship between the 10 
physicochemical quantities and 6 performance metrics at each flow rate and current density. 
Sensitivity scores are then calculated based on the DNN models. Two additional sensitivity 
analysis tools, i.e., MARS, and SHAP, are also used to cross-validate the sensitivity scores from 
the DNN. The results demonstrate that 1) the standard potential ranks first in controlling EE and 
charging energy, 2) the membrane conductivity is most critical for power loss and EE, and 3) 
specific area and reaction rate control activation power loss. 
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Summary 
This report focuses on the development and analysis of aqueous organic redox flow battery 
(AORFB) performance, specifically using DHP-based organic materials. This proposed method 
aims to tackle the high cost of vanadium in redox flow batteries (RFB) and explore AORFBs as 
a cost-competitive alternative. The study evaluates the effects of diverse physicochemical and 
operation parameters on battery performance using a large-scale AORFB with a 780 cm² 
interdigitated cell developed by PNNL. A COMSOL Multiphysics® model was employed to 
simulate cell performance. Given the high computational costs, a hybrid numerical and machine 
learning (ML) framework was developed, with parameters sampled using LHS, and the data 
used to train DNN, MARS, and SHAP for sensitivity analysis. The study generated 10,300 
performance data points, capturing the dependence of six performance metrics on ten 
physicochemical parameters and two operational conditions. Sixty DNN-based surrogate 
models were trained to analyze these relationships across five flow rates and two current 
densities. Key findings identified standard potential, membrane conductivity, specific area, and 
reaction rates as critical factors for battery performance. Standard potential ranked first for 
controlling energy efficiency and charging energy, while membrane conductivity was most 
crucial for power loss and efficiency. The DNN-based surrogate models, MARS, and SHAP 
effectively quantified the relative importance of these parameters, with SHAP particularly useful 
for identifying less influential factors. Power losses were examined further, revealing that 
concentration power loss is primarily controlled by electrolyte conductivity, specific area, 
reaction rate constant, and initial concentration. Activation power loss was mainly influenced by 
reaction rate constant and initial concentration, whereas ohmic power loss was predominantly 
controlled by membrane conductivity. Cross-method comparison demonstrated that while all 
methods could identify major influential factors, SHAP provided a more distinguished 
understanding of less influential parameters. Overall, this comprehensive perspective on the 
effects of various physicochemical parameters and operational conditions on large AORFB 
performance offers valuable insights for future research and commercialization efforts, 
demonstrating a cost-effective and efficient approach for evaluating and enhancing AORFBs. 
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Acronyms and Abbreviations 
RFB: Redox Flow Battery 
AORFB: Aqueous Organic Redox Flow Battery 
DHP: Dihydroxyphenazine 
PNNL: Pacific Northwest National Laboratory 
SoC: State of Charge 
LHS: Latin Hypercube Sampling 
ML: Machine Learning 
DNN: Deep Neural Network 
MARS: Multivariate Adaptive Regression Splines 
SHAP: SHapley Additive exPlanations 
EE: Energy Efficiency 
SHE: Standard Hydrogen Electrode 
RSS: Residual Sum of Squares 
GCV: Generalized Cross-Validation 
DHPS: 7,8-Dihydroxyphenazine-2-sulfonic acid 
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1.0 Introduction 
Vanadium redox flow battery (RFB) is one of the most mature grid-scale and long-duration 
energy storage solutions for intermittent wind and solar energies (Weber, Mench et al. 2011, 
Choi, Kim et al. 2017, Doetsch and Pohlig 2020, Doetsch and Burfeind 2022, Zhang, Yuan et al. 
2024). High cost of vanadium, however, is a cost-barrier for its large-scale deployment(Doetsch 
and Pohlig 2020, Skyllas-Kazacos 2022). Aqueous Organic RFB (AORFB), which uses organic 
active materials in one or both sides of the cell, is a cost-competitive solution because active 
organic species can be synthesized from low-cost and abundant materials(Lin, Chen et al. 
2015). One of such materials is the dihydroxyphenazine (DHP)-based organic materials family, 
which has demonstrated a reversible capacity of 67 Ah/L and 0.02% capacity degradation rate 
over 500 cycles(Hollas, Wei et al.). However, such performance is achieved in idealized lab-
environments using a small (i.e., 10 cm2) cell(Hollas, Wei et al.). It is not clear how such 
performance will respond to the flow and active species concentration heterogeneity in large cell 
and the diverse conditions of real-world environments, which poses a barrier for its commercial-
scale demonstration and deployment. 

From previous research on in-organic and organic RFBs, it is found that the diverse 
environments can affect battery performance by modulating key parameters of the cell micro-
structure, electrolyte physicochemical properties, membrane properties, and operating 
conditions(Chen, Xu et al. 2021, Chen, Bao et al. 2023, Zhang, Yuan et al. 2024). The cell size 
can also affect cell performance by regulating the heterogeneity in flow and active species 
concentration distributions (Zeng, Kim et al. 2022, Fu, Bao et al. 2023). To gain a 
comprehensive understanding of the effects of cell size and environment-modulating 
parameters, a cell size much larger than the typical lab-scale is firstly needed. Additionally, an 
approach that can quantify the cell voltage and performance using various cell micro-structure, 
electrolyte physicochemical properties, and membrane properties under various flow rate and 
current density conditions is needed. The first requisite is achievable by using a 780 cm2 
interdigitated cell developed by PNNL team (Reed, Thomsen et al.). The second requisite can 
be generally achieved using either experiments or numerical modeling or their both. However, 
considering the high costs in labor, time, and materials preparation, large-scale AORFB 
experiments can only be performed a few times and used as validation data for physics-based 
numerical models. The validated numerical model is best suitable for generating the cell voltage 
and performance data by changing the key parameters of the numerical model. A previous work 
(Zeng, Kim et al.) demonstrated the feasibility of using COMSOL Multiphysics® to simulate the 
potentials and performance of a 780 cm2 cell with a DHP-family material and ferro/ferricyanide 
as working electrolytes. Such a model provides the basis to generate cell performance data. 
However, this model takes about 128 CPU hours to simulate one charge-discharge cycle with 
around 38 SoC points, which is time- and computing-prohibitive for a comprehensive sensitivity 
study because we need to vary 12 independent parameters for each charge-discharge cycle. 

To reduce the computational costs, further assumptions or steps are needed. The first 
assumption is to assume the physicochemical parameters of the positive electrode and 
electrolyte are constant because the ferro/ferricyanide catholyte is much more well-known than 
the organic anolyte. With this assumption, this work only considers the effects of the parameters 
in negative cell as listed in Table 1. Second, we used the Latin hypercube sampling (LHS) 
method to generate 1280 samples for 10 parameters at each given flow rate and current 
density, which could generate near random and uniform samples of the key parameters. With 
such sampling parameters and the fixed parameters in positive cell, around 1000 validate cell 
voltage and performance data can be generated from the COMSOL model in step 3. With the 
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sampled parameters and COMSOL-generated performance data, we trained machine learning 
(ML)-based surrogate models to represent the relationship between the battery performance 
and input parameters at each given flow rate and current density using three approaches: a 
newly developed DNN model, the Multivariate Adaptive Regression Splines (MARS) model, and 
the SHapley Additive exPlanations (SHAP) model. These models can be used to quantify the 
relative importance of each input parameter in the targeting cell performance metrics and 
identify the dominant factors controlling cell performance. 

Following these steps, the paper is organized as follows. Section 2 introduces the hybrid 
numerical-ML framework as well as the details of parameter selection, sampling, cell 
performance generation using COMSOL, performance data processing and subsequent 
sensitivity quantification using DNN, MARS, and SHAP. Section 3 introduces the details of 
experiment setups for COMSOL validation. Section 4 reports the results of COMSOL model 
validation, DNN training accuracy, and the dominant factors that control the cell performance, as 
well as multi-model comparison for sensitivity score quantification. The final discovery is 
summarized in Section 5. 
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Table 1. Sensitivity parameters and their range. 

ID Name Unit Baseline Min Max Mean 
1 Reaction transfer coefficient 1 0.50 0.30 0.70 0.50 
2 Electrode specific area 1/m 5.9e4 1.2e4 1.2e5 6.5e4 
3 Membrane conductivity S/m 0.833 0.5 2.0 1.25 
4 Reaction rate constant m/s 1.47e-4 1.0e-8 1.5e-3 5.9e-4 
5 Mass transfer coefficient 1 1 0.5 50 25.25 
6 Initial concentration mol/m3 1000 50 1500 775 
7 Reactant diffusivity m2/s 4.81e-10 4.88e-11 4.81e-9 2.43e-9 
8 Electrolyte viscosity Pa.s 3.4e-3 1.0e-3 1.2e-2 6.5e-3 
9 Reactant standard potential V NA -1.4 -0.1 -0.75 
10 Anolyte conductivity S/m 10 10 100 55 
11 Pump flow rate L/min NA 0.4 2 1.2 
12 Current density A/m2 NA 1600 2400 2000 

 
 
 
 
 
 
 

 
Figure 1 The geometric structure of a 780 cm2 cell developed at PNNL (a), its heterogeneous 

flow field (b), as well as representative molecule structures of the DHP family (c). 
Blue arrows in (a) represent the direction of flow. 
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2.0 Methods 
2.1 Framework 

The sensitivity study is conducted using a hybrid numerical and machine learning model 
framework as shown in Figure 2. With it, we first select 12 influential parameters on battery 
performance, including 10 physicochemical parameters and 2 operation parameters (a), then 
generate 486,400 samples of the combinations of physicochemical parameters, state of charge 
(SoC), and operation parameters (b). These parameters are sent to a 780 cm2 AORFB 
numerical model, which is developed in COMSOL, a finite element software, to obtain the cell 
voltage and its potential components for each sample parameter (c). The numerical model 
yields 306,140 valid results, from which, 10,300 valid cell cycle performance data are computed 
(d). Such numerical model-derived performance data (of the size 10300 x 6) are then combined 
with the corresponding parameters (of the size 10300 x 12) to train 60 deep neural network 
(DNN) models. These 60 DNNs represent surrogate models between the 6-performance metrics 
and the physicochemical parameters at a given flow rate (5 values) and current density (2 
values). These DNN models are then used to quantify the sensitivity score of the input 
parameters to the performance metrics. The details of each step are introduced in the following 
sections. 

 

 
Figure 2 A hybrid numerical and deep neural network (DNN) framework for redox flow 

battery performance sensitivity analyses. 
 
 

2.2 Parameters selection and sampling 

Based on our previous work(Chen, Bao et al. 2021, Chen, Xu et al. 2021, Chen, Bao et al. 
2023), we selected 10 physicochemical parameters and 2 operation parameters as key factors 
that can potentially impact the battery performance. The physicochemical parameters include 
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the specific area of the negative electrode, membrane ionic conductivity, mass transfer 
coefficient; the reaction transfer coefficient, reaction rate constant, and standard potential of the 
DHP redox couple; as well as the diffusivity, viscosity, ionic conductivity, and initial 
concentration of DHP anolyte. The operation parameters include pump flow rate and current 
density. The range of operation parameters are 0.4, 0.8, 1.2, 1.6, and 2.0 L/min for pump rate 
and 1600 and 2400 A/m2 for current density, both of which are determined from experiment 
setups. The range of physicochemical parameters is derived based on a baseline case for 7,8-
dihydroxyphenazine-2-sulfonic acid (DHPS), which has measured parameters (Hollas, Wei et 
al.). We set ±50% of the baseline values as the sample range of these parameters. The details 
of the sample range can be found in Table 1. Different from the rest parameters, the range of 
the standard potential, in relation to the Standard Hydrogen Electrode (SHE), of the DHP-family 
materials are derived from both previous experiment database (Wedege, Dražević et al. 2016, 
Cao, Tao et al. 2018, Hofmann, Pfanschilling et al. 2018, Kwabi, Lin et al. 2018, Wang, Yang et 
al. 2018, Ji, Goulet et al. 2019, Jin, Jing et al. 2019, Sun, Liu et al. 2019, Wang, Li et al. 2020, 
Pang, Wang et al. 2021, Wang, Yu et al. 2021, Wellala, Hollas et al. 2021, Xu, Pang et al. 2021, 
Guiheneuf, Godet-Bar et al. 2022, Jing, Fell et al. 2022, Wang, Yang et al. 2022, Wu, Bahari et 
al. 2022, Xia, Qin et al. 2022, Amini, Kerr et al. 2023, de la Cruz, Sanz et al. 2023, Kerr, Tang et 
al. 2023) and our newly developed graph-based Gaussian processing regression algorithm 
(Gao, Yang et al.). Our new algorithm is trained from existing database and can predict the 
redox potential of organic molecules such as quinones and phenazines with various functional 
groups at different positions. 

After we determine the range of these parameters, we use the Latin hypercube sampling (LHS) 
approach to generate 1280 samples for each given flow rate and current density. Because 
battery voltage varies with SoC, we selected 38 SoC with 19 for discharge and 19 for discharge. 
The range of SoC is between 0.025 and 0.85 to represent a typical range. In total, we generated 
486,400 (= 1280 x 38 x 5 x 2) parameter combinations for physicochemical parameters (1280), 
SoC (38), flow rate (5), and current density (2). These parameters are only used for the anode. 
For the cathode, the parameters are determined from experiments and kept unchanged for all 
simulations. A full list of the parameters used for cathode can be found in Appendix A. After 
generating these parameters, they are sent to COMSOL to solve the coupled flow and reactive 
transport equations to obtain cell voltage and its contributing components such as equilibrium, 
concentration, activation, ohmic potentials in both cathode and anode as we as the membrane 
ohmic potential. The details of the COMSOL model are introduced in Section 2.3. 

2.3 Cell Geometry and COMSOL modeling 

Prototype stack development has been taken in PNNL for over 10 years. The basic unit of this 
up-to-date stack is the 780 cm2 interdigitated cell. The much higher energy efficiency has been 
achieved for this interdigitated design as comparison to conventional flow-through design 
(Reed, Thomsen et al.). This unit interdigitated cell with active area of 780 cm2 is employed as 
model geometry in this study (Figure 1a). This cell has width of 0.3 m (Figure 1b horizontal 
dimension) and length of 0.26 m (Figure 1b) vertical dimension). There are six inlet flow 
channels and five outlet channels. The manifold is used to distribute the electrolyte uniformly 
into each inlet channel. The electrode thickness is 0.64 mm and the membrane thickness is 
50.8 μm. The fabrication and testing demonstration of this cell for vanadium has been presented 
in reference (Reed, Thomsen et al.). In this study, the PNNL-developed alkaline organic anolyte 
DHPS is modeled following the same setting as our prior work (Zeng, Kim et al.). In brief 
introduction, four coupled physics has been considered in the model: the transport of 
electroactive species, electrochemical reaction kinetics, electrical field, and flow field. It is noted 
that there are two electrons transferred for DHPS electrolyte and only one electron transferred 
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for ferro/ferricyanide electrolyte. Therefore, the reaction kinetics, described by the extended 
Butler-Volmer equation, present different form. In addition, the governing equations in flow 
channel manifold are different than those in porous electrode, due to the lack of electrochemical 
reaction. The detailed governing equations of the model and mesh setups can be found in our 
prior work (Zeng, Kim et al.). The simulation is conducted in COMSOL Multiphysics software. 
Stationary solver is used to simulate situation at different SoC condition. The flow field is solved 
first since it is independent with other physics. Then, species transport, reaction kinetics and 
electrical field are solved by fully coupled solver. 

To facilitate automated feeding of the sampling parameters to the COMSOL, two Matlab scripts 
were developed to write anode sampling parameters (10 physicochemical parameters and 2 
operation conditions) and SoC values to formats readable by COMSOL. The outputs from 
COMSOL for each case were also converted to a standard csv format using a Matlab script for 
further model validation, data processing, and ML. Due to the non-uniformity in velocity and 
local current density, the COMSOL outputs the cell voltage (𝐸𝐸𝑐𝑐) and the power attributed to 
equilibrium, action, ohmic, and concentration for both electrodes as computed by Equations. (1)-
(4). Here the 𝐸𝐸𝑒𝑒𝑒𝑒 ,𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 ,𝜂𝜂𝑜𝑜ℎ𝑚𝑚, and 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 denote the spatially varying equilibrium, activation, ohmic, 
and concentration potentials. The 𝑖𝑖 and 𝑎𝑎 is the local current density and specific area. And 
𝑑𝑑𝑑𝑑 is the volume of a single mesh. The calculated power is a function of SoC and also a 
function of time 𝑡𝑡. The conversion of SoC to time is achieved through Equations 5-6 with 𝑡𝑡𝑐𝑐 and 
𝑡𝑡𝑑𝑑 representing charge time and discharge time. Other symbols denote starting SoC in charge 
𝑆𝑆𝑆𝑆𝐶𝐶𝑠𝑠𝑐𝑐, number of electrons in anode 𝑛𝑛, Faraday constant 𝐹𝐹, anode tank volume 𝑉𝑉𝑡𝑡, total 
concentration in anode 𝐶𝐶𝑁𝑁, and current 𝐼𝐼𝑡𝑡, ending SoC in charge 𝑆𝑆𝑆𝑆𝐶𝐶𝑒𝑒𝑐𝑐,and the ending time of 
charge 𝑡𝑡𝑐𝑐𝑒𝑒. 

 𝑃𝑃𝑒𝑒𝑒𝑒  =  �𝐸𝐸𝑒𝑒𝑒𝑒
𝑉𝑉

𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑 =  𝑃𝑃𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆)  =  𝑃𝑃𝑒𝑒𝑒𝑒(𝑡𝑡) (1) 

 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = �𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)
𝑉𝑉

 (2) 

 𝑃𝑃𝑜𝑜ℎ𝑚𝑚 = �𝜂𝜂𝑜𝑜ℎ𝑚𝑚 𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑
𝑉𝑉

 (3) 

 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 = �𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)
𝑉𝑉

 (4) 

 𝑡𝑡𝑐𝑐 = 𝑛𝑛𝑛𝑛𝑉𝑉𝑡𝑡𝐶𝐶𝑁𝑁/𝐼𝐼𝑡𝑡 (5) 

 𝑡𝑡𝑑𝑑 = (𝑆𝑆𝑆𝑆𝐶𝐶𝑒𝑒𝑐𝑐 − 𝑆𝑆𝑆𝑆𝑆𝑆)𝑛𝑛𝑛𝑛𝑉𝑉𝑡𝑡𝐶𝐶𝑁𝑁/𝐼𝐼𝑡𝑡 + 𝑡𝑡𝑒𝑒𝑐𝑐 (6) 

2.4 Data cleaning and processing 

The COMSOL modeling provides 10 variables (i.e., cell voltage, equilibrium, activation, 
concentration, ohmic power in positive and negative, as well as membrane ohmic power) that 
vary with SoC (or time). To make sure the simulated data have a representation of the varying 
SoC, we only keep the cases that have at least 5 data points in both charging and discharging. 
This results in 306,140 valid points out of 486,400 sampling points and 10,300 valid voltage 
curves out of 12,800 sampling curves, which means the ratio of valid points and curves are 
around 62.9% and 80.5%, respectively. From these data, we compute the battery performance 
via 6 metrics, including energy efficiency (EE), discharging capacity, charging energy, 
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concentration power loss, activation power loss, and ohmic power loss. These metrics are 
calculated by Equations 7-12. It is worth noting that the Coulombic efficiency is set to 1, and 
therefore, the time during discharging equals the time of charging. 

 
𝐸𝐸𝐸𝐸 =

∫ 𝐸𝐸𝑐𝑐𝐼𝐼𝑡𝑡𝑑𝑑𝑑𝑑
𝑡𝑡𝑒𝑒𝑑𝑑

𝑡𝑡𝑠𝑠𝑑𝑑

∫ 𝐸𝐸𝑐𝑐𝐼𝐼𝑡𝑡𝑑𝑑𝑑𝑑
𝑡𝑡𝑒𝑒𝑐𝑐

0

 
(7) 

 𝑐𝑐𝑑𝑑 = (𝑡𝑡𝑒𝑒𝑑𝑑 − 𝑡𝑡𝑠𝑠𝑑𝑑)𝑑𝑑𝑑𝑑 (8) 

 
𝑒𝑒𝑐𝑐 = � 𝐸𝐸𝑐𝑐𝐼𝐼𝑡𝑡𝑑𝑑𝑑𝑑

𝑡𝑡𝑒𝑒𝑐𝑐

0
 

(9) 

 
𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 =

∫ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑡𝑡𝑑𝑑𝑑𝑑
𝑡𝑡𝑒𝑒𝑐𝑐

0 + ∫ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑡𝑡𝑑𝑑𝑑𝑑
𝑡𝑡𝑒𝑒𝑑𝑑

𝑡𝑡𝑠𝑠𝑑𝑑

𝑡𝑡𝑒𝑒𝑑𝑑 − 𝑡𝑡𝑠𝑠𝑑𝑑
 

(10) 

 
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 =

∫ 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼𝑡𝑡𝑑𝑑𝑑𝑑
𝑡𝑡𝑒𝑒𝑐𝑐

0 + ∫ 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼𝑡𝑡𝑑𝑑𝑑𝑑
𝑡𝑡𝑒𝑒𝑑𝑑

𝑡𝑡𝑠𝑠𝑑𝑑

𝑡𝑡𝑒𝑒𝑑𝑑 − 𝑡𝑡𝑠𝑠𝑑𝑑
 

(11) 

 
𝑝𝑝𝑜𝑜ℎ𝑚𝑚 =

∫ 𝑃𝑃𝑜𝑜ℎ𝑚𝑚𝐼𝐼𝑡𝑡𝑑𝑑𝑑𝑑
𝑡𝑡𝑒𝑒𝑐𝑐

0 + ∫ 𝑃𝑃𝑜𝑜ℎ𝑚𝑚𝐼𝐼𝑡𝑡𝑑𝑑𝑑𝑑
𝑡𝑡𝑒𝑒𝑑𝑑

𝑡𝑡𝑠𝑠𝑑𝑑

𝑡𝑡𝑒𝑒𝑑𝑑 − 𝑡𝑡𝑠𝑠𝑑𝑑
 

(12) 

 

2.5 DNN model and sensitivity score 

Based on the data processing approach, we generated a battery performance database of the 
size 10,300 rows and 19 columns. The 19 columns including 12 sampling parameters, 6 battery 
performance metrics, and battery charging time. In the sampling parameters, we have 5 flow 
rates and 2 current densities. We split the whole datasets into 10 groups with each group 
represents a single flow rate and current density. If denoting the dataset for each group by $X$ 
and their row and column number by 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛, then 𝑛𝑛𝑛𝑛 = 19  and 𝑛𝑛𝑛𝑛 has minimum, mean, and 
maximum values of 765, 1130, and 1120, respectively. For each dataset 𝑋𝑋, we trained 6 DNN 
models. The input of these DNN models are the 10 sampling parameters, and output is one of 
the 6 battery performance metrics. If denoting the inputs by   𝑥⃗𝑥 =  [𝑥𝑥1,𝑥𝑥𝑖𝑖, . . . , 𝑥𝑥10] and output by 
𝑦𝑦𝑗𝑗, then each trained DNN represents a surrogate physical model in the format of 𝑦𝑦𝑗𝑗  =
 𝐷𝐷𝐷𝐷𝑁𝑁𝑗𝑗(𝑥⃗𝑥; 𝐼𝐼,𝑄𝑄) with 𝐼𝐼 and 𝑄𝑄 representing the given current density and flow rate.  

The DNN weighs are obtained through training using Tensorflow. The ratio of data used for 
training, validation, and testing is 80.75%, 4.25%, and 15%, respectively. The training target is 
to minimize the average squared error between the training data (i.e., battery performance data) 
and the DNN-predicted values using the Adam optimizer. Other important parameters for the 
DNN include DNN size of 256 x 512 x 256, learning rate 1e-4, and batch size 8. During the 
training, we recorded the minimum cost at each step (Figure 3a blue line) and compare any new 
cost (Figure 3a purple square) with the recorded minimum cost in each step. The final DNN is 
the model that reaches the minimum cost for the first time and stays unchanged for 1500 new 
training steps. The convergence history of the costs during the training is illustrated in Figure 3 
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With the trained surrogate model, we compute the sensitivity of a specific sample parameter 
𝑥𝑥𝑖𝑖 to the target 𝑦𝑦𝑖𝑖 using input parameter random shuffle method. Specifically, we first compute 
the testing cost (denoted by 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖

𝑗𝑗,0) using the testing input parameters 𝑥⃗𝑥 =  [𝑥𝑥1,𝑥𝑥𝑖𝑖 , . . . , 𝑥𝑥10]; then 
we replace such input parameter by 𝑥⃗𝑥 =  [𝑥𝑥1,𝑥𝑥𝑖𝑖𝑆𝑆, . . . , 𝑥𝑥10] with 𝑥𝑥𝑖𝑖𝑆𝑆 representing the randomized 
values of 𝑥𝑥𝑖𝑖; then we calculate the cost of the shuffled inputs (denoted by 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖

𝑗𝑗,𝑆𝑆); and finally 
compute their difference as 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖

𝑗𝑗,𝑆𝑆 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖
𝑗𝑗,0. Such a cost difference is used to quantify how 

sensitive of the target battery performance (via surrogate model 𝐷𝐷𝐷𝐷𝑁𝑁𝑗𝑗) to the specific input 
parameter 𝑥𝑥𝑖𝑖. By applying this procedure to all the 10 input parameters, the relative sensitivity of 
each parameter can be calculated by Equation 13. 

 
𝑆𝑆𝐶𝐶𝑖𝑖

𝑗𝑗(𝐼𝐼,𝑄𝑄) =
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖

𝑗𝑗,𝑆𝑆(𝐼𝐼,𝑄𝑄) − 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖
𝑗𝑗,0(𝐼𝐼,𝑄𝑄)

∑ [𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖
𝑗𝑗,𝑆𝑆(𝐼𝐼,𝑄𝑄)10

1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖
𝑗𝑗,0(𝐼𝐼,𝑄𝑄)]

 
(13) 

 
Figure 3 The evolution of the training and validation costs for one DNN (a), the 1:1 

comparison between the COMSOL (ground-truth) and the predictions of a well-trained 
DNN during training (b) and testing (c). Testing data are independent of training data. 

2.6 MARS 

To evaluate whether the DNN model causes systematic bias, we also analyzed the importance 
of those 12 parameters with the MARS method. The MARS technique is a nonlinear regression 
model commonly used for data regression and sensitivity analysis. This method, proposed by 
Friedman in 1991, extends the capabilities of traditional recursive partitioning regression 
models, providing a more versatile framework for analyzing complex data sets(Friedman 1991, 
Friedman and Roosen 1995). At the core of the MARS approach is the surrogate model, 𝑓𝑓𝑀𝑀, 
which is expressed as a sum of a set of basis functions: 

 
𝑓𝑓𝑀𝑀(𝑥𝑥) = �𝑐𝑐𝑖𝑖𝐵𝐵𝑖𝑖(𝑥𝑥)

𝑀𝑀

𝑖𝑖=1

 
(14) 

Each basis function 𝐵𝐵𝑖𝑖(𝑥𝑥) can be a constant, a hinge function, or a product of two or more hinge 
functions. This structure allows the model to capture both piecewise linear relationships and 
complex interactions between variables. The flexibility of the MARS method enables users to 
customize the model complexity by selecting an appropriate number and type of hinge 
functions. The coefficients 𝑐𝑐𝑖𝑖 represent the weights of the basis function 𝐵𝐵𝑖𝑖(𝑥𝑥), are determined 
by minimizing the residual sum of squares (RSS), defined as Equation 15. 
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𝑅𝑅𝑅𝑅𝑅𝑅 = ��𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑀𝑀(𝑥𝑥𝑖𝑖)�

2
𝑛𝑛

𝑖𝑖=1

 
(15) 

This process involves adjusting the coefficients to minimize the observed and predicted values, 
thereby improving model predictive accuracy. 

The selection of basis functions is conducted in two stages: forward selection and backward 
elimination. During forward selection, basis functions are added sequentially, with each new 
function chosen based on its ability to reduce the training error the most. This process continues 
until the number of basis functions reaches a predefined maximum. To address potential over-
fitting from forward selection, backward elimination is performed. In this step, the generalized 
cross-validation (GCV) score is used as the elimination criterion, calculated as Equation 16. 

 
𝐺𝐺𝐺𝐺𝐺𝐺 =

1
𝑁𝑁∑ �𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑀𝑀(𝑥𝑥𝑖𝑖)�

2𝑁𝑁
𝑖𝑖=1

�1 − 𝐶𝐶(𝑀𝑀)
𝑁𝑁 �

2  
(16) 

 

The numerator represents the mean RSS of the MARS model and the N here stand for the total 
number of observations in the simulations. The term 𝐶𝐶(𝑀𝑀) represents the effective number of 
parameters, which penalizes the addition of excessive basis functions. 

To assess the influence of each input parameter on the AORFB performance metrics, the 
sensitivity score is derived using the GCV scores. For each input parameter, the basis functions 
involving that parameter are removed from the trained model 𝑓𝑓𝑀𝑀(𝑥𝑥). A new GCV score is then 
calculated for the model without that input parameter. The sensitivity score for each parameter 
is determined by subtracting the full-model GCV from the GCV of the reduced model: 

 𝑠𝑠𝑖𝑖 = 𝐺𝐺𝐺𝐺𝐺𝐺�𝑀𝑀𝑥𝑥𝑖𝑖� − 𝐺𝐺𝐺𝐺𝐺𝐺(𝑀𝑀) (17) 

A higher sensitivity score 𝑠𝑠𝑖𝑖 indicates a significant increase in model error when the 
corresponding parameter is excluded, suggesting that this input parameter has a greater impact 
on the output compared to others. 

2.7 SHAP 

The SHAP library has emerged as a potentially pivotal instrument in the field of machine 
learning model interpretation and explainability. As machine learning models grow in complexity 
and find applications in various domains, understanding the rationales behind their predictions 
becomes increasingly crucial. SHAP offers a comprehensive framework for attributing the 
contribution of individual features to predictions, granting insight into the "black-box" nature of 
intricate models. SHAP values are rooted in Shapley values from cooperative game theory, a 
concept that assigns a value to each player in a coalition based on their contribution to the total 
outcome. 

SHAP values aim to provide local explanations for individual predictions. For a specific instance, 
SHAP values quantify the impact of each feature on the prediction compared to a baseline or 
average prediction. This feature importance provides an explanation as to why a particular 
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prediction was made by identifying which features had the most influence. SHAP values adhere 
to certain axioms like consistency and fairness, which makes them reliable for interpretation 
across different models and use cases. They offer a consistent way of attributing feature 
importance, enabling meaningful comparisons between different predictions and models. 

In this study, the 60 trained DNN models as introduced in Section 2.5 were loaded into SHAP 
explanation model. A SHAP value is calculated for each input value, resulting in 12 SHAP 
values for each output. Positive SHAP values indicate features that push the output prediction 
higher, while negative values indicate features that pull the prediction lower. The total range that 
an input parameter (physicochemical properties and operation conditions) can adjust on the 
output parameter is used as the overall importance score of this input parameter on the selected 
output parameter. 
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3.0 Experiments 
To confirm the accuracy of the developed numerical model, experimental data have been 
collected for validation purposes. An interdigitated flow cell is assembled by sandwiching a 
Nafion membrane (N212) between two carbon cloth electrodes (Elat-H). The porous electrodes 
are heated-treated in air at 400 °C for 6 hours prior to use. The electrode is embedded into the 
cavity (0.3 m × 0.56 m × 0.64 mm in width, length, and thickness) of bipolar plates with a 
compression ratio of around 20 %. The active cross-sectional area is 780 cm2. 

To prepare the electrolyte, VOSO4·xH2O (where x is experimentally determined as 4.33) is 
dissolved in mixed acid (hydrochloric and sulfuric acid). The acquired electrolyte is a solution of 
2 M Vanadium in 2 M H2SO4 and 5 M HCl. The addition of chloride ions not only increases the 
concentration but also reduces the viscosity of the electrolyte. Two reservoir tanks with a 
volume of 2L are used for both the anode and cathode sides. The room temperature is 
controlled at 35 °C. In full cell cycling, the cut-off voltage for charging is 1.75 V and 1.0 V for 
discharging. After completing one cycling test, several minutes of cool-down period is applied to 
reduce the effect of rising temperature prior to the next cycling test. It is worth mentioning that 
such experiments are conducted only for the vanadium flow battery to study how the 
heterogeneity in flow and species concentrations caused by larger cell size affects the overall 
battery performance. Large-cell organic flow battery experiments have not been completed due 
to the unavailability of the organic materials. However, experiments on small cell AORFB using 
DHPS have been reported in our previous work(Zeng, Kim et al. 2022, Zeng, Kim et al. 2023). 
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4.0 Results and discussion 
4.1 Model validation for COMSOL 

Because the DNN, MARS, and SHAP need the COMSOL data as training and testing data, it is 
critical to evaluate the accuracy of the 780 cm2 AORFB model in reproducing cell voltages. 
Figure 4 compares the voltage data from COMSOL and experiment over typical SoC ranges 
with 3 flow rates used in the large call vanadium RFB experiments. The result demonstrates that 
COMSOL can well reproduce the experiment data. By interpolating the experiment data to the 
same SoC used in COMSOL, the root mean square between the two data during charging is 
9.38, 18.49, and 19.39 mV for flow rate at 0.39, 0.78, and 1.17 L/min, respectively. Those during 
discharging are 10.63, 20.77, and 16.46 mV, respectively. The maximum absolute relative 
errors between the two data during charging are 1.22%, 2.55%, and 2.36% and those during 
discharging are 1.18%, 3.92%, and 2.97%, respectively. These results confirm the quantitative 
accuracy of the COMSOL model in reproducing the cell voltage in a large cell using vanadium 
electrolyte. Though experiment data of large-cell organic RFB are not available, our previous 
work demonstrated that the cell voltage can be well reproduced for small-cell organic 
RFB(Zeng, Kim et al. 2022). These results suggest the validated large-scale RFB model for 
vanadium is likely applicable to large-scale organic RFB modeling. 

 

 
Figure 4 The comparison of cell voltage between COMSOL and experiments at pump rate 0.39 
(a), 0.78 (b), and 1.17 (c) L/min with identical current density 2400 A/m2. The experiments are 

performed for 780 cm2 vanadium RFB. 

 

4.2 DNN training accuracy 

As mentioned in Section 2.5, we trained 60 DNN models with each representing a combination 
of one flow rate (total 5), one current density (total 2), and one performance metric (total 6). 
Figure 4a shows the evolution of the training and validation costs with respect to the training 
step for energy efficiency. The result suggests the training cost can decrease to a much smaller 
value, however, the validation cost will not improve after a certain step. The final model is 
determined as the model whose validation cost is minimum and shows no improvement for 
1500 steps. Such selection can guarantee sufficient training but without overfitting. The 
comparison of the well-trained DNN prediction with the COMSOL for training (Figure 3b) and 
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testing (Figure 3c) suggest sufficient and accurate training. The costs and 1:1 comparison of the 
rest 59 cases can be found in Appendix A. 

4.3 Sensitivity scores for energy efficiency, capacity, and energy 

With the validated DNN models, sensitivity scores can be computed as mentioned in Section 
2.5. Figure 5 shows the sensitivity score of energy efficiency, discharge capacity, and charging 
energy at 5 flow rates and 2 current densities. The result shows that standard potential and 
membrane conductivity are the two major contributors to energy efficiency, with standard 
potential ranking as the most important factor controlling energy efficiency across all flow rates 
and current density. The reaction rate constant ranks the third for controlling the energy 
efficiency, while other parameters are not important. For the discharge capacity, the initial 
concentration of the organic active species is the dominant factor. Other parameters are not 
important for controlling the discharge capacity at most flow rate and current density except for 
the scenario with the lowest flow rate and highest current density. At the low flow rate and high 
current condition, the reaction rate constant contributes to around 10% of impacts on the 
discharging capability. For the charging energy, it is mainly controlled by the initial concentration 
and standard potential of the organic species with the initial concentration ranked as top control 
factor. Similar to the discharging capacity, the reaction rate constant contributes to around 10% 
impact on charging energy at lowest flow rate and highest current density. Overall, the battery 
performance is majorly controlled by standard potential, membrane conductivity, initial 
concentration across various flow rates, and current density. At very low flow rate and very high 
current density, the performance is also affected by the reaction rate constant in addition to the 
three major factors.  

4.4 Dominant factors for power losses 

To further evaluate the power losses, Figure 6 shows the sensitivity score of three power losses 
with respect to the 10 physicochemical parameters over multiple flow rates and current 
densities. The result shows that concentration power loss is mainly controlled by four 
parameters, including the electrolyte conductivity, specific area, reaction rate constant, and 
initial concentration, with electrolyte conductivity ranked as the most critical factor. The 
dominant control factor for activation power loss is different, which is mainly controlled by 
reaction rate constant and initial concentration for most of the cases. Other factors, e.g., mass 
transfer rate, and specific area, contribute a small portion of the activation loss. The control 
factor of ohmic power loss is much simpler, which is mainly controlled by membrane 
conductivity. Considering that ohmic power loss dominants the overall power losses, it is most 
critical to improve the membrane conductivity to reduce overall power losses and improve 
battery performance. 
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Figure 5 The sensitivity score of energy efficiency (a), discharging capacity (b), and charging 

energy (c) with respect to 10 physicochemical parameters at 5 flow rates and 2 current 
densities. Units of flow rate and current density are L/min and A/m2, respectively. 
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Figure 6 The sensitivity score of power losses due to concentration (a), activation (b), and ohmic 

(c) over-potentials.   
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4.5 Sensitivity rank cross comparison 

To further evaluate the impact of sensitivity quantification methodology (Step e in Figure 1), we 
applied the same input and output data to two additional widely used sensitivity quantification 
methods, i.e., MARS (Section 2.6) and SHAP (Section 2.7). The top 3 factors that control the 6-
performance metrics based on the DNN, MARS, and SHAP are summarized in Figure 7. The 
raw data used to derive such a figure can be found in the Appendix A. The result shows that 
sensitivity scores obtained from MARS are equivalent to those obtained from DNN. For the 
SHAP method, sensitivity scores are identical for energy efficiency, charging energy, 
concentration power loss, and activation power loss. However, they have minor differences in 
discharging capacity and ohmic power loss. Figure 8 shows the comparison of the sensitivity 
score of ohmic power loss derived from the three methods. It can be observed that the DNN 
model suggests the membrane conductivity is the only important factor, while MARS suggests 
both membrane conductivity and electrolyte conductivity are important, although the electrolyte 
conductivity has a much smaller impact. In contrast, the SHAP result suggests that the 
additional 5 factors, including electrolyte conductivity, reaction rate constant, initial 
concentration, mass transfer rate, and specific area, together contribute to around 30% of the 
sensitivity score in addition to the membrane conductivity. This result suggests that all methods 
are adequate to identify the most influential factors controlling the battery performance, but the 
SHAP can further evaluate the importance of less influential factors. These results also suggest 
that the flow rate and current density do not affect the relative importance of the most influential 
factors, but affect the quantitative accuracy, especially at high current and low flow rate 
scenarios.  



PNNL-36650 

Results and discussion 17 
 

 
Figure 7 The top 3 factors that control battery performance derived from DNN, MARS, and 
SHAP. The 2nd and 3rd important factors are ignored when their contribution is too small. 
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Figure 8 A comparison of the sensitivity score of ohmic power loss concerning 10 parameters 

from DNN, MARS, and SHAP. 
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5.0 Conclusions 
This work demonstrated a hybrid numerical and machine learning framework for evaluating the 
performance of an aqueous organic redox flow battery. Specifically, a numerical model is firstly 
developed within COMSOL platform and validated with experiment data for both small-scale (10 
cm2) organic RFB and large-scale (780 cm2) inorganic RFB. Following its validation, we 
generated 10,300 performance data with each representing the dependence of 6 performance 
metrics to 10 physicochemical parameters and 2 operational conditions. With these 
performance data, 60 DNN-based surrogate models are trained to represent the relationship 
between one of the 6 performance metrics and physicochemical parameters at 5 flow rates and 
2 current densities. With such DNN-based surrogate models, sensitivity score of each 
performance metric with respect to the 10 physicochemical parameters at a given flow rate and 
current density can be computed and normalized to evaluate their relative importance. 

Based on the sensitivity score, dominant factors that control the battery performance are 
identified. Specifically, the results demonstrate that 1) standard potential ranks first in controlling 
energy efficiency and charging energy, 2) membrane conductivity is most critical for power loss 
and energy efficiency, and 3) specific area and reaction rate control activation power loss. Such 
discovery is not affected by the sensitivity quantification methods such as MARS and SHAP, 
however, less influential factors are most easily identifiable by SHAP but not DNN and MARS. 
This work provides a comprehensive perspective of the effects of various physicochemical 
parameters and operation conditions on large AORFB performance, which could guide future 
AORFB research and commercialization. 
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Appendix A – Comparison of DNN Predictions with COMSOL 
Model 

The comparison of battery performance between DNN predictions and COMSOL ground-truth 
data for 60 DNN surrogate models are provided in this appendix. 

 

 

 

 

Figure A 1 Operation condition 1: Current density = 1600 A/m2, flow rate = 0.4 L/min 
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Figure A 2 Operation condition 2: Current density = 1600 A/m2, flow rate = 0.8 L/min 
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Figure A 3 Operation condition 3: Current density = 1600 A/m2, flow rate = 1.2 L/min 
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Figure A 4 Operation condition 4: Current density = 1600 A/m2, flow rate = 1.6 L/min 
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Figure A 5 Operation condition 5: Current density = 1600 A/m2, flow rate = 2.0 L/min 
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Figure A 6 Operation condition 6: Current density = 2400 A/m2, flow rate = 0.4 L/min 
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Figure A 7 Operation condition 7: Current density = 2400 A/m2, flow rate = 0.8 L/min 
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Figure A 8 Operation condition 8: Current density = 2400 A/m2, flow rate = 1.2 L/min 
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Figure A 9 Operation condition 9: Current density = 2400 A/m2, flow rate = 1.6 L/min 
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Figure A 10 Operation condition 10: Current density = 2400 A/m2, flow rate = 2.0 L/min 
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