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Abstract 
The electronic structure and geometric configuration of oxide-supported metal ions are 
important coordination properties that can be related to catalytic activity and stability. 
Herein, we interrogate the coordination environment of mononuclear Pd ions supported 
on ceria using CO adsorption, infrared vibrational spectroscopy, and DFT modeling. We 
observed the 15 h continuous co-evolution of a palladium- (2167 cm-1) and cerium-
carbonyl (2177 cm-1) complex by monitoring the ν(CO) infrared region. The slow CO 
adsorption kinetics were caused by the reactive ligand exchange between an oxygen 
atom of the support and the CO adsorbate to yield an oxygen vacancy and adsorbed CO2. 
We hypothesize that the co-evolved cerium-carbonyl complex was formed upon CO 
adsorption at or adjacent to this oxygen vacancy. Our hypothesis was experimentally 
supported by a dramatic attenuation of the cerium carbonyl signal upon pre-adsorption of 
water through an apparent competitive adsorption mechanism. The attenuation was also 
accompanied by a 6 cm-1 redshift of the palladium carbonyl band (2161 cm-1) attributed 
to hydrogen bonding between the carbonyl and a nearby hydroxyl. Characteristic n(CO) 
stretch frequencies catalogued through CO adsorption onto single crystal ceria by Wöll 
et al.1 led us to index the cerium carbonyl to the {100} nanofacet of the polycrystalline 
ceria support. It follows from the observed co-evolution of the two carbonyl complexes 
that Pd was also adsorbed at the {100} nanofacet. Redeployment of a previously 
developed DFT model by Ivanova-Shor et al.2 featuring square-planar coordination of 
Pd2+ at the {100} nanofacet (O4Pd) of a Ce21O42 nanoparticle model qualitatively 
reproduced several experimental observations. 
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1.0 Introduction 
Late-transition metals supported on oxides are a widely studied catalyst class owing to 
their industrial relevance.3 The metals often exist in nanoparticle form for commercial 
applications due to practical reasons, such as achieving economic space-time-yields or 
meeting regulatory requirements over multiyear continuous operation;4 however, 
exceptions do exist.5,6 From an atomistic perspective, the study of nanoparticle catalysts 
presents considerable challenges due to the variety of structures these particles can 
assume and the creation of metal-oxide interfaces that are challenging to selectively 
examine.7,8 Deploying the metal component as isolated atoms (i.e., atomically dispersed) 
offers a means to eliminate the structural heterogeneity inherent in nanoparticles and gain 
an understanding about the chemical, structural, and electronic properties of metals in 
physical contact with oxides.9 Consequently, atomically dispersed metals can serve as a 
tool to differentiate the chemistry occurring on metal-support interfaces from those on 
metal surfaces.10,11 However, the structural simplification provided by isolated atoms is 
constrained by the distribution of adsorption sites on the heterogenous support surface, 
a limitation that may be partially mitigated by low metal loadings.12 

Infrared (IR) vibrational spectroscopy using probe molecules is a common method to 
indirectly infer the chemical, structural, and electronic properties of oxide-supported metal 
catalysts. This is achieved by observing the perturbations in the spectroscopic response 
of the probe (adsorbate) caused by the entity to which it is bound (adsorbent).13,14 A 
variety of probe molecules are known to interrogate the quantity, strength, and type of 
acid, base, and defect sites present on oxide supports.15-21 Certain probe molecules can 
also provide information about the reactivity of the sites to which they adsorb through 
temperature programmed desorption studies.21,22 Furthermore, the combination of probe 
adsorption with isotopic labeling experiments can yield further insights into the structure 
of surface species and reaction mechanisms.23 Metals are frequently examined by the 
adsorption of CO, NO, or ethylene.14,24-30 Of these, CO is the most frequently used due 
to the sensitive response of the ν(CO) stretch frequency to the oxidation state or local 
coordination of the metal to which it is bound. For linearly adsorbed CO bonded through 
the carbon atom, the formation of sigma or ionic bonds with a metal cation results in 
electron donation of the slightly antibonding 5s molecular orbital to the metal center, 
strengthening the CO bond and resulting in a blueshift of the ν (CO) stretch relative to the 
gas phase molecule.26 In the presence of pi bonding, electron density is transferred into 
the 2π* molecular orbital of CO, weakening the bond and causing a redshift relative to the 
gas phase. Both bonding modes can coexist, but the one that dominates is revealed 
through the absorption wavenumber making CO adsorption well-suited for distinguishing 
between local coordination environments of supported metal ions. 

There have been numerous publications focused on the synthesis and characterization 
of atomically dispersed Pd (or Pd ions) supported on various oxides;31-45 however, in 
several of these studies the CO probe IR spectra do not support the formation, or even 
partial formation, of atomically dispersed Pd.38-45 Bands ranging from 2215 – 2130 cm-1 
are typically attributed to CO adsorption on Pd(II) ions, albeit there is a certain level of 
ambiguity with assignments at the lower wavenumber range since PdO nanoparticles also 
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show an adsorption band around 2140 cm-1.46 The groups of Bell and Klissurski et al.31,32 
used CO to probe 0.44 wt% Pd-H-ZSM-5 and observed two bands around 2221 cm-1 and 
2200 cm-1 that were assigned to dicarbonyl adsorbed on Pd(III). This observation was 
recently confirmed for 1 wt% Pd/SSZ-13 and renamed to dicarbonyl on superelectrophillic 
Pd(II).33 In addition to the dicarbonyl species observed for Pd-H-ZSM-5 and Pd/SSZ-13, 
other bands were observed at 2189, 2180, 2158, 2149, 2142, 2128, and 2110 cm-1 
attributed to CO adsorption on Pd ions in different oxidation states or coordination 
environments. There were also bands observed below 2000 cm-1 that correspond to CO 
adsorption on zero-valent Pd (nanoparticles). The presence of nanoparticles introduces 
uncertainty to the assignment of bands between 2150 – 2100 cm-1 region as they could 
be equally attributed to CO adsorption on few-atom clusters, which are undoubtedly 
present if isolated atoms and nanoparticles co-exist. For non-zeolite materials, CO 
adsorption onto 0.45 wt% and 0.97 wt% Pd/Al2O3 showed bands between 2160 – 2145 
cm-1 and 2135 – 2110 cm-1 that were assigned to Pd(II) and Pd(I), respectively.34,35 
Adsorption of CO onto 1.5 wt% Pd/WO3-ZrO2 resulted in a band at 2184 cm-1 attributed 
to Pd(II), which decreased in intensity with increasing temperature and gave rise to a 
band at 2145 cm-1 that was attributed to Pd(I).36 CO adsorption onto 1 wt% Pd/CeO2 
prepared through flame spray pyrolysis showed one band at 2143 cm-1 attributed to 
Pd(II).37 Finally, CO adsorption onto 0.01 wt% Pd/TiO2 showed one band at 2136 cm-1 
attributed to atomically dispersed Pd.11 The numerous aforementioned studies 
demonstrate the utility of CO to sensitively probe the electronic and geometric properties 
of Pd, while simultaneously demonstrating the uncertainty of relating bands to physical 
structure. 

Herein, we probe the coordination environment of mononuclear Pd ions supported on 
ceria (0.034 wt.% Pd) using CO adsorption, IR spectroscopy, and DFT calculations. Our 
CO adsorption studies provided evidence that Pd atoms were adsorbed onto the {100} 
nanofacet of ceria. Exposure of the Pd atoms to CO resulted in reactive ligand exchange 
to yield an oxygen vacancy, adsorbed CO2, and a palladium carbonyl with ν(CO) stretch 
of 2167 cm-1. The palladium carbonyl ν(CO) stretch frequency depended on the hydroxyl 
coverage, as evidenced by a 6 cm-1 redshift upon exposure to water vapor. Our results 
demonstrate the sensitivity of the CO probe molecule to detect changes in the local 
coordination of Pd caused by pretreatment conditions (e.g., exposure to water vapor) and 
to determine the Pd adsorption site onto the underlying ceria support. 

2.0 Materials and Methods 

Reagents. Tetraaminepalladium(II) nitrate (Sigma-Aldrich 377384), cerium(III) nitrate 
hexahydrate (Sigma-Aldrich 238538), and ammonium hydroxide (Sigma-Aldrich 221228) 
were used as received. Carbon monoxide (Matheson G1918775) was purified through 
submersion in liquid nitrogen to remove trace impurities (e.g., water, metal carbonyls, 
etc.) prior to each adsorption experiment. Oxygen (Matheson G2182140) was used as 
received. Water was obtained from a PURELAB flex system that provides ultrapure type 
I (18.2 MW.cm) water. The water was degassed through three cycles of freeze-pump-
thaw. 



PNNL-36556 

Introduction 3 
 

Material Synthesis. Cerium(IV) oxide was synthesized through calcination of 
Ce(NO3)3•6H2O at 550 °C for 5 h in air with a 1 °C min-1 ramp rate. Palladium (0.034 wt. 
%) was supported onto ceria using the strong electrostatic adsorption method.47 Using a 
250 mL Pyrex bottle, CeO2 (2.0 g) was dispersed into 25 mL of water and 75 mL of 28-
30 % NH3•H2O. It was then capped with parafilm. In a separate flask, 22 mL of 10 wt. % 
Pd(NH3)4(NO3)2 was added to 25 mL of 28-30 % NH3•H2O. This solution was introduced 
to the CeO2 suspension at 0.5 mL h-1 using a syringe pump while stirring at 500 rpm. 
Afterward, the Pyrex bottle containing the suspension was wrapped in aluminum foil and 
the parafilm removed. The Pyrex bottle was placed onto a hot plate to remove the solvent 
by evaporation under stirring (100 rpm). The temperature of the suspension was 60 – 70 
°C during evaporation. The dried material was calcined in air at 400 °C for 4 h with a 2 °C 
min-1 ramp rate. The material was outgassed for 4 h at 400 °C under turbo pump 
evacuation prior to the first CO adsorption experiment. 

Fourier Transform Infrared Spectroscopy (IR). IR measurements were carried out on a 
Bruker Vertex 80 spectrometer equipped with a liquid nitrogen-cooled MCT detector 
operated at 4 cm-1 resolution. Each spectrum was the average of 256 scans using a 2 
mm aperture and 80 kHz scanner velocity. A Harrick Praying Mantis HVC-DRM-5 high 
temperature reaction chamber with ZnSe windows was used as the sample cell. The 
pressure in the IR cell could be controlled between < 10-3 and 10 Torr. We note there was 
an inherent leak in the IR cell (~33 mL) of ~0.05 mTorr min-1 at 25 °C. The primary 
contaminants were nitrogen and water. 

CO Adsorption. A typical CO adsorption experiment involved heating 0.034 wt.% 
Pd/CeO2 under vacuum at 20 °C min-1 to 400 °C for 2 h. Depending on the experiment, 
3.9 Torr O2 or H2O was introduced to the cell at 400 °C for 2 h. Afterward, the cell was 
evacuated for 0.5 h at 400 °C to remove O2 or H2O and cooled to 25 °C. A background 
measurement was recorded at this time followed by admittance of 0.24 Torr CO. 

X-Ray Photoelectron Spectroscopy (XPS). XPS measurements were performed using a 
Thermo Fisher NEXSA spectrometer with a 125 mm mean radius, full 180° hemispherical 
analyzer, and 128-channel detector. This system uses a focused monochromatic Al Kα 
X-ray (1486.7 eV) source for excitation and an electron emission angle of 60 degrees. 
The wide scan spectra were collected using a pass-energy of 200 eV with a step size of 
0.5 eV. For the Ag 3d5/2 line, these conditions produced a FWHM of 1.95 eV. The binding 
energy (BE) scale is calibrated using the Cu 2p3/2 feature at 932.62 ± 0.05 eV and Au 
4f7/2 at 83.96 ± 0.05 eV. Sample charging was corrected using the Ce 3d5/2 4f0 line at 
916.7 eV.48 

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). A Perkin Elmer 
7300DV ICP-OES with a cyclonic spray chamber and Meinhard nebulizer was used to 
determine the Pd content in the Pd(NH3)4(NO3)2 solution used during material synthesis. 
The Ar plasma was set at 1350 W. The system was calibrated with NIST traceable 
standards for Pd analyte and cross checked with independent NIST traceable standards. 

Nitrogen physisorption. Nitrogen sorption was used to determine the surface area of 
Pd/CeO2 using a Quantachrome Instruments Quadrasorb SI surface area and pore size 
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analyzer. The sample was outgassed for 8 h at 300 °C and measurements were made in 
a 6 mm bulb using a 180 s thermal delay. The multipoint BET surface area of Pd/CeO2 
was 54 m2 g-1. 

Peak Fitting. The IR bands within the range shown in the plots were fit using the lmfit 
Python library and the Voigt profile from the SciPy library. The Voigt profile was 
parameterized with the following constraints: a baseline modeled as a straight line with 
no variation allowed, an amplitude with no constraints, a center with a permissible shift of 
± 1 cm-1, a sigma (the Gaussian standard deviation) constrained between a minimum of 
2.55 and a maximum of 6.37, and a gamma (the Lorentzian half-width at half-maximum) 
constrained between 0 and 2.8. These specific constraints were chosen to ensure a 
robust and accurate fit while accommodating the inherent variability and complexity of the 
spectral data. 

Electronic structure calculations. To produce results comparable to previous literature, 
we attempted to use the same approximations as Nasluzov et al.2 Our density functional 
theory calculations used the PW91 exchange-correlation49 approximation augmented 
with onsite Hubbard corrections50,51 of U-V = 4 eV for Ce f states. Simulations were 
performed at the Gamma point, and the plane wave basis set was determined by an 
energy cutoff of 415 eV. The projected augmented wave approach was used to soften 
the potentials.52,53 Simulations were conducted using the VASP code.54 All models were 
charge neutral and fully relaxed (internal coordinates of atoms and no constraints on spin 
polarization) in the final configurations. 
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3.0 Results and Discussion 
3.1 DRIFTS Analysis of CO/CeO2 and CO/Pd/CeO2 Systems 

We used wide-scan XPS analysis to determine the inorganic impurities that were present 
on the 0.034 wt. % Pd/CeO2 surface. Documenting impurities can offer better 
reproducibility and explain anomalies between otherwise identical samples when 
studying dynamic systems. Figure S1 shows that the primary inorganic contaminant was 
fluorine (9 at. % relative to Ce and O), which was likely derived from the carbonate-fluoride 
mineral bastnäsite used by the supplier to prepare Ce(NO3)3•6H2O. Fluorine is a common 
ceria contaminant that substitutes oxygen atoms and results in an increased 
concentration of Ce(III) and modification of the O 2p valence band electronic 
structure.55,56 The effects of F-impurity on the chemical properties of ceria have been 
seldom studied, and we could not find any studies related to its effect on supported metal 
atoms.57 No attempts were made to remove the impurity. 

We indirectly probed the local Pd coordination environment by adsorbing CO onto 0.034 
wt.% Pd/CeO2. The baseline experiment (reference state) involves heating Pd/CeO2 
under 3.9 Torr O2 at 400 °C for 2 h followed by evacuation at the same temperature for 
0.5 h and cooling to 25 °C before admittance of 0.24 Torr CO. Figure 1 shows IR spectra 
in the carbonyl region during exposure of Pd/CeO2 to CO over 15 h and the corresponding 
time evolution of two carbonyl bands with ν(CO) stretch frequencies at 2167 cm-1 and 
2177 cm-1. We delineated between Ce and Pd carbonyls by exposing CeO2 to CO. Like 
the experiment above, the CeO2 support was treated in 3.9 Torr O2 for 2 h, followed by 
evacuation at 400 °C for 0.5 h and cooling to 25 °C before admittance of 0.24 Torr CO. 
We observed several non-prominent bands for the 0.24 Torr CO/CeO2 system that can 
be attributed to CO adsorption on low index facets of ceria (Figure S2).58-61 The former 
experiment was repeated using 0.9 Torr CO, which resulted in one prominent ν(CO) band 
at 2179 cm-1 (Figure 2a). The control CO/CeO2 experiments suggest the band observed 
at 2177 cm-1 for CO/Pd/CeO2 in Figure 1 was due to the formation of a cerium carbonyl 
complex, whereas the band at 2167 cm-1 was due to the formation of a palladium carbonyl 
complex. 
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Figure 1. a) IR spectra n the carbonyl region during exposure of 0.034 wt% Pd/CeO2 to 0.24 Torr 

CO at 25 °C following treatment in 3.9 Torr O2 at 400 °C for 2 h. b.) Integrated area of 
the bands at 2167 cm-1 and 2177 cm-1 during contact with CO. 

 

 
Figure 2. IR spectra in the carbonyl region a.) during exposure of CeO2 to 0.9 Torr CO at 25 °C 

and evacuation at the same temperature. b.) during the evacuation of 0.034 wt.% 
Pd/CeO2 at 25 °C following exposure to 0.24 Torr CO at the same temperature for 16 
h (t = 0 h). 
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The assignment of the band at 2177 cm-1 to cerium carbonyl for the CO/Pd/CeO2 system 
seems straightforward given our observations for the CO/CeO2 system. However, we 
note a few anomalies in the cerium carbonyl bands between the two systems. The cerium 
carbonyl band was less intense for CO/CeO2 than CO/Pd/CeO2 as evidenced by 
comparing the spectral regions of the two systems under 0.24 Torr CO (Figure 1a, S2). 
This discrepancy seems related to the fact that the two carbonyl bands in Figure 1 co-
evolved, suggesting that palladium (carbonyl) imparts stability to, or creates, the cerium 
carbonyl, hence their co-evolution. The apparent stabilization manifested during the 
evacuation at 25 °C was evidenced by the immediate (< 30 s) disappearance of the 
cerium carbonyl band for the CO/CeO2 system compared to its hours-long persistence 
for the CO/Pd/CeO2 system (Figure 2). It is also worth noting the anomalously slow 
adsorption kinetics of CO onto Pd ions relative to the fast (< 10 min) adsorption saturation 
onto Pd nanoparticles and extended metal surfaces.62 We reasonably speculate, given 
our collective knowledge of adsorption phenomena, that the slow adsorption kinetics were 
caused by the barrier to form a coordinatively unsaturated site on Pd through ligand 
exchange between support oxygen and a gas phase CO molecule (eq 1).Pd-(O)n + CO 
→ Pd-(O)n-1-CO + Oad (eq 1) 

3.2 DRIFTS Analysis of CO/Pd/CeO2(OH)x System 

The experiment in Figure 1 was followed by heating Pd/CeO2 to 400 °C under evacuation 
and exposure to 3.9 Torr O2 at the same temperature for 2 h. The O2 was removed under 
evacuation for 0.5 h and 3.9 Torr H2O vapor was introduced at 400 °C for 2 h. The cell 
was then evacuated at the same temperature for 0.5 h and cooled to 25 °C under 
evacuation. Exposure of the sample to H2O vapor resulted in an increased surface 
concentration of hydroxyl groups (Figure S3). Figure 2 shows the IR spectra of the 
hydroxylated Pd/CeO2 sample during 13 h exposure to 0.24 Torr CO at 25 °C. The 
primary ν(CO) band for the hydroxylated Pd/CeO2 was observed at 2161 cm-1, a 6 cm-1 
redshift from the reference state shown in Figure 1. The redshift observed for the 
hydroxylated surface indicates a change in the local Pd coordination environment. We 
speculate that this change was caused by the formation of a hydroxyl that is either 
adjacent to, Pd(O)n-1(CO) + Ce(OHad), or coordinated by, Pd(O)n-2(CO)(OH), an isolated 
palladium carbonyl, Pd(O)n-1(CO). Our hypothesis is supported by the fact that we 
purposely introduced hydroxyls and that the CO bond weakens (ν(CO) redshifts) when 
the O-atom participates in hydrogen bonding.26 Similar to the reference state in Figure 
1, the CO adsorption kinetics were slow on hydroxylated Pd/CeO2, which suggests ligand 
change (eq 1) was necessary to form palladium carbonyl. We also note that the intensity 
of the cerium carbonyl band observed at 2175 cm-1 was attenuated relative to the non-
hydroxylated surface. The attenuation of cerium carbonyl on the hydroxylated ceria 
surface likely resulted from competitive adsorption between hydroxyl and carbonyl, the 
former being considerably more stable on ceria. The observed 6 cm-1 redshift supports 
our hypothesis that competitive adsorption was the cause of the diminished cerium 
carbonyl.  
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Figure 3. a.) IR spectra in the carbonyl region during exposure of Pd/CeO2 to 0.24 Torr CO at 25 

°C following treatment in 3.9 Torr H2O vapor at 400 °C for 2 h. b.) Integrated area of the 
bands at 2161 cm-1 and 2175 cm-1 during CO adsorption. 

3.3 Literature IR for CO/sc-CeO2 Systems 

CO adsorption studies onto single crystal (sc) CeO2 surfaces by Wöll and collaborators 
can be used to index the cerium carbonyl band observed here to a {100} nanofacet of the 
polycrystalline CeO2 support.58-61 The primary cerium-carbonyl band on the oxidized sc-
CeO2 (100) surface was reported at 2176 cm-1, corresponding to CO adsorption onto 
undercoordinated (five-fold) Ce4+ sites.59 In comparison, the cerium-carbonyl band for the 
oxidized sc-CeO2 (111) and sc-CeO2 (110) surfaces were observed at 2154 cm-1 and 
2170 cm-1, respectively.58,60,61 The ν(CO) band reported for the sc-CeO2 (100) surface is 
similar to the CO/CeO2 (2179 cm-1) and CO/Pd/CeO2 (2177 cm-1) ν(CO) band observed 
here. Moreover, the CO adsorption spectrum for sc-CeO2 (100) showed two lower 
intensity ν(CO) bands at 2168 cm-1 and 2147 cm-1 associated with CO adsorbed at 
different sites of the sc-CeO2 (100) surface.59 Likewise, the second derivative of Figure 
2a also revealed two lower intensity ν(CO) bands at 2173 cm-1 and 2150 cm-1 (Figure 
S4). The work by Wöll et al. and the observations made here for the CO/Pd/CeO2 system 
provide support that the band at 2177 cm-1 was caused by CO adsorption onto the {100} 
nanofacet of CeO2, i.e., CO-CeO2{100}. 

3.4 DFT Structure Model for the CO/Pd/CeO2 System 

A subtle, yet important point from the explicitly outlined observations in the results section 
is that the cerium and palladium carbonyl complexes were proximate to one another. 
Thus, the observance of ν(CO) at 2177 cm-1—indexed to CO adsorption onto CeO2{100} 
through studies of CO adsorption onto single crystal ceria—implies palladium atoms were 
also adsorbed on the {100} nanofacet of ceria. A literature search for density-functional 
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calculations of metal atom adsorption energies onto low-index facets of ceria does indeed 
identify the (100) facet as the preferred adsorption site for metal atoms. For instance, 
Konstantin Neyman’s group has studied the adsorption energy of metal atoms onto ceria 
using density-functional calculations.2,63-66 They use a cuboctahedral Ce40O80 or Ce21O42 
nanoparticle that exposes small O-terminated {111} and {100} facets as a representative 
model of nanostructured CeO2. They have shown that the {100} ceria nanofacet binds 
metal atoms more strongly than the corresponding edge atom in a 79-atom metal particle 
across 11 different metals.64 Additionally, independent studies using a slab ceria model 
showed that the (100) surface was the most favorable low-index facet for metal atom 
adsorption.66 Several recent experimental studies have also provided evidence that 
CeO2-{100} nanofacets are preferred adsorption sites for late transition metal atoms.67-69 

We deployed a recent local structural model developed by the Ivanova-Shor and Neyman 
groups that describes CO adsorption onto a square-planar Pd atom adsorbed at the {100} 
ceria nanofacet (O4Pd) of a Ce21O42 nanoparticle (Figure 4a).2 DFT calculations of the 
energetics for their model qualitatively reproduce several experimental results reported 
here. For instance, their model showed a weak CO binding energy of 0.13 eV to the O4Pd 
unit (Figure 4b, Pd-O distance of 2.05 Å) owing to the saturation of the Pd atom 
coordination sphere. The weak CO binding energy observed in their model is consistent 
with the relatively low palladium carbonyl signal observed at initial times (< 3 h) in Figures 
1 and 3. Their CO/Pd/Ce21O42 model also showed that O4Pd-CO complex could react 
with an oxygen-coordinating Pd to yield the O3Pd-CO2 complex with a room-temperature 
accessible barrier of 0.51 eV (Figure 4c). This oxidation reaction can also be 
characterized as a reactive ligand exchange like the one alluded to in eq. 1 and aligns 
well with the anomalously slow adsorption kinetics in Figures 1 and 3. We also observed 
the formation of carbonates (i.e., CO2 adsorption onto ceria) during contact with CO 
(Figure S5); however, the undecorated ceria support was also active for CO oxidation 
(data not shown). Finally, they found that the removal of O-atom from O4Pd to form the 
O3Pd site resulted in notable increase of the CO binding energy (1.7 eV) caused by filling 
the Pd coordination sphere, i.e. O3Pd(CO). We calculated an apparent CO desorption 
energy of 0.7 eV using the Redhead equation (Figure S6).49 We expect that the palladium 
carbonyl signal would have saturated within the 15 h observation period in Figure 1 if the 
Redhead energy reflected a barrierless adsorption energy. However, since the palladium 
carbonyl signal did not saturate, the Redhead energy strikes us as a notable increase in 
the apparent CO adsorption energy. 
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Figure 4. Structures from the model of Ref.2 showing a.) Pd adsorbed at the {100} nanofacet 

(O4Pd), b.) a five-coordinate palladium carbonyl (O4PdCO), c.) and a four-coordinate 
palladium carboxylate (O3PdCO2). Structures computed by us showing d.) a two-
coordinate palladium carbonyl (O1PdCO) with oxygen vacancy and adsorbed 
carbonate, e.) and a four-coordinate palladium dicarbonyl (O2Pd(CO)2). Pd atoms 
shown in silver, Ce in yellow, O in red, and C in brown. See the text for descriptions of 
the structures. 

The qualitative similarity between the model introduced above and our experimental results led 
us to extend the model. We introduced an additional CO(g) to the O3Pd-CO2 complex and found 
a configuration where the bent CO2 ligand of O3Pd-CO2 had retreated from the Pd center to 
coordinate another O atom from the Pd-conforming square to yield a CO3

2- group. The newly 
introduced CO(g) replaced the bent CO2 ligand with a Pd-C distance of 1.84 Å. The O-atom 
opposite the newly adsorbed CO was retained at 2.10 Å, typical for Pd-O, while the remaining O 
atom retreated to 3.25 Å from the Pd center. This yielded a linear O1Pd-CO complex with 
adsorbed carbonate that was downhill by 0.71 eV (Figure 4d). The O atom used to form the 
adsorbed carbonate resulted in an oxygen vacancy (VO) bridging two 5-coordinate Ce4+ 
cations. Intriguingly, this VO bridge site matches the one that Wöll et al.1,59 associated with the 
2176 cm-1 ν(CO) band on the sc-CeO2(100) surface using a ceria slab model. However, 
addition of CO(g) to the linear O1Pd-CO complex with the bridging VO did not result in CO 
adsorption at the VO, but rather bridge coordination of a Pd- and O-atom (Figure 4e). This 
preferred CO adsorption site largely derives from underlying differences between the slab and 
nanoparticle ceria models. For example, introduction of CO to Ce21O41 model with bridge VO did 
not result in CO adsorption at the VO, but rather atop a Ce4+ opposite the VO (Figure S7). 
Although there is a disagreement between the slab and nanoparticle ceria models regarding the 
favored CO adsorption site, both models point toward the 2177 cm-1 band of the CO/Pd/CeO2 
system as belonging to a CO interacting with the ceria support. Our experimental results, 
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especially the attenuation of the signal by hydroxyl (Figure 3), also supports the computational 
finding. We also note that a ν(CO) band at 2179 cm-1 has been reported for CO adsorption onto 
atomically dispersed Pt on ceria.68,70 The band was also assigned to CO adsorption onto 
surface Ce ions located in the direct vicinity of four-fold coordinated Pt ions. 

The conversion from four- to two-coordinate Pd was accompanied by changes in the Pd 
electronic structure that point toward a weakening of the Pd-O binding. The linear Pd center 
adopted a more atomic-like electronic structure with less covalent bonding to the O atoms upon 
passage from the square planar coordination. This was reflected in the Pd Bader charge, which 
decreased from 0.86 in the square planar coordination to 0.33 in the linear configuration. At the 
same time, the projections of the densities of states (DOS) onto the Pd d and O p bands near 
the top of the valence band became less correlated upon conversion to the linear configuration 
(Figure S8). These electronic structure analyses are consistent with the occupied d-states of Pd 
hybridizing with neighboring O atoms to form covalent bonds that weaken as the number of O 
neighbors decreases. Moreover, the Pd center of the linear complex was 2.06 Å above the top 
layer of Ce surface atoms compared to only 0.81 Å for the square planar complex, consistent 
with weakened binding of Pd to the ceria support. 
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4.0 Conclusion 
Rigorous examination of CO adsorption onto 0.034 wt.% Pd/CeO2 using IR spectroscopy 
provided characteristic ν(CO) stretch frequencies that can be used as a reference to 
detect induced changes in Pd ion coordination. The characteristic ν(CO) stretch 
frequencies observed here, in combination with CO adsorption studies onto sc-CeO258, 
points toward Pd adsorption onto the {100} nanofacet of polycrystalline CeO2. A 
computational structural model developed previously,2 and co-opted by us, describing 
CO adsorption onto O4Pd/CeO2-{100} qualitatively reproduced several experimental 
observations. The throughline drawn between the aforementioned works and ours obliges 
us to conclude that Pd ions were apparently stabilized on the CeO2-{100} nanofacet in 
square planar geometry. Exposure of the O4Pd/CeO2-{100} structural model to two CO 
molecules led to reactive ligand exchange to yield O1Pd(CO)/CeO2-{100} and adsorbed 
carbonate. The two-coordinate linear palladium carbonyl is likely to be more labile than 
the four-fold analog based on analysis of the DFT calculations, which suggests higher 
surface mobility. This research underscores the necessity of concentrating more 
characterization efforts on atom-adsorbate complexes to provide added utility to the 
atomically dispersed catalyst class. 
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