
Choose an item. 

 

 

PNNL-35153   

  
 

Universal Fourier Attack for Time 
Series 
September 2023 

Chance N DeSmet 
Michael K Girard 
Lizzy D Coda 
Yijing Watkins 
 
 

  
 

  

Prepared for the U.S. Department of Energy  
under Contract DE-AC05-76RL01830 

  



Choose an item. 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility 
for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by 
the United States Government or any agency thereof, or Battelle Memorial 
Institute. The views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency thereof. 

PACIFIC NORTHWEST NATIONAL LABORATORY 
operated by 
BATTELLE 

for the 
UNITED STATES DEPARTMENT OF ENERGY 

under Contract DE-AC05-76RL01830 

Printed in the United States of America 

Available to DOE and DOE contractors from  
the Office of Scientific and Technical Information, 

P.O. Box 62, Oak Ridge, TN 37831-0062  
www.osti.gov  

ph: (865) 576-8401  
fox: (865) 576-5728  

email: reports@osti.gov  

Available to the public from the National Technical Information Service 
5301 Shawnee Rd., Alexandria, VA 22312  

ph: (800) 553-NTIS (6847)  
or (703) 605-6000  

email: info@ntis.gov  
Online ordering: http://www.ntis.gov 

http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/


PNNL-35153 

 

 
 
 
 
 
 
 
 
 
 

Universal Fourier Attack for Time Series 
 
 
 
 
September 2023 
 
 
 
Chance N DeSmet 
Michael K Girard 
Lizzy D Coda 
Yijing Watkins 
 
 
 
 
Prepared for 
the U.S. Department of Energy 
under Contract DE-AC05-76RL01830 
 
 
 
 
 
 
 
Pacific Northwest National Laboratory 
Richland, Washington 99354 
 



PNNL-35153 

Abstract ii 
 

Abstract 
A wide variety of adversarial attacks have been proposed and explored using image and audio 
data. These attacks are notoriously easy to generate digitally when the attacker can directly 
manipulate the input to a model, but are much more difficult to implement in the real-world. In 
this paper we present a universal, time invariant attack for general time series data such that the 
attack has a frequency spectrum primarily composed of the frequencies present in the original 
data. The universality of the attack makes it fast and easy to implement as no computation is 
required to add it to an input, while time invariance is useful for real-world deployment. 
Additionally, the frequency constraint ensures the attack can withstand filtering. We 
demonstrate the effectiveness of the attack in two different domains, speech recognition and 
unintended radiated emission, and show that the attack is robust against common transform-
and-compare defense pipelines. 
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Summary 
This report outlines the background, tests, and performance of the most significant outcome of 
the LaserWolf LDRD, the ability to construct a phase-invariant, filtering robust method that is 
capable of working in multiple domains.  This attack has shown success on both acoustic and 
power line communications and has demonstrated superior capability compared to 
contemporary methods. 
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1.0 Introduction 
The quantity of proposed adversarial attacks for both image and audio data is vast. Generally, 
these attacks are easy to create and deploy when the attacker can directly modify an image or 
audio recording that a model receives as an input. However, implementation is more difficult in 
the real-world where an attacker must interfere with the data as it is collected. In the image 
domain, this may require printing out a patch or other object and placing it in the scene before 
the scene is photographed and in the audio domain this may require broadcasting an attack 
over-the-air while the data is recorded[1], [17]. 

In addition to the added cost of physically implementing these attacks, real-world attacks are 
also constrained by physical limitations. For example, several speech attacks implemented 
digitally propose computing the attack based on a signal and then mixing it back into the signal 
[2]. However, with real-time streaming speech data this is infeasible because the attack cannot 
be calculated until the signal is recorded, and thus the attack cannot be mixed into the signal 
during recording [3], [11]. Moreover, the frequency spectrum of a real-world speech attack is 
limited by equipment, as many speakers and recording devices are often constrained to emit 
and record frequencies within the range of human hearing, and is also limited from a defense 
perspective, as an attack composed of frequencies outside the frequency spectrum of the 
original, unperturbed data can be removed through filtering. Finally, a speech attack must also 
be robust against environmental effects such as noise and reverberation [18]. 

We propose learning a universal, time invariant attack, v, for general time-series data such that 
the frequency spectrum of v matches the frequency spectrum of the original, unperturbed data. 
Given a trained model f, a universal adversarial attack is a single v such that f(x + v) fools the 
model for most inputs x [12]. The universality of the attack does not require us to know the 
specific signal we are going to attack ahead of time and allows us to efficiently add the attack to 
a signal. The time invariance of the attack means that we can play the attack on a loop and the 
effectiveness of the attack will not be sensitive to the alignment of the start of the attack and 
signal. Finally, the frequency constraint ensures that our attack is robust against basic filtering 
defenses. We demonstrate that this attack is effective on both speech data and unintended 
radiated emission data 

1.1 Methods 

1.1.1 Data  

1.1.1.1 Speech Commands 

The Speech Commands dataset is an audio dataset consisting of one-second clips of one-word 
commands such as ’stop’ or ’go’ sampled at a rate of 16 kHz [16]. For simplicity, we have 
removed audio clips labeled as background noise or unknown from the dataset resulting in ten 
classes with 30k training examples and 3.7k validation examples.  
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1.1.1.2 Corona Duff 

The Corona Duff dataset consists of unintended radiated emission (URE) data from 20 common 
household devices, including a desktop monitor, alarm clock, and a table fan, collected in a 
residential environment [15]. Voltage and current data were collected from each device over 
four non-consecutive ten minute runs at a sample rate of 192 kHz. Our training dataset consists 
of 10k randomly selected 0.1 second segments of voltage data. The validation data consists of 
2k randomly selected 0.1 second segments of voltage data, selected from different data 
collection runs than the training data. Fig. 8 includes a visualization of Corona Duff data.  

1.1.1.3 Preprocessing 

 For both datasets, we convert the time series to a spectrogram as a preliminary step in the 
model pipeline. We adjust the length of the FFT used and the step size between FFT windows 
for each dataset and stack the real and imaginary channels so that the resulting real-valued 
spectrogram has dimensions 2 x 224 x 224. 

1.1.2 Models 

We primarily focus on attacking classifier models. For each of our datasets, we finetune a 
ResNet18 [8] that has been pretrained on ImageNet [4]. The spectrogram obtained as described 
above is the input to the classifier. During training, we add Gaussian noise to the signal in the 
time domain before it is converted to a spectrogram, and then apply random time and frequency 
masking to the spectrogram. 
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1.1.3 Metrics 

We use the adversarial success rate (ASR) as our primary evaluation metric. The ASR of an 
attack is defined as the percentage of originally correct model predictions that the attack 
successfully changes the prediction of. Unlike the error rate, the ASR only counts inputs where 
the attack changes the model prediction and does not give the attack credit for inputs the model 
was originally wrong on. An ASR close to one indicates a highly effective attack. Additionally, 
we compare our models against two simple, baseline adversarial attacks: Fast Gradient Sign 
Method (FGSM) [6] and Universal Adversarial Perturbation (UAP) [12]. We emphasize that 
unlike our attack and the UAP attack, the FGSM attack is not a universal attack, and rather a 
separate attack is generated for each input to the model. 

1.2 Results 

We evaluate the ASR of the adversarial examples, x + αv, where v is the attack and α is 
adjusted to control the SNR. We evaluate the attacks on a white box (WB) model, the model the 
attack was trained on, as well as on a black box (BB) model. For black box evaluation, we 
assume that the attacker does not have access to the model weights, but does have access to 
the model architecture and the model training data.  

As depicted in Fig. 3, on the Speech Commands dataset for all SNRs below 14 dB, the ASR of 
our attack on a white box model (FFT-WB) is above 20%. We emphasize that our goal is not 
necessarily to create a state-of-the-art attack, but rather to create an attack with an ASR that is 
significant enough that a defender would not be able to ignore the attack and would likely spend 
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resources against the attack. On a black box model, the ASR of our attack (FFT-BB) decreases, 
however the ASR is at least 20% for SNRs up to 10 dB.  

On the Corona Duff dataset, the ASR of that attack is at least 35% for all SNRs tested. 
Additionally, on this dataset, the attack is almost as effective on a black box model as it is on a 
white box model. While FGSM does outperform our attack, particularly at high SNRs, we note 
that our attack is a universal attack, whereas FGSM must be calculated for each individual 
input. Visualizations of the learned attacks are available in Appendix A. 

1.2.1 Time Invariance 

In Fig. 4, we test the time invariance of the attack with the SNR fixed at 10 dB. We repeatedly 
play the attack on a cycle and shift the start time of the speech recording or URE data as 
depicted in Fig. 1. The plot also includes an ablation study, where we removed the time 
invariance transformation from the attack training by fixing the random training time shift to t = 0 
in line 4 of Algorithm 1. Both our white box (FFT-WB) and black box (FFT-BB) attack have a 
relatively constant ASR on the Speech Commands dataset, ranging between about 30-37% and 
15-20%, respectively. In contrast, the white box ablation attack has a high ASR of 35% with a 
time shift of zero at evaluation time, but for all evaluation time shifts greater than zero the ASR 
drops below 15%. The black box ablation attack is also sensitive to the evaluation time shift, 
dropping from 13% to below 8% for nonzero evaluation time shifts. The results with the Corona 
Duff dataset are similar as both the white box and black box versions of our attack have an ASR 
between 70% and 73% at all evaluation time shifts, and the ablation attack exhibits a decreased 
ASR when the evaluation time shift is nonzero. 

1.2.2 Robustness to Filtering 

To evaluate the robustness of the attack to filtering, we propose a set-up where a defender 
receives an input, which could be benign or adversarial. The defender filters the received input 
and then evaluates it on a model that has been trained on filtered benign data. Since our 
datasets are composed of mostly low frequency information, we use low-pass filtering. If the 
received input is adversarial and the attack is composed of high frequencies, the filtering should 
remove most of the attack before the model makes its prediction, thus reducing the 
effectiveness of the attack. If the received input is benign, the model prediction should be 
accurate because the model has been trained on filtered benign data. More formally, let fk 
denote a classifier which has been trained on data low-pass filtered with cutoff frequency k. 
Then, fk(low passk (x)) is the classifier prediction on benign input x and fk(low passk (x + αv)) is 
the classifier prediction on adversarial input x + αv. We evaluate the ASR of our attack and our 
baseline attacks on fk for a range of frequencies. Note that the attacks are the same attacks as 
in the previous sections. These were learned on an unfiltered model with unfiltered data and 
were not trained on the fk they are evaluated on.  
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Fig. 5 depicts the results. For reference, we also include a version of our attack trained without 
either L spectrum loss term so that the frequency spectrum of this ablation attack is not 
constrained to match the frequency spectrum of the benign data. We adjust the SNR of each 
attack so that the ASR of each attack is comparable when the cutoff frequency is half the 
sampling rate.  

On the Speech Commands dataset with low pass filtering the ASR of our attack is greater than 
or equal to 32% for all frequencies tested. In contrast, for all other attacks, as lower cutoff 
frequencies are used, the effectiveness of the attack is reduced from an ASR of 40% at a cutoff 
frequency of 8 kHz to below 20% for cutoff frequencies of 500 Hz and below. As depicted in Fig. 
2, the UAP and FGSM attacks have high frequency components which low-pass filtering 
removes.  

 

Similarly, on the Corona Duff dataset our attack has an approximately constant ASR, averaging 
82% across all cutoff frequencies tested. In contrast, the other attacks demonstrate a significant 
reduction in ASR with filtering from a 70% ASR at 192 kHz to below a 40% ASR for the UAP 
and FSGM attacks. Thus, by restraining our attack to only use the low frequencies present in 
the original data, we have designed an attack that is much more robust to this filtering test than 
any of the baseline attacks tested.  
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1.2.3 Transform and Compare Defenses  

Besides filtering, to defend speech recognition systems against white box adversarial attacks, 
several works have proposed a transform-and-compare pipeline to detect adversarial examples. 
Given an input, which could be benign or adversarial, this pipeline compares model predictions 
on the input and a transformed version of the input. Several different transformation functions 
have been proposed including the addition of random noise [13], [5], audio compression [14], 
[19], quantization [9], down-up sampling [9], and filtering [10]. If the distance between the model 
predictions on the transformed and original input is higher than a threshold, the input is flagged 
as adversarial because adversarial examples are generally less robust against perturbations 
than benign examples are.  

 

In the speech recognition system defense pipeline, the character error rate is typically used to 
measure the distance between model predictions. However, because our models are generic 
classifiers rather than speech-to-text models, we use the L2 distance between the model 
outputs of the original input and transformed input. We calculate this distance for 800 benign 
inputs and 800 adversarial inputs. From the resulting distributions, a threshold can then be 
determined to use for flagging adversarial examples.  

 

Using MP3 compression as the transformation function on Speech Commands data, we plot the 
distribution of distances between the original and transformed benign inputs and the distribution 
of distances between the original and transformed adversarial inputs for our attack (FFT) and 
the FGSM and UAP baselines in Fig. 6. For the FGSM and UAP attacks, the distances for 
adversarial data are generally larger than for benign data, making adversarial examples 
generated with these attacks more easily identifiable. For our attack, we find much more overlap 
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in the distribution of benign distances and the distribution of adversarial distances, 
demonstrating that our attack is much more difficult to flag using this defense method.  

Table I reports the area under the curve (AUC) for all transformations tested, averaged over 5 
runs of attack training. Full details of each transformation function, as well as the full AUC plots, 
are in Appendix B. On both datasets, for all transformations tested, our attack has an AUC 
score close to 0.50, averaging an AUC of 0.57 across all transformations on Speech 
Commands and 0.56 on Corona Duff. For comparison, the AUC scores of the baseline attacks 
are much higher with average AUC scores of 0.87 and 0.81 for the UAP and FGSM attack on 
Speech Commands and 0.83 and 0.72 for the UAP and FGSM attack on Corona Duff. This 
indicates that our attack is more difficult to identify using the tranform-and-compare defense 
pipeline.  

 

 

1.2.4  

The universal attack trained on the Speech Commands classifier also transfers to a speech-to-
text model. We test the learned attack on a pretrained, off-the-shelf Deep Speech [7] model. In 
Table II we report the accuracy (ACC), the Character Error Rate (CER) and ASR of our attack 
with a fixed SNR of 5 dB. The CER is defined as (Sc + Dc + Ic)/Nc where Sc, Dc, and Ic refer to 
the number of character substitutions, deletions, and insertions, respectively. While our attack 
as proposed achieves metrics only slightly better than just adding random Gaussian noise to the 
benign data, if we only use Lspectrum1 in training and forego the second training phase with 
Lspectrum2 , the attack is much more effective and transfers very well. 

1.3 Conclusion 

We presented an adversarial attack for general time series data designed for real-world 
implementation. We demonstrate that for both speech and URE data, the universal attack is 
time invariant, robust to filtering, and is robust to common transform-and-compare defense 
pipelines. In the future, it would be interesting to test the attack in a real-world environment as 
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this initial design and testing of the attack suggest that the attack may be well-suited to real-
world implementation 
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