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Abstract 

As the distribution system continues to experience an increase in distributed energy resource 
(DER) and electric vehicle (EV) penetration, so does the need for new solutions that can help 
grid operators manage and leverage their capabilities. This will undoubtedly lead to new 
operational schemes and business opportunities that will transform the traditional consumer into 
a prosumer who will be more actively engaged in grid operations. Although the field is still under 
active development, many of the potential use cases presented in literature or industry are built 
upon edge computing, two-way communications, and other innovative computational constructs 
to attain their goals. However, at their core, many use cases assume a great level of data 
access to aid with the decision-making process, an assumption that may need to be revised to 
ensure fair and equitable operational processes are maintained. This may be particularly true as 
edge resources are predicted to participate in retail-side, many-to-many, or peer-to-peer 
markets and thus may lead to financial impacts if data access considerations are ignored.  

The need to revise data access mechanisms can be further justified by the introduction of new 
participants into the operational process, who do not have the same level of trust, nor the 
incentives to focus on energy delivery as their primary objective. At the same time, more 
consumers are becoming aware of their own data, and the potential impacts of its abuse. To 
help solution developers better understand these risks, this report has been developed to offer 
an initial introduction to the topic of privacy. This is achieved by 1) Highlighting the need for 
privacy-aware solutions; 2) Encouraging system designers to be inquisitive about the status 
quo; 3) Documenting the existing threat space; 4) Presenting and evaluating tools that may be 
helpful towards enabling better privacy postures; and 5) Making recommendations to encourage 
the adoption of better practices. 

From a technical perspective, the report focuses on evaluating two potential techniques by 
applying them to the Transactive Energy space. Based on the obtained results, it can be 
established that Differential Privacy (DP) methods may have limited applicability when highly 
correlated, time-series data records need to be protected. However, DP may be a powerful tool 
when it is used to aggregate and analyze mid-size and large-size data sets in a more traditional 
statistical environment. The second tool under evaluation is threshold cryptography, which can 
guarantee complete secrecy (and thus privacy) but requires the establishment of key 
management procedures and dedicated communication channels for key coordination. 
Therefore, due to its increased computational overhead, the use of threshold cryptography must 
be weighted using a cost/benefit analysis on a per-application basis. 
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Summary 

The successful integration of renewables will require engineers to develop new communication 
architectures and processes to effectively harness the capabilities provided by DERs, EVs, and 
other emerging technologies. However, these new processes need to be mindful of the different 
and sometimes contradictory requirements of each actor, thereby helping to foster fair and 
equitable business practices. One of the emerging aspects is digital privacy, which is a set of 
expectations that an individual has over their digital footprint, which usually covers the data and 
associated metadata generated during day-to-day business transactions. As expected, multiple 
researchers have proposed a variety of mechanisms designed to protect the data across its 
operational lifecycle, thereby helping to increase privacy guarantees for data producers.  

One of the promising technologies is Differential Privacy (DP), which offers a mathematical 
framework that enables individuals to attain strong privacy guarantees. Such guarantees are 
intended to encourage participants to share data more openly since their inputs within a given 
population are guaranteed to be truly anonymous. However, the method assumes that 
individuals participating in such groups are independent from other members, a requirement 
that may be hard to satisfy in certain grid applications. To demonstrate this limitation, this work 
presents a quantitative evaluation of Differential Privacy when it is used to protect aggregated 
demand records. The results indicate that DP may underperform at protecting time-series data 
in the long-term but may be a viable option if data is collected over finite time periods. 

In addition, this work also presents high-level recommendations to encourage system 
developers to better understand the limitations and issues associated with existing privacy 
practices and recognize the potential benefits of moving towards a privacy-by-design model that 
encourages secure data sharing. By adopting secure privacy principles, actors could increase 
their willingness to participate in new or novel business use cases that could help address future 
grid challenges. 
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Acronyms and Abbreviations 

AMI  Advanced Metering Infrastructure 

CNN  Convolutional Neural Network 

DER  Distributed Energy Resource 

DKG  Distributed Key Generation 

DLT  Distributed Ledger Technologies 

DP  Differential Privacy 

EULR  End Use Load Research 

EV  Electric Vehicle 

GSP  Graph Signal Processing 

HMM Hidden Markov Model 

HVAC  Heating, Ventilation, and Air Conditioning 

PV  Photovoltaic 

TES  Transactive Energy Systems 

TC  Threshold Cryptography 

TOU  Time of Use 

ZKP  Zero-Knowledge Proof 
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1 Introduction 

For most of the electric industry’s history, the utility customer was seen as the final destination 
for energy delivery. From a customer’s perspective, the local utility had the responsibility to 
deliver energy and to produce invoices based on consumption records. Before the deployment 
of automatic meter reading technology and the introduction of Time of Use (TOU) tariffs, most 
utilities collected a finite set of consumption records during the year (e.g., monthly meter 
readings), which provided limited insight into consumer behaviors. However, as measurements 
started to be collected more often, utilities started to gain finer visibility into their customer 
habits, enabling them to optimize operational processes and offer enhanced feedback to their 
customers.  

Although technologies, such as Advanced Metering Infrastructure (AMI) are known for their 
capability to increase visibility into the distribution system and help support new or enhanced 
use cases, some customers have expressed objections. Some objections, as expressed by 
customers include: uncertainty in monthly payments due to new or alternative rate structures, 
unwarranted direct control actions during demand response events, and risk related to the 
invasion of privacy (Darby, Sarah J, 2012) (Pepermans, 2014). Some of the privacy concerns 
have been addressed by tweaking and leveraging existing regulatory frameworks that utilities 
must abide by. Although most regulations are purely based on technical needs (e.g., for being 
part of critical infrastructure) some may be guided by social policies (e.g., limiting rate hikes). 
For example, in the Netherlands, in response to public objections utilities may only access 
cumulative metering to compute energy costs even if higher resolution readings are technically 
available (Darby, Sarah J, 2012). In contrast, Ontario (Canada) has achieved a balance 
between use and privacy which has been attributed to the local utilities’ reach-out programs and 
their previously earned trust that enabled social acceptance with regards to AMI deployments. 

Within the USA, privacy requirements are set by state-level energy commissions, leading to 
varying levels of consumer-level privacy protections and legal enforcement capabilities (Dasom 
& Hess, 2021). While states with a strong history of consumer-oriented privacy guidelines may 
have comprehensive laws that limit the sharing of consumer-level data to third parties without 
authorization (e.g., California), other states do not have any laws nor proposed legislative bills to 
address the topic. This uneven landscape may risk hampering the grid digitalization process by 
undermining social acceptance of new data-driven operational and business models if 
consumers cannot be guaranteed adequate levels of protection. 

Although from a policy perspective, there remains a long way towards achieving effective 
privacy protections, recent attention to the topic could enable data producers to gain a greater 
level of awareness over their digital footprint. Generally speaking, data-driven grid participants 
may ask themselves the following questions: 

Where can data be obtained? This may define the mechanisms and procedures that must be 
followed before access is granted. This may include the protection mechanisms that need to be 
applied to the data records (e.g., adding digital watermarks to track and prevent re-sharing).    

When can data be accessed? In general, from a business perspective, up-to-date data has a 
higher value than stale data. As such, consumers can define data embargo periods that balance 
their own privacy needs with their economic value. Examples may include, granting access after 
3 months or limiting access to only 12 months of data. 
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What data can be viewed? Data producers may choose the types of data they’re willing to 
share (instantaneous, cumulative), their granularity (1 minute, 5 minutes, 1 day, etc.), their 
discretization levels (W, kW, or by classification bin), and its accuracy (amount of noise).   

Who can access data? As consumers start to engage with more parties, they may need to 
implement selective access mechanisms to accommodate the different actors and their needs. 
Data examples may include requiring interested parties to justify their need for access, requiring 
third parties to notify data producers when data breaches are identified, and defining boundaries 
on the re-distribution of raw or processed datasets (similar to copyleft restrictions in software 
licenses). 

Why is data being produced? A re-evaluation of the actual needs versus the implemented or 
planned deployment must be carried out to ensure data being produced is driven by actual 
needs. This may include down-selecting and filtering individual telemetry streams, down-
sampling high-frequency streams, or randomizing the sampling interval to further protect end-
user privacy. 

Clearly, some of the aforementioned considerations require a system-level perspective to 
balance all the needs and wants of all relevant actors. This may include re-thinking existing 
processes and de-facto operational modes to ensure data being produced, transported, and 
consumed is in fact driven by needs. Although radical changes to existing processes may be 
cost-prohibitive, grid transformation opportunities, such as those driven by the ongoing vehicle 
electrification process and the emergence of regulations that enable DERs to provide grid 
services should be seized as an ideal opportunity to build and deploy privacy-by-design 
solutions. These privacy-by-design solutions will require solution developers to satisfy business 
functionalities while making sure they remain compliant with the end-user1 protections provided 
by the legislative framework as well as other customer-defined privacy preferences.  

Based on this assumption, this report focuses on describing and evaluating privacy techniques 
that can be used to construct privacy-by-design software solutions within the energy space. The 
presented techniques can be broadly categorized into: 

• Mathematical solutions: Methods that seek to prevent individual data records from 
being extracted given a collection of aggregated records. This allows data consumers to 
make operational decisions while protecting the privacy of the data producer(s). It is 
important to note that aggregated records may involve a) An individual’s data record that 
has been combined with other individuals’ records to create a group, or b) A set of 
records captured at distinct times to represent an individual's behavior during a given 
timespan. 

• Cryptographic solutions: Methods that can ensure a record’s confidentiality until the 
data producer (or other authorized entity) releases the encryption key to the data 
consumer. Depending on the method being used, two levels of confidentiality may be 
achieved: a) complete confidentiality — the record cannot be distinguished from a 

random bit sequence or b) partial confidentiality — certain metadata or high-level 

operations can be carried out without revealing the original record.  

 
1 It is important to note that in this report the term end-user is used to describe any physical or legal entity 
that produces or consumes data records. This for example may include a retail consumer/prosumer, or a 
business partner who shares operational records with the local grid operator.  
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The report is organized as follows, Section 2 provides an overview of the existing privacy 
landscape. It introduces key risks that are relevant to the energy sector along with potential 
solutions. Section 3 focuses on describing and evaluating two potential privacy constructs that 
were selected for further analyses, while Section 4 summarizes the recorded observations. 
Finally, Section 5 is used to capture conclusions as well as provide future work ideas.  
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2 State of the Art 

The topic of digital privacy is often referenced in the context of Internet-driven business and 
other tech-related solutions. This may include web-based trackers that can be used to provide 
personalized ads, location trackers that can be used to analyze mobility patterns, and service 
aggregators that can link multiple data sources to assemble complex profiles that may enable 
linking digital accounts to physical identities. However, with the increasing digitalization of the 
energy sector and the emergence of new business models, resulting data exchanges could be 
collected and analyzed to reveal cyber-physical interactions. This may include determining the 
presence and usage patterns of customer-level assets, including EV usage or Photovoltaic (PV) 
production values, and, in general, observe how different actors1 respond to a wide array of 
events or signals (e.g., meteorological events, or macro-economic signals).  

In the current landscape, most customers who are part of a traditional market structure have a 
strong dependency on the local grid operator, who has the responsibility to ensure a continuous 
supply of electricity in exchange for a service fee. As expected, most utility revenue generation 
mechanisms focus on ensuring full cost recovery, reducing operational costs, and minimizing 
energy procurement costs. In addition, due to local regulations that discourage price 
discrimination, direct monetization of consumer-originated data has been limited, other than 
being used to improve forecasts or support other cost optimization solutions. However, as local 
area power markets start to emerge, new actors with diverse financial incentives will gain 
access to grid data, potentially leading to the unexpected exploitation of private data. 

Although the privacy risks will ultimately depend on the underlying use case and the actual 
implementation, sample scenarios that could lead to abuse include: 

• Combining multiple data sources to de-anonymize data producers, thereby enabling 
sophisticated actors to correlate seemingly disparate activities or records and tie them 
back to digital or physical identifiers. This may allow third-party actors to link 
consumption behaviors to individual service addresses or customer identities. 

• Using data analytics in a microgrid or peer-to-peer energy market to identify a 
competitor’s business strategy and other cost-response relations to predict market 
behaviors. Systematic analysis of competitors’ behavior could lead to unfair market 
dominance as well as cause other disruptions that reduce participants’ confidence.  

Similarly, well-designed privacy-aware solutions could be used to: 

• Facilitate the adoption of bi-directional communication processes to help support service 
negotiations between two or more system actors at the edge. Privacy-aware signal 
exchanges can allow participants to assemble and exchange grid services while 
preventing external agents from obtaining private information.  

• Enable higher-level supervisory actors to attain system visibility without requiring raw 
data access, thereby helping end-users to create a positive impact while minimizing 
personal risks. 

 
1 Actors in this context may involve customers, prosumers, service brokers, grid operators, and other 
relevant stakeholders who share data for operational reasons. 
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• By adopting privacy-aware collection procedures during the data procurement lifecycle, 
organizations may be able to limit the potential impacts associated with data leaks in 
case the records are compromised in the future. 

Clearly, privacy is a desirable system property that, if well implemented, could be used as a tool 
to enable new operational schemes. Nevertheless, the successful adoption of privacy protection 
schemes requires engineers to evaluate each of the underlying construct features and 
characteristics to ensure application’s needs and expectations are being met. This may be 
particularly challenging to achieve in the energy sector, which requires solutions to remain 
robust, and scalable while being able to operate over long-periods of time (i.e., decades instead 
of the typical 3 to 5 years market cycle seen in the Information Technology domain). To aid with 
this topic, this section presents a high-level overview of the available data anonymization 
constructs, some of their common pitfalls, as well as promising technologies that could be used 
within the energy sector. 

2.1 Anonymization, An Overview  
Data anonymization is the process of altering or removing personal or otherwise sensitive 
information from a dataset to prevent the identification of individuals. The goal is to transform 
the data in such a way that it becomes difficult or impossible to associate specific traits or 
records with a particular person while still maintaining the overall utility of the dataset for 
analysis or other purposes . Anonymization may include the permanent modification or deletion 
of data with the intent of preventing non-authorized actors to reverse the mapping function. 
Solutions may use a combination of suppression, generalization, masking, and other related 
techniques to achieve desired goals. A brief overview of these techniques can be summarized 
as follows: 

• Suppression: The technique seeks to remove uniquely identifiable traits from the record 
itself. Examples may include removing the customer’s name or service address from the 
data point itself. It may not be well suited for data consumers who require some level of 
data attribution (e.g., to track the validity of the source). 

• Generalization: Sensitive fields are replaced with generalized values that enable data 
consumers to classify and group information without identifying individualistic attributes. 
Examples may include changing the service address to a region-based label, or an 
individual’s name with a population class that captures their life stage, income bracket, 
or any other desired attribute. 

• Distortion: A controlled amount of noise is added to the data records to provide a layer 
of anonymity. The amount of added noise may be provided by a one-way function (i.e., 
the original data point cannot be recovered), or via a two-way function (i.e., an 
intermediary can add or remove noise to enable data consumers to re-identify the data 
producers) 

• Swapping: When multiple data producers are available, it becomes possible to swap 
individual data points among group members without affecting group-level analysis 
results. Although individual records may be protected, the group’s privacy remains 
unprotected. 

• Masking: As its name implies, the data masking process substitutes real data with 
fictitious data that enables data consumers to link records to a fake, but consistent 
identifier. 

As expected, each technique has a set of potential benefits and drawbacks that must be 
analyzed under the context of the target application. In order to achieve an adequate level of 
protection, system designers may need to combine two or more core techniques to achieve the 
desired data safety level. Reliance on a single technique may lead to insecure implementations, 
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as demonstrated by successful deanonymization attacks (Narayanan & Shmatikov, 2008) as 
well as other self-recognizant works that have identified deficiencies in past implementations 
(Long, 2020), (Hawes, 2021). 

2.2 Attacks On Anonymization Efforts 

Although re-mapping an individual’s anonymized record to a unique identifier is often 
considered as a prime example of a deanonymization attack, other partial mappings such as, 
“an individual is a member of group 𝑚” or “individuals are members of group 𝑚” can result in 
privacy violations that may lead to unfair or undesirable system behaviors. Re-mapping is often 
possible when feature-rich datasets contain fields that are distinct enough to be considered 
unique on their own, or when unique, compounded keys can be assembled from subfields (e.g., 
by combining orthogonal fields such as age and zip code information). A review of re-
identification attacks within the medical field has been documented in (El Emam, Jonker, 
Arbuckle, & Malin, 2011). The authors concluded that a significant number of records have been 
successfully re-identified by researchers (>25%), however, they also note that the reported 
percentages are inherently biased and should not be used to make generalized assumptions. 
Sources of bias may include research studies that have not been published due to poor re-
identification rates, but also successful attacks that have remained unreported (e.g., due to 
ethical considerations, or because of their non-academic nature).  

Although re-identification is often measured under a pass-or-fail grading scheme, partial or 
approximate re-identifications can also lead to problematic outcomes. Such scenarios can arise 
when data consumers can infer individual attributes with a low margin of error, or when small 
subsets of the population can be tagged with highly specific attributes. Such issues could allow 
data consumers to make highly informed guesses about the underlying population that could 
effectively circumvent a system’s privacy guarantees. The use of indirect inference has for 
example been presented in (Lindholm, Richman, & M.V., 2022) to illustrate how discriminatory 
pricing can be applied to insurance premiums by relying on non-discriminatory attributes (i.e., 
zip code data). Based on this result, it could be inferred that vendors in the energy space could 
use income-based attributes to drive product offerings based on their clients’ ability to pay while 
appearing to rely on technical requirements to artificially justify their needs.  

Common attack tactics include: 

Linkage Attack: A linkage attack is a method used by an attacker to link publicly available 
information with entries from an anonymized data set (Oak Ridge National Laboratory, 2023). 
Two prime examples of linkage attacks are homogeneity and external knowledge attacks (di 
Vimercati, 2023). A homogeneity attack can be performed when compound keys can be 
generated and cross-matched across two distinct datasets, further increasing the richness of the 
data (see Figure 1, for a graphical example). An external knowledge attack is performed when 
an attacker uses known information to reduce the population space, potentially enabling it to 
identify a sensitive characteristic in a probabilistic manner. For example, if consumers with EVs 
need to be identified, one may focus on higher-income individuals.  

Membership Inference Attack: An attack on machine learning algorithms that leverages a 
model’s tendency to perform better on data that they have already seen. Hence, the attacker’s 
goal is to determine if a given data record entry is a member of the dataset originally used to 
train the model (Shokri, 2017). The attack is based on developing shadow models that have 
statistical properties similar to those used in training. Such a process may involve the 
development of adversarial machine learning models whose goal is to generate inputs that are 
representative of the original dataset. 
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Query Attack: Such an attack occurs when an attacker queries a protected dataset with the 
goal of extracting less-protected subsets that can later be assembled to reveal previously 
protected data. Further refinements of these methods have led to techniques such as the 
inversion attack, where the attacker constantly issues queries to a machine learning model in 
order learn the relationships between the output and the input (Wang, 2021), potentially helping 
to infer private information about the participants.  
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Figure 1. Examples of linkage attacks across multiple data sets 

2.3 Data Mining In Time Series Data 

Power system operators rely on a combination of current and past states (i.e., measurements, 
topology snapshots, etc.) to obtain the desired levels of observability and control needed to 
ensure a continuous system operation. As such, the collection and processing of time-series 
data represents a fundamental enabler of grid applications, with a wide variety of end-
applications that range from financial settlements, future demand forecasting to real-time 
anomalous behavior detectors. Within the energy sector, time series data are often produced or 
associated with a physical asset or individual, and thus can often be tied to a physical location 
(latitude/longitude, a building, an operational zone, or another suitable identifier). This allows 
engineers to assemble and use time-series data in complex spatiotemporal datasets that can be 
used to reveal and study complex relationships.  

Surveys such as those presented by (Atluri, Karpatne, & Kumar, 2018) highlight some of the 
typical features found on spatiotemporal records, and how these features can be analyzed by 
using data mining techniques (and hence to extract and analyze private data). According to the 
authors, spatiotemporal datasets typically contain enough information to reveal: a) Event data, 
which allows identification of a specific activity within a given time or location; b) Trajectory 
data, which can be used to track how an activity evolves during a given time span or how an 
asset moves; c) Point-reference data, a finite collection of data points that can capture a 
general spatiotemporal behavior (e.g., how irradiance typically behaves during the day) and d) 
Raster data, which relies on the locational attributes to reveal group behaviors or localized 
trends. Although the above examples assume the inclusion of a locational attribute, non-
locational time series can be merged with other time series records to create multi-source, high-
dimensional spaces that enable analysts to infer similar types of information. 
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Due to the vast amount of spatiotemporal data that can be collected, multiple data mining 
techniques have been proposed in literature to extract hidden information. According to (Atluri, 
Karpatne, & Kumar, 2018) mining techniques can generally be grouped into: 

Clustering: Clustering attempts to group distinct instances within a dataset that share a similar 
feature or behavior. This technique may be useful in identifying a group of distinct instances 
that: a) Are located in the same vicinity either on a long-term (fixed assets) or a short-term (such 
a group of EVs); b) Exhibit a similar activity within a short time-window (e.g., maximum PV 
output due to a solar-peak); c) Exhibit similar trajectories (e.g., EVs that charge in the same 
manner, or PVs that have a similar production curve; or d) Exhibit similar time-dependent 
behaviors (e.g., industries that have similar consumption profiles). 

Predictive learning: In predictive learning, a function attempts to learn a mapping between two 
or more independent datasets. This technique may be useful in: A) Predicting how a time series 
will behave based on past observations or, B) Predicting the behavior of a feature by observing 
how other co-related feature vectors behave (e.g., using cloud coverage records to infer solar 
production). 

Change detection: Change detectors seek to identify the moment in time in which a system 
experiences a permanent change. These techniques may help to: A) Identify abnormal 
segments or periods in a time series (e.g., to detect curtailment on DERs), or B) Recognize 
contextual changes, where an individual changes behavior with respect to a community (e.g., 
when a solar panel within a facility is re-oriented or replaced). 

Frequent pattern mining: In the context of spatiotemporal records, a pattern is a series of 
datapoints that repeatedly appear across multiple dataset instances. Data mining tools could be 
used to: A) Locate co-occurrence patterns, which are distinct features that share a common 
trigger or ancestor; B) Identify sequential patterns, in which an initial pattern triggers a 
secondary pattern; C) Recognize sequential patterns in trajectories, in which different instances 
follow a similar trajectory (e.g., finding a sequence of EV charging points that are visited during 
a long weekend); D) Identify motifs within time series, motifs are repeated sequences present in 
long-term datasets (e.g., to analyze how wind patterns influence in power fluctuations); E) 
Identify hidden network connections, this can reveal the underlaying communities that individual 
has joined based on a combination of locality, personal preferences or social facts. 

Anomaly detection: Outlier detection algorithms may help to isolate rare or anomalous 
behaviors. This technique may be useful in a) Identifying data points that break away from 
previous behavior (e.g., a low degree of autocorrelation), b) Recognizing trajectory anomalies, 
which can be indicative of a sudden change in behavior (e.g., equipment failure), or c) 
Identifying changes in raster data behavior, which can occur when multiple, co-located 
instances suddenly change behavior (e.g., due to disruptive weather events).  

Relationship mining: Similarity algorithms may be used to measure the amount of correlation 
between different dataset instances. These types of algorithms could be used to: A) Identify 
positive/negatively correlated datasets; B) Measure correlation across time, a technique that 
can be complemented by inserting a lag function to analyze delayed dependencies. 

Clearly, data mining can be used to optimize and enhance many of the day-to-day functions 
carried by grid operators but could also represent a significant risk to privacy if features can be 
mapped back to an individual. Ensuring time series data remains useful for operational and 
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decision-making applications while providing sufficient privacy guarantees will require engineers 
to develop creative solutions that balance both needs. 

2.4 Privacy Attacks On Time Series Data 

As outlined in the previous section, multiple data mining techniques can be applied to a time-
series dataset that could be used to reveal an individual’s behavior. Preventing privacy leaks will 
require engineers to identify, evaluate, and adapt a series of anonymization techniques to thwart 
potential attacks. These technical evaluations must be carefully designed to avoid faulty 
implementations that lead to a false sense of security. For example, a typical misconception is 
to assume that re-sampling, encrypting, or otherwise obfuscating data will protect the underlying 
data from being analyzed by data mining techniques. An example of such exploitation in time 
series data is given by (Wright, Ballard, Coull, Monrose, & Masson, 2008 ), where the 
researchers analyzed side-channel information to gain additional insight into encrypted Voice-
Over-IP (VOIP) services, which could in perfect conditions lead to phrase identification. 

A side-channel leakage can occur when a cryptographic algorithm is implemented or integrated 
in a deficient manner resulting in observable traits that break the perfect secrecy assumptions. 
For example, in the VOIP protocol, speech waveforms are compressed and encrypted before 
being sent to the other party. However, for network efficiency reasons, low-amplitude signals 
are treated as noise and thus get filtered out, resulting in a zero-length package that does not 
need to be transmitted across the network (see Figure 2). Based on this information, an 
eavesdropper may decide to monitor the inter-packet timing delay and use it as an indirect 
mechanism to detect pauses during a conversation (See Figure 3). 

 

Figure 2. Encrypted or packetized waveform data can be used to reveal a presence or lack of 
data. Graph taken from (Zhu, Lu, & Vikram, 2012) 
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Figure 3. Delays and gaps in a data stream may reveal a change in a stream’s contents, in this 
case silence can be inferred by measuring inter-packet gaps in a packet stream 
(Laurens, Christianto, Caulkins, & Zou)  

Although being able to detect silence may appear irrelevant, the gained knowledge could be 
used to infer unique behaviors about the individual making the call, such as its cadence, and 
rhythm. The analysis of side-channel information to gain additional information about the 
underlaying process has been studied and applied to a wide variety of use cases. For example, 
in (Tramer, Boneh, & Paterson, 2020), the authors analyzed the response-reply latency in a 
privacy-oriented financial blockchain to classify if transactions were carried between new or 
already known parties. Another noteworthy example that illustrates the need for securing 
datasets that follow a time-based patterns is the de-anonymization attack described in 
(Narayanan & Shmatikov, 2008), where anonymized records from a video streaming provider 
were time-correlated with the data provided by a movie-review dataset to reveal the identity of 
the subscriber.  

2.5 Potential Privacy Attacks In Energy Infrastructure, A Review  

Within the last decade, multiple researchers have identified and documented a variety of 
potential weaknesses that could lead to privacy incidents within the energy sector. To illustrate 
some of the published research Table 1 presents a series of studies that discuss potential 
vulnerabilities. The presented studies cover a wide range of applications, but in general, they 
tend to have a high degree of customer interaction, which often results in the handling of 
sensitive data records. As can be seen in Table 1, many of the attacks rely on merging or 
combining a mixture of anonymized data records with other publicly available datasets to infer 
additional attributes about the data producers such as general location, consumption patterns, 
or mobility patterns. Another significant number of studies consider attempts to remove privacy 
as a secondary effect that may occur if the primary cybersecurity mechanisms are compromised 
(e.g., by launching a Man-in-the-Middle attack or gaining network monitoring capabilities). 
However, as grid operations continue to evolve into a decentralized architecture, it’s possible 
that other risks and targets may appear. For example, grid operators may need to interact with 
new providers to exchange a variety of grid services, which in turn could translate into a mutual 
need for information exchange. As such, future data exchanges may contain a variety of field-
collected sensor measurements, grid models, or DER states and commands potentially 
expanding the privacy risk to organizations. Such risks will need to be identified and handled to 
minimize potential operational or financial impacts. To satisfy this need, a short review of novel 
techniques that can mitigate privacy risks will be discussed in the next section. 
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Table 1. An overview of published works related to privacy threats in the electricity sector.  

Work 

Domain and 
principle of 
operation Overview 

(Chen D. S., 
2016) 

Solar Energy, 
Data correlation 
attacks 

The researchers presented SunSpot, a system for localizing solar-
powered homes from anonymized solar production databases. The 
home's latitude was inferred by correlating day length information 
(sunset-sunrise) with the recorded production times. The longitude 
was deduced by matching the solar noon time with peak production 
timestamps. Publicly accessible satellite images, provided by Google 
Maps were used to identify homes with solar modules (regions were 
estimated according to the computed latitude/longitude). Mechanical 
Turk was used to verify that the address was solar powered. The 
author’s proposed approach demonstrated that location information 
could be inferred through distinct solar signatures, even when the 
energy data is anonymous. The authors speculated that address and 
energy output could be used by malicious actors for criminal activity.  

(Badr M. M., 
2022) 

Edge Energy 
Management, 
Inference attacks 

The researchers identified that federated learning (FL) model 
parameters sent to the utility server may be used to extract a 
resident’s private information. The information can be used to infer 
when homes are vacant, or tenants are sleeping. An adversary can 
perform a model inversion attack by training a custom ML model on 
the output of the targeted home’s model, essentially removing the 
protections provided by FL and enabling them to infer the input data. 
Their model can also enable an adversary to perform a membership 
inference attack, by determining if a given input was part of the 
original model’s training dataset. Authors conclude that deep learning 
methods represent an emerging risk to customer privacy due to the 
vast amounts of data available. 

(Razavi, 
2019) 

Smart meter, 
Customer 
profiling attacks 

The researchers used machine learning methods operating over 
smart meter data records to determine the occupancy status of a 
home. The machine learning model was trained on electricity usage 
data that was collected over an 18-month period from over 5,000 
homes. The usage data was taken from the homes at 30-minute 
intervals. The researchers found that a weeks-worth of household 
data was enough to predict a (single) timeslot where the resident was 
away from their home with 79% accuracy during the following week. 

(Fan, 2017) Smart meter, 
Customer 
profiling attacks 

The researchers demonstrated a new attack on smart meters that 
used reactive power data to determine when appliances were turned 
on or off. They performed experiments on the load profiles collected 
from three households and found that their attack could accurately 
detect when an appliance was turned on or off. Appliance-level 
information can be used to infer additional information about the 
residents, such as when they are asleep or out of the home.  

(Chen D. a., 
2017) 

Smart meter, 
data correlation 
attacks 

The researchers developed a tool called Weatherman. Weatherman 
ingests anonymized energy usage and combines them with wind, and 
solar data to reveal the energy meter location. The authors 
demonstrated that each location on Earth can be associated with a 
weather signature that is unique to that area. They tested 
Weatherman against an earlier tool they developed, SunSpot (Chen 
D. S., 2016), and found that Weatherman produced more accurate 
results while relying on fewer datasets and less granular information. 

(Hoh, 2006) Traffic 
Information 

The researchers performed a case study on intelligent transportation 
systems to determine their vulnerability to inference attacks by 
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Systems, data 
correlation 
attacks 

analyzing the anonymized vehicle position information sent to traffic-
monitoring services. By leveraging this information and applying 
clustering techniques they demonstrated it was trivial to determine 
the most likely garaging location (e.g., the overnight parking address) 
for a vehicle in an average suburban scenario. An adversary could 
further combine location data along with a reverse address database 
to reveal the driver’s identity. 

(Brighente, 
2023) 

Electric Vehicles 
(EV), 
Private/sensitive 
data exfiltration 
during a cyber 
attack 

The researchers investigated the methods an adversary could use to 
obtain private information by eavesdropping on the interactions 
between the internal EV subsystems and between the EV and the 
surrounding environment. The EV controller and infotainment system 
can be used to extract preferences along with driver’s credentials 
during their energy exchanges. In a situation where wired charging 
occurs, the interaction between the EV and the charging apparatus 
can reveal unique EV identifiers that enable an adversary to track the 
EV. Man-in-the-middle and eavesdropping attacks done on wireless 
charging stations could allow an adversary to obtain data about billing 
information and vehicle ID. 

(Apthorpe, 
2017) 

Internet of 
Things, 
Private/sensitive 
data exfiltration 
during a cyber 
attack 

The researchers demonstrated that a network observer could use 
network traffic from smart homes to determine home activities. This 
was possible even when the traffic was encrypted. The proposed 
attack locates and identifies smart home devices by using the domain 
name system (DNS) but the author notes that device fingerprinting 
may also be used. Health conditions could be revealed by analyzing 
health oriented IoT devices (e.g., a blood sugar monitor). The devices 
can also reveal the private lifestyles of the residents in the home. 

(Huang, 2017) Sensor networks, 
Private/sensitive 
data exfiltration 
during a cyber 
attack 

The researchers identified security issues that could lead to privacy 
attacks within the phantom routing process used in Energy 
Harvesting Wireless Sensor Networks (EHWSNs). The phantom 
routing scheme relies on a fake source node that acts as a “phantom” 
node, obscuring the location of the energy harvesting node (i.e., the 
original source). Authors identified various de-anonymization attacks 
based on the intrinsic geographic dependency between the source 
and phantom node’s (which need to be geographically close). Since 
the node routing path is usually determined by the shortest routing 
algorithm, an attacker can use this information to follow the path from 
the phantom node to the destination of the network traffic and 
backtrack to find the source node location. 

(Han, 2016) Vehicle to grid 
(V2G), 
Private/sensitive 
data exfiltration 
during a cyber 
attack 

The researchers identified how electric vehicles (EVs) in a vehicle to 
grid (V2G) network could potentially have private attributes exposed 
during the charging process. Vulnerabilities in the charging protocols 
between EVs and charging stations can be exploited by an adversary 
through attacks such as man-in-the-middle (MITM). Through the 
MITM attack, an adversary can obtain information sensitive 
information such as customer name, vehicle ID, and charging location 
and schedule. A malicious actor can use the location data to perform 
a malicious action like hijacking the EV. 

(Fraiji, 2018) Electric Vehicles 
(EV), 
Private/sensitive 
data exfiltration 
during a cyber 
attack 

The researchers identified security issues and attacks that can be 
performed on Internet of Electric Vehicles (IoEV) deployments. An 
unauthorized node in the network can listen to vehicle-to-vehicle 
communications to obtain sensitive information, such as the vehicle’s 
ID and current location. Malicious nodes could implement continuous 
monitoring on the vehicle-to-infrastructure across communications 



PNNL-35257 

State of the Art 13 
 

links to track their location across time. In particular, technologies 
such as 5G could be prone to this type of eavesdropping attack. 

(Kimani, 
2019) 

Internet of Things 
(IoT), 
Private/sensitive 
data exfiltration 
during a cyber 
attack 

The researchers identified potential security issues with using IoT 
devices in a smart grid that could lead to personal data leaks. The 
authors identified that an increasing demand for IoT products may 
result in weak security controls that are hard to patch once the 
product is in the consumer’s hands. Collected records could enable 
an attacker to infer information about electricity consumption trends 
that can be used to determine if the location is unoccupied. The 
attacks can also be used to reveal financial information like credit 
card numbers.  

(Pal, 2018) Microgrids, 
Private/sensitive 
data exfiltration 
during a cyber 
attack 

The researchers described security issues with smart micro-grids 
(SMGs) that make them prone to privacy attacks. An attacker can 
eavesdrop on traffic in the network to obtain information about power 
consumption at various time periods. From this data, an attacker can 
infer information about the behaviors of the resident and whether the 
home is currently occupied or not. 

(Braun, 2018) Smart City, 
Private/sensitive 
data exfiltration 
during a cyber 
attack 

The researchers identified a lack of security and privacy defense 
mechanisms to protect against insider threats within a smart city 
environment. This may create an opening for an adversary to obtain 
private data. Exfiltrated data may reveal health conditions, identity, 
and transportation records (location history). The data may also 
reveal an individual’s lifestyle preferences when intelligent 
surveillance systems are targeted. 

(Shuaib, 
2015) 

Smart meters, 
Private/sensitive 
data exfiltration 
during a cyber 
attack 

The researchers demonstrated a man-in-the-middle attack in 
between a smart meter and an upstream server. The attacker's host 
system manipulated the Address Resolution Protocol (ARP) cache of 
the meter and server to forcefully route network traffic through their 
system. The attack showed that transmitted records may be used to 
obtain private information such as the account holder’s name, 
address, and payment methods. 

  

2.6 Mechanisms That May Help Improve Privacy, A Review 

As introduced by Subsection 2.5, multiple researchers have identified potential privacy risks, 
that if left unattended, could impact consumers and organizations. This has led to the proposal 
and development of mechanisms that seek to improve upon existing practices with varying 
levels of success. Some of the published research related to the power industry has been 
captured in Table 2, from which it can be observed how multiple algorithms have been studied, 
and evaluated under a variety of uses cases. The algorithms, for the most part, have been 
adapted from or assembled into more complex processes with the goal to address a specific 
privacy deficit or potential vulnerability within the use case. Although the specific implementation 
details vary widely across the literature, some general trends can be observed: 

• Protection is generally provided by a mixture of additive noise or encryption mechanisms 
that seek to distort or hide the information being stored or transmitted across the system. 
Such approaches may help to add a layer of anonymization to the records, but they may 
not be able to fully protect an individual if too many features are included in the data set 
from the beginning. 
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• For systems based in cryptographic methods, it appears that most researchers are 
relying on cryptographic primitives whose functional mechanisms are well understood 
and are thus considered safe. However, adopting a secure cryptographic primitive does 
not imply a secure solution, and therefore developed applications should be thoroughly 
reviewed to ensure the algorithms are being used as originally intended, and that no 
information leakage is occurring (e.g., to prevent side channel attacks). 

• Although most of the implementations have been evaluated to ensure functional 
requirements are met (e.g., processing time, and throughput), they may not be 
considering the long-term implications of maintaining such systems. This may be range 
from cumbersome (e.g., providing key management) to the unintentional leakage of 
private data1.  

In addition to the aforementioned trends, it is also apparent that certain algorithms or methods 
appear to have fostered a higher degree of interest from the research community. This 
increased interest may help accelerate the field’s overall maturity by allowing researchers to 
down select approaches based on their technical merits. Based on the research presented in 
Table 2, it appears that most solutions tend to be driven by the following methods (or variations 
thereof): 
 
Addition of noise: Adding a controlled amount of noise to individual instances within a dataset 
could prevent an attacker from learning specific traits about an individual, while enabling 
statistical analysis at the dataset level (Mivule, 2013). Multiple noise-based methods have been 
proposed, ranging from the use of white noise that increase the privacy of static records to 
advanced noise-shaping methods that can guarantee that the presence (or absence) of an 
individual to a group cannot be inferred. Notable methods include Differential Privacy which will 
be reviewed in Section 3. 

Federated learning: Federated learning is a machine learning method where a central server 
trains a global model using the parameters provided by locally trained user models (Zhang C. 
Y., 2021). The typical process works as follows: 1) The server first sends an initial model to 
users; 2) Users train the model using their local data; 3) The user returns their model 
parameters to the server; 4) The server aggregates the received parameters to create a global 
model; and 5) The server sends an updated global model to all users, repeating the process 
until the global model converges. Additional techniques, such as Homomorphic encryption and 
Differential Privacy may be applied by edge-located users to their model’s parameters, further 
enhancing their privacy guarantees. 

Functional Encryption: Functional encryption is an encryption system that enables a user to 
encrypt a plain text message (denoted as 𝑚) with a user-generated primary key, while also 
generating a secondary key (Yin, 2021). The second key can be then used by function 𝑓 to 

compute 𝑓(𝑚) without needing to reveal information about the original 𝑚. The purpose of 
functional encryption is to preserve the privacy of the data contained in 𝑚 while allowing third 
parties to verify a non-sensitive attribute (e.g., by enabling a third party to obtain the total money 
spent instead of individual transactions).  

Homomorphic Encryption: Homomorphic encryption allows users to perform a limited set of 
mathematical operations over encrypted datasets without requiring an intermediary decryption 

 
1 Refer to Section 4, which discusses theorems that set limits on the amount of noise-modified data that 
can be shared before it loses its privacy characteristics. 
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process (Strepparava, 2022). Unlike functional encryption, multiple aggregation patterns (via 
mathematical functions) are supported by Homomorphic encryption. The result of the 
computations can be observed by decrypting the new cypher text. The goal of the homomorphic 
encryption method is to preserve the anonymity of a user’s data while still allowing aggregate-
level operations to be performed on the data.  

Zero-Knowledge Proof (ZKP): A ZKP is a method used between two entities to show that one 
entity (the prover) knows another entity’s secret (the verifier) without revealing the secret itself 
(Sun, 2021). The method consists of three phases: witness, challenge, response. In the witness 
phase, the prover calculates a proof that is given to the verifier; In the challenge phase, the 
verifier generates a series of questions that are intended to assert the prover’s true behavior. In 
the response phase, the prover sends its answers to the verifier and a decision is made. ZKPs 
may also operate in non-interactive manner, where the verifier does not need to ask the prover 
any questions (by instead relying on a key that contains enough information about the proof 
itself).  

K-Anonymity: A privacy model that guarantees a participant’s record is indistinguishable from 
at least 𝑘 − 1 other participants in the dataset (di Vimercati, 2023). This is accomplished by 
sanitizing the dataset through generalization and suppression of the data. Larger k values 
provide more privacy to individuals in the dataset at the cost of providing less detailed 
information. Exact and heuristic algorithms may be used to reduce the amount of data lost 
during these processes, which may result in the removal of a record if an individual’s behavior 
cannot be hidden by the group. K-anonymity is susceptible to homogeneity and external 
knowledge attacks. A homogeneity attack may occur when an individual can be mapped to a 
subgroup that is smaller than K, this can occur when orthogonal fields are compounded to 
reduce the search space (e.g., by combining age, gender, and zip code). Methods such as l-
diversity and T-closeness seek to mitigate some of these risks. 

Table 2. An overview of proposed privacy mechanisms found in literature targeting the grid 
space.  

Citation 

Domain and 
principle of 
operation Overview 

(Tran, 2022) Smart meter, added 
noise to enhance 
privacy 

The researchers demonstrated a privacy system whose goal 
was to anonymize electricity consumption data collected from 
smart meters. The proposed mechanism seeks to prevent 
attackers from inferring the resident’s habits and home 
appliances used. The system used two separate algorithms 
to generate noise at the smart meter and at the Distribution 
System Operator (DSO) endpoint. The noise is generated 
using a private noise distribution protocol called nn-PND.  

(Zeng, 2017) Smart meter, 
decentralized key 
generation and 
management 

The researchers proposed a lightweight scheme for collecting 
meter data in smart grids. The scheme provides a 
decentralized way for a control center (CC) and users to 
generate and manage their own keys. A pseudorandom 
number generator and the Diffie-Hellman key exchange 
method are used with attributes like CC ID, user ID, 
timestamps, and other keys to generate new keys. In this 
scheme, the CC first sends a request to the user to collect 
their metering report. The user encrypts the report with a 
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session key based on the report’s timestamp and sends it to 
the CC for decryption. 

(Zhang Y. J., 
2018) 

Electric Vehicle, Smart 
Grid, Paillier 
Cryptosystem 

The efficient privacy-preserving communication and power 
injection (ePPCP) architecture is proposed by the 
researchers with the goal of keeping an EVs’ individual power 
injections hidden from the utility company. This is 
accomplished using two secret keys and a hash-then-
homomorphic technique. Then the bid is encrypted using a 
Paillier Cryptosystem based method. The architecture was 
tested against an adversary model and was found to deter 
man-in-the-middle and replay attacks. 

(Xu S. X., 
2021) 

Electric Vehicles, 
Blockchain 

The researchers demonstrated how the proposed system 
could allow the user of an EV to remain anonymous when 
scheduling, charging, and paying for services provided by the 
Electric-Vehicle-charging Service Provider (EVSP). The 
system uses distributed Public Key Infrastructure and 
blockchain to maintain user and EVSP records. When the 
user wants to access EVSP infrastructure, they begin a 
process that involves a zero-knowledge proof, ring signature, 
and three tokens for scheduling, charging, and payment.  

(Kumar, 
2020) 

Electric Vehicle The researchers detail an EV charging system that provides 
increased protection against the leakage of information 
pertaining to EVs and their location. The system makes use 
of lattice-based signcryption (an integrated signature and 
encryption process) to deter post-quantum computing 
attacks. The presented system was shown to obscure the 
identity of a user by assigning a pseudoidentity to the EV 
which can later be used at the charging station.  

(Mahmood, 
2018) 

Smart grid, Elliptic 
curve cryptography, 
lightweight 
cryptography 

The researchers describe how a lightweight authentication 
framework used in smart grid communication can deter all 
known security attacks when based on elliptic curve 
cryptography (ECC). The authentication framework used also 
provides privacy to individuals. Proofs are provided for 
attacks such as man-in-the-middle and impersonation attack. 
A proof of perfect forward secrecy is also provided.  

(Strepparava, 
2022) 

Smart grid, energy 
community, 
homomorphic 
encryption 

The researchers demonstrated how a protocol based on 
homomorphic encryption could be used to enable a home’s 
production and consumption data to remain anonymous. The 
protocol was hardware-tested on an energy community, 
Lugaggia Innovation Community (LIC). The local energy 
market for LIC was built on a Cosmos based blockchain 
architecture. To further improve the security of the data, the 
researchers suggest the use of zero-knowledge proofs to 
remove the need for an administrator to store keys and thus 
have knowledge of private information. 

(Poh, 2019) Smart home The researchers propose PrivHome, a framework intended to 
preserve the resident’s privacy by encrypting their smart 
home data. It uses two protocols: Authenticated Key-
Establishment (AKE) and Searchable Encryption (SSE). A 
secret key is used in the AKE protocol to authenticate all 
entities involved in the communications and to establish a 
session key. The SSE protocol uses the session key to 
generate a secondary key that protects and enables a 
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searchable index of the devices on the network. The index is 
used locate devices through encrypted queries. 

(Rabieh, 
2016) 

Traffic Management, 
Vehicular Ad Hoc 
Networks (VANETs) 

The researchers demonstrated a scheme for route reporting 
that prevented an attacker from linking a vehicle’s 
pseudonym in a Vehicular Ad Hoc Network (VANET) with 
their reported future routes to infer the identity of the driver. 
The scheme proposed had a variant for VANETs with and 
without infrastructure. In the infrastructure variant, 
homomorphic encryption is used. In the non-infrastructure 
variant, Elliptic curve cryptography (ECC) point addition and 
homomorphic encryption are used. The non-infrastructure 
scheme was shown to be capable of thwarting collusion 
attacks. 

(Li, 2020) Traffic Management, 
Blockchain, Zero-
knowledge range 
proof 

The authors presented a system built on the permissioned 
blockchain Hyperledger Fabric framework designed to 
preserve the integrity and privacy of the data collected from 
drivers (e.g., vehicle ID and location) in a traffic management 
system. The vehicles and road objects (e.g., toll stations) 
form a vehicular network in the traffic management system. 
Each county or state may have their own traffic management 
system for their area. Zero-knowledge range proofs are used 
to encrypt the vehicles messages to a gateway that switches 
them between adjacent traffic management systems. The 
gateway validation process was built on a cryptographic 
library provided by Hyperledger Ursa. The researchers 
showed how the system could deter vehicular data, gateway 
spoofing, and eavesdropping attacks.  

(Lei, 2022) Renewable Energy, 
Permissioned 
Blockchain, 
Hyperledger Fabric, 
Homomorphic 
encryption 

Researchers presented an energy trading platform that was 
designed to reduce the cost and increase efficiency of the 
trades while providing an increased level of user privacy. The 
platform was built on Hyperledger Fabric, relying on a 
channel isolation mechanism to segment users. Only users in 
the same channel can share data with each other. The 
Paillier algorithm was used to generate private and public 
keys for each user in the network. The keys were used to 
encrypt/decrypt their private data (e.g., account balance) to 
and from Fabric’s ledger. Internet of Things (IoT) technology 
was used to deploy automated trading processes. 

(Badr M. M., 
2023) 

Federated Learning, 
Energy Forecasting, 
Smart Grid 

The researchers developed a federated learning-based 
energy prediction system aimed at achieving high accuracy 
while preserving the customer’s private information. Inner-
product functional encryption (IPFE) was used on the 
parameters of the customer’s model so that the data could be 
sent to the utility provider anonymously. The scheme used by 
the researchers enabled the utility provider to use the 
encrypted parameters to build a global model.  

(Yin, 2021) Federated Learning, 
Multiparty data 
sharing, Functional 
Encryption 

A federated learning method developed to protect an 
individual’s privacy from being inferred from the training 
model parameters (e.g., model weights) was presented by 
the authors. The method used function hiding multi-input 
function encryption to obscure the model parameters sent to 
the server. Bayesian Differential Privacy is used to further 
preserve the privacy of the model parameters.  
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(Son, 2020) Smart grid, smart 
meter, blockchain, 
functional encryption 

The researchers demonstrated an energy trading system 
made up of smart meters, a distribution system operator 
(DSO) server, and a private Ethereum blockchain with the 
purpose of encrypting bids to preserve anonymity of the 
user’s data and transactions. The bid is encrypted with 
function-hiding inner product encryption (FHIPE). A buyer and 
seller are matched with functional encryption-based smart 
contracts applied to the bids.  

(Kiarie, 2019) Smart meter, 
Encryption methods 

The researchers compared Spritz vs Rivest Cipher 4 (RC4) 
as encryption methods for protecting electricity consumption 
records collected from a single home. Unencrypted data 
could be used by an adversary to infer personal information 
such as lifestyle choices and sleep patterns. Performance 
tests (i.e., delay overheads) were carried to determine if 
Spritz could replace the RC4 encryption specified by the 
smart meter standard. After 10 testing rounds, Spritz was on 
average 1.889 times slower than RC4, but didn’t prevent the 
smart meter from functioning normally. However, Spiritz took 
3.21 times longer to brute force when compared to RC4. 
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3 Evaluation Of Privacy Constructs In The TES Domain 

A Transactive Energy System (TES) is defined as a set of “Economic and control mechanisms 
that allows the dynamic balance of supply and demand across the entire electricity infrastructure 
using value as a key operational parameter” (GridWise Architecture Council, 2018). Such a 
system could be used to: 

• Enable the deployment and operation of autonomous agents that work collaboratively 
towards achieving a common set of goals. 

• Enable individuals to contribute and benefit from a shared pool of resources. The 
collaborative approach may allow individuals to reach efficiencies, or resilience levels 
that would be unattainable at the individual level. 

• Enable the fast and reliable integration of Distributed Energy Resources (DERs) into 
everyday operations by abstracting the complexity of managing resources in a 1:1 
relationship. 

Clearly, a well-designed TES can be used to support and deliver a wide array of benefits to their 
members. However, this also requires a constant exchange of data among participants to signal 
their internal states and future intentions. Although the specific data being exchanged could vary 
widely among the participating entities, typical data flows that could be exchanged are: 

• Resource availability information: This data may be used to reduce the uncertainty 
levels associated with a variable resource. For example, an entity may need to 
announce a temporary reduction on storage capabilities to satisfy a local need.  

• Operational states: Individual entities may share current as well as planned demand 
levels with neighboring nodes to maximize efficiency. In a TES environment, this may 
also include the sharing of operational data (switch status, voltage, power flows) or other 
variables that are typically associated with Distribution System Operators (DSOs).  

• Control actions: This may include price signals, and other direct control actions (e.g., 
switch operations) that denote an intention to transition into a new state. 

Although it would be possible to have a centralized communication architecture that can 
effectively isolate data flows on a need-to-know basis (and thus eliminating many of the privacy 
risks), such approaches would break from the intended goal of moving towards a more 
decentralized grid that can adapt, and automatically reconfigure when necessary. Therefore, it 
becomes necessary to explore solutions that can continue to provide privacy while allowing data 
to move freely across a service region, enabling individual agents to independently observe and 
assess their local environment but without compromising the privacy rights of their neighbors. 

Based in this principle, this section explores the use of two privacy mechanisms to identify their 
strengths (and deficiencies) in a decentralized environment. Although the evaluation context is 
limited by the needs of TES-based deployment, the goal is to enable system designers to 
determine if the proposed methods are suitable for their application. 
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3.1 Differential Privacy, A Primer 

As discussed in Section 2, multiple anonymization techniques have been proposed to secure 
grid-related data. A commonly used family of methods is based on the introduction of noise to 
perturb individual records, with the goal of enabling privacy at the individual level while enabling 
data analysis at the population level. One of the methods that has received a significant amount 
of interest within the last decade is Differential Privacy (DP). DP achieves its protection 
characteristics by adding a controlled amount of noise in such a manner that an attacker cannot 
determine if an individual is (or is not) a member of a given population. The amount of added 
noise is an application-defined parameter that must be defined based on the privacy needs 
versus the desired accuracy.  

Differential Privacy is based on the randomized response survey model first introduced by 
(Warner, 1965), and refined by multiple authors across the years (Nayak, 2020). In a 
randomized response, the individual under study uses a randomizing device (e.g., a fair coin) to 
choose whether a truthful answer or a random response1 should be used. Since the subject 
under study operates the randomizing device without communicating its output, the surveyor 
cannot assert the subject’s true answer, however, they can still infer population characteristics 
by removing the statistical bias introduced by the randomizing device. An example of a 
randomized response process can be observed in Figure 4, where a subject starts by flipping a 
coin. If the coin lands on heads, it answers the question truthfully, if the coin lands on tails, the 
subject must flip the coin again and use the result to answer the question. Such a process offers 
the subject the ability to deny any recorded answer (and instead assert it was a random 
response), while still producing meaningful results at the population level (e.g., the effects of the 
coin flip can be cancelled out). 

Start

Answer the 
question truthfully

Flip a coin, is it heads?

Flip a coin, is it heads?

Record 
 Yes 

Record 
 No 

Record 
 Yes 

Record 
 No 

 

Figure 4. The probability tree in a randomized response survey, assuming a fair coin is used. 

Based on the probability tree presented in Figure 4, it can be shown that the expected number 

of true “Yes” answers can be modeled by 𝑃𝑟(𝑦𝑒𝑠) = (
1

4
) (1 − 𝑝) + (

3

4
) 𝑝 =  (

1

4
) +

𝑝

2
. Therefore, for 

a significantly large population, P can be estimated as 2 (
#𝑦𝑒𝑠

𝑝𝑜𝑝.𝑠𝑖𝑧𝑒
 −  ¼). 

 
1 In this context, random response is used to describe a response that is not related to the question under 
study. As such, its value could be determined by a random process (e.g., a coin flip) or be the response 
to a non-sensitive question, such as Do you like apples? whose distribution is known a priori. 
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Differential Privacy requires the presence of a trusted curator, who receives raw data from data 
producers, applies a data transformation algorithm, and delivers privacy-protected results to 
data consumers. Curators can reply to data consumers requests in an iterative manner or 
produce a static, artificially generated dataset that captures the behavior of the population under 
study. Differential Privacy can be more formally defined by (Dwork & Roth, 2014): 

𝑃𝑟[𝑀(𝑥)  ∈  𝑆]  ≤  𝑒𝑥𝑝(𝜀) 𝑃𝑟[𝑀(𝑦)  ∈  𝑆]  +  𝛿 (1) 

Where:  

Pr [𝑐] is the probability associated with a given condition, for example 𝑃𝑟(𝑋 = 𝑥) is the 
probability that the random variable 𝑋 is equal to the value 𝑥, similarly 𝑃𝑟(𝑊 ∈ 𝑍) is the 
probability of a random process 𝑊 will output a value in set 𝑍 

𝑀(𝑎) represents a randomized algorithm operating over input space A (e.g., 𝑎 ∈  𝐴) that 
yields 𝑀(𝑎)  =  𝑏 with 𝑃𝑟(𝑀(𝑎))𝑏 for each 𝑏 ∈  𝐵 

𝑥 and 𝑦 are similar databases who vary by at most 1 record, e.g., the same subject is either 
present or not. Such databases are often referred to as neighboring databases. 

𝑆 represents the output domain of the DP function. This implies that 𝑥 and 𝑦 must have 
similar features (e.g., they need be related) to allow 𝑀(𝑎) to compute a valid result within 
the DP’s output domain.  

𝐸𝑥𝑝(𝑥) represents the exponential function, i.e., 𝑒𝑥.  

𝜀 represents a measure of the desired privacy level and is often called the privacy parameter 

or privacy budget. Small 𝜀 values will yield better privacy (at the cost of less accurate 
responses) 

𝛿 represents a small “failure probability” to handle cases where 𝑒𝑥𝑝(𝜀) does not hold (and 
thus there exist a possibility of releasing unprotected data) 

A formal reasoning on DP principles and mechanisms can be found in (Dwork & Roth, 2014). 
However, an intuitive explanation of how Eq. (1) operates can be described as follows: 

• Assume x and y are two similar databases who at most vary by 1 record. 

• Assume that there exists a randomized algorithm 𝑀 that when applied to dataset 𝑦 it will 
yield a result that is very close to 𝑀(𝑥), thus making it difficult for an external observer to 
identify if 𝑥 or 𝑦 was fed to 𝑀.  

• Assume that 𝑒𝑥𝑝(𝜀) can be approximated by 1 + 𝜀 for moderately small values, 𝜀 its 
defined by the application’s privacy needs.  

• Then it follows intuitively that it is possible to express the relationship between 
𝑃𝑟[𝑀(𝑥) ∈  𝑆] and 𝑃𝑟[𝑀(𝑦) ∈  𝑆] as a ratio, and introduce a restriction to bound it to a 
desired 𝜀-differentially private level: 

𝑃𝑟[𝑀(𝑥) ∈  𝑆]

𝑃𝑟[𝑀(𝑦) ∈  𝑆]
≤ (1 + 𝜀) 
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• Finally, by introducing 𝛿 to handle the imperfect nature of a real-world 𝑀 implementation, 
we could then define the relationship between both sides as: 

𝑃𝑟[𝑀(𝑥)  ∈  𝑆]  ≤  𝑒𝑥𝑝(𝜀) 𝑃𝑟[𝑀(𝑦)  ∈  𝑆]  +  𝛿 

It’s important to note that DP does not dictate the mechanisms responsible for generating the 
randomized output of algorithm M, it is up to the system designer to select the best algorithm 
given its needs. However, some of the most commonly used mechanisms include: 

The Laplace mechanism: As its name states, it generates an output value by sampling the 
Laplace distribution. The Laplace distribution is generally used to model independent outcomes 
that have exponential behaviors, such as income distribution. This mechanism is often used to 
protect records that can be counted (e.g., quantities) 

The Gaussian mechanism: The mechanisms samples from the gaussian bell, often resulting in 
the introduction of a non-zero 𝛿-valued parameter. However, it is particularly useful when multi-
step queries need to be implemented while controlling the amount of noise being added. For 
example, the query “compute the average load for high-demand consumers”, requires the use 
of a “greater than” filter, a “summing” function and a “counting” function to perform: 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑠𝑢𝑚(𝑤ℎ𝑒𝑟𝑒(𝑥𝑖 > 𝑣𝑎𝑙𝑢𝑒))/𝑐𝑜𝑢𝑛𝑡(𝑤ℎ𝑒𝑟𝑒(𝑥𝑖 > 𝑣𝑎𝑙𝑢𝑒)) .  

The Exponential mechanism: This mechanism returns an unperturbed data record from a 
database that is likely to satisfy the original query, but not necessarily the best match (hence 
protecting privacy). This could be particularly useful to implement queries such as “Select a 
DER to be curtailed who has not been curtailed in the last 7 days.” 
 
In addition to the fundamental goal of DP, which is to encourage individuals to participate by 
providing a mathematical guarantee over their anonymity within a dataset, well-implemented 
DP-based methods should be able to (Dwork & Roth, 2014): 

1. Provide users with a wide protection against arbitrary risks, not only providing protection 

against re-identification attacks.  

2. Prevent the use of linkage attacks, including those that attempt to use a combination of 

past current, and past datasets to increase their knowledge.  

3. Enable the quantification of privacy by defining a fixed bound on the amount of privacy 

loss. By defining a fixed bound, multiple algorithms can be evaluated and be compared 

for accuracy or speed.  

4. Allow algorithmic composition: Different DP processes can be assembled in series or 

parallel while still being able to compute the net privacy loss. In a series composition, in 

which different DP methods are daisy-chained (e.g., when the output of a stage is fed 

into another step) the privacy loss is the sum of the individual DP mechanisms1. In 

parallel composition, in which multiple DP methods are applied to disjoint sets in a 

database (e.g., by implementing parallel batch processing) then the privacy loss factor 

remains constant. 

5. Adjust the privacy budget, so it becomes possible to fine tune the allowable “distance” 

between two neighboring sets. This could be used to account for group behaviors.  

 
1 Note that this value represents the worst possible case. In practice, advance composition techniques 
have shown to yield better performance (Mironov, 2017) 
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6. DP protected records offer closure under post-processing: This term is used to indicate 

that it is infeasible to develop an algorithm that makes a result less differentially private, 

even when additional auxiliary data is available. 

Despite all the potential benefits associated with Differential Privacy, DP is not a perfect solution 
and may fail to protect individual records when hidden correlations exist between two or more 
“apparently” independent dataset members. For example, in (Almadhoun, Ayday, & Ulusoy, 
2020) the authors exploit genetic markers that are typically inherited among family members to 
extract and deanonymize their records in a genomic database. In the context of power systems, 
similar scenarios may appear when two or more apparently “independent” records are derived 
from the same data collection point or are being double counted. Such attacks are often referred 
as the “tuple dependency attack” (Liu, Chakraborty, & Mittal, 2016) and may break the 
guarantees provided by DP. 

3.2 The Importance Of Time Series Data In TES Applications 

As stated in the introduction, TES require a strong communication backbone that can support 
the communication needs of the developed solution. According to previously published research 
(Gourisetti, et al., 2021) technologies such as Distributed Ledger Technology (DLT) could be 
used to build TES solutions that are highly secure, decentralized, and scalable. A DLT is a 
network of independent nodes that can achieve distributed consensus among fully autonomous 
agents by using fault-tolerant protocols. DLTs offer tamper-evident storage capabilities as well 
as smart contracts, which are logical pieces of code that help automate and validate interactions 
between parties. The self-sufficient nature of DLT networks, allow independent agents to 
conduct transactions without the need for an intermediary or explicit trust anchor which can be 
ideal for enabling next-generation, fully decentralized grid interactions. 

 Although decentralized technologies such as DLT offer an array of potential benefits to 
system designers, they often require an increased amount of data exchanges when compared 
to centralized solutions. In addition, these data exchanges may require the involvement of 
parties who would otherwise be excluded in a traditional approach. Such involvement can help 
increase the security of systems (e.g., by eliminating single points of failure, or enabling third 
party validations), but could also introduce new risks, such as enabling the unauthorized 
monitoring of data streams. Within the context of DLT systems, some of the aforementioned 
risks may be addressed by implementing ledger-level segmentation, which can help isolate 
traffic by effectively creating subsystems where actors can be grouped according to their role, 
geographical influence, or other relevant attributes. However, the number of channels is finite, 
limiting its applicability in large systems, such as the electric grid. In addition, segmentation can 
be hard to maintain (or infeasible) in use-cases where actors are involved in multiple, parallel 
roles or when role transitions occur often. 

Based on these limitations, it may be helpful to think that communications in DLT-based 
solutions (like many other decentralized solutions) are effectively viewable by all system 
participants, hence requiring the use of novel techniques that can help guarantee privacy 
regardless of the implementation-specific features that an individual solution may provide. With 
this goal in mind, the use of Differential Privacy in the protection of time-series data will be 
evaluated in this section. Although the need for protecting time-series data may not be 
immediately apparent to TES solution developers, the risk appears when malicious actors are 
assumed to be present in a TES deployment. These ill-intended actors may choose to 
(privately) collect system snapshots and use them for posterior analysis, hence assembling a 
time-ordered sequence of events that may be used to analyze another actor’s behavior. In case 
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of DLT-based systems, the ledger itself could contain enough information1 to reveal a user’s 
past actions, and thus be used to infer behaviors. 

Although the specific nature of the data being exchanged by a TES implementation will dictate 
the type of information that a malicious node can collect, a market-based TES system may 
produce enough information to reveal or infer: 

• An agent’s response to price signals, which could reveal information about its cost 
sensitivity. 

• Production and demand values, which may reveal the types and the characteristics of 
the installed assets (e.g., capacity, ramping rates) and their operational states (e.g., 
offline, charging, or discharging) 

• Bidding information, or other market artifacts to reveal the economic strategies or goals 
of the entity operating the asset. 

• Scheduling information which may help reveal resident’s behaviors (being inside or 
outside) 

Naturally, the amount of information available for analysis will be dependent on the number of 
parties involved, the data being exchanged, the rate at which is produced, and the ability of a 
given actor to collect and store such data. However, to illustrate the potential risks associated 
with obtaining access to high-quality data, access to 15-minute resolution consumption data (as 
typically available from smart meter infrastructure) was used to evaluate DP-based methods’ 
ability to protect privacy. 

3.3 Evaluating Differential Privacy In Time Series Data 

Currently, access to smart meter data is restricted to the utility providing service, who 
occasionally offer data access to the consumer being metered. Although energy metering is a 
key enabler for revenue collection, it is a relatively trivial task that does not require access to a 
high-sampling rate. Grid operators often configure relatively high-sampling rates to facilitate 
integration with other high rate-sampling subsystems thereby helping to enhance system 
visibility and controllability. However, as an indirect benefit from the increased sampling rate, 
certain technologies, such as Non-Intrusive Load Monitoring (NILM) tools can be used to 
enhance visibility into assets located behind the meter. 

At their core, NILM-based algorithms perform load identification by executing a signature 
comparison algorithm that contrasts aggregated load records against previously characterized 
asset signatures. As such, multiple implementations have been proposed, each of them relying 
on a wide variety of input features, such as Voltage (V), Current (I), Real Power (P) or Reactive 
power (Q) to analyze frequency-domain patterns, quantity relations (e.g., P vs Q), or transient 
signatures. The comparison algorithms may rely on Hidden Markov Models (HMMs), Graph 
Signal Processing (GSP), and deep learning constructs to perform the actual signature 
comparison (Faustine, Mvungi, Kaijage, & Kisangiri, 2017). Although each algorithm has unique 
performance characteristics, in general, the accuracy of NILM methods is dependent on A) The 
sampling rate, which usually ranges from sub-second to daily snapshots; and B) The asset type, 
which can range from small appliances, HVACs, EVs, to DERs. Higher accuracies are often 
achieved when higher sampling rates are available (≤  15 mins) or when large or long cycling 
appliances are used (EVs, HVACs) (Teng, Chhachhi, Ge, Graham, & Gunduz, 2022)  

 
1 Although specific DLT implementations may expose their ledgers publicly (e.g., the open internet), the 
authors assume the presence of a permissioned DLT, which requires all participants to have an 
organizational-level identity and credentials before access is granted to the application’s ledger.  
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Clearly, due to their fundamental nature, NILM algorithms are well suited to find patterns in 
noisy data. Based on this observation and the known limitations of DP, it was hypothesized by 
the authors that DP may not be the best approach for protecting demand data, even at 
aggregated levels, especially if we assume a malicious agent is capable of time-aligning 
individual snapshots. Based on this hypothesis, the following subsections are used to evaluate 
DP’s ability to protect aggregated time-series data.   

3.3.1 Experimental Overview 

Differential Privacy is known to exhibit weaknesses when correlated data is present. Limitations 
on DP when applied to time series data have been documented in works such as (Liyue & Li, 
2014), (Xu H. W., 2017). However, electrical demand data has additional properties that make it 
particularly difficult to protect, these are: 

High degree of autocorrelation: Generally speaking, load patterns are highly repetitive. Load 
patterns re-occur on a weekly basis (weekdays vs weekends) and have seasonal tendencies 
(e.g., ACs operate in summer and heating systems operate in winter). 

Correlation with external systems: Weather, which data is widely available at the locality 
level, is highly correlated with HVAC operation, as well as wind and solar production. In 
addition, these systems represent a significant part of a consumer’s net demand (or production) 
curves. 

Systematic data collection: Due to the operational nature of power systems, data is often 
collected at fixed intervals from multiple locations. This enables time-aligned and locational 
grouping of multiple, independent data collection points to assemble richer data sets.  

During the rest of the section a technical evaluation of DP as applied to consumer-level records 
will be discussed. The results indicate that DP offers a limited set of privacy protection 
guarantees when used to protect long-term, demand data even in aggregated form. The 
resulting privacy leaks could be used to reveal behaviors of individual actors. 

3.3.2 Technical Evaluation 

NILM algorithms tend to perform better when high-quality, long-term datasets are available for 
analysis. However, as outlined earlier, access to high-quality, customer-level, demand data is 
restricted by most utilities. Therefore, research often relies on datasets that are derived from 
laboratory environments that may fail to fully capture the day-to-day behaviors present in real-
world conditions. Cognizant of these limitations, various research organizations have launched 
field deployments that collect and aggregate data from volunteers across a service region. 
Collected records may then be post-processed to ensure quality and be further anonymized to 
prevent their misuse. To illustrate such a record, a 5-minute demand curve, which has been 
averaged using a 7-day rolling average is presented in Figure 5. The data was originally 
downloaded from the utilities’ customer portal, and later donated by a member of the team. The 
unfiltered data was collected during the 2022/2023 Winter season by using a revenue-grade 
meter (with a stated accuracy of 0.5% or better). The site operates in a demand-only mode, with 
the largest load being a 14.4 kW electric furnace.  

To illustrate the behavior of DP, a Laplace mechanism was applied to the aforementioned 
dataset to enhance its privacy posture (see Figure 6). The result was computed by using the 
library available at (Lets Make It LLC, 2020), the privacy budget was set to a unitary value (𝜀 =
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1). Note that selecting an appropriate value of 𝜀 requires a good understanding of the data and 
defining an acceptable risk threshold. Such discussions are outside the domain of this report but 
can be reviewed in (Lee & Clifton, 2011). 

As demonstrated by Figure 6, DP has introduced a significant amount of noise that should 
prevent attacker’s from extracting individual daily records from the dataset. In some instances, 
the added noise resulted in negative values which must be removed during post-processing to 
avoid misclassifying the consumer as a prosumer. However, upon closer inspection, it becomes 
evident that time-based patterns continue to exist. For example, a repetitive sudden increase in 
load, indicative of an “off-to-on” transition appears near the 3:00 am mark (see Figure 7).  

 

Figure 5.  A 7-day rolling average applied to a 5-minute demand curve downloaded from a 
utility’s customer portal. 

 

Figure 6.  The Laplace DP mechanism as applied to the consumption records shown in Figure 
5 ( 𝜀 = 1).  
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Figure 7.  A zoom-in into the plot shown in Figure 6, highlighting the presence of an “event” 
near the 3:00 am mark. 

Such “patterns” could be identifiable by human actors and be complemented with other sources 
of information to infer individual habits. For example, the subject’s “active” period could be 
inferred to be from 6:30 am to 11:00 pm by looking at Figure 6 (and by assuming higher loads 
are indicative of an active subject). To better characterize the ability of DP to protect against 
these inferences, a test was devised to quantitively measure DP’s pattern protection 
performance using a NILM-like approach. The test consisted in training and evaluating the 
accuracy of a NILM model operating over two distinct time-series, with one of them been 
privatized and the other being a raw, non-privatized dataset. Such evaluation requires the 
existence of a “ground truth” signal that describes the state of a given appliance, and a 
comparator that scores the accuracy of the method in predicting its state.  

Based on the test goal, an input data set was procured from the End Use Load Research 
(EULR) project, a project sponsored by the Northwest Energy Efficiency Alliance. The project 
aims to support the realization of clean energy goals by enhancing the utilities’ ability to 
characterize the operation of residential-scale heating and cooling systems (Northwest Energy 
Efficiency Alliance, 2020). To achieve this goal, the EULR project collects equipment-level and 
net energy consumption data at 1-minute intervals for hundreds of residential homes located 
within the Pacific Northwest. Although the project charter focuses on collecting demand profiles 
for different types of heating and cooling equipment, the platform also captures solar production 
and Electric Vehicle charging profiles when available. 

Access to EULR’s 1-minute data is restricted to project participants, but aggregated demand 
values recorded at 15-minute intervals are publicly available. Due to the amount and diversity of 
measured equipment, as well as the collection period (over 3 years as of 2023), the data set 
provides an ideal repository for performing an evaluation of NILM algorithms. Furthermore, by 
having access to asset-level demand, it becomes possible to establish a ground truth that can 
be used to quantitively assess the effectivity of DP against pattern identification algorithms.  
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3.3.3 Results 

As part of the testing phase, a convolutional neural network (CNN) implementation was chosen 
for the NILM module. The selected library is based on the work performed by (Zhang, Zhong, 
Wang, Goddard, & Sutton) and is available at (JackBarber98, 2019). As described earlier, two 
tests were carried out to determine the effects of using DP on a NILM system. Case A assumes 
that a malicious agent has access to the unprotected 7-day rolling average demand for a 
particular customer, while case B, assumes that consumption data has been DP-protected 
before being compromised. In both cases, it has been assumed that the malicious agent can 
independently obtain an asset’s consumption signature and thus has been left unprotected. The 
CNN-based algorithms used the 55% of the aggregated demand records for training, 20% for 
training validation, while the remaining 25% were used for performance evaluation (e.g., 75% of 
the records were used in training, 25% for blind testing). 

The results of test A and test B can be observed in Figure 9 and Figure 10 respectively. Note 
that the selected NILM algorithm outputs a load factor for a given appliance (circuits labeled as 
heaters were used for this experiment). However, this functionality was ignored to simplify the 
evaluation and instead the comparator measures the number of times the device is correctly 
labeled as being in the “On” state. The “On” state can be configured via a threshold value to 
avoid false detections. 

The variable “threshold” functionality was used to assemble Table 3. As it can be observed the 
accuracy varies depending on the selected threshold, for DP-protected records, there is a 
decrease in accuracy as the thresholds increase. The final two rows of Table 3 are used to 
report the average accuracy, note that the CNN algorithm successfully demonstrated its ability 
to make high-quality predictions (Accuracy >90%) when unprotected data records are used, this 
accuracy drops to ~60% when DP-protected records are used. 

DP-protected, 7-day rolling 
average demand

[Home-level]

Unprotected, 7-day 
rolling average demand

[Asset-level]

Prediction

Accuracy
[On state]

Ground Truth

Malicious agent

Compa-
rator

Unprotected, 7-day rolling 
average demand

[Home-level]

Unprotected, 7-day 
rolling average demand

[Asset-level]

Prediction

Accuracy
[On state]

Ground Truth

Malicious agent

Compa-
rator

Test B

Test A

 

Figure 8. An overview of the testing methodology. The CNN-based NILM algorithm was trained, 
and subsequently evaluated on A) a Non-protected dataset and B) A DP-protected 
dataset. 
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The test results indicate that DP may limit the accuracy of NILM-like processes, hence deterring 
its use, but may not be able to offer perfect protection (a 60% accuracy remains better than a 
coin toss). Furthermore, the amount of added noise may severely impact a system’s ability to 
use the data in other operational scenarios (for comparison purposes see the blue-colored lines 
present in Figure 9 and Figure 10) 

 

Figure 9.  A CNN-based NILM algorithm applied to a 7day rolling window dataset with no DP 
protection. 

 

Figure 10.  A CNN-based NILM algorithm applied to the same 7-day rolling average dataset 
with a DP function applied to the aggregate signal. 
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Table 3.  NILM’s ability to predict an appliance’s “Active” state, with a variety of thresholds.  

On/Off Threshold 
#Ocurrences 

[Ground Truth] 
Accuracy, No-DP 

protection [%] 
Accuracy, with DP 

protection [%] 

0 715 89.65 95.94 

0.01 539 91.28 94.43 

0.02 446 91.26 93.05 

0.03 369 93.22 93.22 

0.04 313 93.29 91.37 

0.05 283 92.23 87.99 

0.06 243 90.95 83.95 

0.07 226 90.71 84.07 

0.08 211 90.52 81.99 

0.09 199 89.95 76.88 

0.1 183 89.62 75.96 

0.11 172 88.37 74.42 

0.12 159 88.05 71.07 

0.13 148 88.51 65.54 

0.14 144 86.81 61.11 

0.15 140 87.86 57.14 

0.16 139 88.49 53.24 

0.17 133 89.47 54.14 

0.18 118 90.68 53.39 

0.19 107 90.65 50.47 

0.2 103 90.29 46.60 

0.21 97 90.72 46.39 

0.22 76 98.68 47.37 

0.23 62 96.77 46.77 

0.24 59 100.00 42.37 

0.25 55 100.00 41.82 

0.26 50 100.00 40.00 

0.27 47 100.00 38.30 

0.28 43 100.00 39.53 

0.29 38 100.00 39.47 

0.3 32 100.00 43.75 

Average Accuracy  93.66 60.64 

Average Accuracy 
(Weighted) 

 91.24 63.07 
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3.4 Evaluating Differential Privacy In Aggregation Tasks 

As discussed in Section 3.1 Differential Privacy provides strong guarantees against a wide 
variety of attacks when tuple-dependencies are eliminated and appropriate 𝜀 values are 
selected. Such conditions could exist within energy applications if: 1) Sufficiently large 
population pools are assembled; 2) Records are collected over predefined windows of time 
based on risk tolerance1; 3) Appropriate 𝜀 values are chosen based on the amount of noise 
tolerance versus the desired privacy levels. For example, a days’ worth of aggregated demand 
data from a small-sized group (e.g., customers attached to a pole-mounted transformer) may be 
safe to share because it’s hard to generalize a user’s behavior from a single observation. 
Similarly, feeder level data could be collected and shared over a much longer time-span due to 
the vast amounts of data required to successfully train disaggregation algorithms. To illustrate 
this behavior, a subset of the EULR’s dataset was mapped to the IEEE 123-Transactitive 
system by normalizing the EULR’s records and using them as the demand curve shapes within 
an OpenDSS simulation. This process ensures that each load maintains its rating, while 
inheriting the realistic demand pattern captured within the EULR’s database (See Figure 11). 

To better understand the implications of applying a DP function over short windows of time, a 
graphical comparison of applying a non-protected versus a DP-protected summing function over 
individual consumers attached to Bus 107 (of the IEEE-123 Transactive system) is presented in 
Figure 12. As observed in earlier cases, the added noise introduces a significant amount of 
error that may exceed the end user’s tolerance expectations, however it makes it extremely 
hard for an attacker to extract an individual’s demand curve without access to external 
information. Similarly, Figure 13 aggregates feeder-level demand records by using a non-
protected and a DP-protected summing function, however, due to the vastly larger aggregation 
size, the error becomes insignificant. 

 
Figure 11.  Individual consumption patterns of customers attached to a pole mounted 

transformer (Bus 107 in the IEEE 123 bus system) 

 
1 In addition to limiting the window of time over which records are collected, it would be useful for systems 
designers to identify a dataset’s privacy requirements as a function of time. For example, the release of 
live data may pose a larger risk than releasing old records.  



PNNL-35257 

Evaluation Of Privacy Constructs In The TES Domain 32 
 

 

Figure 12. Aggregated demand at the transform-level (from 9 distinct consumers). The amount 
of introduced error may exceed the application’s expected tolerance.   

 

Figure 13. Aggregation at the feeder level, demonstrating the negligible amount of error 
introduced by DP. 

Based on the aforementioned observations, Figure 14 was constructed to illustrate the amount 
of noise introduced as a function of the population size when DP methods are used. The figure 
was constructed by aggregating a variable number of demand curves, and then measuring the 
average amount of relative error present within each aggregation round. The results clearly 
show that DP is a viable tool when a sufficiently large pools are assembled. It is expected that 
application developers may use similar approaches to identify the minimum population size or 
that allow them to better quantify the expected amount of noise given a particular 𝜀 threshold. 
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Figure 14. Relative error as a function of the number of aggregated assets. Such graphs 
could be used to determine the ideal aggregation size as a function of the 

application’s error tolerance level.  

3.5 Threshold Cryptography For Privacy Applications  

Threshold Cryptography (TC) is a series of cryptographic schemes that issue partial keys to a 
set of independent actors, these partial keys can later be re-assembled to perform cryptographic 
functions (if the threshold conditions are satisfied). In general, a certain number of partial keys, 
often referred to as shares, must be gathered before a group key can be assembled. Assuming 
that 𝑛 is used to indicate the number of key shares available; 𝑡 is used to represent the number 

of shares required to reach the cryptographic threshold; and 𝑢 is used to indicate the number of 
unique valid keys, the following conditions arise: 

𝒖 < 𝒕: No global key can be recovered; such condition protects against a malicious actor (or 
group thereof) that attempts to obtain access to the group key without group approval. 
However, this condition could deny future access if a sufficient number of agents 
permanently retire or lose their keys. Some implementations may allow solo individuals to 
verify the content of a message but prevent the complete decryption. 

u>=t: The global key can be assembled, hence enabling its use for encryption, decryption, 
or signature generation purposes (Vassilev, 2018). Generally speaking, a set of 𝑢 
independent actors have to send their partial keys to a trusted entity who then combines 
them together. If 𝑡 is less than 𝑛, participants can continue to perform operations as long as 
no more than 𝑛 –  𝑡 entities are disabled, thereby providing a level of fault tolerance 
(Vassilev, 2018).  

As with many other cryptographic implementations, key generation and efficient key 
management pose one of the largest challenges for TC. As such, multiple algorithms have been 
proposed across the years to create and distribute key shares. For example, in the most basic 
implementation, a trusted entity (i.e., the dealer) generates and distributes the key shares to 
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each participant. The participants can also rely on more advanced Distributed Key Generation 
(DKG) protocols to distribute the key shares among themselves if there is no trusted entity 
available, which may be particularly useful in DLT environments (Tomescu, et al., 2020). 
Naturally, multiple DKG protocols have been proposed in literature to improve upon speed, 
security, or to support different network architectures. For example, in (Gurkan, et al., 2021) the 
authors describe a gossip-based protocol to generate a pair of public and private keys that can 
be used to encrypt and sign content in TC-based environments. The use of gossip protocol 
makes it well suited for aggregating a relatively large number of key shares efficiently across 
asynchronous network architectures such as the internet. In addition to the various key 
management proposals, some researchers have sought to increase TC’s basic capabilities to 
facilitate their integration into real-world systems. For example, in (Iftene, 2005) the authors 
describe a weighted-TC implementation that assigns weights to each key share. In this case, 
the sum of the individual weighted shares is compared against the pre-defined threshold, 
granting access only if ∑𝑘𝑢 ≥ 𝑡. Such approaches may be leveraged to enable supervisory 
entities (e.g., regulators, and grid operators) to assert executive control over a group of 
individuals when needed.  

The application of TC-based methods to increase a system’s privacy characteristics is not a 
new subject. However, most approaches focus on applying a cryptographic function to secure a 
user’s private data (and hence equating privacy with confidentiality). Among the works 
published, notable mentions include: 

 (Al-Muhtadi, Hill, & Al-Rwais, 2011), in which the authors proposed a multi-layer access control 
mechanism applicable to the healthcare industry. The proposed mechanism issues key shares 
to sensors, medical personnel, and other system observers who can independently evaluate if 
access to a medical record is justified. The multi-layer approach is created by assembling 
independent key holders into common groups (e.g., doctors are part of the medical personnel) 
and then mapping each group to a nested protection zone that essentially forces data 
consumers to justify their data needs at each access level.  

(Cramer, Gennaro, & Schoenmakers, 1997), in which the authors describe a privacy-driven 
voting system that allows third parties to tally and verify the final result (via homomorphic 
encryption), while at the same time protecting the voting ballot’s internal details. The voting 
details (e.g., the name and address of the voter) can only be retrieved if a sufficient number of 
electoral supervisors combine their data shares to reveal the encrypted payload. Such an 
approach could in theory be expanded to protect market bids in TES environment, allowing 
agents to verify the clearing price of an auction while protecting the identity of the bidder.  

Based largely on the previously described constructs, a proposal for securing bidding 
information within DLT environments was devised. The proposed scheme relies on an out-of-
band communication scheme to encrypt the transaction data (via TC) before storing it in the 
ledger. Due to the nature of TC, revealing the contents of the ledger (and thus the transaction 
itself), requires interested parties to first obtain access to the individual key shares, providing a 
layer of privacy that is not present in current-generation DLT implementations. The proposed 
scheme relies on two processes that can be daisy chained into existent applications. The 
secure storage process can be summarized as follows (see Figure 15 for a graphical 
representation): 

1. Upon receiving a transaction request from the DLT network, peers validate its content 
(via the smart contract logic). After a successful validation, each peer generates a key 
share using the DKG process. 
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2. Due to the nature of certain DKG implementations, multiple parties may end-up with 
different private keys (𝑃𝐾𝑖), therefore a “trusted” merger must be elected and chosen to 

encrypt the transaction using its 𝑃𝐾𝑖 

3. The trusted merger then communicates the encrypted transaction back to the peers for 
them to independently reach consensus and insert the encrypted transaction into the 
ledger. 
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Figure 15. Overview of the proposed scheme under encryption mode 

To reveal the contents of the ledger, parties must appeal to individual members and convince 
them to share their partial key with a trusted member of the organization. Only if enough 
members are convinced, then the trusted peer can decrypt and share the result with the original 
claim holder (see Figure 16). Due to the nature of DLT systems, the appeal process can be 
encoded into the smart contract to ensure that a fair approval process is followed (hence 
preventing bad actors from trying to block a legitimate access request).  
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Figure 16. Overview of the proposed scheme operating under decryption mode 
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Based on the logic described above. A proof-of-concept implementation was developed based 
on the Python-based library available in (Miller & Bellemare, HoneyBadgerBFT-Python, 2016). 
The library itself contains a fault-tolerant network deployment, named Honey Badger, that is 
intended to serve as the backbone architecture for future blockchains (Miller, Xia, Croman, Shi, 
& Song, 2016). Honey Badger is a Byzantine Fault Tolerant architecture that is designed to 
operate over a wide-area network under an asynchronous communication model (e.g., where 
network time-outs are not considered a reliable indicator of disconnection). The library 
implements a TC scheme that was first proposed by (Baek & Zheng, 2003), it attempts to 
maintain the same level of security provided by traditional TC methods but focuses on reducing 
the overall key length. The use of shorter key lengths can help improve the performance of 
distributed systems by requiring smaller packet sizes that are easier to transmit. However, 
Honey Badger is not a full-fledged blockchain implementation and thus cannot support the use 
of Smart contracts (SC) and as such, only the cryptographic functions could be tested.  

In addition to the aforementioned limitations, the use of python as a smart contract language is 
not yet supported by the Hyperledger Fabric project (which is the implementation used by the 
team in the past to evaluate TES market approaches). Therefore, at the current stage, the 
proposed approach remains an architectural concept that awaits the maturation of libraries, and 
other supporting infrastructure before it can be assembled and tested in a lab-scale deployment 
(see Figure 17). 
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Figure 17. Data exchanges of the proposed architecture under encryption mode. 
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4 Recommended Future Work 

The electrical grid is often described as one of the largest, and most complex machines that 
humans have ever built. Across the decades the system has undergone several technological 
transformations to address emerging needs, often resulting in a series of incremental updates 
that are built upon each other. However, addressing many of the outstanding electrification and 
resilience goals will require a much more transformative approach to address the structural 
limitations of the current grid. This will undoubtedly require the development of new (or 
improved) operational schemes and associated control architectures that will better prepare the 
grid for the future. Despite the challenges, the ongoing transformation offers system architects 
the opportunity to build systems that are more inclusive of the needs and expectations of their 
participants. As outlined by this work, one important aspect to consider is data privacy, which if 
done right, could enable the emergence of new operational use cases that allow individuals to 
assemble and participate in communities to provide, exchange, or benefit from grid-related 
services. 

The successful adoption of privacy aspects in energy applications will require a coordinated 
effort between solution developers, academia, and public advocates to build solutions that not 
only satisfy the application-specific needs but also offer privacy guarantees that serve as a 
welcoming feature for future users. From an academic perspective, privacy efforts within the 
energy space are likely to fall into one or more of the following tracks: a) Developing abstract 
technologies or methods that can be used to enhance privacy, b) Identifying systematic gaps 
and evaluating potential solutions applicable to the energy space and c) Creating application-
specific solutions that seek to integrate privacy as a design pillar. These tracks, although mostly 
independent from each other, could build upon each other to increase the overall maturity levels 
of the field. Based on the literature review discussed in Section 2 and the observed limitations, 
research tracks that may be worth pursuing in the near future may include: 

• Continuing the research and development of privacy mechanisms. Such mechanisms 
could be used to enforce privacy guarantees that enable data owners to share data 
openly and securely with third parties while minimizing the risk of inadvertently exposing 
personal or business-sensitive data. Although individual solutions are likely to be 
application-specific, the basic constructs should be generalizable to a wide set of 
problems (e.g., to protect highly repetitive time series data, or to produce deanonymized 
topological models) 

• Developing methodologies that can be used to identify and evaluate existing data 
production and consumption processes. The obtained results could then be used to 
gradually move towards a “need-driven” data usage model. For example, data collection 
processes should seek to minimize the production of excessive or duplicate data records 
to minimize future risks (e.g., data leaks). This may include developing frameworks or 
automated tools that enable the industry to independently assess their privacy posture, 
such tools may build and adapt from related frameworks applicable to the cybersecurity 
space. 

• Creating industry best practices and related tools that can serve as guidelines for 
developing and implementing secure, privacy-aware solutions. Such tools could build 
upon cybersecurity principles yet must remain conscious that privacy needs to be a 
user-driven process. Therefore, policies for the collection, use, and eventual destruction 
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of data records must be tailored to the individuals, which may themselves establish 
different sensitivity levels that must be accounted for during the design phase. 

• Developing a set of standardized data sets and associated benchmarks that allow 
researchers to test and compare the effectiveness of the proposed privacy solutions 
among their peers. In the past, such repositories have enabled the rapid advancement of 
knowledge within a particular domain. Examples include the image repositories used to 
assess image compression technology and the use of labeled image libraries to evaluate 
machine learning algorithms' performance. 

• Increasing public awareness towards data privacy. This may include fostering risk 
awareness, but also identifying the benefits of implementing secure data sharing to 
improve user experience, enabling new operational use cases to be implemented. This 
may be particularly useful in transitioning away from the “restrict by default” policy that 
most energy sector organizations follow into a “managed risk sharing” process that 
allows industry and academia to increase their collaboration. 

Clearly, the aforementioned research directions could result in the successful adoption of 
privacy as a design pillar of future applications. At the same time, it’s imperative that 
organizations and solution developers are aware of potential pitfalls that could lead to a false 
sense of security, these may include: 

• Not considering the effects of releasing overlapping data sets. The existence of 
overlapping datasets can enable attackers to apply set operators (i.e., union, 
intersection, complement) thereby helping them to increase their knowledge about 
individual dataset members. Theorems such as the one described in (Dwork & Roth, 
2014) could be used to estimate the number of overlapping, noise-protected datasets 
that may lead to a comprise. In case online query engines are implemented, special care 
must be put into ensuring the supported queries do not allow an external agent to 
assemble overlapping datasets that may break the privacy protections (via a 
differentiating attack). 

• Not realizing the lifespan of their products. Solutions developed today may satisfy 
current privacy requirements but may fail to do so in a long-term scenario if the methods 
become vulnerable or too much data is eventually released. This is particularly 
concerning in the energy space, as grid applications are expected to remain operational 
for long periods of time (e.g., decades). Note that disclosing older datasets may be 
acceptable, but their release must be a planned event rather than an unexpected result. 

• Failing to evaluate a method under the specifics of the use case or implementation. 
Methods that are considered secure do not necessarily yield secure implementations, 
this may be due to deficient coding practices, but also to inherent features of the use 
case that introduce vulnerabilities. An example of such a scenario was described in 
Section 2, where side-channel attacks were discussed. 
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5 Conclusions 

This report presented a high-level overview of digital privacy in the context of the power grid. 
Digital privacy by itself is a complex topic that touches on a variety of subjective and technical 
aspects that extend over the legal, social, and engineering domains, but whose main goal is to 
enable individuals to assert control over their digital footprint. At the same time, the grid 
continues (and will likely continue) to embrace a communications-driven approach that 
generates vast amounts of data which makes it vulnerable to potential abuse by ill-intended 
entities. Based on the current landscape, this work presented an overview of grid-related 
privacy threats documented in the literature, as well as summarizing techniques that may help 
to improve the privacy posture of grid applications. 

This report highlights the need for privacy considerations during the design, implementation, 
and eventual operation of grid-related applications. The adoption of privacy as a design pillar 
could serve as an enabler for data-driven solutions where actors can openly collaborate with 
peers while maintaining their individual behaviors private from other members. Privacy-aware 
environments could provide the necessary technical constructs and guarantees needed to 
support the collaboration of DERs, PVs, service aggregators, and other entities in a fair and 
inclusive environment. Furthermore, such mechanisms could allow grid operators to maintain a 
supervisory role to ensure grid safety and operational constraints are maintained despite the 
shift from a centralized to a decentralized grid environment. 

This work made a series of recommendations to encourage system designers to rethink the 
current practices, which typically rely on the mass collection of data into a targeted, need-driven 
data collection solution approach that minimizes privacy risks. In addition, it presented a 
technical evaluation of Differential Privacy (DP) within the context of Transactive Energy 
Systems. The results indicate that DP-based mechanisms, like many other constructs, are 
technically sound but may underperform due to poor implementations, or when mismatches 
between the method’s strengths and the application’s environment exist. Therefore, it is 
imperative that technologies are screened and evaluated to ensure privacy goals are met, such 
evaluations should be cognizant of the relatively long-term lifecycles, and the vast amounts of 
data that energy applications require. 

In summary, this work highlights the need for 1) Supporting the development of technical 
constructs that can be used to protect and enforce privacy expectations; 2) Raising awareness 
and creating methodologies that allow system developers to integrate privacy into their designs; 
and 3) Developing solutions that can achieve functional goals while remaining privacy aware. 
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