
Choose an item. 

 

 

PNNL-36491   

  
 

Development Results on 
Replacement Materials for 
Current Scarce or High 
Supply Chain Risk Materials  
M3CR-22PN0401015 
August 2024 

Carolyne Burns Ankit Roy 
Steven Livers Benjamin Lund 
Subhashish Meher Mohan Nartu  
Asif Mahmud Tianhao Wang 
David Garcia Jorge Dos Santos 
Pratikshya Meher Chinthaka Silva 
Thomas Hartmann 
Isabella van Rooyen 

  
 

  

Prepared for the U.S. Department of Energy  
under Contract DE-AC05-76RL01830 



Choose an item. 

  



Choose an item. 

 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility 
for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by 
the United States Government or any agency thereof, or Battelle Memorial 
Institute. The views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency thereof. 

 

PACIFIC NORTHWEST NATIONAL LABORATORY 
operated by 
BATTELLE 

for the 
UNITED STATES DEPARTMENT OF ENERGY 

under Contract DE-AC05-76RL01830 

 

Printed in the United States of America 

Available to DOE and DOE contractors from  
the Office of Scientific and Technical Information,  

P.O. Box 62, Oak Ridge, TN 37831-0062  
www.osti.gov  

ph: (865) 576-8401  
fox: (865) 576-5728  

email: reports@osti.gov  
 

Available to the public from the National Technical Information Service  
5301 Shawnee Rd., Alexandria, VA 22312  

ph: (800) 553-NTIS (6847)  
or (703) 605-6000  

email: info@ntis.gov  
Online ordering: http://www.ntis.gov 

 

 
 

http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/


PNNL-36491 

 

 
 
 
 
 
 
 
 
 
 

Development Results on Replacement 
Materials for Current Scarce or High Supply 
Chain Risk Materials  
M3CR-22PN0401015 
 
 
 
 
August 2024 
 
 
 
Carolyne Burns Ankit Roy 
Steven Livers Benjamin Lund 
Subhashish Meher Mohan Nartu  
Asif Mahmud Tianhao Wang 
David Garcia Jorge Dos Santos 
Pratikshya Meher Chinthaka Silva 
Thomas Hartmann 
Isabella van Rooyen 
 
 
 
Prepared for 
the U.S. Department of Energy 
under Contract DE-AC05-76RL01830 
 
 
 
 
 
Pacific Northwest National Laboratory 
Richland, Washington 99354 
 



PNNL-36491 

Summary ii 
 

Summary 
In September 2020, the U.S. government issued an executive order to address the threat to the 
domestic supply chain from its reliance on critical minerals (CMs) from foreign competitors and 
to support the domestic mining and processing industry. The Advanced Materials and 
Manufacturing Technology (AMMT) program is addressing this executive order by evaluating 
advanced manufacturing (AM) and its impact on the demands of CMs for energy production in 
general and how the deployment of AM in nuclear energy will support the projected goals of the 
Paris Accord and further a net-zero carbon economy (NZE) by 2050. Two strategic reports were 
previously prepared by the AMMT program and identified two areas for more detailed 
exploration: (1) the replacement of high-risk CMs such as cobalt and niobium by more abundant 
minerals and (2) the minimization and utilization of CM waste streams.  

This work describes development activities of the replacement of high risks CMs. The design of 
nuclear materials without critical elements as alloying elements is a part of the nuclear materials 
strategy to overcome the critical minerals scarcity. In this report, two approaches are evaluated, 
namely (1) replacement of critical elements as alloying elements in nuclear materials, and (2) 
the design of new alloys that do not contain critical minerals as an alloying element. 

For the first approach, Inconel 617 (IN617) has been selected as an alloy system to substitute 
its high Co concentration using noncritical Mn. Inconel 617 is an alloy system that has been 
recently ASME-code certified for high-temperature nuclear systems (US Office of Nuclear 
Energy, 2020), therefore was used as a feasibility study.  A computational feasibility study of 
compositional changes to IN617 with simulation generation of stress-strain curves determined 
the impact that Co replacement with Mn has on the alloy’s mechanical properties (e.g., tensile 
strength). For select composition, phase diagrams were calculated and upon promising and 
similar results compared to the original alloy, experimental verification was performed. The 
phase diagrams and tensile simulations suggest that Mn substituted for Co will yield similar 
tensile strength and phase stability.  

The composition with the best combination of simulated oxygen penetration and tensile strength 
was down selected for experimental fabrication and characterization. Two different fabrication 
methods were used to fabricate alloy samples, 1) casting and 2) friction stir consolidation and 
alloying. The samples were then characterized using SEM-EDS, XRD (casting alloy only)  and 
Vickers hardness. IN617-M1 shows considerable promise as a material, particularly when 
subjected to advanced processing methods like friction stir alloying (FSA) due to the grain 
refinement as an additional strengthening mechanism. 

For the second approach evaluated herein, multi objective Bayesian optimization (MOBO) 
techniques were employed to design novel alloys for nuclear applications that do not contain the 
critical minerals nickel and cobalt while maximizing alloy yield strength and hardness. The 
material system within which new compositions were developed for this study is Fe-Cr-Cu-Al-
Nb-Ta-Ti-V-Zr-Mo-W-Mn.  Predictions made through MOBO need to be verified by conducting 
simulations using molecular dynamics and by experimentally producing the alloys and 
measuring their hardness and yield strength values. 
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Acronyms and Abbreviations 
Al ppt aluminum Precipitates 
AM advance manufacturing 
AMMT Advanced Materials and Manufacturing Technology 
ASME American Society of Mechanical Engineers 
BSE backscattered electron 
CM critical minerals 
DOE U.S. Department of Energy 
EBSD electron backscatter diffraction 
EDS energy dispersive spectroscopy 
fcc face-centered cubic unit cell 
FSA friction stir alloying 
FSC friction stir consolidation 
FSW friction stir welding 
GAN generative adversarial networks 
GB ppt grain boundary precipitates 
GFR gas cooled fast reactor 
HEA high entropy alloy 
MD molecular dynamics 
ML machine learning 
Mn ppt manganese precipitates 
MOBO multi objective Bayesian optimization 
MSR molten salt reactor 
NSGA non-dominate sorting genetic algorithm 
PNNL Pacific Northwest National Laboratory 
SEM scanning electron microscopy 
VHTR very high-temperature gas-cooled reactor 
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1.0 Introduction 
In September 2020, the U.S. government issued an executive order to address the threat to the 
domestic supply chain from its reliance on critical minerals (CMs) from foreign competitors and 
to support the domestic mining and processing industry (DOE 2021). In this context, a national 
strategy on CMs was developed, which had an impact on the U.S. Department of Energy’s 
(DOE’s) vision for the decade of 2021–2031. This vision embraces science and technology to 
re-establish U.S. competitiveness in the CM and material supply chains by (a) scientific 
innovation and technologies to ensure resilient and secure CMs and maintain a domestic 
material supply chain, (b) building a long-term minerals and materials innovation ecosystem to 
foster new capabilities to mitigate CM supply chain challenges, (c) increasing private sector 
adoption for sustaining the domestic CM supply chain, and (d) coordinating with international 
partners and federal agencies to diversify global supply chains and ensure the adoption of best 
practices for sustainable mining and processing (DOE 2021). The Advanced Materials and 
Manufacturing Technology (AMMT) program of the DOE Office of Nuclear Energy is addressing 
this executive order by evaluating advanced manufacturing (AM) and its impact on the demands 
of CMs for energy production in general and how the deployment of AM in nuclear energy will 
support the projected goals of the Paris Accord and further a net-zero carbon economy (NZE) 
by 2050. Two strategic reports have been issued by the AMMT to date (Hartmann et al., 2022, 
2023), and detailed experimental design and execution have been the focus of the past year’s 
work regarding (1) the replacement of high-risk CMs such as cobalt and niobium with more 
abundant minerals (this report) and (2) the minimization and utilization of CM waste streams 
(van Rooyen et al., 2024). 

1.1 Background 

The demand for metals and CMs will rapidly increase with international ambitions to address 
climate change, in which the current strategy is set up to comply with a 2°C scenario (cf. 2015 
Paris Accord). Global material use will more than double, from 79 billion tons in 2011 to 167 
billion tons in 2060. The projected growth in materials use, coupled with the environmental 
consequences of material extraction, processing, and waste, is likely to increase pressure on 
the resource bases of the planet’s economies and jeopardize economic and social gains in well-
being. 

CMs are essential for a range of clean energy technologies, which are experiencing rapid 
growth due to global policies and business agendas in recent years. Record deployment of 
clean energy technologies such as solar photovoltaics and batteries is propelling unprecedented 
growth in CM markets, while electric car sales exceeded 10 million units in 2022. Energy 
storage systems experienced even more rapid growth, with capacity additions doubling in 2022 
and wind power installations set to resume their upward trend. All of this has led to a significant 
increase in demand for CMs and increased supply pressure on all other industries. From 2017 
to 2022, demand from the energy sector was the main factor behind a tripling in the overall 
demand for lithium, a 70% jump in demand for cobalt, and a 40% rise in demand for nickel. In 
2022, the share of clean energy applications of the total demand reached 56% for lithium, 40% 
for cobalt, and 16% for nickel, up from 30%, 17%, and 6%, respectively, five years ago (IEA 
2023). 

Driven by rising demand and high prices, the market share of energy transition minerals 
doubled over the past five years, reaching USD 320 billion in 2022. Energy transition minerals, 
which used to be a small segment of the market, are now moving to center stage in the mining 
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and metals industry. A combination of volatile price movements, supply chain bottlenecks, and 
geopolitical concerns has created a mix of risks for secure and rapid energy transitions. 

1.2 Strategy for Decreasing Nuclear Material Vulnerability Due to 
CMs 

Figure 1 shows a schematic of the CM strategy for nuclear materials adapted from previous 
work (Hartmann et al., 2022). As a part of the U.S. DOE’s focus on CMs, increasing 
manufacturing efficiency, identifying better substitutes, and improving the recycling and recovery 
of CMs are important aspects that need focus using both experimental and computational 
efforts. Experimental feasibility studies were identified as part of the strategy to decrease 
nuclear material vulnerability due to CM supply and economic impacts on the following 
elements: (1) Co, as a short-term (2020–2050) and medium-term (2025–2035) high supply risk, 
and (2) Ni, a near-critical material for near term, but a high critical material for the medium term 
(2025–2035). 

 
Figure 1. Schematic of the CM strategy for nuclear materials as developed during this 

study. 

1.3 Scope of This Report 

The design of nuclear materials without critical elements as alloying elements, is a part of the 
nuclear materials strategy to overcome the critical minerals scarcity. For this work, two 
approaches are evaluated namely (1) replacement of critical elements as alloying elements in 
nuclear materials (Section 2.0 of this report), and (2) the design of a new alloy that does not 
contain critical minerals as an alloying element (Section 3.0 of this report). 

For the first approach, Inconel 617 has been selected as an alloy system to substitute its high 
Co concentration using noncritical Mn as the alloy system is also ASME-code certified for high-
temperature nuclear systems under Boiler and Pressure Vessel Code (US Office of Nuclear 
Energy, 2020), please note the composition medication may result in new codification activities. 
Alloy 617 is considered to be used in molten salt reactor (MSR), gas-cooled fast reactor (GFR), 
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and very high-temperature gas-cooled reactor (VHTR) systems due to its desirable properties 
such as high mechanical strength, good oxidation and corrosion resistance and considerably 
low thermal expansion (Natesan and Tam, 2003), high phase stability preventing the formation 
of embrittling phases (e.g., sigma, mu, chi, or Laves phases) at elevated temperatures, and 
good weldability. IN617 is an austenitic Ni-Cr alloy with solution strengthening from the addition 
of Co (~12 wt.%) and Mo (~9 wt.%) leading to good creep strengths at temperatures >870°C. It 
also has Al (~1 wt.%) and a small amount of C (~0.06 wt.%) resulting Inconel 617 to have a 
good corrosion resistance and high mechanical strength (Totemeier and Tian, 2007), 
respectively. However, if internal Al2O3 is formed, it can result in carburization producing 
unwanted carbides followed by the degradation of the alloy (McKee and Frank, 1981). As 
manganese (Mn) is identified as a noncritical mineral and can also form a protective layer 
(MnO2) supporting corrosion resistance of the material, Mn is suggested as a potential 
replacement for high Co concentration in IN617. Lower capture cross section towards thermal 
neutrons of Mn (13.3×10-24 cm2) compared to Co (37.3×10-24 cm2) also brings another 
advantage as an alloy component in structural materials for nuclear reactors.  

In this report, a computational feasibility study of compositional changes to IN617 are 
presented. Compositional modifications were made by systematically substituting the Co 
concentration in IN617 for Mn generating a set of possible compositional modifications (Table 
1). These computational studies include analysis of the effect of Mn addition and Co subtraction 
on strength and corrosion resistance at different atomic percentages and their phase diagram 
calculations. For the mechanical properties, tensile tests on cubic simulation cells have been 
performed to obtain the stress strain curve that reveal the effect of Co replacement with Mn on 
the tensile strength. Phase diagrams were calculated for a few compositions that showed 
promising results in the simulation evaluations. 

The composition with the best combination of oxygen penetration and tensile strength was 
selected for experimental evaluation. Two different methods were used in this study to obtain 
alloy samples, 1) casting and 2) friction stir consolidation and alloying. The materials were then 
characterized using SEM-EDS, XRD (casting alloy only) and Vickers hardness. 

For the second approach, multi objective Bayesian optimization (MOBO) techniques were 
employed to design new alloys that do not contain the critical minerals nickel and cobalt. The 
high entropy alloy (HEA) system within which new compositions were developed for this study is 
Fe-Cr-Cu-Al-Nb-Ta-Ti-V-Zr-Mo-W-Mn. MOBO was used to develop a new material composition 
with maximum yield strength and hardness not containing nickel and cobalt both known for their 
hardening properties. 
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2.0 Replacement of Critical Elements as Alloying Elements 
in Nuclear Materials  

2.1 Molecular Dynamics Simulations 

The six different elemental compositions simulated in this study are shown in Table 1. Molecular 
dynamics simulations of tensile strain were carried out in the extensively parallelized Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package (Plimpton, 1995); 
OVITO (Stukowski, 2009) was used for visualization and data-processing. Figure 2 shows the 
visualization of the relaxed FCC supercell and the deformed supercell after tensile strain. The 
embedded-atom potentials (EAM) described by Zhou et al (2004) and long-range Lennard-
Jones potential by Gröger et al. (2020) were used to define the interatomic potentials. The 
lattice was energy minimized using the conjugate-gradient method with an energy tolerance of 
10−15 eV and a force tolerance of 10−15 eV/Å in LAMMPS.  

Table 1. Elemental composition of IN617 and its modified compositions. 

Material 
Elemental wt.% 

Reference 
C Cr Ni Co Mn Mo Ti Al Fe Total 

IN617 0.06 21.6 53.6 12.5 0.0 9.5 0.3 1.2 0.9 99.66 Natesan and Tam (2003) 

IN617-M1 0.06 26.6 53.6 2.5 5 9.5 0.3 1.2 0.9 99.66 1st modification 

IN617-M2 0.06 24.1 53.6 7.5 2.5 9.5 0.3 1.2 0.9 99.66 2nd modification 

IN617-M3 0.06 21.6 53.6 2.5 10 9.5 0.3 1.2 0.9 99.66 3rd modification 

IN617-M4 0.06 21.6 53.6 7.5 5 9.5 0.3 1.2 0.9 99.66 4th modification 

IN617-M5 0.06 21.6 53.6 10 2.5 9.5 0.3 1.2 0.9 99.66 5th modification 

2.1.1 Tensile Simulations 

The alloy simulation was initialized with a face-centered cubic unit cell, fcc structure at 300 K 
under an isothermal-isobaric (NPT) ensemble for 50 ps. Periodic boundary conditions were 
applied in all the directions. Unidirectional tensile deformation was carried out at a strain rate of 
0.01 ps−1 along the x-direction. The strain rate adopted here was previously employed for 
analyzing the deformation of AlCoCrFeNi HEA (Sharma and Balasubramanian, 2017) and Mo–
Ta–Ti–W–Zr (Singh et al., 2018; Roy et al., 2022). The simulated strain rate is several orders of 
magnitude higher relative to experiments; this difference is necessitated by the timescales 
feasible in MD simulations (Wen et al., 2008).  
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Figure 2. (a) A typical FCC alloy relaxed in molecular dynamics for IN617. (b) Unidirectional 

tensile deformation executed along the x-direction. 

The results of the tensile simulations are shown in Figure 3. IN617-M1 possesses the highest 
strength at both room temperature and 950 K.  
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Figure 3. The stress-strain curve due to uniaxial loading in the x-direction for (a) IN617 and 

its five modifications: (b) IN617-M1, (c) IN617-M2, (d) IN617-M3, (e) IN617-M4, 
and (f) IN617-M5. IN617-M1 shows the best performance at both room 
temperature and 950 K.  

In our study, MD simulations were conducted under tensile stress conditions to derive the yield 
strengths of various alloy modifications. These tensile strengths can be effectively correlated to 
hardness using several well-established relationships in the literature. One commonly cited 
relationship is 

𝐻𝐻𝑉𝑉 ≈ 3. 𝜎𝜎𝑦𝑦 1 

where HV represents the Vickers hardness and σy denotes the yield strength (An et al., 2010; 
Zhang et al., 2011; Li and Ebrahimi, 2003). Hardness testing is fundamentally a surface 
phenomenon, quantifying the localized deformation around the indenter on the material’s 
surface (Biotman, 2017). In contrast, tensile deformation assessments provide insights into the 
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material properties at the bulk level, offering a more comprehensive evaluation of the material's 
overall strength. 

However, tensile testing is both time-consuming and cost-intensive compared to hardness 
measurements. Consequently, for experimental validation in this study, we opted for hardness 
measurements due to their efficiency and practicality.  

The relative order of alloy strengths determined from tensile simulations is expected to 
correspond with the order of the hardness values because of the linear proportionality between 
yield strength and hardness. Thus, while the MD simulations assessed the yield strengths for six 
different alloy modifications, the experimental validation focused on hardness measurements of 
the alloy predicted to have the highest strength. 

2.1.2 Oxidation Simulations  

To simulate the interaction between oxygen and the metals present in the alloy, we employed a 
set of interatomic interactions detailed in Table 2. The simulation cell, with dimensions of 5 nm × 
5 nm × 5 nm as illustrated in Figure 2, served as the framework for our study. To mimic the 
formation of an oxide layer, we initially introduced a 2-atomic-layer-thick oxygen layer onto the 
alloy surface, depicted in Figure 3 (a). The systems, including the IN617 alloy and its variations, 
underwent initialization at 500 K within the isothermal-isobaric (NPT) ensemble, followed by a 
100 ps equilibration period. During this equilibration, oxygen atoms diffused through the alloy 
surface into its bulk, culminating in the formation of an oxide layer of specific thickness, as 
demonstrated in Figure 3 (b) and (c). The average oxygen penetration depth is calculated as  

 d = d1+d2+d3+⋯+dn
n

= ∑ din
i=1
n

 2 

Where d1, d2,…dn, are the penetration depth from the surface, of each oxygen atom O1, O2, O3, 
…,On.  

Table 2. The interatomic potentials used to define the interactions of all nine elements for 
oxidation simulations of IN617 and its modifications. 

Pair/group Ref. Interatomic potential type 
Cr-Ni-Co-Mo-Ti-Al-Fe Zhou et al. (2004) EAM 

Cr-Mn, Ni-Mn, Co-Mn, Fe-Mn, 
Mn-Mn Groger et al. (2020) Long-range Lennard-Jones potential 

Cr-O Minervini et al. (1999) Buckingham potential 
Ni-O Restrepo et al. (2022) Buckingham potential 
Co-O Hermet et al. (2010)  Buckingham potential 
Mn-O Maphanga et al. (2009) Buckingham potential 

Mo-O Rajaramakrishna et al. 
(2020) Buckingham potential 

Ti-O Bandura and Kubicki (2003)  Buckingham potential 
Al-O Georgieva et al. (2009) Buckingham potential 
Fe-O Restrepo et al. (2022)  Buckingham potential 
O-O Minervini et al. (1999) Buckingham potential 
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Figure 4. (a) Initial configuration of doubled layered oxygen atoms over the alloy surface. (b) 

Formation of oxide layer 100 ps after the initiation of simulation. (c) A schematic 
representing the oxygen atoms penetration depth. 

2.1.3 Simulation Results 

Simulation estimated tensile strength and oxygen penetration depths are summarized in Table 
3.  While IN617-M3 shows the lowest oxygen penetration (highest corrosion resistance), it also 
shows a low tensile strength relative to the IN617-M1 and IN617-M2 alloys. Therefore, the M1 
alloy composition is the next best in terms of corrosion resistance, and it also possesses the 
highest strength. In short, compositional modification IN617-M1 exhibits superior strength and 
corrosion resistance despite having a lower cobalt (Co) content compared to IN617. IN617-M1 
composition features a higher chromium content compared to IN617. Chromium is pivotal for 
forming a passive oxide layer (mainly chromium oxide) on the alloy surface, providing excellent 
corrosion resistance by acting as a barrier against further oxidation (Gusieva et al, 2015; Qiu et 
al. 2017; Roy et al., 2022). Additionally, chromium contributes to solid solution strengthening, 
enhancing the mechanical strength of the alloy. 

Table 3. Average oxygen penetration depth and tensile strength for IN617 and its 
modifications. Only Co and Mn elemental compositions are noted for reference.  

Alloy 
Elemental wt.% Avg. oxygen 

penetration depth 
(d) (Å) 

Tensile strength 
(GPa) 

Co Mn 300 K 950 K 
IN617 12.5 0.0 3.72 11.82 9.74 

IN617-M1 2.5 5 3.35 12.33 10.03 
IN617-M2 7.5 2.5 3.85 12.08 9.94 
IN617-M3 2.5 10 3.08 11.67 9.74 
IN617-M4 7.5 5 3.41 11.82 9.63 
IN617-M5 10 2.5 3.70 11.66 9.63 
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In summary, modification IN617-M1's elemental composition, characterized by a higher 
chromium content along with balanced ratios of nickel, titanium, and aluminum, contributes to its 
superior strength and corrosion resistance. The presence of chromium facilitates the formation 
of a protective oxide layer on the alloy surface, while other elements contribute to strengthening 
mechanisms and microstructural refinement. Despite having a lower cobalt content compared to 
IN617, IN617-M1's overall composition enhances its mechanical performance and durability, 
making it the top choice for experimental validation.  

2.2 Phase Diagram Calculations 

All phase diagram calculations were carried out using Thermo-Calc 2024a software. The only 
databases available for this study are Fe/Steels (TCFE13) and High Entropy Alloys (TCHEA7); 
neither of them is tailored for nickel alloy compositions. Therefore, validating these available 
databases becomes crucial, which is performed by simulating the phase diagrams (Phase 
fraction versus temperature plots) for IN617 and comparing them with the experimental and 
modeling data in the literature. After the validation of the use of these databases for the Ni-
based alloy systems (IN617), the validated database was used for the prediction of phase 
diagrams for other selected alloy compositions shown in Table 1. These modified alloy 
compositions were used for phase diagram calculations since they are new and lack any 
experimental data.  

The TCHEA7 database failed to compute any results for IN617, while the TCFE13 (Fe/Steels 
database) was able to partially simulate the phase fraction versus temperature plots, as shown 
in Figure 5 below. It should be noted that some regions of the plot were not simulated, which 
emphasizes that the Fe/Steels database is not tailored for nickel alloys. The phase fraction 
versus temperature plot from Rai et al. (2017) is presented in Figure 6. Both the plots look 
almost identical, but the plot from our study revealed an additional phase, a 𝜋𝜋 − phase, below 
1000K.  

 
Figure 5. Phase fraction versus temperature plot for IN617 simulated using TCFE13 

database and Thermo-Calc 2024a. 

The formation of  𝜋𝜋 − phases in IN617 alloy has been previous observed by Wang et al., 2023).  
An SEM image showing the 𝜋𝜋 − phase, sourced from Wange et al. (20023), is presented in 
Figure 7 and validates the usage of Fe/Steels database for Nickel alloys. 
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Figure 6. Phase fraction versus temperature plot obtained from Rai et al. (2017).  

 

 
Figure 7. SEM image showing the presence of 𝜋𝜋 phase in IN617 alloy.  Image reproduced 

from Wang et al., (2023). 

The phase fraction versus temperature data for IN617-M1 and IN617-M2 compositions are 
simulated using the TCFE13 database. These two alloy compositions were selected here since 
the Molecular Dynamics simulations performed on the modified alloy 617 compositions revealed 
the presence of high tensile strength values for IN617-M1 and IN617-M2 compositions. The 
corresponding plots are presented in Figure 8 and Figure 9, respectively. The TCFE13 
database was not able to simulate the data throughout the temperature range (room 
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temperature to melting point) for the IN617-M1 alloy composition, while the same database was 
successful in predicting the full temperature range for the IN617-M2 composition. This could 
again be due to the fact that the Fe/Steels database does not contain data for, nor is it intended 
for use with Nickel alloys. The melting points of IN617-M1 and IN617-M2 are found to be 1267℃ 
and 1280℃, respectively.  

 
Figure 8. Phase fraction versus temperature plot for 617-M1 simulated using TCFE13 

database and Thermo-Calc 2024a. 

 
Figure 9. Phase fraction versus temperature plot for 617-M2 simulated using TCFE13 

database and Thermo-Calc 2024a.  

2.3 Experimental Validation of the MD Simulations  

The IN617-M1 alloy recommended from the results of molecular dynamic modelling was 
produced using two different experimental techniques: traditional casting in an induction furnace 
and solid phase alloying through friction stir consolidation. For both approaches, wrought IN617 
was turned into chips, 4.5±0.7-mm-long by 1.5±0.3-mm-wide, on a milling machine prior to 
mixing with the other elements to encourage a more homogenous product. Both methods are 
described in detail in this section.   



PNNL-36491 

Replacement of Critical Elements as Alloying Elements in Nuclear Materials 12 
 

2.3.1 Casting Using an Induction Furnace 

Modifications of IN617 were made by adding pure elemental metals of Fe (99.99), Mn (99.95), 
Cr (99.99), Ni (99.995), Mo (99.95), Ti (99.995), and Al (99.999) to Inconel 617 to achieve a 
desired composition as informed by computer modeling. New compositions were weighed out 
on a Sartorius BCE224I-1S analytical balance to ±.01 g of the required amount for a 20-gram 
charge. The pure metals and bulk IN617 chips shown in Figure 10 were die pressed in a ½” die 
set to 12000 lbs.; six pellets were pressed for a 20g charge, Figure 11.  

 
Figure 10. 4N to 5N elemental purity pure elements, left. IN617 filaments and chips, middle 

and alumina crucible with pure elements and IN617 ready for casting. 

 
Figure 11. Pure metal components and Inconel 617 chips pressed into pellets. 

The pellets were then loaded in an alumina crucible with lid which was placed inside of a 
graphite crucible. The graphite crucible was then loaded into a 25KW MTI Corp. EQ-SP-25A 
Induction Heater with a custom-made coil with 7 windings of 3/8” copper tubing with an inner 
diameter of ~2.75” and height of ~4”. The coil also contained insulation and an inert gas line, as 
shown in Figure 12. Argon was flowed prior to and during the melting procedure to reduce 
oxidation, and a type R thermocouple was inserted though top of the crucible setup to monitor, 
adjust, and record temperatures. An initial temperature evaluation study was performed with two 
thermocouples, it showed the temperature varied by 40-80°C, the internal crucible being higher 
as it had better contact with the bottom of the crucible. Graphite was used as a susceptor to 
reach temperatures exceeding 1700°C which were held for 30 minutes to alloy the metal 
components, as shown in Figure 12. The temperature profile collected from a thermal couple 
placed on the graphite crucible is shown in Figure 13. The temperature was held for 30 minutes 
to allow the heat to soak into the inner alumina crucible and fully melt the charge inside. This 

Al                         
Cr

Fe

TiMoMn Ni

Inconel 617
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holding time and target temperature were determined during previous testing. The furnace was 
allowed to cool to room temperature, and the ingot was extracted from the alumina crucible, 
Figure 14. The ingot was sectioned, mounted, and polished to 1 µm for further examination.  

 
Figure 12. MTI 25 kW Induction furnace with induction coil, left, coil, insulation, and internal 

crucible setup used for alloying new metal compositions, right. 

 
Figure 13. Temperature profile used to melt Inconel 617-M1. 
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Figure 14. IN617-M1 ingot formed, max temperature of 1740°C, from left to right -Side, 

Bottom, and Top of ingot. 

The induction melter was able to make the alloy and could be used for further studies. However, 
other methods may be more suitable to achieve the grain structure for ideal mechanical 
properties testing such the ability to pour and cast to shape, or use of an arc melter for fast 
cooling and rapid turn-around.  

2.3.2 Friction Consolidation and Solid Phase Alloying 

IN617 chips were fabricated by machining Inconel 617 sheet metal using a milling machine. The 
IN617 chips were then mixed with 4N and 5N pure metals described previously in the quantities 
given in Table 4. Approximately 30 g of mixed metal chips were used for each consolidation 
experiment, as shown in Figure 15.  

Table 4. Metal masses used for friction consolation and solid phase alloying runs. 

Run 
Number 

Cr 
g 

Ni 
g 

Mn 
g 

Mo 
g 

Ti 
g 

Al 
g 

Fe 
g 

IN617 
g 

Total, 
g 

Run 1 6.6876 12.8415 1.5006 2.2792 0.4132 0.2878 0.2171 5.9796 30.2066 

Run 2 6.6909 12.8774 1.5186 2.2853 0.3918 0.2925 0.2200 5.9766 29.9005 

 
Figure 15.  A mixture of Inconel 617 chips and pure metal alloying additions. 
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The friction consolidation and solid phase alloying experiments were performed using a 
Transformational Technology, Inc. LS2-2.5 friction stir welding (FSW) machine, with a tungsten-
rhenium (W-Re) tool coupled with a tool holder, as shown in Figure 16. 

 
Figure 16. Friction consolidation and solid phase alloying setup. 

Critical process variables during friction consolidation experiments include the loading force, 
rotation rate, and processing time. The tool/chip interface temperature is measured and 
monitored during friction consolidation and is a key parameter in determining the extent of 
consolidation. Temperature is directly influenced by the loading force and rotation rate during 
friction consolidation. The critical parameters of the two friction consolidation and solid phase 
alloying runs performed using IN617-M1 chips are listed in Table 5. A loading force of 65 kN 
was selected for both runs with rotation rates of 100-35 RPM for Run #1 and 100-50 RPM in 
Run #2, enabling us to maintain a consistent tool/chip interface temperature of ~900°C. 

Table 5. Critical parameters for friction consolidation of 617M1 alloy chips. 

Run # Weld # Tool Loading 
(kN) 

Rotation rate 
(RPM) 

Temperature 
(°C) 

Processing 
time (min) 

1 2024-07-23-#000 W-Re 65 100 to 35 Up to 900 8 

2 2024-07-24-#000 W-Re 65 100 to 50 Up to 900 3 min to abort 

Machine data, including tool position (Z position), loading force (Z-axis force), temperature, 
rotation rate, spindle torque, and spindle power are plotted in Figure 17. A rapid reduction in 
rotation rate during the friction consolidation during Run #2 caused a sudden increase in torque 
that reached the maximum torque of the FSW instrument of 700 Nm, causing the run to abort. 
As a result of the over torque the W-Re tool got stuck to the chips container and was recovered 
using electrical discharge machining (EDM) wire cutter. 
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Figure 17. Machine data of tool position (Z position), loading force (Z-axis force), tool/chip 

interface temperature, rotation rate and spindle torque for Run #1 and 2.  

Side and top view images of the consolidated and alloyed chips are shown in Figure 18 for both 
test runs. Visual inspection of the consolidated and alloyed material suggests that a loading 
force of 65 kN was sufficient to obtain a fully consolidation material. This value was selected 
based on our previous experience with similar metal systems. Parameters that are typically 
adjusted to improve consolidation and alloying include the loading force/rotational speed 
combination and hence temperature and process durations. 

 
Figure 18. Top- and bottom view of consolidated and alloyed chips for Run #1 and #2. 

2.4 Characterization Results and Discussion 

In this section, the characterization of the alloys produced from casting, and friction stir 
consolidation and solid phase alloying are presented. Vickers hardness was determined as an 
experimentally rapid method of obtaining information that can be correlated to yield strength 
which was used by the MD simulations to assess the different alloy modifications. SEM-EDS 
was also performed on each of the samples giving us insight into the grain boundaries, grain 
sizes and chemical composition. XRD was also performed on the casting sample to verify 
phases present. 

2.4.1 Characterization Methods  

In preparation for SEM-EDS and Vickers hardness testing, the as-cast IN617-M1 and the FSA 
IN617-M1 samples were mounted in epoxy and prepared metallographically with grinding and 
polishing. All samples were given a final polish using 1 µm diamond polishing paste and a 
colloidal silica (0.05 µm) polishing suspension. Once the final polishing was completed, samples 
were examined using Olympus DSX510 metallurgical microscope.  
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A JEOL 7600 SEM operating at 20kV was used to capture backscattered imaging and 
compositional analysis of the as-cast IN617-M1 alloy using X-ray energy dispersive 
spectroscopy (XEDS, Oxford Instruments). Imaging and compositional analysis of the IN617-M1 
friction stir consolidation alloy was carried out using a ThermoFisher ApreoTM 2 instrument. 

Vickers microhardness measurements were performed using a Sun-Tec (model CM-802 AT) 
microhardness tester, operated with the ARS20 software for automated measurements. A load 
force of 300 grams-force was applied for a duration of 10 seconds for each indentation. A 2 x 2 
array of indentations was performed on three regions of the IN617-M1 cast alloy (potentially 
matrix), each indentation was separated by 0.5 mm. SEM-EDS analysis confirmed the target 
composition of the sample was approximately equivalent to the targeted M1 formulation. The 
friction alloyed sample (IN617-M1 Run#1) was analyzed using a 2 x 10 array of indentations 
performed on two regions consisting of four lines indicated as L-1, L-2, L-3, and L-4 in Figure 6-
4 (a). The FSA IN617-M1 Run#2 sample was analyzed using a 3×3 array of indentations 
performed on a region which was observed to have less pores. 

Calibration checks for the hardness measurements were conducted using Sun-Tec calibration 
standards 297HV0.3 to verify that the instrument was in calibration. These checks confirmed 
that the hardness values measured were within ±2% of the calibration standard, ensuring the 
accuracy of the measurements. 

Powder XRD using a D6 Phaser (Bruker Inc.) diffractometer was used to collect the XRD 
patterns of Inconel 617 and our modified IN617-M1 sample. Both samples were mounted in 
epoxy, resulting in a high background, especially at low angles. The D6 Phaser is equipped with 
a Theta/Theta Goniometer with a radius of 166.5 mm, a Cu Kα radiation, and a 1.2 kW X-ray 
power generator. Prior to collecting the XRD patterns, samples were aligned, and the NIST 
SRM 640g internal standard was used for precision sample displacement correction. All the 
XRD patterns were collected using 0.01° 2θ step size and 0.32 s time per step over 10–120° 2 θ 
range. Each scan took ~1 h to complete.  

2.4.2 Characterization Results of IN617-M1 Cast Alloy 

The results obtained from the mechanical testing and chemical analysis of the IN617-M1 cast 
alloy sample are discussed in the sections below.  
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2.4.3 Optical Imaging and Vickers Hardness IN617-M1 Cast Alloy 

 
Figure 19. Optical micrographs of as-cast IN617-M1 sample with indents for Vickers hardness 

measurement. 

Figure 19 presents the optical micrographs of as-cast IN617-M1 sample. Three regions 
(potentially matrix) were selected and a 2×2 array of indentations was performed on the 
selected regions to determine the hardness. The as-cast IN617-M1 sample had regions with 
porosity while other regions were fully dense. The Vickers hardness data of the as-cast IN617-
M1 sample is given in Table 6. The indentation regions are indicated in Figure 19. 

The average hardness values obtained from the three arrays of indents for the casting sample 
are given in Table 6, all three averages are self-consistent with each other, with an average of 
194.89 ± 9.71 HV. 

Table 6. Vickers hardness values for the as-cast IN617-M1 alloy for the indentation regions 
marked in Figure 19. 

Indentation Region Vickers Hardness, HV Average Vickers 
Hardness, HV 

Average of all the 
Readings, HV 

1 

199.49 

199.76 ± 11.51 

194.35 ± 9.71 

212.52 
181.48 
205.53 

2 
193.47 

197.04 ± 2.08 198.51 
197.78 
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Indentation Region Vickers Hardness, HV Average Vickers 
Hardness, HV 

Average of all the 
Readings, HV 

198.38 

3 

185.5 

187.88 ± 8.27 
201.97 
181.59 
182.45 

2.4.4 XRD IN617-M1 Cast Alloy 

The X-ray diffraction patterns of IN617 and our Mn rich, IN617-M1, modified alloy are shown in 
Figure 20. Both alloys show similar solid-solution phases (fcc phases), with a peak shift to the 
low-angle in the IN617-M1 suggesting a larger lattice parameter than that of the unmodified 
IN617 sample. The increase in the lattice parameter may reflect the incorporation of Mn into the 
IN617 matrix while the Peak broadening is likely due to a smaller crystallite size and higher 
lattice strain in the sample compared to the unmodified IN617 material. 

 
Figure 20. Comparison of IN617-Co 12.5 wt% and the modified IN617-M1-Co 2.5 wt% alloy 

sample from casting at ~1700°C using and induction furnace. Peaks correspond to 
the Si standard (NIST SRM 640g) and fcc phase are denoted by red and blue tick 
marks, respectively.  

2.4.5 Compositional Analysis IN617-M1 Cast Alloy 

Figure 21 presents the XEDS compositional mapping of the backscattered electron (BSE) 
micrographs of the as-cast IN617-M1 sample. Six regions/points were identified from the 
sample and detailed analysis were performed. The primary purpose was to determine whether 
the composition of the matrix hit the composition close to M1 target (Co substitution by Mn). The 
un-melted material identified as Block 1 was observed to be Ti enriched which has a higher 
melting point than the base alloy IN617-M1. The precipitates (ppt) decorated within the grain 
boundary (GB) was observed to be Cr, Mo and Mn enriched. Detailed compositional analysis of 
the identified region is present in Table 7. From this table, the matrix composition is found to be 
very close to the IN617-M1 composition. 
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Figure 21. XEDS compositional mapping of the backscattered electron micrographs of IN617-

M1 cast alloy. 
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Table 7. Elemental composition of regions highlighted in Figure 21 IN617-M1 composition 
included for comparison. 

Location C Al Ti Cr Mn Fe Co Ni Se Mo Total 

IN617-M1 0.06 1.2 0.3 26.6 5 0.9 2.5 53.6 - 9.5 99.66 

Map Sum 1 0.06 0.71 0.80 27.28 4.61 1.65 2.28 52.26 0.00 10.35 100.00 

Matrix 1 0.06 0.67 0.07(a) 27.31 3.69 1.83 2.51 55.98 0.00 7.87 100.00 

Block 1 0.06 0.00 87.13 11.37 0.12(a) 0.00 0.00 0.63 0.00 0.69 100.00 

Matrix 2 0.06 0.65 0.06(a) 28.33 5.85 1.38 2.02 48.01 0.00 13.64 100.00 

Mn PT 10.1 0.42 0.00 5.87 31.09 0.33 0.27 5.99 26.16 19.78 100.00 

GBPT 1 10.07 0.17 0.00 29.51 3.24 0.95 1.57 25.10 0.00 29.39 100.00 

Al PT 0.06 22.78 62.92 9.97 0.20(a) 0.16(a) 0.15(a) 2.96 0.00 0.79 100.00 

(a) Trace elements below confidence threshold 

2.4.6 IN617-M1 Friction Stir Alloying 

The results obtained from the mechanical testing and chemical analysis of the IN617-M1 friction 
stir alloy sample are discussed in the sections below.  

2.4.7 Optical Imaging and Hardness  

Figure 22(a) presents the optical micrograph of the FSA IN617-M1 Run#1 sample along with the 
indents performed and Figure 22(b) presents the Vickers hardness as a function of datapoints. 
Four lines identified as L-1, L-2, L-3, and L-4 consisting of 10 indentations were performed on 
the sample to determine the variation in hardness parallel to the flat surface (top) of the sample 
which is assumed to be the starting point of the FSA fabrication process. In general, this FSA 
IN617-M1 Run#1 was observed to show higher hardness as compared to the as-cast IN617-M1 
sample. 

Table 8. Summary of Vickers hardness values measured for both casting and friction stir 
alloying.  

Sample Type Array of 
Indents 

Indented 
Region 

Vickers Hardness, HV 
Load 300 gf, Dwell 

Time 10s, Spacing 0.5 
mm 

Average Hardness, 
HV 

As-Cast IN617-M1 2 x 2 

1 199.76 ± 11.51 

194.35 ± 9.71 2 197.04 ±2.08 

3 187.88 ± 8.27 



PNNL-36491 

Replacement of Critical Elements as Alloying Elements in Nuclear Materials 22 
 

Sample Type Array of 
Indents 

Indented 
Region 

Vickers Hardness, HV 
Load 300 gf, Dwell 

Time 10s, Spacing 0.5 
mm 

Average Hardness, 
HV 

FSA IN617-M1 Run #1 2 x 10 
1 348.18 ± 36.65 

346.68 ± 45.64 
2 345.17 ± 53.10 

FSA IN617-M1 Run #2 3 x 3 1 180.25 ± 18.77(a) 180.25 ± 18.77 

(a) One indent result was excluded from the average because it fell on the pores. 
 

 
Figure 22. Optical micrographs and Vickers hardness FSA IN617-M1 Run#1 sample, (a) OM 

with indents and, (b) Vickers hardness as a function of data points 

2.4.8 Microstructural Analysis of FSA IN617-M1 Run#1 

Figure 23(a-c) presents the BSE micrograph of FSA IN617-M1 Run#1 sample. The lower 
magnification images in Figure(a-b) shows variation in image contrast that represents 
inhomogeneity in the alloy. However, a higher magnification image in Figure 23(c) shows 
formation of small equiaxed grains in the alloys with significant amount of porosity. The grain 
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size was measured using ImageJ and it was observed to be 1.67 ± 0.39 µm. The higher 
hardness observed in the FSA IN617-M1 Run#1 sample could potentially be attributed to this 
small grain size. Figure 23 (d) is an inverse pole figure image from the same alloys that shows 
the distribution of FCC grains. From these results, it can be inferred that the FSA process is 
able to form alloys with uniform grain sizes, but further process optimization is need for 
macroscopic chemical homogeneity.  

 
Figure 23. (a-c) show BSE micrograph of FSA IN617-M1 Run#1 sample, (d) shows the 

inverse pole figure of this alloy.  

2.4.9 Compositional Analysis IN617-M1 Run #1 

A localized area in the FSA IN617-M1 Run #1 sample was analyzed for chemical compositions, 
as presented in Figure 24. The compositional evaluation was carried to confirm the presence of 
all intended elements for the IN617-M1 chemistry. The observed uniformity of composition 
across this smaller region indicates that further process parameter optimization is required for 
fabricating dense homogeneous products. This localized region also has composition close to 
IN617-M1 (Table 9). The presence of Si at pores is mostly due to the residual Si used for 
polishing the samples. 

a b

c d

300 µm 300 µm

4 µm
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Figure 24.  XEDS compositional mapping of the backscattered electron micrographs of IN617-

M1 Run#1 FSA sample.  

Table 9. The chemical composition of the IN617-M1 Run#1 FSA sample corresponding to 
Figure 24. 

Ni Cr Mn Fe Co O Mo Al Si Ti 

54.14 33.51 4.23 3.22 2.67 1.44 0.42 0.25 0.1 0.03 

2.4.10 Microstructural Analysis of FSA IN617-M1 Run#2 

 
Figure 25. (a-b) shows the BSE images of FSA IN617-M1 Run#2 sample that shows the 

chemical inhomogeneity through the variation in image contrast. 

The BSE micrograph of FSA IN617-M1 Run#2 sample is presented in Figure 25 (a-b). During 
processing of this Run#2 sample, a rapid reduction in rotation rate caused a sudden increase in 
torque that reached the maximum torque of the FSW instrument of 700 Nm, causing the run to 
abort in less than 3 mins. Significant macroscopic chemical inhomogeneity was observed in this 
sample as evident in the XEDS compositional mapping presented in Figure 26 (a-b). Moreover, 
it did not get enough time for recrystallization as the process was aborted within 3 mins. As 
such, the measurement of grain size was not possible, contrasty to that in Run#1. The lower 
hardness in FSA IN617-M1 Run#2 sample could also be attributed to this significant chemical 

a b

100 µm 100 µm
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inhomogeneity. The results from Run#1 and #2 suggests that the process parameter need to be 
optimized further for obtaining materials with less porosity and chemical homogeneity. 

 
Figure 26. (a-b) XEDS compositional mapping of the backscattered electron micrographs of 

FSA IN617-M1 Run #2 sample. The chemical inhomogeneity is pronounced in this 
sample. 

2.5 MD Performance Conclusion 

Krishna et al (2010) reported the Vickers hardness of solution annealed IN617 to be 186.6 ± 5 
HV when measured with a load of 20 kgf. This value is comparable to the as-cast IN617-M1 
hardness value of 194.35 ± 9.7 HV obtained in this study. Table 10 summarizes the grain size in 
microns and the Vickers hardness values (HV) of the MD informed IN617-M1 formulation results 
for both the casting alloy and the FSA samples along with unmodified IN617. The FSA IN617-
M1 Run#2 sample was found to be highly heterogenous, most likely due to the short run time 
resulting from the instrument aborting due to exceeding the maximum allowable torque, thus a 
grain size could not be determined.  

Table 10. Comparison of MD performance compared to experimental data. 

Alloy Studied Grain Size, µm Hardness, HV Ref 
As-cast IN617 10.2 230.7 ± 6.8 van Rooyen et al. (2024) 

Solution Annealed IN617 120 186.6 ± 5 Krishna et al. (2010) 
FSA IN617 1.35 356.5 ± 15.8 van Rooyen et al. (2024) 

As-cast IN617-M1 ~800 194.35 ± 9.71 This work 
FSA IN617-M1 Run#1 1.67 ± 0.39 346.68 ± 45.64 This work 
FSA IN617-M1 Run#2 - 180.25 ± 18.77 This work 

(a) 

(b) 
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IN617-M1 shows considerable promise as a material, particularly when subjected to advanced 
processing methods like friction stir alloying (FSA) due to the grain refinement as an additional 
strengthening mechanism. In the as-cast condition, IN617 exhibits a hardness of 230.7 ± 6.8 HV 
with a grain size of 10.2 µm, while as-cast IN617-M1 has a lower hardness of 194 ± 9.71 HV, 
accompanied by a much larger grain size of 800 µm. This reduction in hardness for M1 is likely 
due to the significant difference in grain size, as smaller grains typically provide more barriers to 
dislocation movement, resulting in higher hardness. The larger grain size in IN617-M1 naturally 
leads to lower hardness, but this doesn't necessarily indicate poor performance, especially 
considering the potential for grain refinement through processing. 

When subjected to FSA, both IN617 and IN617-M1 show significant improvements in hardness 
due to grain refinement. FSA IN617 achieves a hardness of 356.49 ± 15.8 HV with a grain size 
of 1.35 µm, while FSA IN617-M1 reaches a hardness of 346 ± 45 HV with a slightly larger grain 
size of 1.67 µm. The minimal difference in hardness between the two alloys after FSA 
processing suggests that M1 can achieve nearly equivalent mechanical performance to IN617 
when its grain structure is refined. This is consistent with molecular dynamics (MD) predictions, 
where M1 exhibited a slightly higher tensile strength (12.33 GPa) compared to IN617 (11.82 
GPa), indicating its potential for superior mechanical properties. 

In summary, while as-cast IN617-M1 exhibits lower hardness due to its coarser grain structure, 
the alloy shows great potential when processed to refine its microstructure. The close match in 
hardness between FSA IN617 and FSA IN617-M1, along with the MD predictions of higher 
tensile strength for M1, suggests that M1 is as promising as IN617 for applications requiring 
high strength, particularly when processing techniques like FSA are employed to optimize its 
grain structure. 
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3.0 New Alloy Development Using Multi Objective Bayesian 
Optimization 

The objective of the new alloy development is to develop new alloys having high hardness and 
yield strength without critical minerals (i.e., nickel and cobalt using a multi objective Bayesian 
optimization (MOBO) technique). The high entropy alloy (HEA) system within which new 
compositions were developed is Fe-Cr-Cu-Al-Nb-Ta-Ti-V-Zr-Mo-W-Mn. Both the objectives are 
optimized by learning the Pareto front (i.e., learning a set of non-dominated solutions where 
each point on the Pareto front is a compromise between the multi objectives namely hardness 
and yield strength).  

Most of the Machine Learning (ML) research in developing HEA have been focused on 
predicting a single physical property like hardness, yield strength or young modulus (Khakurel et 
al, 2021; Taufique et al., 2024; Wen et al., 2019). There has been a gradual shift to leverage ML 
and statistical methods to optimize two or more physical properties for an HEA system using 
methods like Generative Adversarial Networks (GAN), multi objective optimization techniques 
like non-dominate sorting genetic algorithm (NSGA) and Bayesian optimization (Li et al., 2024; 
Solomon et al., 2018; Shi et al., 2023). In this study, MOBO was used to develop new material 
compositions without the critical minerals—nickel and cobalt with maximum yield strength and 
hardness. Two Neural Network models were developed to predict Yield Strength and Hardness 
using two separate datasets available on Yield Strength and Hardness (Taufique et al., 2024) 
and these models were used to predict the hardness and yield strength of new compositions 
developed through multi-objective Bayesian optimization. From all the new compositions 
developed, optimal solutions were learned from the Pareto front. 

3.1 Design Strategy 

The design strategy used to develop new alloys using MOBO is depicted in the Figure 27. A 
database of alloys was curated which had both their hardness and yield strength data measured 
at room temperature. This data was used to train a Gaussian Process Model (i.e., a surrogate 
model to model the unknown objective function for both hardness and yield strength). Once a 
surrogate model is established to model the objective function from the curated data, Acquisition 
function uses the surrogate model to establish the next point or set of points in the search space 
within the bounds and constraints set. 

The hardness and yield strength models developed separately are used to predict hardness and 
yield strength for these new candidate/ candidates. A separate hardness and yield strength 
database is used to develop these separate models for hardness and yield strength. The newly 
generated candidates and their predicted hardness and yield strength values are added back to 
original curated dataset and the whole cyclic process of approximating the unknown objective 
function and predicting next set of candidate/ candidates using acquisition function and their 
hardness and yield strength value is repeated for several iterations. At the end of scheduled 
number of iterations, the hardness and yield strength of all curated alloys and new compositions 
are plotted together to extract the Pareto front. The solutions obtained in the Pareto front are to 
be analyzed using Molecular dynamics. The aim being to fabricate and test the hardness and 
yield strength of those solutions on Pareto Front (non-dominated solutions) whose performance 
can be validated using Molecular dynamics. 
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Figure 27. Multi objective Bayesian optimization framework. 

3.2 Hardness and Yield Strength Model 

Data on Yield Strength (MPa) and Hardness (HV) used are previously collected data from 
existing literature (Taufique et al., 2024; Gorsse et al., 2018; Couzinié et al., 2018). The dataset 
for yield strength model contains yield strength data on 160 multi-principal metal alloys (MPEAs) 
and HEAs curated from literature is included in Appendix A.1 (Taufique et al., 2024). The 
dataset for hardness model contains hardness data on 243 MPEAs and HEAs curated from 
literature is included in Appendix A.2 (Taufique et al., 2024). 

Neural Models were used train two separate models to predict yield strength and hardness 
respectively using the curated yield strength and hardness data from their respective datasets 
(Appendices A.1 and A.2) and 14 computed features related to MPEAs. These features have 
been found to have effect on the mechanical properties of MPEAs (Roy et al., 2022; Khakurel et 
al., 2021). The data on elemental values for features like Valance Electron Concentration 
(VEC), Pauling and Allen electronegativity, enthalpy, atomic radii, lattice constants were 
gathered from various domain specific sources (Takeuchi and Inoue, 2005). These 14 features 
were computed for all the Alloys using Python scripts; details on the 14 features computed are 
available in Table 11. 
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Table 11. Formulas used to compute input features of hardness and yield strength models. 

Feature Description Formula 

Difference in Pauling electronegativity 

∆𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  ��𝐶𝐶𝑖𝑖(𝑥𝑥𝑖𝑖 −  𝑥̅𝑥)2
𝑛𝑛

𝑖𝑖=1

 

xi – Pauling Electronegativity of element 
Ci – Molar ratio of each element 

𝑥̅𝑥 =  �𝐶𝐶𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Difference in Allen electronegativity 

∆𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  ��𝐶𝐶𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2
𝑛𝑛

𝑖𝑖=1

 

xi – Allen Electronegativity of element 
Ci – Molar ratio of each element 

𝑥̅𝑥 =  �𝐶𝐶𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Mixing Entropy 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = - 8.314∑ 𝐶𝐶𝑖𝑖𝑙𝑙𝑙𝑙𝐶𝐶𝑖𝑖𝑛𝑛
𝑖𝑖=1  

Ci – Molar ratio of each element 

Mixing Enthalpy 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 4 � 𝐶𝐶𝑖𝑖𝐶𝐶𝑗𝑗𝐻𝐻𝑖𝑖−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

𝑖𝑖=1,𝑗𝑗>𝑖𝑖

 

Ci, Cj – Molar ratio of each element 

Difference in Atomic Radii 

𝛿𝛿 =  ��𝐶𝐶𝑖𝑖 (1 − 
𝑟𝑟𝑖𝑖
𝑟̅𝑟

)2
𝑛𝑛

𝑖𝑖=1

 

𝑟𝑟𝑖𝑖 − Atomic Radii of element 
Ci – Molar ratio of each element 

𝑟̅𝑟 =  �𝐶𝐶𝑖𝑖𝑟𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Difference in Lattice Constants 

∆𝑎𝑎 =  ��𝐶𝐶𝑖𝑖(𝑎𝑎𝑖𝑖 − 𝑎𝑎�)2
𝑛𝑛

𝑖𝑖=1

 

ai – Lattice Constant of element 
Ci – Molar ratio of each element 

𝑎𝑎� =  �𝐶𝐶𝑖𝑖𝑎𝑎𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Difference in melting Temperature 

∆𝑇𝑇𝑚𝑚 =  ��𝐶𝐶𝑖𝑖(𝑇𝑇𝑖𝑖 − 𝑇𝑇�)2
𝑛𝑛

𝑖𝑖=1

 

Ti – Melting Temperature of element 
Ci – Molar ratio of each element 

𝑇𝑇� =  �𝐶𝐶𝑖𝑖𝑇𝑇𝑖𝑖

𝑛𝑛

𝑖𝑖=1
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Feature Description Formula 
Parameter - λ 

 λ =  
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
𝛿𝛿2

 

Parameter - Ω 
 

Ω =  
𝑇𝑇𝑚𝑚𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
|∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚| 

 

Average Lattice Constant 
𝑎𝑎𝑚𝑚 =  �𝐶𝐶𝑖𝑖𝑎𝑎𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

ai – Lattice Constant of element 
Ci – Molar ratio of each element 

Valence Electron Concentration 
𝑉𝑉𝑉𝑉𝑉𝑉 =  �𝐶𝐶𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖  −    VEC of element 
Ci – Molar ratio of each element 

Difference in Shear Modulus 

∆𝐺𝐺 =  ��𝐶𝐶𝑖𝑖(𝐺𝐺𝑖𝑖 − 𝐺̅𝐺)2
𝑛𝑛

𝑖𝑖=1

 

Gi – Shear Modulus of element 
Ci – Molar ratio of each element 

𝐺̅𝐺 =  �𝐶𝐶𝑖𝑖𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Average Shear Modulus 
𝐺𝐺𝑚𝑚 =  �𝐶𝐶𝑖𝑖𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Gi – Shear Modulus of element 
Ci – Molar ratio of each element 

The Neural network constructed to train two separate models for predicting hardness and yield 
strength is a fully connected network consisting of sequence of layers. A sequential model is 
created by adding one layer at a time, the Neural model has total of five layers. The 14 
computed features from Table 11, namely - difference in Pauling electronegativity, difference in 
Allen electronegativity, mixing entropy, mixing enthalpy, difference in atomic radii, difference in 
lattice constants, difference in melting temperature, average lattice constant, valence electron 
concentration, difference in shear modulus, average shear modulus and parameter—λ, Ω are 
passed on as input to the first layer. The first two hidden layers have 32 nodes each, followed 
by two more layers having 16 nodes each. All the four hidden layers have rectified linear unit 
(ReLU) activation function. The fifth layer is the output layer having one node for the hardness. 
The neural network is compiled using mean squared loss as loss function and Adam optimizer. 
Once the neural network is defined and compiled, the training is done on a training data and 
then tested on the test data to measure the performance of the model on the said data. 

The Hardness dataset consisting of hardness data for 243 MPEAs is split into training and test 
data containing 202 MPEAs and 41 MPEAs respectively. Similarly, the yield strength dataset 
consisting of yield strength data for 160 MPEAs is split into training and test data containing 128 
MPEAs and 32 MPEAs respectively. The training data is used to train the hardness model and 
the model performance was gauged using the test data. The coefficient of determination (R2) is 
used to measure the performance of neural network trained on the test data. Table 12 contains 
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details on the performance of hardness and yield strength neural models on the reserved test 
data.  

Table 12. Performance of hardness and yield strength models. 

Model R2 Accuracy 
Hardness Neural Model 84.09 % 

Yield Strength Neural Model 61.49 % 

3.3 Multi Objective Bayesian Optimization 

Bayesian optimization is a technique used for optimization of black box function. A black box is 
system whose internal working are unknown and the only available information on hand is the 
input and the output to the box. Bayesian optimization helps in optimizing this unknown function 
which is also referred to as the objective of the optimization. In this study, the multi objective 
Bayesian optimization (MOBO) problem involves optimizing multiple objectives to develop new 
alloy composition in the elemental space of Fe-Cr-Cu-Al-Nb-Ta-Ti-V-Zr-Mo-W-Mn by 
maximizing hardness and yield strength simultaneously. In a multiple objective optimization 
problem, both the objectives compete (i.e., when one objective is maximized or minimized the 
other objective suffers and vice versa). Hence a multiple objective optimization generally 
involves reaching a compromise or trade-off between both the objectives. This set of 
compromised or non-dominated solutions are referred as Pareto front (Shi et al., 2023).  

MOBO consists of two parts – first to develop a surrogate model (typically Gaussian process 
model is used) to fit the known data available and predict outcome in unknown space. The 
surrogate model computes a posterior probability distribution. This distribution is an estimate of 
the data and includes the uncertainty associated with the distribution too (Ghorbani et al., 2024; 
Schulz et al., 2017). The second part to MOBO being designing an acquisition function to 
deduce the new set of candidates and evaluate the target property based on known information 
available through posterior distribution. An acquisition function finds the new candidates by 
balancing the exploration of unknown regions and exploitation of regions which maximizes the 
target objectives (Brochu et al., 2010; Rasmussen, et al., 2003).  

A dataset is curated from literature containing hardness and yield strength data for 201 MPEAs  
(Gorsse et al., 2018; Li et al., 2023)included in Appendix B3. This curated dataset is contained 
in a 23-element space namely Ni-Co-Fe-Cr-Cu-Al-Nb-Ta-Ti-V-Zr-Hf-Mo-Si-W-Re-C-Y-Sn-Pd-
Mn-Sc-Zn. The mole fraction of elements contained in each of 210 MPEAs is computed and 
passed on as inputs to MOBO model developed. 

In this study MOBO is implemented to maximize the hardness and yield strength using BoTorch. 
BoTorch is a Python framework developed by Facebook built on top of PyTorch. It contains 
APIs which aids in implementing single and multi-objectives Bayesian problems. Two surrogate 
model are implemented to fit one each for hardness and yield strength using SingleTaskGP API, 
then both the surrogate models are combined to one multi-output model using ModelListGP 
where each target property is modeled independently. The acquisition function is then 
implemented using parallel Expected Hypervolume Improvement (qEHVI) (Daulton et al., 2020) 
to generate new composition with objective of optimizing maximizing hardness and yield 
strength into one. The hypervolume is defined as Lebesgue measure dominated by a certain 
Pareto front and bounded below by a reference point (Shi et al., 2023). The new candidate/ 
composition performance on Pareto front is evaluated through hypervolume improvement (HVI) 
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(i.e., solutions on pareto front should have a higher hypervolume and all the solution on pareto 
front should have similar hypervolume contribution to be considered as non-dominated 
solutions). The new alloy composition generated using MOBO is being explored in a reduced 
elemental space of Fe-Cr-Cu-Al-Nb-Ta-Ti-V-Zr-Mo-W-Mn. It is implemented by setting the 
bounds of the above elements to be within 0 to 1 (representing the mole fractions of each 
element) and the other elements to be 0 and a linearly constrained for the total mole fraction of 
all elements in new alloy being generated to add up to 1. For the new alloy composition 
obtained through MOBO, 14 features from Table 11 are computed and its hardness and yield 
strength value are computed using the hardness and yield strength model respectively. This 
newly generated data point with its computed hardness and yield strength values are appended 
to the original dataset of 201 MPEAs. The posterior probability distribution of surrogate models 
is updated, and the acquisition function uses the updated model to determine the next point to 
evaluate. This cyclic process of adding the new composition to training data, updating surrogate 
model, and querying the next sample is repeated for 200 iterations, each iteration generates 4 
new compositions in parallel using batch optimization technique. A total of 800 new 
compositions are generated and after plotting the hardness and yield strength objectives, 3 
compositions are found in the Pareto front. Figure 28 contains the hardness and yield strength 
of old MPEAs and new MPEAs plotted together. Table 13 contains details about these three 
compositions on Pareto front. 

 
Figure 28. Hardness versus yield strength of the alloys in original training data represented 

using yellow dots and new compositions suggested by Bayesian optimization 
represented using blue dots. The solid blue line represents the alloys in the Pareto 
front. 
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Table 13. Details of 3 composition on the Pareto front and their predicted hardness and yield 
strength (YS). 

3.4 Next Actions 

The predictions made through MOBO need to be verified by conducting simulations using 
molecular dynamics and by experimentally developing the alloys and measuring their hardness 
and yield strength values. Moreover, the MOBO model as well as the models to predict 
hardness and yield strength needs to be further optimized. Current neural models developed for 
predicting hardness and yield strength are not very high performing models, hence the predicted 
hardness and yield strength values have a higher prediction uncertainty associated with them. 
To derive more reliable and accurate predictions, the aim is to explore other tree-based 
ensemble models, kernel models in future work. The accuracy of these hardness and yield 
strength models has a major impact on the MOBO model too, for the new composition 
generated we need the predictions to be as close to accurate as possible and a higher 
uncertainty might hinder the predictions and the overall performance obtained from MOBO. The 
current MOBO model just takes the mole fraction ratio as inputs to the model, whereas the 
hardness and yield strength models take 14 features in Table 11 as inputs to their model. These 
inconsistencies in inputs given to MOBO and the hardness and yield strength neural models 
might also be hampering the overall performance of MOBO. In future work, developing models 
having consistent inputs to MOBO, hardness and yield strength models needs to be explored. 
There are many of new acquisition functions that can be explored in MOBO in addition to qEHVI 
acquisition function, like Upper Confidence Bound (UCB); Mutual Information (MI); parallel 
Noisy Expected Hypervolume Improvement (qNEHVI) (Daulton et al., 2021); and many more. 
Overall, the MOBO model developed in this study is in its nascent stage of implementation and 
needs further optimization to derive more reliable new compositions from it. 

Fe Cr Cu Al Nb Ta Ti V Zr Mo W Mn Pred 
HV 

Pred. 
YS 

0.122 0.046 0.006 0.001 0.080 0.071 0.077 0.068 0.100 0.234 0.175 0.0199 424 3468 
0.223 0.331 0.046 0.027 0.009 0.031 0.141 0.068 0.013 0.102 0.010 0.0003 744 1589 
0.240 0.020 0.027 0.036 0.091 0.077 0.021 0.005 0.100 0.040 0.342 0.0005 810 1097 
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4.0 Conclusions and Recommendations 
A computational feasibility study of modifications to the composition of IN617, with the addition 
of Mn and the reduction of the Co content, reducing the demand on critical minerals has been 
reported here. The results of this MD study were used to downselect one alloy formulation that 
was experimentally produced by two methods, casting and FSA and the resulted metal alloy 
was characterized. FSA produced a finer grain alloy with an enhance Vickers hardness under 
the experimental conditions used for this report. Both methods produced alloys that formed FCC 
phases confirmed by XRD (cast alloy) and EBSD (FSA run#1 alloy). The cast IN617-M1 alloy 
had comparable hardness values of solution annealed IN617 and slightly lower values of as-
cast IN617 produced at PNNL (van Rooyen et al, 2024), despite the significantly larger grain 
sizes observed. Both alloys produced in this study either showed nearly equivalent or increased 
strength relative to IN617, an acceptable outcome that demonstrates the potential for new alloys 
suitable for nuclear applications. Additional testing of the alloy suggested through computer 
modeling may be required to understand the accuracy of the model. These variations can help 
optimize the alloy further and validate and help refine the model. Further mechanical property 
testing on MD informed compositions are required to confirm Vickers hardness values relate, as 
expected to tensile strength. IN617-M1 shows considerable promise as a material, particularly 
when subjected to advanced processing methods like friction stir alloying (FSA) due to the grain 
refinement as an additional strengthening mechanism. 

The multi objective Bayesian optimization (MOBO) work presented in this study used to develop 
new alloys without the critical minerals nickel and cobalt has shown promise. Developing 
models with consistent inputs to MOBO, hardness and yield strength models needs to be 
explored in the future. Predictions made through MOBO need to be verified by conducting 
simulations using molecular dynamics and by experimentally producing the alloys and 
measuring their hardness and yield strength values.
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5.0 Reports, Publications and Presentations 
Three reports resulted to date from this project: 

• M3CR-22PN0401013, Nuclear energy critical material waste minimization enabled by AM 
techniques, May 2024 

• M2CR-22PN0401015, Summary: Nuclear Energy critical materials waste reduction and 
supply chain solutions enabled by advanced manufacturing, September 2024 

Two conference presentations resulted to date from this project: 

• Chinthaka Silva, Ankit Roy, Carolyne Burns, Benjamin Lund, Steven Livers, Thomas 
Hartman, Mohan Nartu, Subhashish Meher, Isabella van Rooyen, Development of 
Nuclear Reactor Structural Materials with Low Critical Mineral Concentrations, 
MS&T2024 MS&T24: Where Materials Innovation Happens, October 6–9, 2024 | David 
L. Lawrence Convention Center | Pittsburgh, Pennsylvania, USA 

• Isabella van Rooyen, Thomas Hartman, Praveen K. Thallapally, Chinthaka Silva, Ankit 
Roy, Subhashish Meher, Jorge Dos Santos, Carolyne Burns, Ben Lund, Steven Slivers, 
Impact of Additive Manufacturing Technologies on Critical Mineral Usage and Waste for 
Nuclear Structural Materials, ASTM International Conference on Advanced 
Manufacturing 2024 (ICAM2024), October 28, 2024 -November 01, 2024 
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Appendix A Datasets Used for MOBO 
A.1 Hardness Dataset 
 

Alloy Yield Strength 
(MPa) 

CoFeNiSi0.75 1301 
Al0.75CoFeNi 794 
AlCoCrFeNi 1251 

AlC0.1CoCrFeNi 957 
AlC0.2CoCrFeNi 906 
AlC0.3CoCrFeNi 867 
AlC0.4CoCrFeNi 1056 
AlC0.5CoCrFeNi 1060 

AlCCoCrFeNi 1251 
AlC1.5CoCrFeNi 1255 

AlCoCrFeMo0.1Ni 1804 
AlCoCrFeMo0.2Ni 2456 
AlCoCrFeMo0.3Ni 2649 
AlCoCrFeMo0.4Ni 2670 
AlCoCrFeMo0.5Ni 2757 
AlCoCrFeNb0.1Ni 1641 
AlCoCrFeNb0.25Ni 1959 
AlCoCrFeNb0.5Ni 2473 
AlCoCrFeNiSi0.2 1265 
AlCoCrFeNiSi0.4 1481 
AlCoCrFeNiSi0.6 1834 
AlCoCrFeNiSi0.8 2179 

AlCoCrFeNiSi 1110 
AlCoCrFeNiTi0.5 2260 
CoCrFeMnNiV0.5 620 
CoCrFeMnNiV0.75 740 
CoCrFeMnNiV1.0 1660 

AlCrFeNi 1406 
AlCrFeNiMo0.2 1487 
AlCrFeNiMo0.5 1749 
AlCrFeNiMo0.8 1513 

CoCrCuFeNiTi0.5 700 
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Alloy Yield Strength 
(MPa) 

CoCrCuFeNiTi 1272 
Al0.25CoCrCu0.75FeNiTi 750 

AlCoCrCuFeNi 1303 
AlCoCrCuFeMnNi 1005 
AlCoCrCuFeNiTi 1234 
AlCoCrCuFeNiV 1469 
Al2CoCrCuFeNi 1620 

AlCoFeNi 964 
Al1.125CuFe0.75NiTi1.1 980 
Al22.5Cu20Fe15Ni20Ti2 980 

AlCuFeNiTi 1074 
TaNbHfZrTi 929 

Al0.25MoNbTiV 1250 
Al0.25NbTaTiV 1330 
Al0.2MoTaTiV 1021 

Al0.3HfNbTaTiZr 1188 
Al0.3NbTa0.8Ti1.4V0.2Zr1.3 1965 

Al0.4Hf0.6NbTaTiZr 1841 
Al0.5CrNbTi2V0.5 1240 
Al0.5HfNbTaTiZr 1302 
Al0.5MoNbTiV 1625 

Al0.5NbTa0.8Ti1.5V0.2Zr 2035 
Al0.5NbTaTiV 1012 
Al0.6MoTaTiV 962 

Al0.75HfNbTaTiZr 1415 
Al0.75MoNbTiV 1260 
Al1.5MoNbTiV 500 
AlCr0.5NbTiV 1300 
AlMoNbTiV 1375 
AlMoTaTiV 735 

AlNb1.5Ta0.5Ti1.5Zr0.5 1280 
AlNbTaTiV 991 

AlNbTiV 1000 
CoCrMoNbTi0.4 1771.3 

Hf0.4Nb1.54Ta1.54Ti0.89Zr0.64 882 
Hf0.5Mo0.5NbTiZr 1176 
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Alloy Yield Strength 
(MPa) 

Hf0.5Nb0.5Ta0.5Ti1.5Zr 903 
Hf0.75NbTa0.5Ti1.5Zr1.25 1100 

HfMo0.25NbTaTiZr 1112 
HfMo0.5NbTaTiZr 1137 
HfMo0.5NbTiV0.5 1260 

HfMoNbTaTiZr 1512 
HfMoNbTiZr 1719 
HfMoTaTiZr 1600 

HfNb0.18Ta0.18Ti1.27Zr 540 
HfNbTaTiZr 1073 
HfNbTaZr 1315 
HfNbTiVZr 1253 
HfNbTiZr 879 
HfTaTiZr 1500 

Mo0.1NbTiV0.3Zr 932 
Mo0.3NbTiV0.3Zr 1312 

Mo0.3NbTiVZr 1289 
Mo0.5NbTiV0.3Zr 1301 

Mo0.5NbTiVZr 1473 
Mo0.7NbTiV0.3Zr 1436 

Mo0.7NbTiVZr 1706 
Mo1.3NbTiV0.3Zr 1603 

Mo1.3NbTiVZr 1496 
Mo1.5NbTiV0.3Zr 1576 
MoNbTaTi0.25W 1109 
MoNbTaTi0.5W 1211 
MoNbTaTi0.75W 1304 

MoNbTaTiV 1400 
MoNbTaTiVW 1515 
MoNbTaTiW 1455 

MoNbTaV 1525 
MoNbTaVW 1246 
MoNbTaW 1058 
MoNbTiV 1200 

MoNbTiV0.25Zr 1750 
MoNbTiV0.3Zr 1455 
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Alloy Yield Strength 
(MPa) 

MoNbTiV0.5Zr 1640 
MoNbTiV0.75Zr 1680 

MoNbTiVZr 1779 
MoNbTiZr 1560 
MoTaTiV 1221 
NbTaTiV 1092 

NbTaTiVW 1420 
NbTaVW 1530 

NbTiV0.3Zr 866 
NbTiVZr 1105 

AlMo0.5NbTa0.5TiZr 2000 
Al0.3NbTaTi1.4Zr1.3 1965 

NbTiV2Zr 918 
CrHfNbTiZr 1375 

CrMo0.5NbTa0.5TiZr 1595 
CrNbTiVZr 1298 

Hf0.5Mo0.5NbTiZr 1178 
Hf0.5Mo0.5NbSi0.1TiZr 1365 
Hf0.5Mo0.5NbSi0.3TiZr 1428 
Hf0.5Mo0.5NbSi0.5TiZr 1605 
Hf0.5Mo0.5NbSi0.7TiZr 1604 
Hf0.5Mo0.5NbSi0.9TiZr 1677 
Hf0.5Mo0.5NbTiZrCr0.1 1183 
Hf0.5Mo0.5NbTiZrCr0.3 1201 

HfNbSi0.5TiV 1399 
HfNbSi0.5TiVZr 1540 

HfNbTiVZr 1170 
CoCrCuFeMnNiTiV 1312 
Cu30Mn30Ni30Al10 515 
Cu30Mn30Ni30Sn11 630 

AlCrFeNiMo0.5 1914.1 
AlCrFeNiMo0.5Ti0.25 2161.7 
AlCrFeNiMo0.5Ti0.4 2185.1 
AlCrFeNiMo0.5Ti0.5 2228.7 
AlCrFeNiMo0.5Ti0.6 1314.5 
AlCrFeNiMo0.5Ti0.75 618.8 
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Alloy Yield Strength 
(MPa) 

HfMo0.5NbTaTiZr 1317 
HfMo0.75NbTaTiZr 1373 

HfMoNbZrTi 1803 
Mo1.7NbTiVZr 1645 
Mo2NbTiVZr 1765 

MoNbTiV1.0Zr 1786 
MoNbTiV1.5Zr 1735 
MoNbTiV2.0Zr 1538 
MoNbTiV3.0Zr 1418 

MoNbTiZr 1592 
Nb5V20Cr60W5Ta5Al5 1474 
Nb10V25Cr50W5Ta5Al5 1401 
Mo5V25Cr55W5Ta5Al5 1511 
Mo10V35Cr40W5Ta5Al5 1471 
Mo15V40Cr30W5Ta5Al5 1470 

Mo20Nb10V30Cr25W5Ta5Al5 1458 
Mo20Nb40Cr25W5Ta5Al5 1403 
Mo40Nb35Cr10W5Ta5Al5 1525 

Mo50Nb10V20Cr5W5Ta5Al5 1658 
Mo55Nb5V5Cr20W5Ta5Al5 1748  

A.2 Hardness Dataset 
 

Alloy Hardness 
(Vickers) 

CoFeNi 125 
CoFeNiSi0.25 149 
CoFeNiSi0.5 287 

CoFeNiSi0.75 570 
Al0.25CoFeNi 138 
Al0.5CoFeNi 212 

Al0.75CoFeNi 385 
CoCrFeNi 116 

CoCrFeMo0.5Ni 210 
Co1.5CrFeNi1.5Ti0.5 509 

Co1.5CrFeNi1.5Ti 654 
Al0.25CoCrFeNi 110 
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Alloy Hardness 
(Vickers) 

Al0.5CoCrFeNi 159 
Al0.7Co0.3CrFeNi 624 
Al0.75CoCrFeNi 388 
Al0.875CoCrFeNi 538 

AlCoCrFeNi 484 
Al1.25CoCrFeNi 499 

Al2CoCrFeNi 509 
Al2.5CoCrFeNi 487 
Al3CoCrFeNi 506 

Al0.5CoCrFeMo0.5Ni 425 
AlCo0.5CrFeMo0.5Ni 801 
AlCoCrFe0.5Mo0.5Ni 755 
AlCoCrFe0.6Mo0.5Ni 754 
AlCoCrFeMo0.5Ni0.5 708 

AlCoCrFeMo0.5Ni 796 
AlCoCrFeMo0.5Ni1.5 586 
AlCoCrFeMo0.5Ni2 395 

AlCo1.5CrFeMo0.5Ni 741 
AlCo2CrFeMo0.5Ni1.5 586 
AlCo2CrFeMo0.5Ni2 395 
AlCo1.5CrFeMo0.5Ni 741 
AlCo2CrFeMo0.5Ni 586 

AlCoCrFe1.5Mo0.5Ni 635 
AlCoCrFe2Mo0.5Ni 639 

Al1.5CoCrFeMo0.5Ni 655 
Al2CoCrFeMo0.5Ni 605 
AlCoCrFeNb0.1Ni 569 
AlCoCrFeNb0.25Ni 668 
AlCoCrFeNb0.5Ni 747 

Al0.2Co1.5CrFeNi1.5Ti0 487 
AlCoCrFeNiTi0.5 178 
Al2CoCrFeNiTi 643 

AlCoCrFeNiTiVZr 780 
CoCrFeMnNiV0.25 151 
CoCrFeMnNiV0.5 186 
CoCrFeMnNiV0.75 342 
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Alloy Hardness 
(Vickers) 

Al0.10CoCrFeMnNi 180 
Al0.20CoCrFeMnNi 171 
Al0.38CoCrFeMnNi 182 
Al0.75CoCrFeMnNi 530 
Al0.81CoCrFeMnNi 539 
Al0.88CoCrFeMnNi 533 
Al1.25CoCrFeMnNi 539 

Al0.5CrFe1.5MnNi0.5 396 
AlCoCrFeMo0.5 857 

AlCrFeNi 472 
AlCrFeNiMo0.2 549 
AlCrFeNiMo0.8 854 

CoCrCuFe 134 
Al0.3CoCrCuFe 180 
Al0.5CoCrCuFe 207 

AlCoCrCuFe 407 
Al1.5CoCrCuFe 510 
Al1.8CoCrCuFe 557 
Al2.3CoCrCuFe 603 
Al2.5CoCrCuFe 624 
Al3CoCrCuFe 644 

CoCrCu0.5FeNi 172 
CoCrCuFeNi 286 

Al0.3CoCrCuFeNi 180 
Al0.8CoCrCuFeNi 270 

AlCoCrCuFeNi 406 
Al1.3CoCrCuFeNi 470 
Al1.5CoCrCuFeNi 506 
Al1.8CoCrCuFeNi 650 
Al2CoCrCuFeNi 560 

Al2.3CoCrCuFeNi 600 
Al2.5CoCrCuFeNi 620 
Al2.8CoCrCuFeNi 650 
Al3CoCrCuFeNi 640 

Al0.5CoCrCuFeNiTi0.2 272 
Al0.5CoCrCuFeNiTi0.4 321 
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Alloy Hardness 
(Vickers) 

Al0.5CoCrCuFeNiTi0.6 458 
Al0.5CoCrCuFeNiTi0.8 590 

Al0.5CoCrCuFeNiTi 636 
Al0.5CoCrCuFeNiTi1.4 664 
Al0.5CoCrCuFeNiTi1.6 657 
Al0.5CoCrCuFeNiTi1.8 667 
Al0.5CoCrCuFeNiTi2 696 

Al0.5CoCrCuFeNiV0.2 204 
Al0.5CoCrCuFeNiV0.6 328 
Al0.5CoCrCuFeNiV0.8 447 
Al0.5CoCrCuFeNiV1.0 639 
Al0.5CoCrCuFeNiV1.2 579 
Al0.5CoCrCuFeNiV1.4 577 
Al0.5CoCrCuFeNiV1.8 597 

AlCoFeNiTiVZr 790 
AlCoCuFeNi 536 

AlCoCuFeNbNi 578 
AlCoCuFeNiSi 682 
AlCoCuFeNiTi 626 
AlCoCuFeNiZr 472 
CoCuFeMnNi 208 

CoCuFeMnNiSn0.03 192 
CoCuFeMnNiSn0.05 205 
CoCuFeMnNiSn0.08 219 
CoCuFeMnNiSn0.1 253 
CoCuFeMnNiSn0.2 319 

CrCuFeMoNi 263 
AlCrCuFeNi0.6 496 
AlCrCuFeNi0.8 486 
AlCrCuFeNi1.0 495 
AlCrCuFeNi1.2 407 
AlCrCuFeNi1.4 367 

Al1.125CuFe0.75NiTi1.1 516 
Al22.5Cu20Fe15Ni20Ti2 516 

AlCuFeNiTi 516 
AlCuNiTi 537 
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Alloy Hardness 
(Vickers) 

TaNbHfZrTi 390 
Al0.25MoNbTiV 460 

Al0.4Hf0.6NbTaTiZr 500 
Al0.5HfNbTaTiZr 396 
Al0.5MoNbTiV 487 

Al0.5NbTa0.8Ti1.5V0.2Zr 530 
Al0.75MoNbTiV 517 

AlMoNbTiV 537 
AlNb1.5Ta0.5Ti1.5Zr0.5 408 

AlNbTiV 448 
Hf0.5Nb0.5Ta0.5Ti1.5Zr 301 

HfMo0.25NbTaTiZr 395 
HfMoNbTaTiZr 505 

HfMoTaTiZr 542 
HfNbTaTiZr 295 
HfNbTaZr 365 

MoNbTaTi0.25W 478 
MoNbTaTi0.75W 496 

MoNbTaV 504 
MoNbTaVW 536 

MoNbTiV 441 
NbTiVZr 335 

AlMo0.5NbTa0.5TiZr 591 
Al0.3NbTaTi1.4Zr1.3 500 
HfMo0.75NbTaTiZr 492 

NbTiV2Zr 304 
CrHfNbTiZr 464 

CrMo0.5NbTa0.5TiZr 540 
CrNbTiVZr 482 

FeMoNiTiVZr 740 
Hf0.5Mo0.5NbTiZr 400 

Hf0.5Mo0.5NbSi0.1TiZr 442 
Hf0.5Mo0.5NbSi0.3TiZr 494 
Hf0.5Mo0.5NbSi0.5TiZr 524 
Hf0.5Mo0.5NbSi0.9TiZr 640 

HfNbSi0.5TiV 490 
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Alloy Hardness 
(Vickers) 

HfNbSi0.5TiVZr 464 
HfNbTiVZr 388 

CoCrCuFeNiTiVZr 680 
CoCrCuFeMoNiTiVZr 850 

CoCuFeNiTiVZr 630 
CoFeNiV 238 

CoFeMo0.2NiV 267 
CoFeMo0.4NiV 402 
CoFeMo0.6NiV 557 
CoFeMo0.8NiV 606 

CoFeMoNiV 625 
CoFeMoNi1.6V 520 
CoFeMoNi1.8V 510 
CoFeMoNi2V 382 

CoFeMoNiTiVZr 790 
CuFeNiTiVZr 590 
AlFeNiTiVZr 800 

Cu25Mn25Ni25Zn25 147 
Cu30Mn30Ni30Sn11 318 

Cu31.6Mn31.6Ni31.6Al5 166 
AlCrFeNiMo0.5 623.7 

AlCrFeNiMo0.5Ti0.25 712 
AlCrFeNiMo0.5Ti0.4 731.9 
AlCrFeNiMo0.5Ti0.5 751.7 
AlCrFeNiMo0.5Ti0.6 756.1 
AlCrFeNiMo0.5Ti0.75 766.2 

Mo85.25Ta9.52Ti2.29Zr2.94 422.2 
Mo82.23W1.29Ta9.46Ti3.27Zr3.36Al0.39 429.4 

Mo82.93W2Ta9.89Ti2.4Zr2.72Al0.05 410.8 
Mo79.73W0.09Ta12.36Ti3.92Zr3.88Cr0.03 479.8 
Mo78.53W1.06Ta12.53Ti3.68Zr4.18Cr0.03 492.6 

Mo78.58W2.14Ta11.19Ti3.79Zr4.3 480.7 
Mo75.86W3.13Ta12.65Ti3.89Zr4.47 517.4 
Mo75.66W3.69Ta12.2Ti3.8Zr4.65 501 

Mo81.5W1.63Ta6.37Ti3.9Zr4.51Al1.96Cr0.13 526.4 
Mo78.86W2.93Ta7.48Ti3.69Zr5.36Cr1.68 445 
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Alloy Hardness 
(Vickers) 

Mo79.92Ta9.87Ti4.69Zr5.45Cr0.07 487.1 
Mo76.31W0.41Ta9.3Ti6.22Zr7.29Al0.37Cr0.08 497.7 

Mo80.87W1.02Ta6.98Ti5.23Zr5.88Al0.03 464.6 
Mo76.47W3.17Ta8.64Ti5.25Zr6.45Cr0.02 480.2 
Mo71.98W6.62Ta9.97Ti5.06Zr6.32Cr0.06 494.5 
Mo78.09W3.06Ta4.93Ti4.92Zr7.9Cr1.1 485.5 

Mo78.35W1.61Ta20.03 426.4 
Mo75.99W3.83Ta20.18 426.8 
Mo74.54W4.2Ta21.25 436.2 

Mo77.21W4.17Ta17.69Ti0.34Zr0.07Al0.1Cr0.41 387.5 
Al0.375CoCrFeNi 196 

Al1.5CoCrFeNi 517 
Al0.2Co1.5CrFeNi1.5Ti 717 

CoCrFeMnNi 176 
CoCrFeMnNiV1.0 650 

Al0.43CoCrFeMnNi 183 
Al0.49CoCrFeMnNi 220 
Al0.56CoCrFeMnNi 278 
Al0.62CoCrFeMnNi 405 
Al0.68CoCrFeMnNi 486 
Al0.95CoCrFeMnNi 535 

Al0.3CrFe1.5MnNi0.6 297 
AlCrFeNiMo0.5 622 
Al0.8CoCrCuFe 271 
Al1.3CoCrCuFe 476 
Al2CoCrCuFe 567 

Al2.8CoCrCuFe 657 
Al0.5CoCrCuFeNi 210 

Al0.5CoCrCuFeNiTi1.2 646 
Al0.5CoCrCuFeNiV0.4 231 
Al0.5CoCrCuFeNiV1.6 594 
Al0.5CoCrCuFeNiV2.0 587 

AlCoFeNi 456 
Al0.3HfNbTaTiZr 353 

Al0.3NbTa0.8Ti1.4V0.2Zr1.3 490 
Al0.75HfNbTaTiZr 427 
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Alloy Hardness 
(Vickers) 

MoNbTaTi0.5W 481.2 
MoNbTaW 454 

MoNbTiV0.3Zr 507.5 
HfMo0.5NbTaTiZr 480 

Hf0.5Mo0.5NbSi0.7TiZr 580 
CoFeMoNi1.2V 602 
CoFeMoNi1.4V 538 

Cu26.6Mn26.6Ni26.6Zn20 109 
Cu30Mn30Ni30Al10 241 

Cu31.6Mn31.6Ni31Sn5 205 
Mo80.67W3.3Ta10.34Ti2.45Zr3.13Al0.05Cr0.06 411.6 

Mo73.77W7.67Ta10.17Ti3.7Zr4.69 473.1 
Mo73.61W5.27Ta10.49Ti4.71Zr5.93 513.8 

Mo80.03W1.49Ta4.47Ti5.24Zr6.01Al2.73Cr0.04 514 
Mo81.65W0.17Ta18.12Ti0.05 436.4 

  

A.3 Dataset Used for Bayesian Optimization 
 

Alloy Hardness 
(Vickers) 

Yield Strength 
(MPa) 

Co1Fe1Ni1Si0.5 287 476 
Co1Fe1Ni1Si0.75 570 1301 

Al1Co1Cr1Fe1Nb0.25Ni1 668 1959 
Al1Co1Cr1Fe1Nb0.5Ni1 747 2473 
Co1Cr1Fe1Mn1Ni1V0.25 144 200 
Co1Cr1Fe1Mn1Ni1V0.75 380 740 

Co1Cr1Fe1Mn1Ni1V1 636 1660 
Al1Cr1Fe1Ni1 472 1406 

Al1Cr1Fe1Mo0.2Ni1 549 1487 
Al1Cr1Fe1Mo0.5Ni1 622 1749 
Al1Cr1Fe1Mo0.8Ni1 854 1513 
Al0.111Cu1Mn1Ni1 241 515 
Cu1Mn1Ni1Sn0.111 318 630 
Cu1Mn1Ni1Sn0.053 205 380 

Al0.278Co0.694Cr0.222Fe0.417Ni1Ti0.167 345 582 
Al1Co1Cr1Ni1 1183 1750 
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Alloy Hardness 
(Vickers) 

Yield Strength 
(MPa) 

Al1Co0.5Cr0.5Fe0.5Ni0.5 581.7 1241 
Al1Co0.556Cr0.556Fe0.556Ni0.556Ti0.111 605.5 1324 
Al1Co0.667Cr0.667Fe0.667Ni0.667Ti0.333 641.7 1566 
Al1Co0.833Cr0.833Fe0.833Ni0.833Ti0.667 639.6 1503 

Al1Co1Cr1Fe1Ni1Ti1 703 1448 
Al0.667Co0.83Cr0.833Fe0.833Ni0.833Ti1 856.9 1272 

Co1Cr1Fe1Ni1W0.5 357.9 556 
Co0.139Cr0.446Cu0.99Ni1Si0.277 142.5 777 

Al1Co1Cu1Fe1Ni0.5 430.9 929 
Al1Co1Cu1Fe1Ni0.8 420 1021 
Al1Co1Cu1Fe1Ni1 391.4 994 

Al0.5Co0.5Cu0.5Fe0.5Ni1 299.2 544 
Al0.5Cr1Fe1Mn1Ni1 353 1091 
Al0.6Cr1Fe1Mn1Ni1 361 1130 
Al0.7Cr1Fe1Mn1Ni1 375 1170 
Al0.8Cr1Fe1Mn1Ni1 386 1200 

Co1Cr1Fe1Mn0.2Ni1Pd1 470 650 
Co1Cr1Fe1Mn0.4Ni1Pd1 380 650 
Co1Cr1Fe1Mn0.6Ni1Pd1 180 650 
Co1Cr1Fe1Mn0.8Ni1Pd1 160 650 

Al1Cr1Cu1Fe1Mn1 633 1010 
Al1Cr1Cu1Fe1Mn1W0.05 680 1120 
Al1Cr1Cu1Fe1Mn1W0.1 705 1250 
Al1Cr1Cu1Fe1Mn1W0.5 780 1510 

Al1Cr1Fe1Mo0.5Ni1 623.7 1914.1 
Al1Cr1Fe1Mo0.5Ni1Ti0.25 712 2161.7 
Al1Cr1Fe1Mo0.5Ni1Ti0.4 731.9 2185.1 
Al1Cr1Fe1Mo0.5Ni1Ti0.5 751.7 2228.7 
Al1Cr1Fe1Mo0.5Ni1Ti0.6 756.1 1314.5 
Al1Cr1Fe1Mo0.5Ni1Ti0.75 766.2 618.8 

Al1Co1Cr1Cu1Fe1Ni1 Mo0.4 689.3 1690 
Al1Co1Cr1Cu1Fe1Ni1Mo0.6 805.3 1880 
Al1Co1Cr1Cu1Fe1Ni1Mo0.8 868.4 1920 
Al1Co1Cr1Cu1Fe1Ni1Mo1 875.9 1750 

Co1Cr1Fe1Ni1Mo0.3 200 305 
Co1Cr1Fe1Ni1Mo0.5 325 510 
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Alloy Hardness 
(Vickers) 

Yield Strength 
(MPa) 

Co1Cr1Fe1Ni1Mo0.85 420 929 
Al0.25 Co1 Fe1 Ni1 138 158 
Al0.5 Co1 Fe1 Ni1 212 346 
Al0.75 Co1 Fe1 Ni1 385 794 

Al1 Co1 Fe1 Ni1 456 964 
Co1 Fe1 Ni1 125 206.5 

Co1 Fe1 Ni1 Si0.25 149 196 
Al1 Co1 Cr1 Fe1 Nb0.1 Ni1 569 1641 
Al1 Co1 Cr1 Fe1 Ni1 Ti0.5 178 2260 
Al0.2 Co1 Cr1 Fe1 Mn1 Ni1 171 220 

Al0.38 Co1 Cr1 Fe1 Mn1 Ni1 182 244 
Al0.43 Co1 Cr1 Fe1 Mn1 Ni1 183 285 
Al0.49 Co1 Cr1 Fe1 Mn1 Ni1 220 331 
Al0.56 Co1 Cr1 Fe1 Mn1 Ni1 278 526 
Al0.62 Co1 Cr1 Fe1 Mn1 Ni1 405 833 

Co1 Cr1 Fe1 Mn1 Ni1 155.5 219 
Co1 Cr1 Fe1 Mn1 Ni1 V0.5 275 620 

Co1 Cr1 Cu1 Fe1 Ni1 286 230 
Al1 Cu0.889 Fe0.667 Ni0.889 Ti1 516 980 

Al1 Cu1 Fe1 Ni1 Ti1 516 1074 
Al1 Cu1 Ni1 Ti1 537 300 

Cu1 Mn1 Ni1 Zn0.333 147 215 
Cu1 Mn1 Ni1 Zn0.25 109 140 
Al0.053 Cu1 Mn1 Ni1 166 330 

Al0.1 Co1 Cr1 Fe1 Mn1 Ni1 432 1631 
Al0.3 Co1 Cr1 Fe1 Mn1 Ni1 511 1836 
Al0.5 Co1 Cr1 Fe1 Mn1 Ni1 553 1932 
Al0.7 Co1 Cr1 Fe1 Mn1 Ni1 622 2230 

Co1 Cr1 Fe1 Ni1 168.9 163 
Co1 Cr1 Fe1 Ni1 W0.2 244 335 

Co0.333 Cr0.667 Fe0.667 Ni1 Ti0.2 308 586 
Cr0.5 Fe0.5 Ni1 Ti0.15 335 672 

Al0.333 Co0.333 Cu0.333 Fe0.333 Ni1 279.6 268 
Cr1 Fe1 Ni1 Ti0.2 362.2 2297.94 
Cr1 Fe1 Ni1 Ti0.3 510.3 2364.63 
Cr1 Fe1 Ni1 Ti0.4 600.3 2475.41 
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Alloy Hardness 
(Vickers) 

Yield Strength 
(MPa) 

Cr1 Fe1 Ni1 Ti0.5 709.6 2380.79 
Cr1 Fe1 Ni1 Ti0.6 718.2 1923.15 

Al0.562 Co0.938 Cr0.312 Fe0.312 Ni1 305.4 1129.4 
Al0.581 Co0.968 Cr0.323 Fe0.323 Mo0.032 

Ni1 357.3 1159.7 

Al0.6 Co1 Cr0.333 Fe0.333 Mo0.067 Ni1 362.6 1250.8 
Al0.6 Co1 Cr0.333 Fe0.333 Mo0.1 Ni0.967 359.7 1198.3 

Co1 Cr1 Cu1 Ni1 Zn1 615 2121 
Co1 Cr1 Fe1 Mn1 Ni1 435 1100 

Al0.267 Co1 Cr0.667 Fe0.667 Ni0.667 Ti0.2 515 2012 
Al1 Co1 Cr1 Cu1 Fe1 Ni1 551.3 1300 

Al1 Co1 Cr1 Cu1 Fe1 Ni1  Mo0.2 579.2 1420 
Co1 Cr1 Fe1 Ni1 135 136 

Al0.214 Nb0.714 Ta0.571 Ti1 V0.143 Zr0.929 500 1965 
Al0.214 Nb0.714 Ta0.714 Ti1 Zr0.929 490 1965 

Al0.4 Hf0.6 Nb1 Ta1 Ti1 Zr1 500 1841 
Al0.333 Nb0.667 Ta0.533 Ti1 V0.133 Zr0.667 530 2035 

Al1 Mo0.5 Nb1 Ta0.5 Ti1 Zr1 591 2000 
Al0.667 Nb1 Ta0.333 Ti1 Zr0.333 408 1280 

Al0.3 Hf1 Nb1 Ta1 Ti1 Zr1 353 1188 
Al0.5 Hf1 Nb1 Ta1 Ti1 Zr1 396 1302 
Al0.75 Hf1 Nb1 Ta1 Ti1 Zr1 427 1415 

Al1 Hf1 Nb1 Ta1 Ti1 Zr1 441 1489 
Al0.25 Mo1 Nb1 Ti1 V1 460 1250 
Al0.5 Mo1 Nb1 Ti1 V1 487 1625 

Al0.75 Mo1 Nb1 Ti1 V1 517 1260 
Al1 Mo1 Nb1 Ti1 V1 537 1375 

Mo1 Nb1 Ti1 V1 441 1200 
Al1 Nb1 Ti1 V1 448 1020 

Cr1 Mo0.5 Nb1 Ta0.5 Ti1 Zr1 540 1595 
Cr1 Nb1 Ti1 V1 Zr1 482 1298 

Cr1 Nb1 Ti1 Zr1 418 1260 
Nb0.5 Ti0.5 V1 Zr0.5 304 918 

Nb1 Ti1 V1 Zr1 335 1105 
Hf1 Mo0.25 Nb1 Ta1 Ti1 Zr1 395 1112 
Hf1 Mo0.5 Nb1 Ta1 Ti1 Zr1 480 1317 



PNNL-36491 

Appendix A A.16 
 

Alloy Hardness 
(Vickers) 

Yield Strength 
(MPa) 

Hf1 Mo0.75 Nb1 Ta1 Ti1 Zr1 492 1373 
Hf1 Mo1 Nb1 Ta1 Ti1 Zr1 505 1512 

Hf1 Mo1 Ta1 Ti1 Zr1 542 1600 
Hf1 Nb1 Si0.5 Ti1 V1 490 1399 

Hf0.333 Nb0.333 Ta0.333 Ti1 Zr0.667 301 903 
Mo1 Nb1 Ta1 V1 504 1525 

Mo1 Nb1 Ta1 V1 W1 536 1246 
Mo1 Nb1 Ta1 W1 479.25 1137.5 

Cr1 Ta1 Ti0.17 V1 W1 715 2034 
Cr1 Ta1 Ti0.3 V1 W1 780 2050 

Cr1 Ta1 V1 W1 715 2327 
Hf0.5 Mo0.5 Nb1 Si0.1 Ti1 Zr1 442 1350 
Hf0.5 Mo0.5 Nb1 Si0.3 Ti1 Zr1 494 1370 
Hf0.5 Mo0.5 Nb1 Si0.5 Ti1 Zr1 524 1600 
Hf0.5 Mo0.5 Nb1 Si0.7 Ti1 Zr1 580 1550 
Hf0.5 Mo0.5 Nb1 Si0.9 Ti1 Zr1 640 1650 

Hf0.5 Mo0.5 Nb1 Ti1 Zr1 400 1150 
Hf1 Nb1 Ta1 Ti1 Zr1 341.5 1118 

Mo1 Nb1 Ta1 Ti0.25 W1 478.3 1109 
Mo1 Nb1 Ta1 Ti0.5 W1 481.2 1211 
Mo1 Nb1 Ta1 Ti0.75 W1 495.6 1304 

Mo1 Nb1 Ta1 Ti1 W1 507.5 1455 
Mo1 Nb1 Re0.5 W1 473 896 

Nb1 Ti1 Zr1 372 1223 
Hf1 Nb1 Ti1 Zr1 351 1000 

Hf0.25 Ti1 V0.5 Zr0.5 338.3 1160 
Hf0.25 Nb0.125 Ti1 V0.5 Zr0.5 332.4 1115 
Hf0.25 Nb0.25 Ti1 V0.5 Zr0.5 322.5 1065 
Hf0.25 Nb0.375 Ti1 V0.5 Zr0.5 318.9 1025 
Hf0.25 Nb0.5 Ti1 V0.5 Zr0.5 310.4 980 

Nb1 Ta1 Ti1 Zr1 358 1144 
Nb1 Ta1 Ti1 246 620 
Nb1 Ti1 Zr1 295 956 

Cr1 Mo1 Nb1 Ta1 V1 W1 996.53 3388 
Cr0.286 Mo0.476 Nb1 Ta0.024 Ti0.31 V0.286 741 2680 

C0.2 Mo1 Nb1 Re0.5 Ta0.2 W1 510 1074 
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Alloy Hardness 
(Vickers) 

Yield Strength 
(MPa) 

C0.4 Mo1 Nb1 Re0.5 Ta0.4 W1 558 1144 
C0.5 Mo1 Nb1 Re0.5 Ta0.5 W1 583 1202 
C0.6 Mo1 Nb1 Re0.5 Ta0.6 W1 615 1241 

Cr1 Fe1 Mo1 Nb1 V1 826 2663 
Cr1 Fe1 Mo1 Nb1 Ti1 792 1647 
Fe1 Mo1 Nb1 Ti1 V1 699 1707 

Mo1 Nb1 Si0.25 Ta1 W1 567 1826 
Mo1 Nb1 Si0.5 Ta1 W1 697 1883 
Mo1 Nb1 Si0.75 Ta1 W1 682.6 2483 

Hf1 Ti1 Zr1 211 773 
Hf1 Sc1 Ti1 Zr1 233 1001 
Hf1 Ti1 Y1 Zr1 241 554 

Hf1 Sc1 Ti1 Y1 Zr1 256 793 
Nb1 Ta0.667 Ti0.667 Zr0.333 294 822 
Hf0.5 Nb0.5 Ta0.5 Ti1.5 Zr1 301 903 

Al0.3 Fe1 Co1 Ni1 153 221 
Al0.3 Cr0.5 Fe1 Co1 Ni1 163 233 
Al0.3 Cr1 Fe1 Co1  Ni1 171 259 
Al0.3 Cr1.5 Fe1 Co1 Ni1 191 294 
Al0.31Cr1.7 Fe1 Co1 Ni1 229 338 
Al0.3 Cr2.0 Fe1 Co1 Ni1 343 546 
Al1 Co1 Cr1 Fe1 Ti0.5 943.7 1160 

Al1 Co1 Cr1 Fe1 Ti0.5 Ni1 761.7 1990 
Al1 Co1 Cr1 Fe1 Ti0.5 Ni1.5 723.6 1920 
Al1 Co1 Cr1 Fe1 Ti0.5 Ni2.0 612.2 1800 
Al1 Co1 Cr1 Fe1 Ti0.5 Ni2.5 566.1 1410 
Al1 Co1 Cr1 Fe1 Ti0.5 Ni3.0 503.2 1090 
Al0.5 Co1 Cr1 Cu1 Fe1 Ni1 399 1292 

Zr1.0 Ti0.86 Nb0.57 Al0.33 Ta0.14 311 850 
Zr1.0 Ti0.86 Nb0.57 Al0.33 V0.14 314 848 

Ni1 Co1 Fe1 Al1 Ti1 216 557 
Al0.12 Cr0.45 Fe1 Mn0.27 Mo0.03 Ni1 Ti0.12 358.5 720 
Al0.12 Cr0.45 Fe1 Mn0.24 Mo0.06 Ni1 Ti0.12 411 747 
Al0.12 Cr0.45 Fe1 Mn0.21 Mo0.09 Ni1 Ti0.12 419 772 
Al0.12 Cr0.45 Fe1 Mn0.18 Mo0.12 Ni1 Ti0.12 439.2 905 
Al0.12 Cr0.45 Fe1 Mn0.15 Mo0.15 Ni1 Ti0.12 566.6 1120 
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Alloy Hardness 
(Vickers) 

Yield Strength 
(MPa) 

Hf1 Nb1 Ta1 Zr1 571 2310 
Nb1 Ta1 Ti1 V1 427.9 1108 

Al0.15 Cr0.5 Cu0.25 Fe0.5 Ni1 107 62 
Al1 Nb1 Ti1 Zr1 420 1544 

NbTiVZr 335 1105 
CrNbTiZr 418 1260 
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