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Abstract 
Radio frequency (RF) signal monitoring generally emphasizes intentionally generated signals, 
such as WiFi, Bluetooth, or cellular transmissions. However, electronic devices also produce 
unintended radiated emissions (UREs), which could also be useful in RF spectrum analysis. In 
either case, deriving intelligence from RF signals is typically a human-intensive process 
requiring significant domain knowledge. In the Augmented Human Analysis (AHA) project, we 
investigate the utility of dimensionally aligned signal projection (DASP) and machine learning 
(ML) algorithms for accelerating RF analysis workflows. We find that while DASP algorithms can 
indeed highlight signal characteristics relevant for classification tasks, the choice of algorithmic 
hyperparameters greatly affects performance. To address this challenge, we evaluate the 
quality of DASP outputs using the silhouette score, which measures how well data points 
cluster; high silhouette scores indicate good clustering, and thus good hyperparameter values. 
This approach is critical for machine learning pipelines as the DASP parameters cannot be 
directly optimized during model training. By identifying good DASP parameters, and thus good 
DASP outputs, as a preprocessing step, we can decrease the amount of effort required for 
downstream ML model training. We demonstrate our workflow using a dataset of UREs from 
common household devices, showing that even without the aid of ML, proper selection of DASP 
parameters enables clustering by device type. 
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Acronyms and Abbreviations 
AHA – Augmented Human Analysis 
EM - Electromagnetic 
RF – Radio frequency 
ML – Machine learning 
DASP - Dimensionally Aligned Signal Projections 
UREs - Unintended Radiated Emissions 
t-SNE – t-distributed stochastic neighbor embedding 
DL – Deep learning 
NN – Neural network 
DNN – Deep neural network 
DCC - Deep Continuous Clustering 
CC - Contrastive Clustering (CC) 
C3 - Cross-instance guided Contrastive Clustering 
DCDC - Doubly Contrastive Deep Clustering 
DeepDPM - Deep Clustering with An Unknown Number of Clusters 
GCML - Generalized Clustering and Multi-Manifold Learning 
ProPos - Learning Representation for Clustering via Prototype Scattering and Positive Sampling 
TCL - Twin Contrastive Learning for Online Clustering 
MNIST – Modified National Institute of Standards and Technology numerical image dataset 
CIFAR-10 – Canadian Institute for Advanced Research 10-class image dataset 
STFT - Short-Time Fourier Transform 
FASP – Frequency-aligned Signal Projection 
HASP – Harmonically-aligned Signal Projection 
MASP – Modulation-aligned Signal Projection 
CMASP – Cross-modulation-aligned Signal Projection 
FHASP – Frequency-based Harmonically-aligned Signal Projection 
SCAP – Spectral Correlation-aligned Signal Projection 
ACC – Accuracy 
NMI - Normalized Mutual Information 
ARI - Adjusted Rand Index 
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1.0 Introduction 
Effective monitoring of the electromagnetic (EM) spectrum for radio frequency for (RF) devices 
requires the ability to detect and distinguish between allowed, disallowed, and unknown 
devices, all of which may be transmitting intentionally or unintentionally. The range of 
frequencies to be monitored and the growing number of devices contributing to the RF spectrum 
make this task increasingly prohibitive for human analysts. Consequently, there is an urgent 
need to develop automated signal processing and machine learning (ML) technologies that can 
rapidly identify signals that require additional analyst attention. Doing so is an ongoing and 
active area of research due to numerous technical challenges, including spectral and temporal 
overlap of signals, variability in signal characteristics even within a single class of devices, and 
the impact of the background environment. 

The standard approach to analyzing an RF signal is to study its spectral characteristics, such as 
its carrier frequency and/or bandwidth, among others. This is almost universally done using 
Fourier-based methods (e.g., spectrograms), or in some cases, wavelet-based equivalents 
(e.g., scaleograms). Recently, dimensionally aligned signal projections (DASP) algorithms have 
been proposed for this purpose [1]. DASP algorithms augment traditional Fourier analysis by 
highlighting signal characteristics that are inherent to the physical implementation of engineered 
RF devices, making it easier to identify features such as harmonics or modulations. However, 
the performance of DASP algorithms is highly dependent on hyperparameters like the 
suspected carrier frequency, modulation frequency, or bandwidth. 

In this work, we develop a systematic framework for selecting DASP hyperparameters based on 
the silhouette score. (Alternatively, other clustering metrics like the Dunn index, Davies–Bouldin 
index, or C-index [2-4] might also be effective.) First, raw signals are collected from a number of 
known classes; here we use an experimental dataset comprising RF signals capturing 
unintended radiated emissions (UREs) from household devices. Each signal is then transformed 
into an image-like object using a DASP algorithm with a particular set of hyperparameters, each 
of which can be thought of as a point in a point cloud in the high-dimensional DASP output 
space. Then the silhouette score is computed to characterize the presence of clusters in that 
point cloud, with a more positive score indicating larger distances between clusters and smaller 
distances within clusters. As such, a more positive silhouette score also indicates that the 
proposed DASP algorithm and hyperparameters are effective in highlighting spectral features 
that help distinguish between signal classes. Using t-SNE (t-distributed stochastic neighbor 
embedding) as a visualization tool, we show that indeed, DASP outputs that achieve higher 
silhouette scores better separate different signal classes into distinct clusters. 

While our silhouette score analysis is useful on its own for evaluating the utility of DASP 
algorithms for RF signal processing, we note that it may also be very useful as part of a deep 
learning (DL) pipeline. Specifically, we note that there are many recently proposed methods that 
utilize deep neural networks (DNNs) to transform data into a representation space where 
different classes separate into distinct clusters, including Deep Continuous Clustering (DCC) [5], 
Contrastive Clustering (CC) [6], Cross-instance guided Contrastive Clustering (C3) [7], Doubly 
Contrastive Deep Clustering (DCDC) [8], Deep Clustering With An Unknown Number of 
Clusters (DeepDPM) [9], Generalized Clustering and Multi-Manifold Learning (GCML) [10], 
Learning Representation for Clustering via Prototype Scattering and Positive Sampling (ProPos) 
[11], and Twin Contrastive Learning for Online Clustering (TCL) [12]. In our initial efforts to 
reproduce published results on benchmark datasets like MNIST and CIFAR-10, we found many 
of these methods to be sensitive to hyperparameters. Our later efforts to apply these methods to 
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RF data were similarly challenging. We propose the silhouette score as a diagnostic tool that 
can help determine if the model input data are reasonably clusterable. In other words, starting 
with data with a high silhouette score may allow researchers to focus on fine-tuning the neural 
network itself, rather than wondering if the input data contain enough information to achieve the 
desired clustering. 
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2.0 Methods 
2.1 Corona Duff URE dataset 

The Corona Duff dataset comprises URE measurements of 25 common household devices (see 
Table 1) collected in an office environment. Current and voltage data were collected using a 
Behringer UMC202HD recording device with a Pearson 411C probe at a sample rate of 192 
kHz. Each collection event spanned ten minutes. For further details see the description of a 
similar data collection in [1]. To better enable machine learning, we implemented a custom 
PyTorch dataset class (see Appendix A) for loading and interacting with the Corona Duff data. 

Table 1. Household devices included in Corona Duff dataset. 

Alarm clock HP monitor Roku 2 XS Vizio Blu-Ray 
Angle grinder HP printer Rotary tool Wii U 
APC UPS Kano computer Space heater Wired router 
Clothing Iron Lasko standing fan  Stand blender Wireless router 
CyberPower UPS LED bulb  Table fan  
Dell monitor Massage pad Upright vacuum  
Gateway laptop Power meter USRP B210  

 

2.2 DASP algorithms 

DASP algorithms are Fourier-based methods designed to emphasize signal characteristics 
commonly found when analyzing RF emissions from electronic circuits, including harmonics, 
modulations, and spectral correlations. They produce image-like outputs, similar to 
spectrograms. As part of this work, we implemented a number of DASP algorithms (see Table 
2) in a new Python package (see Appendix A). 

Table 2. DASP algorithms implemented for AHA. 

Frequency-aligned signal projection (FASP) 
Harmonically-aligned signal projection (HASP) 
Modulation-aligned signal projection (MASP) 
Cross modulation-aligned signal projection (CMASP) 
Frequency-based harmonically-aligned signal projection (FHASP) 
Spectral correlation-aligned signal projection (SCAP) 

  

The basis of all DASP algorithms is the short-time Fourier transform (STFT). To fit the naming 
convention, we call this a frequency-aligned signal projection (FASP).  

The harmonically-aligned signal projection (HASP) is designed to align a specified center 
frequency with its respective harmonics, with perfect harmonics appearing as a vertical line. For 
a fixed-type computation (HASP-F), harmonics of other frequencies will appear as diagonal 
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lines. This can be adjusted using decimation or interpolation (HASP-D or HASP-I) so that all 
harmonic structures appear as vertical lines. 

Modulation-aligned signal projection (MASP) applies an FFT to each frequency of an STFT. The 
resulting values capture how the energy content in a particular frequency band changes over 
time. The MASP output is similar to a spectrogram, but instead of plotting spectral content as a 
function of time and frequency, we plot as a function of carrier frequency and modulation 
frequency. Cross modulation-aligned signal projection (CMASP) is similar, but also aligns the 
harmonic content of the modulation sidebands of the carrier frequencies. 

The frequency-based harmonically-aligned signal projection (FHASP) is a previously 
unpublished DASP algorithm that was further refined as part of AHA. It computes the 
instantaneous frequency of a signal using a Hilbert transform. Then HASP is applied to the 
result, enabling analysis of harmonics in the instantaneous frequency, rather than the raw 
signal. Similarly, spectral correlation-aligned signal projection (SCAP) applies HASP as a 
secondary computation to the autocorrelation of the Fourier transform of a signal. This can be 
used to align fixed frequency spacings between spectral peaks, which can result from frequency 
mixing, harmonics, or modulations. 

2.3 DASP hyperparameter optimization 

The performance of a DASP algorithm can be highly dependent on the specified 
hyperparameters. For instance, if the correct center frequency is chosen for a given signal, then 
HASP-F will produce a vertical line, but a slight error in the center frequency will instead yield a 
diagonal line, and a large error may produce no result at all. In this work, we use the silhouette 
score to systematically evaluate and select DASP hyperparameter values. The silhouette score 
incorporates inter- and intra-cluster distances to evaluate how well a dataset clusters. Values 
range from -1 to 1, where more positive values indicate better clustering. 

For the Corona Duff dataset, we evaluate the FASP, HASP-D, MASP, and FHASP-D 
algorithms, sweeping through the hyperparameters listed in Table 3. To do so, we collect all 
signals in the dataset and divide them into fixed-length chunks. These signal chunks are then 
fed into the DASP algorithms to compute image-like outputs. All of the DASP outputs are 
flattened into one-dimensional vectors and collected into a single matrix, for which the silhouette 
score is computed. To visually confirm the results of the silhouette score analysis, we compare 
a t-SNE embedding of the raw signal chunks to one of the DASP outputs, with the expectation 
that DASP computations with a higher silhouette score will yield t-SNE embeddings with clearer 
clusters. 

We note that an initial attempt at using a genetic algorithm to optimize the DASP 
hyperparameters failed to converge. Analysis of the fitness landscape determined that it was 
highly nonsmooth, which motivated the brute force hyperparameter sweep. 
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Table 3. Summary of DASP hyperparameter sweep 
Algorithm Hyperparameter values 

FASP channel: current, voltage 

chunk length [s]: 1, 2, 3, …, 60 
HASP-D channel: current 

chunk length [s]: 1 

center frequency [Hz]: 20, 40, 60, 80, 100, 120, 500, 700, 800, 900, 1000, 1200,  
    2000, 4000, 8000, 10000 

bandwidth [Hz]: 20, 30, 40, 60, 80, 90, 100, 120, 150, 160, 200, 240, 500, 700,  
    750, 800, 900, 1000, 1050, 1200, 1350, 1400, 1500, 1600, 1800, 2000, 2400,  
    3000, 4000, 6000, 8000, 10000, 12000, 15000, 16000, 20000 

max harmonics: 28, 120, 540 
MASP channel: current 

chunk length [s]: 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 

modulation frequency [Hz]: 50, 100, 150, …, 1000 
FHASP-D channel: current 

chunk length [s]: 1, 2.5, 5, 15, 30, 60 

center frequency [Hz]: 10, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 

bandwidth [Hz]: 10, 15, 50, 75, 100, 150, 200, 300, 500, 750, 1000, 1500, 2000,  
    3000, 5000, 7500, 10000, 15000, 20000, 30000 

max harmonics: 28 

 

2.4 Deep clustering algorithms 

We consider eight different deep clustering algorithms for RF signal monitoring: Deep 
Continuous Clustering (DCC) [5]; Contrastive Clustering (CC) [6]; Cross-instance guided 
Contrastive Clustering (C3) [7]; Doubly Contrastive Deep Clustering (DCDC) [8]; Deep 
Clustering With An Unknown Number of Clusters (DeepDPM) [9]; Generalized Clustering and 
Multi-Manifold Learning (GCML) [10]; Learning Representation for Clustering via Prototype 
Scattering and Positive Sampling (ProPos) [11]; and, Twin Contrastive Learning for Online 
Clustering (TCL) [12]. Of these, we were able to successfully run DCC, CC, DCDC, and C3. For 
each, we evaluate the performance of the algorithm on standard reference datasets like MNIST 
and CIFAR-10, attempting to reproduce published results. Then we apply the algorithms to the 
Corona Duff dataset. 

We note that the backbone for five of the algorithms is a ResNet-like model, and two rely on 
denoising autoencoders (DCC, GCM). DeepDPM describes its backbone as “clustering and 
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subclustering networks.” Furthermore, DeepDPM is the only algorithm we considered that does 
not require the user to first specify the anticipated number of clusters. All of the algorithms we 
considered had PyTorch implementations available on GitHub, which we used with minimal 
modifications, changing only hyperparameter values. 
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3.0 Results 
3.1 DASP hyperparameter optimization 

We consider four different DASP algorithms in our hyperparameter study: FASP, HASP-D, 
MASP, and FHASP-D. For each of these, we compute the silhouette score for a variety of 
hyperparameter values. These values are summarized above in Table 3. Figure 1 shows a 
histogram of the silhouette scores for each algorithm. We see that for all algorithms, there is a 
noticeable distribution of values, and close to half of all computations yield a negative silhouette 
score. Of the four algorithms, FASP performs worst, with nearly all negative silhouette scores. 
MASP and FHASP-D produce the most positive scores, with the highest single silhouette score 
of 0.365 achieved by a MASP computation with measured electrical current, 1 second signal 
chunks, and a modulation frequency of 50 Hz. The rarity of high silhouette scores shows how 
important it is to choose good hyperparameter values. 

Though it is clear from Figure 1 that the vast majority of our Corona Duff DASP computations 
yield relatively low silhouette scores, the raw scores alone do not show how much of an 
improvement good hyperparameters provide over bad ones. To get a feel for this, we use t-SNE 
as a visualization tool, transforming a collection of high-dimensional DASP outputs into a two-
dimensional representation that attempts to preserve the original high-dimensional distribution. 
Figure 2 shows four such visualizations, for the highest performing hyperparameter values for 
each DASP algorithm. In each t-SNE plot, every point corresponds to the DASP output for a 
single signal chunk, colored by the device type. For FASP, the best silhouette score is 0.002. 
There is very little discernable clustering in the t-SNE embedding, with many overlapping colors 
and multiple small clusters for a single device. This is slightly improved for HASP-D with a top 
silhouette score of 0.068, but there are still many regions of overlap. The t-SNE clustering is 
much improved for FHASP-D (top silhouette score of 0.204) and MASP (top silhouette score of 
0.365); the clusters are well separated with little overlap, even though the silhouette scores are 
not near the theoretical maximum value of 1. These results show the utility of silhouette score 
analysis in evaluating the performance of DASP algorithms. The results with higher silhouette 
scores provide better initial class separation that likely require less effort to separate and 
classify using downstream methods like deep learning. 

 
Figure 1. Histograms of silhouette scores for Corona Duff DASP computations for different 

hyperparameter values. The mean score for each algorithm is marked with a dotted line. The 
highest score across all algorithms is 0.365 and is marked with a dashed vertical line. 
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Figure 2. t-SNE embeddings of Corona Duff DASP outputs, computed for the best case 

silhouette scores. Each point corresponds to a single signal chunk and is colored based on the 
device type. Higher silhouette scores are predictive of more distinct t-SNE clusters.  

 

3.2 Evaluation of deep clustering algorithms 

Of the eight algorithms considered, we were only able to get four to run: DCC, CC, DCDC, and 
C3. For each of these, we attempted to reproduce published results testing the algorithms 
against common benchmark datasets; these results are summarized in Table 4. We note that 
even with published code repositories and manuscripts, it was non-trivial to reproduce these 
results. For instance, we had to adjust learning rates away from published values. For DCC, we 
underperformed by 0.173 on MNIST compared to the published value of 0.913; dataset analysis 
identified a few pixel-level differences between the authors’ copy of MNIST and copies available 
in standard libraries like PyTorch. For DCDC, we underperformed by 0.116 compared to the 
published value of 0.699. For CC our observed accuracy was only 0.032 below the published 
value of 0.790. For C3 we outperformed the published value of 0.836 by 0.005. Table 4 also 
includes normalized mutual information (NMI) and adjusted rand index (ARI) values, which also 
show mixed results in our attempts to reproduce the benchmark computations. 

Given the difficulty in analyzing simple benchmark datasets like MNIST and CIFAR10, it is 
perhaps not surprising that we had difficulty applying these deep clustering methods to the 
Corona Duff dataset. Our initial computations made minimal changes to the deep clustering 
architectures and hyperparameters. These did not yield any reasonable clustering accuracies, 
at which point we explored different learning rates (to debug the DNN) and different DASP 
hyperparameters (to debug in the input data). Through all of our exploration, we were unable to 
achieve reasonable clustering performance, and as such do not report any results. These 
difficulties are what motivated our silhouette score analysis, as it was unclear if our focus should 
have been to continue modifying the deep clustering model (or its training hyperparameters), or 
instead to improve the training data by tuning the DASP hyperparameters.  
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Table 4. Evaluation of deep clustering algorithms on benchmark datasets. 
Algorithm Dataset Metric Published Ours Difference 

DCC MNIST 
ACC 0.913 0.740 -0.173 
NMI 0.915 0.851 -0.064 
ARI -- 0.737 -- 

CC CIFAR10 
ACC 0.790 0.758 -0.032 
NMI 0.705 0.671 -0.034 
ARI 0.637 0.596 -0.041 

DCDC CIFAR10 
ACC 0.699 0.583 -0.116 
NMI 0.585 0.516 -0.069 
ARI 0.506 0.413 -0.093 

C3 CIFAR10 
ACC 0.836 0.841 +0.005 
NMI 0.743 0.750 +0.007 
ARI 0.703 0.709 +0.006 
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4.0 Conclusions 
For the AHA project, we evaluated the utility of DASP and deep clustering algorithms for 
unsupervised monitoring of RF signals using the Corona Duff dataset of UREs. We found that 
the choice of DASP hyperparameters greatly impacted whether or not the DASP signal 
representations were consistently similar for like devices and distinct for unlike ones, 
significantly impacting clustering performance. We also observed that silhouette score analysis 
is highly predictive of clustering performance, as visualized by t-SNE embeddings, and this can 
help with the hyperparameter selection process. This insight is especially useful as we also 
found that state-of-the-art deep clustering methods are still lacking in maturity. We make this 
claim because it was non-trivial to reproduce published results for these algorithms on 
benchmark datasets like MNIST and CIFAR10. We further found that the advertised capabilities 
of deep clustering algorithms do not generalize, at least not without a lot of hyperparameter 
tuning, as clustering accuracy was very poor when the methods were adapted to DASP outputs. 
The use of silhouette scores to evaluate the utility of a dataset can provide researchers direction 
in whether next steps to improve performance might be directed toward tuning the DASP 
hyperparameters to produce better data representations, or whether the deep clustering pipeline 
(architectures, hyperparameters) requires refinement. 
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Appendix A – Software products 
As part of the AHA project, we developed a number of software products. One is a library to 
enable easier use of the Corona Duff dataset for machine learning. There are a number of 
methods to help parse the Corona Duff metadata, and most importantly, a custom PyTorch 
dataset for loading the data and feeding it to PyTorch machine learning models. The library has 
autodocumentation and is set up for easy installation using pip or conda. It is available at 
https://signals.pnl.gov/aha/coronaduff. 

We also implemented the DASP algorithms from Table 2 as part of a new Python library. This 
library improves upon the original DASP code provided by Michael Vann, for instance replacing 
for loops with vectorized computations for speed, adding numerous error checks to guide the 
user toward selecting valid hyperparameters. Where possible, tests were done to ensure the 
new implementation generated outputs matching those of the old one. One key change is that 
the FHASP algorithm was altered to use the numerical derivative of the instantaneous phase, 
rather than just a difference. This is more consistent with the intent of the algorithm. The new 
dasp library is available at https://signals.pnl.gov/aha/dasp. 

To enable code-free exploration of the Corona Duff dataset using DASP algorithms, we 
implemented a webapp called the Corona Duff Explorer. The webapp is implemented in Python 
using the Bokeh library. Using a variety of widgets (drop down menus, slider bars, text entry 
fields), webapp users can load Corona Duff signals and apply DASP algorithms. Figure 3 shows 
a screenshot of the webapp, which is available at https://signals.pnl.gov/aha/coronaduff-
explorer. 

Finally, we implemented ClusterSelect, a simple webapp that allow users to visually inspect and 
label two-dimensional point clouds. This webapp was also implemented using Python and 
Bokeh. It allows users to load x-y coordinates and then draw on the plot (e.g., using a computer 
mouse) to select points that belong to a cluster. The labels can then be exported for future use. 
This allows users to easily label data without need to write any code. The webapp is available at 
https://signals.pnl.gov/aha/clusterselect. See Figure 4 for a screenshot. 
  

https://signals.pnl.gov/aha/coronaduff
https://signals.pnl.gov/aha/dasp
https://signals.pnl.gov/aha/coronaduff-explorer
https://signals.pnl.gov/aha/coronaduff-explorer
https://signals.pnl.gov/aha/clusterselect
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Appendix A A.2 
 

Figure 3. Screenshot of Corona Duff Explorer webapp. Users can apply DASP algorithms to 
Corona Duff signals without writing any code. 
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Appendix A A.3 
 

Figure 4. Screenshot of ClusterSelect webapp. Users can load two-dimensional point clouds 
and then interact with the webapp to select and label points. 
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