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Abstract 
Our work in the field aims at explaining the limitations and expressive power of Quantum 
Machine Learning models, as well as finding feasible training algorithms that could be 
implemented in near-term Quantum Computers. The promise of Quantum Machine Learning is 
that by incorporating quantum effects, such as entanglement, into machine learning models 
researchers can improve model performance and understand more complex datasets. This 
pledge is particularly pronounced in the design of Quantum neural networks (QNNs), a 
promising framework for creating quantum algorithms, that promise to outperform classical 
models by combining the speedups of quantum computation with the widespread successes of 
deep learning. We show that applying this approach alone to quantum deep learning is 
problematic given that an excess of entanglement between the hidden and visible layers can 
destroy the predictive power of our QNN models. We address the barren plateau problem by 
suggesting the use of a generative, unbounded, nonlinear loss function with simple gradients. 
The loss function quantifies how much the quantum states generated by the QNNs differ from 
the data and the goal during training is to minimize it. Finally, we showcase how to use 
generative training to construct a "classical-quantum" neural network to accurately interpolate 
between the ground states of a Molecular Hamiltonian, a central question in Quantum 
Chemistry. 



PNNL-35363 

 v 
 

Summary 
Our work aims at explaining the limitations and expressive power of Quantum Machine Learning 
models, as well as finding feasible training algorithms, that support scientific and mission-critical 
applications. The promise of Quantum Machine Learning is that by incorporating quantum 
effects, such as entanglement, into machine learning models researchers can improve model 
performance and understand more complex datasets. This pledge is particularly pronounced in 
the design of Quantum neural networks (QNNs), a promising framework for creating quantum 
algorithms, that promise to outperform classical models by combining the speedups of quantum 
computation with the widespread successes of deep learning.  
 
A reason why QNNs can outperform existing deep learning models is the presence of 
entanglement between the visible and hidden layers of a model. In joint work with Nathan Wiebe 
(University of Toronto) and Mária Kieferová (UT Sydney), we show that applying this approach 
alone to quantum deep learning is problematic given that an excess of entanglement between 
the hidden and visible layers can destroy the predictive power of QNN models. Our key insight 
is that barren plateaus i.e., vanishing gradients as a model scale in the number of units, can 
occur because of an excess of entanglement between visible and hidden units in deep quantum 
neural networks. This surplus of entanglement to some extent defeats the purpose of deep 
learning by causing information to be non-locally stored in the correlations between the layers 
rather than in the layers themselves.  As a result, when one tries to remove the hidden units, as 
is customary in deep learning, we find that the resulting state is close to the maximally mixed 
state i.e., no better than random guessing.  Indeed, we show that such situations are generic 
and gradient descent methods are unlikely to allow the user to escape from such barren 
plateaus at a low cost.  
 
To address the barren plateau problem we proposed the use of a generative, unbounded, 
nonlinear loss function with simple gradients. The loss function quantifies how much the 
quantum states generated by the QNNs differ from the data and the goal during training is to 
minimize it. Existing algorithms almost exclusively utilize a linear bounded operator as a loss 
function and linearity of the loss function is a central assumption behind all barren plateau 
results, including our discovered Entanglement Induced barren plateau. Our proposed training 
algorithm minimizes a maximal Quantum Rényi divergence, akin to the KL-divergence and an 
upper bound of the quantum relative entropy, between two quantum states, that is, the output of 
our QNN and the quantum data. This choice implies that the standard arguments for barren 
plateau theorems do not apply, in part because Rényi-divergences experience a logarithmic 
divergence when the two states are nearly orthogonal. This causes the gradients of the 
divergence between nearly orthogonal quantum states to be large and thereby provides a 
workaround for all known barren plateau results.  
 
Our previously mentioned work allowed us to apply our algorithms to problems in Quantum 
Chemistry and Quantum Sensing. In collaboration with domain-experts, we showcase how to 
use generative training algorithms to construct a "classical-quantum" neural network to 
accurately interpolate between the ground states of a Molecular Hamiltonian. Quantum 
Computers were originally proposed for the exact task of simulating chemical processes, which 
are fundamentally quantum mechanical. Finding the lowest energy state of a chemical 
Hamiltonian is a central problem in Quantum Chemistry, but it is an expensive computational 
task even for near-term Quantum Computers. In our work, we used a generative, hybrid 
“Classical-Quantum” neural network to interpolate between, and generate, the actual ground 
states of a molecular Hamiltonian. After training, you can then use your model to produce new 
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ground states to extract any observable, including the ground state energy, without the need to 
employ expensive Quantum Algorithms like Quantum Phase Estimation each time. 
 

 
Figure 1: Hybrid Classical-Quantum Generative model. 

Our goal in Quantum Sensing is to construct a measurement scheme that can successfully 
extract quantities from a source system under the influence of competing forces or 
environmental factors. Current examples include atomic clocks and magnetic resonance 
imagers, while developing applications include dark-matter detection and atomic microscopy. 
The goal is to isolate and measure a specific quantity of interest of the evolving quantum sensor 
in the presence of other competing forces or the environment. We hope to improve on this task 
by recasting our parameter isolation task as a code-space learning problem in a stabilizer error-
correcting code. This entails the development of Quantum Machine Learning algorithms that 
can map desired parameter regions to regions in code-space that can be distinguished by 
stabilizer measurements.  Undesired parameter regions may then be “corrected”, only leaving 
the desired quantities that are to be estimated during the extraction phase. 
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1.0 Introduction 
Despite the optimism, training QNNs has proved to be computationally difficult because of a 
concentration of measure phenomenon known as a barren plateau that leads to exponentially 
small gradients as we scale the number of neurons. Barren plateaus are known to emerge in 
many classes of QNNs [1, 4–7], leading to performance that is no better than random guessing. 
Additionally, recent work showed that under mild assumptions barren plateaus arise whenever 
QNNs are highly expressible [8] and the issue cannot be alleviated using gradient-free methods 
[9] or higher-derivatives [10]. These results paint a bleak picture for the future of quantum 
machine learning and finding a scalable approach to train generic QNNs has become a central 
problem in the field. Existing approaches that overcome barren plateaus are either based on 
empirical evidence [11, 12] or are constrained to a specific architecture [5, 13, 14] but none 
provide a generic way to train quantum models that is guaranteed to avoid these no-go results. 
Let us start by defining some terminology. We define a pure quantum state, as a unit vector |ψ⟩ 
∈ (C2)⊗n. When n = 1, it is customary to write |ψ⟩ = α|0⟩ + β |1⟩, where |0⟩ = (1,0)t and |1⟩ = 
(0,1)t. Not all pure quantum states describe the complex landscape of behavior that we observe 
in the lab. It turns out that probabilistic mixtures of pure states are also valid quantum states 
(these are referred to as mixed quantum states). In 1932, John von Neumann presented the 
mathematical formalism that resolved the issues when describing all possible quantum states 
[15]. General probabilistic mixtures of pure states cannot be described by a state vector, but 
von Neumann pointed out that all the measurable information you can extract from a state is 
encoded in its density matrix. He showed that to every quantum state you can associate a 
positive semi-definite matrix ρ with Tr(ρ) = 1 (called the density matrix of the state) and from this 
matrix you can extract information from all measurable quantities of interest. In the case of a 
pure state |ψ⟩, it associated density matrix is simply |ψ⟩⟨ψ|, where ⟨ψ| = |ψ⟩t. A more geometric 
way to understand the set of quantum states is to notice that the set of density matrices is a 
convex set, and pure states are the extremal points of that set. 
Now let us define two popular types of quantum neural networks (QNNs): the unitary Quantum 
neural network and a quantum Boltzmann machine, see Fig. A. A Unitary quantum neural 
networks are characterized by a sequence of parameterized Unitary matrices acting on an initial 
state. In general, we can write Unitary QNNs as U(θ1,...,θn) := e−iHnθn ...e−iH1θ1, where θ i are the 
parameters we aim to learn and Hi are Hermitian matrices that specify the QNN. At inference 
time, U(θ1,...,θn) can act on some initial state to get our model output. Quantum Boltzmann 
machines model the data by taking the matrix exponential of a parameterized Hamiltonian and 
normalizing the resulting matrix to get a density matrix of the quantum state for our model. In 
both cases, the goal is to find a suitable assignment of parameters given a target quantum 
state, i.e. “training data”. The QNNs make use of two quantum layers; the visible units 
correspond to qubits that we use to construct the output, and the remaining qubits correspond 
to hidden units and provide additional expressive power to the model. The inclusion of hidden 
units is essential in traditional machine learning and a necessary ingredient of any practical 
deep neural network. In our work, we show that indiscriminately adding more hidden units to 
quantum deep learning is problematic given that an excess of entanglement between hidden 
and visible layers can destroy the predictive power of these models. In effect, we showed the 
presence of a new type of barren plateau due to entanglement. 
The most common approach to training is to find a "good" assignment of parameters via 
gradient descent. We quantify "goodness" of the parameters in terms of an objective function O 
= Tr((Oobj ⊗ 1)ρ(θ1,...,θn)) where ρ(θ1,...,θn) is the density matrix from the quantum state 
outputted by the model, and {θ1,...,θn} ∈ R are the parameters (Oobj is an operator that acts on 
the visible units and 1 acts on the hidden units). Common choices for the operator Oobj include 
a Hamiltonian or a projector on a given state. The goal of the training phase is to minimize O, 
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often through stochastic gradient descent. The neural network is used to estimate the gradients 
 and parameters θ i are then systematically adjusted to follow the gradient. The requirement 

for efficient training is that the gradients be bounded away from zero, otherwise we experience 
a barren plateau in the loss landscape. 
In the seminal work by McClean et al. [4], the authors showed that, with high probability, the 
derivatives of the expectation value of a random QNN over an observable will be exponentially 
small for all but an exponentially small fraction of the values the parameters. This result is 
referred to as the barren plateau problem and we restate it below as follows, 

Definition 1 (Barren Plateau [16]). The cost function O = Tr((Oobj ⊗ 1)ρ(θ1,...,θn)) exhibits a 
barren plateau with respect to parameter θ j for a quantum model with density ρ, if  exist and 
is continuous on a compact subset A ⊂ Ω and for every ϵ > 0, there exists 0 < b < 1 such that 

, where PA is the probability measure on A induced by P, Ω is a 
compact set of parameters equipped with a probability density P, Oobj is an observable, and nv, 
nh are the numbers of visible and hidden units, respectively, of the quantum model. 

 

Figure 2: Two types of QNNs: (a) A Unitary QNN with 5 visible units and 3 hidden units. We 
refer to qubits that are measured at the end as visible units and the remaining qubits as hidden 
using deep learning notation as an analogy. We denote these qubits |0⟩v and |0⟩h respectively. 
Each Unitary (box) acts on the qubit subspace denoted by the wires that go into the box in 
sequence to produce a final output state. (b) Quantum Boltzmann machine defined on a graph. 
Each edge and each vertex correspond to a weight on a local Hamiltonian. The top layer 
(circles) corresponds to visible units and the bottom layer (rectangles) are the hidden units. 

Quantum Boltzmann machines model the output as a thermal state . The 
aim when training a quantum Boltzmann machine is to learn a vector θ such that for a training 
objective function that acts on the visible subsystem is minimized. 
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2.0 Entanglement-Induced Barren Plateaus 
To appreciate our result and the role of hidden units in our models, let us consider our neural 
networks as a bipartite quantum system. A classic thermalization result [17] shows that for a 
random initial state, the state on the visible units is with high probability exponentially close to a 
maximally mixed state. However, the assumption of a random state is too strong. Instead, we 
assume that the states are chosen from a 2-design [18]. This is a reasonable assumption for 
outputs of a randomly initialized, not yet trained, QNN of sufficient depth. Similarly, for a 
quantum Boltzmann machine we assume that the eigenvalues of the Hamiltonian are chosen at 
random and then the diagonal matrix is conjugated with a unitary drawn from a distribution that 
is a unitary 2-design. Now we are ready to state the two main theorems of our work: 

Theorem 2 (Gradient in unitary networks). Assume that ρ(θ) is drawn from a unitary 2-design 
where ρ(θ) is generated by a unitary QNN of the form 

  (1) 

that acts on a Hilbert space that is the product of a hidden and visible space of dimensions Dh 

and 

Dv respectively. Further, let  for each k obeys E(Hk(θ)ρ(θ)) = 
E(Hk(θ))E(ρ(θ)). We then have that 

E(|Trv(OobjTrh(ρ(θ)))|) 

is a Lipshitz continuous function of θ with constant Λ obeying 

  . (2) 

Simply put, under some independence conditions and an assumption that ∥Oobj∥∞,∥Hk∥∞ ∈ O(1), 
the gradients for QNNs with more hidden units than visible units are exponentially small. It is 
worth noting that the gradients will be small with high probability as a consequence of the 
Markov inequality. We proved a similar Theorem for Quantum Boltzmann Machines but we 
needed to impose some mild assumptions on the structure of the Hamiltonian. If we assumed 
that Haar-randomness rather than 2-design, we would be able to derive similar results using 
Levy’s lemma [19]. 

While the most of our contributions consists of theoretic asymptotical results, I 
complemented our results by providing numerical examples (See Figure 2). While it is 
impossible to draw a clear conclusion from a small-scale numerical study, our numerical 
examples demonstrate the vanishing gradients are not only an asymptotic effect and they do 
occur even for small instances. 
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3.0 Training Quantum Neural Networks using Rényi 
Divergences 

In the previous subsection we discussed how barren plateaus prevent QNNs from being trained 
efficiently. In this subsection we discuss a way to prevent the barren plateau problem by using 
an unbounded, nonlinear loss function with simple gradients instead of a linear objective 
function. Existing algorithms almost exclusively utilize a linear bounded operator as a loss 
function and linearity of the loss function is an assumption behind all barren plateau results. We 
saw that the loss function is typically estimated by measuring the expectation values of 
Hermitian operators but it is not at all necessary. Our proposed training algorithm minimizes a 
maximal Quantum Rényi divergence which upper bounds the quantum analog of the KL-
divergence between two quantum 

 
 (a) (b) 

FIG. 2: Vanishing gradients. (a-b) Semi-log plot highlighting the decay in the variance of the 
∞-norm of the gradient vector over an ensemble of initialized models. The dashed blue 

represent the average over 1000 model instances. The dimension of the visible subpsace is 
fixed (3 qubits) 

while we increase the dimension of hidden subspace. The dashed green line represents is the 
best fit we obtain from least squares. (a) Gradient estimates for the Unitary Model. (b) Gradient 

estimates for a normalized Quantum Boltzmann Machine. 

states, that is, the output of our QNN and the quantum data. We show how this choice implies 
that the standard arguments for barren plateau theorems do not apply because the Rényi-
divergences experience a logarithmic divergence when the two states are nearly orthogonal. 
This causes the gradients of the divergence between nearly orthogonal quantum states to be 
large and thereby provides a workaround for all known barren plateau results. 
In our work [2], we derive a closed-form expression for the gradients and provide sufficient 
conditions for when this loss function avoids barren plateaus. We showcase our method by 
learning thermal states, a class of mixed states that are hard to generate computationally, but 
easy to generate experimentally. We provide two quantum algorithms for computing the 
gradients, a near-term and a fault-tolerant algorithm. I complemented our theoretical work with 
small numerical experiments and the code available at https://github.com/pnnl/renyiqnets. We 
observed an absence of gradient decay or barren plateaus in all the learning tasks we 
performed. 

The exact form of the loss function that we consider is a generalization of quantum relative 
entropy known as quantum Rényi divergence or "sandwiched" Rényi relative entropy [20, 

21]. For two quantum states ρ and σ, the quantum Rényi 

https://github.com/pnnl/renyiqnets
https://github.com/pnnl/renyiqnets
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divergence Dα takes the form Dα(ρ∥σ) = α for α ∈ [0,∞)\{1}. The Quantum Rényi divergence 
inherits many 
of the mathematical properties of the Rényi divergence and in the case where α → 1 it reduces 
to the quantum relative entropy (Quantum analog of the KL-Divergence). One can additionally 
define an upper-bound on the quantum Rényi divergence Dα(ρ∥σ) ≤ Deα(ρ∥σ) =  logTr

 where  defines the maximal Rényi divergence, which, until now, has not 
been widely used for quantum computing. We focused on the case where α = 2, first proposed 
by Petz [22], 

 De2(ρ∥σ(θ)) = log Tr . (3) 
Here ρ is the training data state and σ(θ) corresponds to the output of the QNN as a function of 
the parameters θ. The main reason for using De2(ρ∥σ) as a loss function is that it upper-bounds 
the quantum relative entropy and its gradients are considerably simpler than that of the ordinary 
Rényi divergence and quantum relative entropy. 

We also considered the divergence with reversed arguments, 

 De2(σ(θ)|ρ) = log Tr  . (4) 

Note that in general, De2(ρ|σ(θ)) ̸= De2(σ(θ)|ρ). However, if both ρ and σ(θ) are full rank, 

De2(ρ|σ(θ)) = De2(σ(θ)|ρ) = 0 if and only if ρ = σ [23]. In this case, De2(σ(θ)|ρ) becomes a 
reasonable loss function to consider for training. 
Furthermore, these divergences have closed-form gradients that can be in many cases 
efficiently computable on a Quantum Computer. For a unitary quantum neural network, we 
define σv := 

Tr  to be the measured output density of the network, where Trh 

is the partial trace over the hidden subspace generate by the hidden units. Then the gradients 
of the maximal Rényi divergence between ρ and σv takes the form 

 . (5) 

where . Similarly, the gradient of the reverse divergence 

De2(σv|ρ) gives 

 
∂θkDe2(σv∥ρ) = Tr(σ2ρ−1) . (6) v 

We derive gradients for a quantum Boltzmann machine in a similar fashion. It is worth 
emphasizing that these are considerably simpler than those of quantum relative entropy or 
quantum negative log-likelihood. 

The key advantage of our training method is that it indeed avoids barren plateaus. We 
proved, under some mild assumptions, that our algorithm does not experience gradient decay 
for unitary QNNs and Quantum Boltzmann Machines. Furthermore, our numerical results 
indicate that our mild assumptions might not be necessary in practice, see Fig. 3. 

We showcase our training routine by learning thermal states, i.e. ρ = e−H/Tr(e−H) for some 
Hamiltonian H. For this case, the gradient of the reverse Rényi divergence (6) simplifies to 
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∂θkDe2(σv∥ρ) = Tr(σ2eH) . (7) v 

We propose two quantum algorithms for estimating the gradient (7). Our first algorithm 
prioritizes shorter, noisy computation and could be implemented with near-term Quantum 
hardware. The second algorithm builds on our first algorithm but uses more sophisticated 
techniques like amplitude estimation [24]. 
In addition to our theoretical results, I included a small series of small scale numerical 
experiments to showcase our ability to learn a thermal state with the Unitary model using the 
analytical gradients calculated in equation (7). In all our experiments we saw no evidence of 
gradient decay or barren plateaus during training. Moreover, our model fidelity continued to 
increase with an increasing number of hidden units, also suggesting an absence of 
entanglement-induced barren plateaus [1]. 
Our work focused strictly on generative training but could be applied in a broader Quantum 
Machine Learning context as a pre-training step. In this approach, one would train a quantum 
model to perform a generative task first and then train it to perform a specific task in a second 
phase. This was a common strategy in the early days of Deep Learning. Pre-training would 
ensure that the model at the start of a second phase is not random and thus will not suffer from 
gradient decay due to barren plateaus. 

 
 (a) Loss (b) Fidelity i.e. Accuracy 

FIG. 3: We trained the Unitary model with three visible units and an increasing number of 
hidden units. The target state is a random thermal state. No entanglement-induced barren 

plateau is 
observed. The solid lines represent the average epoch value and the width of the shaded area 
two standard deviations over 50 runs. (a) Training loss (i.e. Rényi Divergence) of our model. (b) 

Fidelity between the target state and our model. 
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4.0 Quantum Chemistry, Quantum Sensing, and Nonlocal 
games 

Equipped with our new toolbox, I am now moving into applying them to problems in Quantum 
Chemistry, Quantum Sensing, and Non-Local Games. We recently published a preprint 
outlining how we can use generative training to interpolate between the ground states of a 
parameterized molecular Hamiltonian [3]. Quantum Computers were originally proposed for the 
exact task of simulating chemical processes, which are fundamentally quantum mechanical 
[25]. Finding the lowest energy state of a chemical Hamiltonian is a central problem in Quantum 
Chemistry, but it is an expensive computational task even for near-term Quantum Computers. 
In our work, we used a generative, hybrid “Classical-Quantum” neural network to interpolate 
between, and generate, the actual ground states of a molecular Hamiltonian. After training, you 
can then use your model to produce new ground states to extract any observable, including the 
ground state energy, without the need to employ expensive Quantum Algorithms like Quantum 
Phase Estimation [26] each time. 
In Quantum Sensing the goal is to construct a measurement scheme that can successfully 
extract quantities from a source system under the influence of competing forces or 
environmental factors. Current examples include atomic clocks and magnetic resonance 
imagers, while developing applications include dark-matter detection and atomic microscopy 
[27]. The goal is to isolate and measure a specific quantity of interest of the evolving quantum 
sensor in the presence of other competing forces or the environment. We hope to improve on 
this task by recasting our parameter isolation task as a code-space learning problem in a 
stabilizer error-correcting code [28]. This entails the development of Quantum Machine 
Learning algorithms that can map desired parameter regions to regions in code-space that can 
be distinguished by stabilizer measurements. Undesired parameter regions may then be 
“corrected”, only leaving the desired quantities that are to be estimated during the extraction 
phase. 
In 1964, John Stewart Bell effectively showed that for some simple games you can achieve 
higher than expected win rates, if you allow players to share quantum resources when 
designing strategies [29, 30]. This breakthrough solidified quantum theory as foundational and 
redefined the term “optimal strategy” in game theory. Recent developments in quantum 
information theory have highlighted the efficiency of quantum strategies over classical ones 
[31]. In particular, for some combinatorial games players can convince a referee, with perfect 
certainty, that they possess an “exponentially” more optimal strategy that wins the game due to 
their ability to craft a quantum strategy using Quantum resources [32]. I studied and 
mathematically characterized the strategies of these combinatorial games as part of my thesis 
work [33]. Most of the existing work on strategies is theoretical in nature [33–35] and little work 
has been done on algorithm development to find such strategies [36]. This game-theoretic 
framework provides us with the perfect playground to develop new novel training algorithms 
that can handle domain constraints: it contains non-trivial but manageable problem instances 
(e.g. on the order of a dozen qubits [35]), all constraints are known, and enforceable during 
training. With James Furches (PNNL Intern), We developed a variational algorithm for 
computing strategies of nonlocal games and show that it can yield optimal strategies for small 
examples of both convex and non-convex games. We showed that our algorithm returns an 
optimal quantum strategy for a graph coloring game; whereas no optimal quantum strategy was 
previously known for this problem. Moreover, we describe how this technique can be run on 
quantum computers to discover shallow-depth circuits that yield optimal quantum strategies. 
We argue that such circuits will be useful for benchmarking quantum computers because of the 
ability to verify the solutions at scale and the experiment's sensitivity to 2-qubit gate noise. 
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Finally, we demonstrate the use of nonlocal games as a benchmarking strategy experimentally 
on 11 IBM quantum computers [37].  
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5.0 A Unified Theory of Barren Plateaus for Deep 
Parametrized Quantum Circuits 

  
Due to the tremendous limitations that BPs place on the 
potential to scale variational schemes to large problem sizes, 
a significant amount of effort has been put forward towards 
understanding why and when BPs arise. It was found that 
BPs result from several seemingly disparate aspects, 
including the expressiveness of the Parametrized Quantum 
Circuit (PQC) (i.e., the breadth of unitaries that the PQC can 
express), the locality of the measurement observable, and the 
entanglement in the input state to the circuit. Hardware noise 
further exacerbates these issues.  

 FIG. 1. It is known that BPs can 

Yet, most of the results in the literature have been derived, 
and can only be applied, for specific circuit architectures or 
scenarios. In other words, we do not have a holistic unifying 
theory that captures the interplay of the various aspects that 
give rise to BPs. 
In order to unify this fragmented understanding, we present a 
general Lie algebraic theory for BPs. Our theory is based on 
the study of the Lie group and the associated Lie algebra g, 
also known as the dynamical Lie algebra, generated by a PQC. 
Our results can be applied to any deep parametrized quantum 
circuit architecture, in the presence of state preparation and 
measurement (SPAM) errors and also coherent errors, 
provided that the measurement operator or the input state 
belongs to g [38]. 
 

arise due to the expressiveness of the 
PQC, the locality of the measurement 
operator, the entanglement in the 
ini�al state, or hardware noise. We 
propose a unified view of BPs through 
the lens of Lie algebras. 

Our results have extremely powerful implications. First, we can see that the variance depends 
on only three quantities: the dimension of g and the g-purities of O and ρ. Hence, if any of these 
is exponentially small compared to the rest, the cost will exhibit a BP. In what follows we 
analyze each of these three potential causes of barren plateaus and relate them to the 
expressiveness, generalized entanglement, and locality. 

Expressiveness – The expressiveness of the circuit is often advanced as a main cause of 
BPs. Our result cements this understanding, as the variance is inversely proportional to dim(g), 
which directly quantifies the expressiveness of the circuit: more expressive circuits (larger 
dim(g)) lead to more concentrated loss functions. We find that PQCs with exponential DLA are 
generally untrainable, regardless of the initial state or the measurement operator. On the other 
hand, if dim(g) ∈ O(poly(n)), the expressiveness of the circuit will not induce BPs by itself. 
However, this does not exclude the possibility that the initial state or the measurement operator 
can still lead to an exponential concentration. 

Entanglement – It has been realized that if the input state to certain PQCs is too entangled, 
then the loss has a BP. We can directly relate this observation to Pg(ρ), the g-purity of the state. 
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Indeed, the g-purity has been established as a measure of generalized state entanglement. This 
measure is relative to a subspace of operators (here g) rather than relying on locality concepts 
based on subsystem decomposition. From this point of view, Pg(ρ) effectively quantifies the 
amount of mixedness of ρ with respect to the DLA, and is maximized (i.e., ρ is non-g-entangled) 
if ρ belongs to the orbit of the highest weight state of g. A smaller g-purity implies larger 
generalized entanglement and, in turn, smaller variances. Therefore, if Pg(ρ) ∈ O(1/bn) for b > 2 
(highly g-entangled state), the loss concentrates exponentially regardless of the expressiveness 
of the circuit, that is, even if dim(g) is polynomial. Common intuitions about standard 
entanglement fail to explain variances scalings for general g but are fully captured. This includes 
situations where local unitary transformations reduce the gpurity (or variance), and also the fact 
that highly entangled states can still lead to maximal g-purity (or variance). 

Locality – It has been shown that for certain PQCs, measuring local operators (acting on a 
single qubit) leads to a trainable loss, whereas measuring global operators induces BPs. 
Turning our focus on the g-purity of the measurement operator O, we can carry over the notion 
of generalized entanglement to define a generalized notion of locality: We call an operator 
generalized local if it belongs to the preferred subspace of observables given by g. In this case, 
Πg(O) = O. On the other hand, we will call it (fully) generalized-nonlocal if Πg(O) = 0. With these 
definitions, one can readily see that generalized local operators maximize the variance. On the 
other hand, when Pg(O) ∈ O(1/bn) (highly generalized nonlocal measurements), the loss exhibits 
a BP regardless of the DLA dimension. As was the case for the entanglement, this Lie algebraic 
perspective allows us to capture cases where standard notions of locality fail, meaning that we 
can prove the absence of BPs even when measuring operators that act on all qubits. 

Noise – While most BPs are discussed in a noiseless setting, it is also known that noise can 
induce forms of BPs. Consider the case of state preparation with O ∈ ig. The effect of the noise 
is to map the initial state from ρ to NB(ρ). We can see that the only way noise can affect the 
scaling of the variance is through changes in the g-purity of the state. Any channel decreasing 
this g-purity will reduce its variance. These include incoherent noise, as studied in, such as 
global depolarization, and also unitary noise (see earlier discussion). These are distinct forms of 
algebraic decoherence, whereby the state becomes entangled with the environment (e.g., for 
depolarizing noise) or with an effective “algebraic environment” within the system. Similarly, 
measurement errors can be understood through the action of NA

−1 (the potentially unphysical 
inverse of NA) on the observable O, and the induced changes in its g-purity. Finally, for circuit 
errors occurring as uncontrolled unitaries during the circuit, these will increase the set of 
generators to Ge = G ∪ {iKl} with effective DLA eg ⊇ g. Interestingly, this means that coherent 
noise can increase the expressiveness of the circuit at the cost of decreasing the variance. 
Discussions – Finding ways to avoid BPs has been one of the central topics of research in 
variational quantum computing. This has led the community to develop good-practice guidelines 
such as: “global observables are untrainable” or “too much entanglement leads to BPs.” 
Although widely regarded as universally true, these are obtained by extrapolating results 
pertaining to specific scenarios and assuming that they will hold in others. With our work, we 
suggest a more rigorous and unifying look at BPs through the lens of Lie algebras. 

Despite the simplicity of our main result, its implications are far reaching, and, unlike previous 
results, it provides exact variance calculations rather than bounds, allowing us to precisely 
determine the presence or absence of a BP. Conceptually, our results show that in order to 
explain the BP phenomenon, one needs to understand the interplay of generalized flavors of 
entanglement, locality, and also problem size. Finally, it is also worth noting that the formalism 
adopted here can explain how common noise models, such as SPAM and coherent errors, can 
lead to BP through the way they increase the generalized entanglement of the initial state, 
reduce the generalized locality of the measurement operator, or increase the expressive power 
of the circuit. 
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Looking ahead, we see different ways to extend our results. For example, our theorems are 
derived for the case where ρ or O are in g. Although this case encompasses most algorithms in 
the literature, it would be interesting to generalize our results to operators and measurements 
not in the DLA. Moreover, one can also envision considering more general noise settings where 
noise channels are interleaved with the unitaries. Clearly, since a noisy parametrized quantum 
circuit no longer forms a group, our Lie algebraic formalism no longer applies. As such, new 
tools will have to be developed to study loss concentration in this scenario. 
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