Micro-Quantification of Helium-3 and Helium-4 in TPBAR Components

February 2024

1 - Christopher DeFelice
2 - Martin Liezers
3 - Dallin Barton
4 - Connor Hilton
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Micro-Quantification of Helium-3 and Helium-4 in TPBAR Components

February 2024

1 - Christopher DeFelice
2 - Martin Liezers
3 - Dallin Barton
4 - Connor Hilton

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354
Abstract

This report documents the method development for measuring helium isotopes in micrometer-sized samples of tritium producing burnable absorption rod (TPBAR) components. Helium isotopes were measured as a tracer for tritium, which decays to 3He with a half-life of 12.33 years. Getter and cladding materials from the TPBARs were analyzed as they are designed to restrict the movement of tritium. Therefore, constraining the diffusivity of tritium through these materials is of key importance. To first establish the reliability of the noble gas mass spectrometer, a reference gas with a relative 4He/3He ratio of ~1000 was pre-mixed. This standard was measured several times to ensure measurements were reproducible. Unirradiated and irradiated getter and cladding samples of TPBARs were cut into 1-100 µm3 cubes and analyzed for 3He and 4He content. The unirradiated materials had helium content below the instrument’s detection limit. Irradiated cladding also had levels of helium below the instrument’s detection limit while irradiated getters had measurable levels of 3He, interpreted to be the decay product of tritium. These findings validate this method as a way to trace tritium diffusion in reactor materials. To also measure 4He with this method, larger sample sizes would be required. However, for irradiated samples, these sample sizes would likely not be volumetrically-releasable for tritium content.
Acknowledgments

The authors would like to thank the Tritium Technology Program for funding this project. The authors would also like to thank Michael Rodriguez and Richard Cox for providing a helium reference gas, Dallas Reilly for support with the SEM-FIB, Bethany Matthews and Randall Storms for providing access to samples, and David Senor, Andy Casella, and Josh Silverstein for their thoughtful questions and guidance throughout the project.
Acronyms and Abbreviations

a – anum
Al – Aluminum
Amu – atomic mass unit
β - Beta
C – Carbon
CH₄ – Methane
Cm - centimeter
CO₂ – Carbon dioxide
CPS – counts per second
D – Deuterium
g – grams
Ga- gallium
H – Hydrogen
He – Helium
IC – Ion counter
kV – Kilovolt
Li – Lithium
mm – millimeter
Mo – Molybdenum
m/z – mass to charge ratio
N₂ – Nitrogen
nA - nanoampere
NG-MS – Noble gas mass spectrometer
O - Oxygen
O₂ – Oxygen
pg - picogram
PNNL – Pacific Northwest National Laboratory
Pt - Platinum
PWR – Pressurized water reactor
RPL – Radiochemical Processing Laboratory
SD – Standard deviation
SE – Standard error
SEM-FIB – Scanning electron microscope with focused ion beam
SNF – Spent nuclear fuel
TEM – Transmission electron microscope
TPBAR – Tritium producing burnable absorption rod
t 1/2 – Half-life
Contents

Abstract... ii
Acknowledgments .. iii
Acronyms and Abbreviations.. iv
1.0 Introduction ... 1
 1.1 Background.. 1
 1.2 Overview of Problem.. 1
 1.3 Project Goal... 2
2.0 Materials and Methods .. 3
 2.1 Samples... 3
 2.2 SEM-FIB .. 3
 2.3 Noble Gas Mass Spectrometry .. 4
 2.3.1 Method Overview... 4
 2.3.2 Isobaric Interferences .. 6
3.0 Results .. 9
4.0 Discussion ... 11
5.0 Future Directions ... 13
6.0 Conclusion .. 14
7.0 References .. 15

Figures

Figure 1. Sample preparation method via FIB lift-out technique. (a) trenches milled on either side (b) Easylift (TFS) tungsten-based needle brazed to the bar with the sides and bottom cut out so that it is attached now only to the needle. (c) Section of the attached bar to the Mo grid and cut away. Three views of a 1 µm³ bar including (d) front, (e) side, and (f) back shown. All images shown are 52° in relationship to the imaging beam (0° would be top view and 90° would be direct side-view observation)...................................... 4

Figure 2. Sample preparation bench (A) and Noblesse Noble Gas Mass spectrometer (B). ... 5

Figure 3. Results of repeated measurements of ³He enriched reference gas produced at 325RPL. The dashed line represents the average measured value, and the bold grey lines above and below the data is the two-standard deviation of all measurements... 6

Figure 4. Mass scan across the ³He and hydride peaks. The lower mass peak is ³He+, while the higher mass peak are the hydrides (DH+). The valley that can be seen between the two peaks indicate the mass resolution is sufficient to resolve this interference. .. 7
Figure 5. Mass scan across the ^4He peak. Labels indicate the relative position of the $^{12}\text{C}^{3+}$ peak, the combined $^{12}\text{C}^{3+}$ peak, and the ^4He peak.

Figure 6. Measured CPS of irradiated (filled symbols) and unirradiated (hollow symbols) samples for both (A) ^3He and (B) ^4He. Note that (A) uses a log scale for the y-axis to show all data. Thick black line represents the average laser cell blank level over the analytical sessions, with the standard deviation being smaller than the thickness of the line. The dashed black line represents the instrument’s detection limit.

Tables

Table 1. Descriptions and identifiers for the getter and cladding samples used in this study.

Table 2. $^4\text{He}/^3\text{He}$ ratio data for a mixed helium reference gas produced in 325RPL at PNNL.

Table 3. Raw CPS for analyzed samples in this study.
1.0 Introduction

1.1 Background

Helium is a noble gas that has a concentration of 5.22-5.24 ppm in the atmosphere (Oliver et al., 1984). Helium has two isotopes, ^4He and ^3He, and over 99.9998% of naturally occurring helium is ^4He. Helium-4 in the atmosphere is a product of thorium and uranium decay in the Earth’s crust (Kockarts, 1973). Helium-3 on Earth is naturally generated in the upper atmosphere caused by nitrogen interacting with cosmic rays to produce ^3H, which then decays to ^3He (Libby 1946; Fireman, 1953), or by cosmic rays interacting with crustal lithium (Aldrich and Nier, 1948). Some ^3He also remains from the formation of the Earth (Craig and Lupton, 1976). This leads to a quite extreme, naturally occurring ratio of $^3\text{He}/^4\text{He}$ ratio of $\sim 1.4 \times 10^{-6}$ (Mamyrin and Tolstikhin, 2013). This ratio often makes ^3He an attractive isotopic tracer, as minute changes to its abundance will drastically change the $^3\text{He}/^4\text{He}$ ratio. It has been used historically to trace an un-degassed, primordial reservoir of material deep in the Earth (Craig and Lupton, 1976) and decay of ^3H in the environment (Kaufman and Libby, 1954).

Tritium is a rare, naturally occurring radionuclide. It can be found in the environment either as a gas (HT) or as a liquid (HTO). It is primarily produced by a reaction between cosmic rays and nitrogen in the upper atmosphere (Libby, 1946; Fireman, 1953) or as a rare decay product of thorium and uranium in Earth’s crust, which has a negligible contribution to the total amount of ^3H (Kaufman and Libby, 1954). Overall, the total amount of tritium produced these ways is extremely low, accounting for less than one ^3H atom per 10^{18} hydrogen atoms (Kaufman and Libby, 1954). Large amounts of tritium were injected into the atmosphere during nuclear weapons testing between the 1940s until 1980, but due to its short half-life, background tritium levels have returned to pre-testing levels (Rozanski et al., 1991; van Rooyan et al., 2021). Tritium is produced in larger quantities anthropogenically during irradiation of certain materials. This is accomplished by the bombardment of ^6Li with neutrons, producing ^4He and ^3H. It can also be produced in the reactor when boron control rods are irradiated (Phillips and Easterly, 1980), when boron-10 accepts a neutron and produces two ^4He atoms and one ^3H atom. One ^3H is also produced per 10,000 fissions of uranium-235 or plutonium-239. Tritium is a radiogenic nuclide that decays to ^3He via beta emission with a short half-life of 12.33 a (Alvarez and Cornog, 1939, Oliver et al., 1987). As previously established, ^3He is an incredibly rare, stable, and low abundance isotope of helium. This makes ^3He an attractive target isotope to trace tritium.

Tritium is an important resource to support the United States’ nuclear program. Tritium producing burnable absorption rods (TPBARs) are designed to be used in pressurized water reactors (PWR) with the purpose of producing tritium. At the center of a TPBAR is a LiAlO$_2$ pellet, which absorbs neutrons and ^6Li is converted to ^3H via neutron activation. The pellet is wrapped in a nickel-plated Zircaloy-4 jacket, called a getter, which captures ^3H. Outside of the getter is an aluminide-coated wrapping, called cladding, made of stainless steel to further mitigate any ^3H from diffusing out of the TPBAR.

1.2 Overview of Problem

It is key to understand the performance of the getter and cladding within a TPBAR in order to limit activation and fission products (e.g., tritium) from contaminating the reactor coolant system and potentially escaping to the environment (e.g., Suman et al., 2015). However, the direct observation and experimental work to verify the efficacy of cladding and getter material post-
irradiation is difficult due to radiological health and safety concerns for analysts and contamination concerns for the instruments used to measure the material. Measuring tritium in these materials is further complicated by the fact that tritium is a hard to detect radionuclide with a weak beta (β) emission. Additionally, it can take years to perform post irradiation examinations of irradiated TPBARs. This includes reanalyzing old samples using new analytical techniques to answer new questions. The relatively short half-life of tritium can make detecting 3H in reactor materials after significant decay challenging (Bruno et al., 2020). A microanalysis technique capable of overcoming these challenges and allowing the investigation of how tritium diffuses through the various materials present in TPBARs is needed.

1.3 Project Goal

The goal of this project is to determine whether it is possible to detect 3He and 4He in micron-sized TPBAR components. We use 3He as an analog for 3H to overcome the challenges with its hard-to-detect nature and short half-life. Micron-sized samples are investigated in order to demonstrate the feasibility of observing tritium diffusion at a high spatial resolution, such as the thickness of the aluminide-coating on cladding. Furthermore, micron-sized samples provide the additional benefit of minimizing the activity of the irradiated materials to a level below concern for operator safety and instrument contamination.
2.0 Materials and Methods

2.1 Samples

Based on their design and purpose, the nickel-plated Zircaloy-4 getter and the aluminide-coated Zircaloy-4 cladding were selected for this study. Even though 3He is a rare isotope, it is important to establish a baseline, or background, signal for this isotope. To do so, unirradiated samples of TPBAR getter and cladding were selected to measure this baseline of helium that may be inherent to the samples. Irradiated samples of TPBAR getter and cladding were selected for analysis as having the highest likelihood of capturing 3H, which would lead to radiogenic ingrowth of 3He. Details of the samples selected are in Table 1.

Table 1. Descriptions and identifiers for the getter and cladding samples used in this study.

<table>
<thead>
<tr>
<th>Getter Sample</th>
<th>Cladding Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piece of FLG, Hohman Lot # 98667-111026, Veridiam Lot # 23017-0001 Remnants from Trit-M-TRV-015</td>
<td></td>
</tr>
<tr>
<td>Irradiated</td>
<td>C13-2-3-2(CLAD26)</td>
</tr>
<tr>
<td>GC13-2-3-2-FLG26</td>
<td></td>
</tr>
</tbody>
</table>

2.2 SEM-FIB

The samples (both with and without irradiation) were created using a Helio Nanolab 660 (Thermo Fisher Scientific, TFS) dual Ga-based focused ion beam/scanning electron microscope (FIB/SEM). The SEM-FIB is located in the 325 Radiochemical Processing Laboratory (325RPL) at the Pacific Northwest National Laboratory (PNNL). Samples were created via the "lift-out" method commonly used for other nano-scale analysis such as transmission electron microscopy or atom probe tomography (Barton et al., 2021; Das et al., 2023). Samples were milled out of the midpoint of the thickness of the material. Trenches were cut parallel to the ion beam on two sides of the sample at an accelerating voltage of 30 kV and a current of 9 nA and then tilted 52° from the direction of the ion beam (Figure 1a) for cutting underneath the sample and the side of the sample at a current of 3 nA. The resulting cantilever was brazed to a tungsten needle (TFS Easylift) using Pt via the gas infiltration system (Figure 1b). The final connecting piece was cut free and the small sample was removed from the bulk of the material. The sample was then brazed to a Mo coupon holder often used for TEM (Omniprobe Lift-out grid). The coupon is a 3 mm diameter half-circle mounting posts coming out of the half circle (Figure 1c). Each sample was attached to individual coupons. Sample volumes for the non-radiological materials were nominally 1 µm³, 10 µm³, and 100 µm³. Sample volumes for the irradiated cladding materials were also 1 µm³, 10 µm³, and 100 µm³. Due to the estimated radiological material in the getter material, only 1 µm³ volumes were created.
Figure 1. Sample preparation method via FIB lift-out technique. (a) trenches milled on either side (b) Easylift (TFS) tungsten-based needle brazed to the bar with the sides and bottom cut out so that it is attached now only to the needle. (c) Section of the attached bar to the Mo grid and cut away. Three views of a 1 µm³ bar including (d) front, (e) side, and (f) back shown. All images shown are 52° in relationship to the imaging beam (0° would be top view and 90° would be direct side-view observation).

2.3 Noble Gas Mass Spectrometry

2.3.1 Method Overview

Noble gases can be difficult to directly measure due to being chemically inert and their high ionization energies. Generally, mass spectrometers all have the same three basic components: an ion source, which ionizes elements of interest by stripping away electrons to convert them to cations with a +1 charge, a mass filter, such as an electromagnet to bend the ion’s path based on its mass, and detectors, used to measure the strength of the ion’s signal. Mass spectrometers typically measure the mass to charge ratio (m/z) of elements. The Noblesse Noble Gas Mass Spectrometer (NG-MS) is specifically designed to ionize and measure noble gases with a Nier-type source, electromagnet mass filter, and ion counters (IC) which can measure low abundance signals. This makes the Noblesse NG-MS ideal for measuring noble gases, such as helium.

During the duration of this project, the power supply of the mass spectrometer, which is used to power the ion source which ionizes the sample gas so it can be measured by the detectors, was unstable. While measurements during a single analytical session would be consistent, day-to-day measurements could vary. The unstable power led to the ionization filament having to be replaced several times during the project, which also contributes to short-term variability in measurements.
Samples on Mo grids were loaded into a Fusions CO₂ laser system (Teledyne Photon Machines, Omaha, NE, USA). The laser cell is connected to a preparation line for the NG-MS, making the analysis of solid samples possible (Figure 2). Gas was released from samples by heating the Mo grid. Blank samples, which were unirradiated getter and cladding materials, were also measured for their helium content to make sure any ^3He measured in the irradiated samples is a daughter product of tritium and not naturally found in the material. The laser was focused on the center of the Mo grid and fired at 50% power (15 watts) with a spot size of 1 mm for 5 seconds. By heating the grid, the gas is driven out of the mounted sample and into the Noblesse preparation line where it interacts with a SAES GP50 getter for 600 seconds to remove any reactive gases (O_2, N_2, CH_4) before being introduced to the mass spectrometer. The NG-MS was operated in static mode, where a finite amount of gas is let into the mass spectrometer for analysis. Laser blanks and unirradiated samples were measured using an ion counter (IC) using peak hopping, where an off-peak ^3He and ^4He ‘zero’ is taken half an atomic mass unit off the measured peaks. Then both masses of helium are measured sequentially. A peak centering routine was done before each analysis using a reference gas, which was mixed in 325RPL with an estimated $^4\text{He}/^3\text{He} = 1000$. This estimate was based on pressure readings while mixing the ^3He and ^4He gas sources. As such, this reference gas was used to test the reproducibility of the measurements but could not be used to assess measurement accuracy.

The results of seven analyses of the reference gas are shown in Figure 3 and $^4\text{He}/^3\text{He}$ ratios are given in Table 2. To make this measurement, the same amount of gas was introduced to the mass spectrometer and masses 4 and 3 were measured sequentially. Due to the sensitivity of the ion counter, and the significantly larger amount of ^4He to ^3He, a target signal of ~ 1000 counts per second or less was set for ^3He. This was done to limit the signal observed on the ^4He beam, which if too large, could damage the ion counter detector. The average measured $^4\text{He}/^3\text{He}$ ratio was $\sim 1230 \pm 80$ (2*standard deviation), which is in broad agreement with the expected ratio of the reference gas (~ 1000).
Figure 3. Results of repeated measurements of 3He enriched reference gas produced at 325RPL. The dashed line represents the average measured value, and the bold grey lines above and below the data is the two-standard deviation of all measurements.

Table 2. 4He/3He ratio data for a mixed helium reference gas produced in 325RPL at PNNL.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>4He/3He</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1168.88</td>
<td>240</td>
</tr>
<tr>
<td>2</td>
<td>1236.81</td>
<td>6.60</td>
</tr>
<tr>
<td>3</td>
<td>1229.04</td>
<td>13.0</td>
</tr>
<tr>
<td>4</td>
<td>1213.12</td>
<td>13.0</td>
</tr>
<tr>
<td>5</td>
<td>1245.34</td>
<td>13.0</td>
</tr>
<tr>
<td>6</td>
<td>1299.50</td>
<td>6.70</td>
</tr>
<tr>
<td>7</td>
<td>1250.80</td>
<td>14.0</td>
</tr>
<tr>
<td>Average</td>
<td>1234.78</td>
<td>79.19</td>
</tr>
</tbody>
</table>

SD = Standard deviation

2.3.2 Isobaric Interferences

Both 3He and 4He suffer from isobaric interferences, which are elements or molecules that have very similar or overlapping atomic masses. This provides an analytical challenge to separate the isotopes of interest from other isotopes/molecules sharing a similar atomic mass. It is important to determine which signals are from other elements/molecules that need to be avoided during measurement. For 3He, the near-by hydrogen-deuterium (HD⁺) needs to be avoided (Hooker et al., 1985; Schwanethal, 2015). This peak can often have a much stronger signal than 3He due to the generally larger abundances of hydrogen in nature over helium and can be difficult to avoid. A mass spectrometer with sufficient mass resolution, or the ability to separate out signals of different isotopes/molecules, is required. The Noblesse NG-MS has a mass resolution of at least 750 (defined as the peak of the mass interest being observed divided by the width at half
the peak height) which is sufficient to resolve this interference (Schwanethal, 2015). This allows the direct measurement of ^3He by carefully selecting the correct mass (Figure 4). Even with a mass resolution that can separate hydrides from ^3He, it is possible the mass spectrometer may select the wrong signal due to their closeness. To avoid that and ensure ^3He was being measured, an offset value was applied to the measurement routine where the high-mass shoulder was identified and then the magnet set point was shifted by 0.002 amu towards the low-mass side to ensure the correct peak was measured (Figure 4).

![Figure 4. Mass scan across the ^3He and hydride peaks. The lower mass peak is $^3\text{He}^+$, while the higher mass peak are the hydrides (DH$^+$). The valley that can be seen between the two peaks indicate the mass resolution is sufficient to resolve this interference.](image)

Helium-4 has a more difficult interference with $^{12}\text{C}^3^+$ (m/z = 4) that cannot be resolved (Schwanethal, 2015). The interference is more obvious at low signals (Figure 5) and difficult to observe at larger signals. This isobaric interference makes it difficult to directly measure ^4He, as the overlying $^{12}\text{C}^3^+$ signal creates a complex peak shape. Unlike the ^3He peak, which has sharp, tall sides and a relatively flat peak-top, the ^4He peak shape has two shoulders of differing intensities and a sloped peak top. This is caused by the overlying $^{12}\text{C}^3^+$ isobaric interference. To properly measure ^4He, it is important to identify which isotopes are contributing to the peak. In the middle of the peak is the combined signal of $^{12}\text{C}^3^+$ and ^4He. Based on their calculated masses, the high mass shoulder is the helium peak, which has a slightly lower intensity than the peak top, leading to the overall sloped peak-top. There are two approaches to properly measuring ^4He – measuring the combined ^4He and $^{12}\text{C}^3^+$ peak or using an offset value to measure only the ^4He peak – where the magnet is set to a mass value on the shoulder of the peak, and then moved by a predefined value, similar to how ^3He is measured. The approach taken in this project is to use an offset value, as the Noblesse has the mass resolution to clearly see the ^4He high mass shoulder. This method is additionally validated by measuring a correct $^4\text{He}/^3\text{He}$ ratio in the 325RPL mixed reference gas (Figure 3).
Figure 5. Mass scan across the 4He peak. Labels indicate the relative position of the 12C$^{3+}$ peak, the combined 12C$^{3+}$ peak, and the 4He peak.
3.0 Results

The average counts per second (CPS) of 4He and 3He from the blank laser cell measurements, the measurements of unirradiated samples, and measurements of irradiated samples are presented in Figure 6 and listed in Table 3. The detection limit for 4He and 3He for the mass spectrometer was calculated as $9.925 \times \text{SD}$ of the four blank laser cell measurements. These resulted in detection limits of 56,000 cps and 71 cps, respectively. For all samples, the 4He signal observed was less than the detection limit. The 3He signal observed was also below the detection limit for most samples. Only the irradiated getter samples contained detectable 3He. Of the three 1 μm3 irradiated getter samples, the first sample was measured twice, corresponding to two separate laser heating events, to ensure all gas from the sample was released.

![Figure 6](image_url)

Figure 6. Measured CPS of irradiated (filled symbols) and unirradiated (hollow symbols) samples for both (A) 3He and (B) 4He. Note that (A) uses a log scale for the y-axis to show all data. Thick black line represents the average laser cell blank level over the analytical sessions, with the standard deviation being smaller than the thickness of the line. The dashed black line represents the instrument’s detection limit.
Table 3. Raw CPS for analyzed samples in this study.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Irradiated or unirradiated*</th>
<th>Sample size (μm^3)</th>
<th>4He (cps)</th>
<th>SE</th>
<th>3He (cps)</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getter</td>
<td>U</td>
<td>1</td>
<td>40,200</td>
<td>300</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Getter</td>
<td>U</td>
<td>1</td>
<td>18,100</td>
<td>100</td>
<td>2.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Getter</td>
<td>U</td>
<td>1</td>
<td>11,900</td>
<td>100</td>
<td>2.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Cladding</td>
<td>U</td>
<td>1</td>
<td>14,400</td>
<td>200</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Cladding</td>
<td>U</td>
<td>1</td>
<td>25,970</td>
<td>50</td>
<td>29.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Cladding</td>
<td>U</td>
<td>1</td>
<td>13,140</td>
<td>40</td>
<td>17.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Getter</td>
<td>U</td>
<td>10</td>
<td>16,500</td>
<td>200</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Getter</td>
<td>U</td>
<td>10</td>
<td>6,070</td>
<td>40</td>
<td>3.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Getter</td>
<td>U</td>
<td>10</td>
<td>13,100</td>
<td>100</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Cladding</td>
<td>U</td>
<td>10</td>
<td>27,000</td>
<td>1,000</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cladding</td>
<td>U</td>
<td>10</td>
<td>18,000</td>
<td>1,000</td>
<td>21.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Cladding</td>
<td>U</td>
<td>10</td>
<td>11,220</td>
<td>30</td>
<td>13.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Getter</td>
<td>U</td>
<td>100</td>
<td>21,900</td>
<td>60</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Getter</td>
<td>U</td>
<td>100</td>
<td>7,150</td>
<td>70</td>
<td>2.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Getter</td>
<td>U</td>
<td>100</td>
<td>7,320</td>
<td>80</td>
<td>2.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cladding</td>
<td>U</td>
<td>100</td>
<td>11,600</td>
<td>200</td>
<td>2.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Cladding</td>
<td>U</td>
<td>100</td>
<td>6,150</td>
<td>50</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Cladding</td>
<td>U</td>
<td>100</td>
<td>9,700</td>
<td>100</td>
<td>12.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Getter</td>
<td>I</td>
<td>1</td>
<td>29,310</td>
<td>60</td>
<td>4,660</td>
<td>10</td>
</tr>
<tr>
<td>Getter</td>
<td>I</td>
<td>1</td>
<td>32,310</td>
<td>70</td>
<td>15,990</td>
<td>40</td>
</tr>
<tr>
<td>Getter</td>
<td>I</td>
<td>1</td>
<td>15,510</td>
<td>50</td>
<td>2,430</td>
<td>10</td>
</tr>
<tr>
<td>Getter</td>
<td>I</td>
<td>1</td>
<td>12,700</td>
<td>100</td>
<td>2,590</td>
<td>20</td>
</tr>
<tr>
<td>Cladding</td>
<td>I</td>
<td>10</td>
<td>8,510</td>
<td>30</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Cladding</td>
<td>I</td>
<td>10</td>
<td>12,410</td>
<td>40</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Cladding</td>
<td>I</td>
<td>100</td>
<td>4,800</td>
<td>30</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Laser cell blank average and SD:

| Detection Limit | 56,000 | 71 |

I = irradiated sample, *U* = unirradiated sample.

SE = Standard error of the measurement.

SD = Standard deviation of the measurements.

(a) = Second measurement of above sample after additional heating.

(b) = Laser cell blank is the average of 4 measurements taken on days where data were collected.

(c) = Detection limit defined as 9.925*SD of the laser cell blank measurements.
4.0 Discussion

All samples analyzed in this study contained quantities of 4He that were below the detection limit of the mass spectrometer. Similarly, the quantities of 3He were below the instrument's detection limit for the unirradiated cladding and getter samples as well as the irradiated cladding samples. As such, no conclusions can be drawn about the relative He content of these materials or the behavior of He or tritium diffusivity. The 1 µm3 irradiated getter samples did contain several thousand CPS of 3He, however. The presence of this isotope is most certainly from the decay of tritium, given the lack of detectable 3He in the other samples. This makes sense, as the getter is designed to trap tritium. After some period of time, 3He would ingrow.

The average 4He/3He ratio of the irradiated C13 getters is reported to be 0.04 ± 0.08. If this ratio is assumed for the 4He/3He ratio of the 1 µm3 irradiated getter samples then the 4He signal present in these samples would be between 100 and 700 cps, based on the measured 3He signal. Since the 4He detection limit was 56,000 cps, it is not surprising that 4He was not detected in these samples. Since the 1 µm3 irradiated getter samples were the largest sized samples that could be volumetrically-released for tritium contamination controls, it is not likely that the sample sizes for this method could be scaled up to provide measureable 4He without changing the radiological controls of the Noblesse mass spectrometer.

While these data are below the instrument’s detection limit, there is a general increasing signal of 4He towards smaller sample sizes in both irradiated and unirradiated material. Additionally, for the one irradiated getter sample that was heated by the laser twice, more 3He was observed in the second heating attempt than the first heating attempt. While not conclusive, these observations suggest that gas release by laser heating is dependent on the sample volume, with gas being more easily released from smaller volumes of material. Multiple heating episodes may need to be conducted in the future to ensure all gas is extracted from a sample.

While we do not know the exact age and 3H loading level of the getter sample, it is possible to make some rough estimates of noble gas detection efficiency. The density of a typical non-evaporable hydrogen getter like ST707 (SAES Getters) is about 6 g cm$^{-3}$ (Feng et al., 2018) which would yield a 1 µm3 particle weight of 6 x 10$^{-12}$ g. The maximum 1H$_2$ loading of this getter material has been reported as 8.14 x 10$^{-3}$ moles g$^{-1}$ (Hsu and Millis, 2010). A 1 µm3 particle could therefore hold up to 4.95 x 10$^{-14}$ moles of 1H$_2$ or 2.98 x 1010 molecules of 1H$_2$. Assuming a moderate loading of 10% maximum capacity, this would make 2.98 x 109 molecules of 3H$_2$ potentially available in the irradiated 1 µm3 getter cubes. The FIB cutting process will lightly release some hydrogen and helium due to heating, although most of the hydrogen species present will be chemically bound in the getter. For 3He, losses are likely to be more significant as these atoms will not be chemically bound. Helium usually displays the lowest solubility and highest mobility of all the noble gases in most materials. Despite these factors, measurements on the Noblesse still yielded large 3He signals from the irradiated getter samples. Significant variation in 3He signal intensity was observed between the three 1 µm3 particles, however. These differences might simply reflect slight variations in sample size or gas released through laser heating but they could also reflect sampling variations between the different metallic phases present in the getter or microscopic internal sample voids that formed during the hydrogen absorption process. Larger specimens may homogenize these microscopic effects and reduce variation in 3He observed between samples.

If we use a 6 year decay period then about 25% of the available tritium atoms would have decayed. This would yield about 1.49 x 109 3He atoms available in a 1 µm3 getter sample, ignoring the losses from the FIB cutting process. Based on the 3He count rates observed for the
3 getter samples (1 = 15985 cps, 2 = 2431 cps, 3 = 2587 cps) this would yield a detection efficiency in the range 0.00016 – 0.0011%. Noble gas mass spectrometry can potentially achieve a detection efficiency of ~0.1% for xenon, but He displays lower sensitivity due to its higher ionization potential, and the gas loss caused by the sample preparation process was ignored. The detection efficiency therefore seems reasonable and can likely be improved.
5.0 Future Directions

This study has shown it is possible to measure 3He derived from tritium decay in micronmeter sized TPBAR components to trace tritium diffusion. It is interpreted that the measured 3He in the irradiated getter sample is the daughter product of tritium, due to the extremely low naturally occurring abundance and low background of 3He observed in all the unirradiated samples tested. Based on these findings, several avenues of future work can be explored using this method.

It is possible to quantify the amount of helium measured. Currently, this is not possible with the NG-MS. However, it is possible to quantify the amount of helium using a spiked reference gas. This would involve acquiring a pipette of helium gas with a precisely known amount of both isotopes of helium. Based on the measured amount of 3He, the decay constant of tritium, age since irradiation, and the estimated sample size, it would be possible to calculate the starting concentration of tritium in a sample. This could be used to estimate how much tritium is being adsorbed by various reactor components.

While this report focuses on whether or not 3He is detectable in cladding and getter material at the micron scale, it is possible to measure the 4He/3He ratio of materials using this method. However, given the 4He content of these samples relative to the instrument's detection limit, larger sample sizes would be required. Sensitivity to 4He could be improved by minimizing the interference from 12C$^3^+$. This has already been investigated by Schwanethal (2015) by altering some of the tuning parameters on the source of the NG-MS, such as the trap voltage. This work could be expanded on, and replicating their method could be beneficial, especially if there is interest in the 4He/3He ratios of materials or quantifying the amount of 4He gas.

There are other parts of the reactor that may be exposed to tritium. The NG-MS is a versatile instrument that can analyze samples of different compositions, such as liquids. This method could be applied to many parts of the reactor to find 3He as a tracer of tritium and, unlike β counting methods, it is blind to the presence of other radioisotopes.
6.0 Conclusion

This report documents a new method for tracing 3H through its daughter product 3He. Getter and cladding material from TPBARs were selected for testing, as they are designed to capture and prevent the loss of activation and fission products from the TPBAR. The size of samples ranged from 1 μm^3 to 100 μm^3 to eliminate any radiation hazards during analysis. Unirradiated samples and irradiated cladding contained no measurable helium above the instrument’s detection limits. Irradiated getter material of 1 μm^3 contained several thousand CPS of 3He, corresponding to a total sample weight of 5-10 pg. Modern methods of detecting tritium require milligrams of sample (Torikai, 2021), meaning this method is several orders of magnitude more sensitive to tritium detection, albeit indirectly. Despite the heating process by the FIB to cut samples, 3He was still detectable in the irradiated getter samples. This is an interesting result, as the He in the material exists as a gas and is not chemically attached to the getter, unlike tritium. This suggests that sample sizes could be reduced further and still get measurable results for 3He. The success of this method has opened several avenues of potential future work in the detection of tritium in TPBARs and nuclear reactors.
7.0 References

