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Abstract

Orthogonal separations of data from high-resolution mass spectrometry can provide

insight into sample composition and help address the challenge of complete annotation

of molecules in untargeted metabolomics. “Molecular networks” (MNs), as used, for

example, in the Global Natural Products Social Molecular Networking platform, are

an increasingly popular computational strategy for exploring and visualizing molecular

relationships and improving annotation. MNs use graph representations to show the re-

lationships between measured multidimensional data features. MNs also show promise

for using network science algorithms to automatically identify targets for annotation

candidates and to dereplicate features associated to a single molecular identity. How-

ever, more advanced methods may better represent the complexity present in samples.

Our work aims to increase confidence in annotation propagation by extending molecular
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network methods to include “molecular hypernetworks” (MHNs), able to natively repre-

sent multiway relationships among observations supporting both human and analytical

processing. In this paper we first introduce MHNs illustrated with simple examples,

and demonstrate how to build them from liquid chromatography- and ion mobility

spectrometry- separated MS data. We then describe a method to construct MHNs di-

rectly from existing MNs as their “clique reconstructions”, demonstrating their utility

by comparing examples of previously published graph-based MNs to their respective

MHNs.

KEYWORDS: Feature annotation, hypergraphs, mass spectrometry, metabolomics, molec-

ular networks, molecular hypernetworks, spectral similarity.

Introduction

Small molecules play a crucial role in various biological processes and are widely studied in

myriad fields such as drug discovery, environmental science, and human health explorations.

However, the identification of small molecules in complex samples can be challenging due

to the sheer number of potential detectable molecular configurations, measured by repre-

sentative signatures, each often with high degrees of intersection. This challenge is further

compounded by the presence of numerous interfering substances and the low concentrations

of the target molecules.

To overcome these challenges, various measurement technologies have been developed to an-

alyze small molecules in complex samples. The most widely used include liquid chromatog-

raphy (LC), which separates molecules based on their physical and chemical properties;

mass spectrometry and tandem mass spectrometry (MS/MS), which fragments molecules

into characteristic pieces and measures the masses of the parent ion and corresponding frag-

ments. Less commonly, though with burgeoning utility, ion mobility spectrometry (IMS) can

be used to differentiate among compounds based on their gas-phase ion mobility, offering
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separation among molecules indistinguishable by LC, MS, or MS/MS, such as stereoisomers.

Other techniques, such as nuclear magnetic resonance (NMR), infrared (IR), and ultravio-

let (UV) spectroscopy, have the potential to further increase discriminatory power through

consideration of additional dimensions. These developments have seen the rise of so-called

“hyphenated” mass spectrometry analyses such as LC-MS/MS, LC-IMS-MS/MS, and IMS-

IR-MS. These technologies generate data sets that are multidimensional, in the sense that

multiple observational dimensions are generated for each feature, e.g. two for LC-MS/MS,

or three for LC-IMS-MS/MS. Such multidimensional data can be challenging to analyze due

to the large amount of information contained within. Additionally, the complexity of the

samples can lead to difficulties in accurately identifying and quantifying the small molecules

present.

Molecular networks (MNs) have been demonstrated as a useful tool for identifying small

molecules in hyphenated MS data.1–3 MNs use mathematical graph structures (edges link-

ing nodes) to represent the relationships among different compounds, including biochemical

reactions, mass spectrometry features, structural similarities, or metabolite correlations.4

Some of the most prominent MNs are used in the Global Natural Products Social Molec-

ular Networking (GNPS)3 environment.∗ GNPS is an increasingly popular computational

strategy for visualizing and interpreting interrelatedness of MS/MS spectra.

MNs offer an overview of the complex data: the network can highlight clusters of compounds

that are likely to be related, which can narrow the search for molecules of interest. Addi-

tionally, the network can represent the relationships between different compounds, which

can provide insight into the metabolism and biotransformation of the small molecules un-

der study. MNs can also facilitate the integration of multiple types of data. For example,

“feature-based molecular networks” (FBMNs)1 incorporate joint information from both the

LC and MS dimensions of the data, which can provide a more nuanced view of the small

molecules present. This form of characterization can be particularly useful when working
∗https://gnps.ucsd.edu
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with complex samples, as it can help to differentiate between compounds that may be difficult

to distinguish based on a single type of data.

Where MNs using mathematical graphs can provide significant value for representing complex

data relationships, they exist as one method within a broader world of “network science” or

“relational data” methods. This has at least two consequences:

• First, in relational data analysis, when considering how to approach multiple data

dimensions (in our case, data dimensions measuring MS, LC, IMS, MS/MS, etc.),

there can be considerable complexity in deciding which dimensions, and in particular

which combinations of dimensions, should be attended to as either the objects to be

focused on, or the relationships between those objects. These choices determine which

particular network “view” of a relational data set is adopted. For example, the view of

GNPS MNs is to attend to MS values as objects with similarities between their MS/MS

spectra used to establish relationships; the views of GNPS FBMNs attend to joint LC-

MS values as objects, while retaining MS/MS spectra similarity for relationships.

• But in addition, relationships in networks can be established between at least two

objects. So where a network, represented mathematically as a graph, is limited to

recording relationships between pairs of objects, a hypernetwork, mathematically rep-

resented as a multidimensional, multiway hypergraph, is not so restricted.

The move from networks (graphs) to hypernetworks (hypergraphs) is a burgeoning move-

ment in data science, and hypergraph methods have been applied to address problems in a

variety of fields, including complex physical systems,5,6 epidemiology7,8 and computational

transcriptomics.9

Accordingly, in this work we introduce “molecular hypernetworks” (MHNs) as an extension

of MNs (including FBMNs) to support the representation of multiway, multidimensional

edges describing connectivity among MS features, and provide some initial indications of
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their utility in metabolomics. Our MHN approach extends MNs by: (1) extending graph

edges on molecular pairs in MNs to multi-way hyperedges among groups of molecules in

MHNs; and (2) considering combinations of MS dimensions, including drift time, retention

time, precursor m/z, and MS/MS to analyze multi-dimensional similarity.

The most obvious utility of MHNs relative to MNs is their ability to augment exploratory

data analysis activities through consequential improvements to visual interpretability. MHNs

visually simplify highly connected regions. In a MHN groups of nodes that are fully connected

are grouped by a hyperedge, reducing the number of lines in the graph. This decrease in

visual noise ultimately eases the interpretation of the underlying data. We will also note

several opportunities to bring network science analytical methods, algorithms, and measures

to bear on such representations, including hypergraph methods such as path and component

analyses where length and “width”, or the amount of overlap among the hyperedges of a

hyperpath,10 can offer analytical insights (see “Networks and Hypernetworks” section below).

Finally, one of the most promising aspect of MN representations is their ability assist with

“annotation”, that is, the association of a particular molecular identify to a certain hyphen-

ated MS data feature. More specifically is the potential to assist with creating new annota-

tions by transferring known annotations of features to features that are very similar, but have

not yet been annotated. In this context, we can interpret feature similarity as distance in the

MN or MHN. But in an MHN, two molecules are no longer only either connected (similar)

or not, as they are in an MN, but they can participate in multiple multi-way similarities

(hyperedges). Annotations can also be propagated using the MHN structure, but the exis-

tence of multiple multi-way similarities among pairs of molecules provides added confidence

for annotation propagation. In this way our work aims ultimately to increase confidence in

annotation propagation by extending MNs to MHNs.

In this paper we first introduce the essential mathematical concepts of graphs and hyper-

graphs on a formal basis, including illustration of simple examples. This includes the “clique
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reconstruction” method of creating a hypergraph representation of a traditional network, in

which each maximal k-clique (set of k vertices, all pairwise connected) is transformed into a

hyperedge of size k, thereby producing a hypergraph. We then define MHNs in the context

of both GNPS networks and hyphenated MS data generally. We first introduce a specific

MHN we built in the context of one particular relational view of a reference data set. We

then describe MHNs derived as clique reconstructions of MNs and FBMNs as used in three

prominent applications of FBMNs as they relate to samples involving human plasma, the

gut microbiome, and plant extracts for the purpose of therapeutic discovery.1,2,11 We will

demonstrate the ability of the MHNs to elucidate connections between groups of features

present in the data, to aid in both discrimination and annotation.

Methods

Networks and Hypernetworks

The structures and methods we introduce rely on the mathematical notions of graphs and

hypergraphs (or “networks” and “hypernetworks”). Before we define molecular networks and

hypernetworks, in the following subsections we provide a brief and basic introduction to the

mathematical structures and notation here. Conceptually, graphs are used to model pairwise

relationships among a collection of entities and are commonly used to interrogate data from

networks such as social and collaboration networks (“friend” or “following” relationships),

transportation (can one transit from point A to point B directly), infrastructure, and protein

interactions, among many others.

Stated generally, a graph starts with a finite set of vertices, V , also referred to as nodes, that

represent the entities of interest. Then, if there is a pairwise relationship in the data between

two vertices, v and u, we say that there is an edge e = {v, u} as an unordered pair of vertices,

and a member of an edge set E. Visually, we can draw a graph by representing vertices as
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points on a plane and edges as line segments connecting the points. Having a graph structure

and visualization can help make sense of complex data. Being able to see that the vertices

are all similarly connected, or that there is one vertex that is highly connected and many

that have very few connections, gives insight to global properties of the data. And we can

discover new connections or relationships not apparent from the edges themselves when there

are indirect connections between two vertices, say v0 and vn, as a path v0, v1, . . . , vn, when

there are edges {v0, v1}, {v1, v2}, . . . , {vn−1, vn} in the graph.

A hypergraph then extends the concept of a graph to allow for relationships to be multi-way,

not just pairwise. Again we start with a set of vertices, V , to represent our entities. But

in a hypergraph we consider relationships among any subset e = {v1, v2, . . . , vk} ⊆ V of the

vertices. Note that in this way, our previous graph edges e = {v, u} ⊆ V are also hyperedges,

just having size k = 2. In this way, we can see that all networks are, in fact, hypernetworks,

just those where all relationships are restricted to being pairwise.

But in many cases such a restriction to pairwise relationships results in information loss.

This can be easily illustrated in a collaboration setting. Consider a paper authored by

three people: Alice, Bob, and Cliff. This certainly implies that Alice and Bob have worked

together, Bob and Cliff have worked together, and Alice and Cliff have also worked together.

A graph structure with edges {A,B}, {B,C}, {A,C} would be used to model this scenario,

as shown in Figure 1(a), where each author is a node, between which a line segment (edge) is

placed when two of the authors have worked together. Note that this diagram is equivalent to

that of Figure 1(b), where now each connection between a pair of vertices in a graph edge is

represented as a group of two vertices, mathematically, a subset of two vertices. However, the

graph does not capture the fact that all three people have simultaneously worked together.

Indeed, the same graph would capture the case where three papers were written, one with

each pair of authors. And in that setting we do not know if the three of them have worked

together as a group, only that the pairs have worked together. The authors’ relationship

is actually best represented as Figure 1(c), where now there’s a single set of three vertices,
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indicating the interaction of all three authors.

Figure 1: Some example networks and hypernetworks among three elements, vertices
V = {A,B,C}. (a) A graph or network. (b) The same graph shown as a 2-uniform hyper-
graph with hyperedge set E = {{A,B}, {B,C}, {A,C}}. (c) A proper hypergraph with a
single three-way hyperedge, so that E = {{A,B,C}}. (d) A general hypergraph with three
hyperedges combining a proper hyperedge e1 = {A,B,C}, a “graph edge” e2 = {A,B}, and
a singleton hyperedge e3 = {C}.

We now introduce these concepts formally. A graph is a structure ⟨V,E⟩ with V = {vj}nj=1

a set of vertices, and E = {fi}mi=1 a set of edges, with each edge fi = {v, u}, fi ∈ E

a pair of vertices v, u ∈ V . https://www.overleaf.com/project/63acc9f6070b8e7157ab5da1

Correspondingly, a hypergraph is a structure ⟨V, E⟩, where now E = {ei}mi=1 is a family of

hyperedges, with each hyperedge a subset ei ⊆ V . Where graph edges involve only two

vertices, hyperedges can come in different sizes, |ei|, possibly ranging from the singleton

{v} ⊆ V (distinct from the element v ∈ V ) to the entire vertex set, so that there is a

hyperedge ei = V . It follows that a hyperedge ei = {v1, v2} where |ei| = 2 is the same

as a graph edge, and therefore all graphs are hypergraphs, specifically identified as being

“2-uniform”. Figure 1(d) shows a general hypergraph with edges of sizes 1 (a “singleton”), 2

(a “graph edge”), and 3 (a “proper hyperedge”). Figure 1(a) and Figure 1(b) are equivalent,

showing the graph and hypergraph representation of the same network, respectively.

Additional mathematical concepts10 that are important for this paper include the degree of

a vertex, which is the number of hyperedges in which it is a member. While vertex degree in

a hypergraph is a strict correlate of vertex degree in graphs, hypergraphs are distinguished
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in that not only can hyperedges have different sizes, but also two hyperedges can intersect in

more than one vertex. If two hyperedges e1, e2 overlap in s vertices, so that |e1∩e2| = s, then

we say that they are s-incident. Graphs are often characterized by their components, or

collections of vertices such that one can travel from any vertex to any other in the collection

via a path of edges between other vertices also in that collection. In hypergraphs, we can

additionally require that paths traveled are through edges that have at least s-incidence for

some s ≥ 1. If there is a sequence of edges e1, e2, . . . , en such that |ei ∩ ei+1| ≥ s for all

1 ≤ i ≤ n−1 then e1 and en are said to be s-connected. Then an s-component is a set of

vertices implied by edges that are all s-connected. As such, 1-connectivity is the equivalent

of “regular” connectivity in graphs. So where the left side of Figure 2 shows a single graph

component (1-component), in the center the set of vertices {A,B,C,D,E} compose the edges

e1, e2, which are connected by two vertices B,C, and thus make a 2-component. Identifying

s-components is important to discover those portions of the data set that have more dense

interactions, indicated by higher s overlaps, and is a property unique to MHNs relative to

MNs.

Clique Reconstruction Hypergraphs

This paper uses the clique reconstruction method to build a hypergraph H(G) from a

graph G, which works as follows. For any given graph G = ⟨V,E⟩, we can identify a clique

of G as a set of vertices U ⊆ V that induces a completely connected subgraph, in that each

vertex pair {v, u} ⊆ U is an edge in E. A maximal clique of G is then a clique U ⊆ V

such that there is no other clique U ′ of G in which U is contained. Given an input graph G,

then its clique reconstruction is a hypergraph H(G) = ⟨V, E⟩ where U is an edge in E if and

only if U is a clique in G. In other words, every clique in G becomes an edge in H(G) and

every edge in H(G) comes from a clique in G.

In the other direction, for any given hypergraph H = ⟨V, E⟩, we can construct its underlying

9
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Figure 2: (Left) An example network (graph) G containing 9 edges in a single component
(1-component). (Center) The hypergraph H(G) which is the clique reconstruction of G.
Each of the three 3 maximal cliques of G is replaced by a hyperedge e ∈ E , which now has
a 2-component e1 ∪ e2 and a 1-component e1 ∪ e2 ∪ e3. G is the underlying graph of H(G),
and note that while the graph degree of C in G is 4, the hypergraph degree of C in H is only
2. (Right) An example of a different hypergraph H ′ with 5 hyperedges. H ′ has the same
underlying graph G as does H(G), and H is the minimal such hypergraph which does.

graph as a graph G = ⟨V,E⟩ on the same set of vertices where a pair {v, u} of vertices is

an edge f ∈ E if and only if there is a hyperedge e ∈ E such that f = {v, u} ⊆ e. In other

words, the underlying graph G is the graph on the same set of vertices V that is “implied”

by the hypergraph H, in that all possible pairwise relationships present in H are included.

The clique reconstruction H(G) of a graph G is the minimal hypergraph that has G as its

underlying graph. It follows that the underlying graph of the clique reconstruction H(G) of

a graph G is equal to G. But, there can be other hypergraphs H ′ ̸= H on V that also have

G as their underlying graph. And it is not generally the case that the clique reconstruction

H(G) of the underlying graph G of a given hypergraph H is equal to the original hypergraph

H. An example is shown in Figure 2, where both of the hypergraphs in the middle and right

have the graph on the left as their underlying graph, whereas the clique reconstruction of

that graph is only the hypergraph in the center.

Central to this method is the recognition that the clique reconstruction H(G) captures all
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of the information in the underlying graph G, but does so in a much simplified format.

Considering H(G) shown in the center of Figure 2, its base graph G on the left is recovered

simply by recognizing that all pairs of vertices in each hyperedge are connected in G. But

H(G) has only three hyperedges, compared to the nine graph edges in G. And additional

information is also available in the hypergraph H(G). Most importantly is that each of

the hyperedges (maximal cliques) e1, e2 and e3 should be considered as a distinct entity,

representing all the mutual interactions of the vertices. And beyond that, the strength

of any relationship between these new entities is also recognized: in the figure, the three

vertices A,B,C making up the hyperedge e1 share two vertices with e2, while e2 shares only

one vertex with e3.

Molecular Networks and Hypernetworks

In the original GNPS application,3 MNs are produced by representing measured MS/MS

spectra as vectors r = ⟨rk⟩pk=1 of MS/MS fragment intensities, where now p is the number of

fragments for a precursor molecule. Binning intensities according to m/z results in vectors

of equal length p for purposes of comparison. Between any two measured spectra r, r′, a

similarity S(r, r′) is calculated as the cosine similarity

S(r, r′) = 1− r · r′

||r|| ||r′||
∈ [0, 1]

of their MS/MS fragmentation spectra, where · is the vector dot product and ||r|| is the

Euclidean norm. S(r, r′) = 1 when the spectra are identical, and 0 when there is no similarity.

GNPS further uses a modified cosine similarity, where the mass difference between precursor

masses is taken into account.12

To construct a MN, the set of measured MS/MS spectra are cast as the set of vertices,

V = {vk}pk=1, so that each vertex, vk, represents a spectrum, rk, of the same index k. Edges

are created between vertices in the MN if the spectra that they represent are similar enough.
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Spectra that are very far apart in the modified cosine similarity are not considered good

candidates to represent structurally similar molecules, and thus are not included as an edge

in the MN, whereas those that are close are. For any particular data set and study, it needs to

be determined what is “close enough” for two spectra to be seen as linked in the network, and

that is set as a tolerance or minimum weight w ∈ (0, 1]. Retaining pairs of spectra for which

S(ri, rj) ≥ w results in a graph structure G = ⟨V,E⟩, where E = {{vi, vj} : S(ri, rj) ≥ w}

is a set of graph edges.

In GNPS,1 Feature-Based Molecular Networks (FBMNs) are constructed by a similar method,

but the vertices v ∈ V represent pairs of MS/MS spectra consolidated over joint LC-MS re-

tention times.

Data Preparation

We now describe the two kinds of MHNs considered in this paper: an MHN developed de

novo from internal standards data, and MHNs developed as clique reconstructions of GNPS

FBMNs.

Internal Standards

To explore construction of MHNs using separation dimensions (e.g. ion mobility drift time,

liquid chromatography retention time), we analyzed samples containing stable isotope la-

beled internal standards added to plasma and liver samples. Standards were obtained from

a mix of NIH standards representing nine metabolite classes and the QreSS kit from Cam-

bridge Isotope Laboratories (MA, USA). The samples were chromatographically separated

using hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chro-

matography (RPLC) chemistries in separate injections. The LC system was coupled to an

Agilent 6560 ion mobility quadrupole time of flight mass spectrometer (Agilent Technologies,

CA, USA), and the standards were analyzed in both positive and negative ionization mode.
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The MS/MS data were acquired at collision energies of 10, 20, and 40eV using an all-ions

fragmentation approach with frames alternating between high and low fragmentation using

a mass range of 50-1500 m/z.

Published Feature Based Molecular Networks

Next we were interested in comparing MHNs against prominent MNs and FBMNs as used in

the literature. We reanalyzed three networks previously analyzed by feature-based molecular

networking1 using MS/MS spectra similarity, comparing the resulting MHN to the original

MN.

Plasma: The first network was derived from analysis of human plasma (MassIVE ID MSV00008263)

collected on an ultra-high performance liquid chromatography device (Vanquish, Thermo

Fisher Scientific, MA, USA) coupled to an Orbitrap mass spectrometer (Q Exactive,

Thermo Fisher Scientific, MA, USA). The GNPS FBMN was constructed from 20,853

positive-mode features, related by modified cosine similarity of respective MS/MS spec-

tra. Network edges were filtered to have a cosine score above w > 0.65 and more than 3

matched peaks. A subcomponent of the FBMN containing Ethylenediaminetetraacetic

acid (EDTA) was considered for comparison to the MHN-based approach.

American Gut Project: The second network was constructed from the analysis of fe-

cal samples from the American Gut Project (MassIVE ID MSV000080179) using a

reversed-phase high-performance liquid chromatography device (Dionex UltiMate 3000,

Thermo Fisher Scientific, MA, USA) coupled to a quadrupole time of flight mass

spectrometer (Impact HD, Bruker, MA, USA).11 The GNPS FBMN was constructed

from 194,528 positive-mode features, related by modified cosine similarity of respec-

tive MS/MS spectra. Network edges were filtered to have a cosine score also above

w > 0.65 and more than 5 matched peaks. A subcomponent of the FBMN containing

several N-acyl amide isomers was used for comparison to the MHN-based approach.
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Euphorbia Dendroides: Finally, the third network was created from analysis of 14 Eu-

phorbia dendroides plant sample extracts (MassIVE ID MSV000079856) using an HPLC

Ultimate 3000 system (Dionex, Voisins-le-Bretonneux, France) coupled to a hybrid lin-

ear ion trap/Orbitrap mass spectrometer (LTQ-XL Orbitrap, ThermoFisher Scientific,

Les Ulis, France).2 The GNPS FBMN was constructed from 7,383 positive-mode fea-

tures, related by modified cosine similarity of respective MS/MS spectra. Network

edges were filtered to have a cosine score above w > 0.7 and more than 12 matched

peaks. A subcomponent of the FBMN containing 4-deoxyphorbol esters was used for

comparison to the MHN-based approach. For each, the FBMN was obtained from

GNPS, from which MHNs were constructed by way of clique reconstruction, detailed

in the following section.

Building Molecular Hypernetworks

All MHNs in this study were represented in PNNL’s HyperNetX (HNX) hypergraph modeling

platform†. For any hypergraph H, HNX supports identification of all s-components (1 ≤

s ≤ 10), which can be visualized in HNX’es hypergraph visualization “widget” tool‡, along

with relevant statistics (see Figure 4 below).

To build the clique reconstructions of the three studies’ FBMNs, each network G was ini-

tially loaded with GNPSDataPackage§ and processed with the NetworkX graph package¶ to

extract all maximal cliques U ⊆ V . These were then established as hyperedges by clique

reconstruction in each H(G) in HNX.

We have produced code and an interactive Jupyter notebook for converting GNPS FBMNs

to MHNs via clique reconstruction. The exploratory data analysis workflow provides utility

functions for filtering data (e.g., by parent mass, consensus retention time, compound name,
†https://pnnl.github.io/HyperNetX
‡https://github.com/pnnl/hypernetx-widget
§https://github.com/Wang-Bioinformatics-Lab/GNPSDataPackage
¶https://networkx.org/

14

PNNL-35121 



and adduct) and searching for hypergraph s-components containing nodes with the filtered

values. In some cases HNX was extended to meet the needs of this work and, additionally,

notebooks specific to metabolomics and GNPS graphs were developed.

To complement the interactive widget, we provide an extra utility for interfacing with the

GNPS Browser Network Visualizer, to view the original MN source, and Metabolomics

Spectrum Resolver‖, to view the MS/MS spectra associated with any node.

Results

Internal Standards

Figure 3: A component of a molecular hypergraph representation of observations of internal
standards data. Here nodes indicate distinct precursor m/z values. Nodes are grouped
into hyperedges when they have the same drift and retention times, as indicated by the
pairs (d, r) annotating each hyperedge. Candidate annotations are shown. The value after
the candidate annotation represents the expected number of deuterium substitutions. For
example, “Fructose_D7” denotes a fructose molecule with seven deuterium substitutions.
Any putatively observed isotopologues are designated relative to the monoisotopic mass,
e.g. [M1+H]+ has one additional neutron compared to [M+H]+. Any putative annotation
associated with fructose or glucose has green text (see discussion in text).

‖https://metabolomics-usi.ucsd.edu/
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As introduced above, there is great flexibility to represent complex, multi-dimensional rela-

tional data in different “views” in an MN or MHN. To both show this flexibility in MHNs and

introduce their basic properties, we used our internal standards data to generate a de novo

MHN that cannot be generated as the clique reconstruction of a GNPS MN.13 A portion is

shown in Figure 3, where vertices v ∈ V are distinct precursor m/z values, and hyperedges

e ∈ E surround groups of m/z values with the same LC-IMS (drift time, retention time)

pairs. Nodes are colored by m/z, and sized by intensity aggregated over the three feature

dimensions. Edges are colored by retention time.

Candidate annotations were assigned using BEAMSpy∗∗, to nodes that were within 15ppm

of the mass of a molecule known to be present within the sample. During this step we only

considered putative annotations of monoisotopic mass (M) and single-isotope isotopologues

(M1). The only exception was the annotation assigned to the feature with mass 211.099,

which has a ppm error of 30. A list of adducts that were considered and molecules known to

be present in the sample can be found in the Supplemental Information (ESI-MS-adductsM0-

6.csv, NIH_compounds.csv).

The resulting de novo MHN gives several lines of evidence for the presence of deuterated

fructose and/or glucose (Figure 3). Five different nodes were putatively annotated as being

five different adducts of deuterated fructose and/or glucose. Of these five nodes, three of

them are annotated as three different forms of sodiated sugars. Specifically, the nodes with

m/z 210.095 and 211.099 are annotated as the sodiated form and its M1 isotopic peak. The

third node (m/z=209.089) could be explained by sodiated sugar that underwent deuterium

hydrogen backexchange, which has been previously observed in proteomics data.14 Based

off these annotations, we would expect all three forms to have the same retention and drift

time. This expectation is shown by the MHN in that a large triangular hyperedge on the

right, with retention time of 8.203 minutes and drift time of 23.582 milliseconds, connects all

three nodes. In addition, the remaining two nodes (m/z=188.112 and m/z=187.108) were
∗∗https://github.com/computational-metabolomics/beamspy
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annotated as two forms of the protonated adduct are connected by two different hyperedges.

This meets our expectation that molecules that undergo hydrogen deuterium exchange will

retain the same retention and drift time.

Finally, a relatively abundant feature with m/z 396.190 was not annotated from the known

contents of the internal standards mixture. However, this compound shares drift and reten-

tion times with fructose-D7 and glucose-D7 isotopologues, signaling the potential to infer

annotation by propagation. For example, a sodiated dimer of fructose/glucose-(D6/D7),

by way of deuterium-hydrogen back exchange, yields an m/z congruent with that of the

observed feature; that is, within 8 ppm m/z error.

Example of a Clique Reconstruction Molecular Hypernetwork in Hy-

perNetX

A MN of Euphodendroidin connectivity generated from the Euphorbia Dendroides data

using Cytoscape†† is shown in Figure 4A. The 1-component of the MHN built from the

corresponding clique reconstruction is shown in Figure 4B, generated by the HyperNetX

visualization widget. The HyperNetX tool provides both a flexible, interactive environment

to position nodes and hyperedges as well as the ability to display annotations, hover to

expose all feature dimensions, and panels for overall statistics including degrees, edge sizes,

and related attributes.

Note the tremendous advantages for exploration of these data available in this MHN repre-

sentation in HNX as revealed in Figure 4. The branches of the MN on the left and right of

(A) are clearly recreated in the MHN in (B). While the central region of the graph (A) is a

much more complicated region, showing great connectivity, it is not complete connectivity.

In fact, the maximal clique structure of that central region is revealed in the hyperedges

in (B). Indeed, in fact, that region consists of five sub-neighborhoods which are completely
††https://cytoscape.org/
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A

B

Figure 4: Euphodendroidin component from the molecular network and hypernet-
work for Euphorbia dendroides plant samples2 A) MN component in the Cytoscape15

interface depicting connectivity of Euphodendroidin . B) Corresponding MHN 1-component
in the HyperNetXWidget interface. The left pane contains hypergraph statistics including
vertex degree and hyperedge size distributions, while the right pane holds an interactive
visualization environment for manipulating the MHN. Additional information is displayed
when hovering over a node, as shown.
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connected within them, but not between them. The highlighted node “euphodendriodin F

(36)” has maximal degree at 5, indicating that it is included in all five of these regions, but

it is the only one so. None of these insights are available in the MN shown in (A).

The overall HyperNetX Python environment additionally provides a wide range of hyper-

graph analytical methods, including s-components but also extending to a host of hypergraph

analytics10 that can be used to further analyze both individual and groups of components

in the context of the structure of the overall hypergraph. Some of the s-component results

are shown in Figure 5. The left panel shows the cumulative distribution of the sizes of s-

components, 1 ≤ s ≤ 10 in terms of the total proportion of hyperedges in the MHN. Here

we have excluded singleton components consisting of a single edge (of any size) disconnected

from others. We can see that such singletons are the bulk (100%−40% = 60%) of the edges,

and also that there are just a few components with high s (minimum walk “width” connect-

ing any pair of edges). The central panel shows the size distribution of the components,

revealing one large 1-component containing more than 50 hyperedges, but many more with

fewer. The right panel shows the distribution of the annotations available from GNPS in the

graph over the components, indicating the identity of the component shown in Figure 4.

Figure 5: Non-singleton s-component statistics for molecular hypernetwork for
Euphorbia dendroides plant samples.2 Euphodendroidin component shown in Figure 4
is marked with a star in the annotation density plot (right).
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Clique Reconstruction Molecular Hypernetworks

We now illustrate some properties of molecular hypernetworks by displaying the clique recon-

structions of GNPS-derived MNs in Figures 6, 7, and 8. As discussed above, we reanalyzed

three datasets originally presented in the paper introducing feature-based molecular net-

working1 by building their clique reconstruction MHNs. As noted above, functionally, this

means that groups of nodes that are fully connected, i.e., all pairs of are connected to each

other in a MN, are grouped by a hyperedge. We will see that the relationships described by

a standard MN are contained within the MHN. And while the overall structure of the MN

is recreated by a MHN, it can offer additional clarity in depicting multi-vertex relationships.

When displayed, this can replace a large group of individual binary edges in the MN with a

single hyperedge polygon in the MHN to display them as a collection of highly similar nodes.

An analysis of the network containing N-acyl amides in fecal samples illustrates how the bi-

ological insight gained from networks are realized in hypernetworks (Figure 6), and perhaps

better so in terms of simplified and clearer visual representations. In this component, two

sets of isomers share high spectral similarity. One set of three nodes were previously identi-

fied as N-(hydroxyhexadecanoyl)glycine isomers (m/z=330.2642) and the other set of three

nodes were identified as N-(hydroxyheptadecanoyl)glycine isomers (m/z=344.2801).1 These

two sets of isomers are very similar as one set of compounds has a slightly longer carbon

chain, and therefore their MS/MS is expected to be similar. All the similarity values are

above the cosine similarity threshold, but there are specific fragments driving the similarities

within each set (supplemental Figure 1). Both the MN (Figure 6A) and MHN (Figure 6B)

showed the similarity within and between the two sets of isomers. However, rather than

15 edges in a MN, the MHN more clearly showed, via a single hyperedge encompassing all

six nodes, that the two sets of isomers all have similar MS/MS. Two other clusters of re-

lationships can be observed in the hypernetwork due to additional shared fragments which

are unique to the other hyperedges or due to more similar abundance patterns (supplemen-
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A B

Figure 6: Comparison of molecular network and molecular hypernetwork using
data from the American Gut Project (A) Molecular network view of N-acyl amides
found in gut samples (Figure 2-d in the original publication1). Nodes indicate the precursor
m/z and edges correspond to relationships with cosine score > 0.65 and number of matched
peaks > 5. Colored nodes indicate two groups of isomers: 330.26 m/z in red and 344.28
m/z in blue. (B) Clique reconstruction molecular hypernetwork view of the same data
found in (A). Both kinds of networks are able to represent the same information for simple
networks like this example, but the hypernetwork is visually simpler. Rather than pairwise
relationships represented by multiple edges in (A), a single hyperedge in (B) captured all
relationships within the related molecules and directly represents the high spectra similarity
among the 2 set of isomers in a simpler way.
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tal Figure 1). The 554.47 m/z ion is related to two isomers due to additional fragments

at the low mass range. The 312.25 m/z ion, annotated as a putative new derivative, N-

(dehydrohexadecanoyl)glycine, has a cleaner MS/MS and is related to a single isomer, due

to the more similar abundance pattern at the low mass fragment ions.

Figure 7 depicts an FBMN graph centered on the [M+H]+ ion m/z = 293.0978 for the

chelator EDTA. In-source fragment ions are observed including masses 247.0926, 160.061,

132.0808, and 114.055. The NIST MS/MS library contains data for this ion, which indi-

cates that 293 gives rise to 247, 247 gives rise to 160, and 160 gives rise to 132 and 114

fragment ions. This MSn experimentally-derived fragmentation tree is partially reflected in

the network structure, with 293, 247, and 160 sharing membership in a hyperedge, and the

fragment ions 132 and 114 more peripheral in the MHN. In the MN, EDTA (m/z=293.0978)

is connected to an in-source fragment ion (m/z=247.0926) derived from EDTA via a single

edge. However, in the MHN, these two ions share membership in four different hyperedges,

which we call their “adjacency”.

Additional network observations are possible as well. For example, in the MN we can observe

that the minimal path from the central fragments to the peripheral fragments goes through

a path involving the 387 node for the 160 fragment, and 286 for the 247 fragment, and then

the 159 node for both. But in the MHN we can see that that chain involves 2-connectivity

for the first step, and then 1-connectivity to reach the peripheral fragments. This level of

specificity may reveal hidden relationships or putative identities of other measured features.

Further, the left side of the MN and MHN in Figure 7 contains a small sub-network composed

of ions 638, 639, 930, 983, and 991. While this was not annotated in the original manuscript,

the ions at 638.0989, 639.1066, and 930.1904 can be putatively annotated as manganese

adducts [2M0 + Mn - H]+, [2M1 + Mn - H]+, and [3M0 + Mn - 3H]+, respectively.

These three adducts are found in a single hyperedge (blue) which partially overlaps with the

purple hyperedge containing 638, 930, 983, and 991. While we could not assign a putative
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B

Figure 7: Comparison of molecular network and molecular hypernetwork for
EDTA (A) A molecular network view of the network around centered around in EDTA
that was derived from Figure 2F of Nothias et al .1 (B) A molecular hypernetwork view of
the same data found in (A). Note that edge colors are for visualization purposes only. In
addition, note that the red node is EDTA, blue nodes are in-source fragments of EDTA, and
green nodes are possible manganese adducts.
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annotation to the signal at m/z 991, the signal at 983.0974 is consistent with [3M0 + 2Mn

- 3H]+. All putative annotations are consistent at < 20 ppm mass error. The hyperedges

of the manganese multimers potentially reflect mechanstic processes of ion formation: the

primary [M+H]+ ion is most closely associated with the M0 isotope of the manganese dimer

[2M0 + Mn - H]+ and more distal to the doubly adducted trimer [3M0 + 2Mn - 3H]+. This

pattern has the potential to reflect ion cluster formation mechanisms, as the 2Mn adduct

is unlikely to form without prior formation of the single manganese dimer. While these

interpretations will require further validation, they highlight the potential of hypernetworks

to improve interpretation of FBMN. Electrospray-ionization based chelation behavior has

been validated in other studies,16 lending further support to this interpretation.

To show this visual improvement, we compared a MN and MHN view of a highly connected

component that resulted from an analysis Euphorbia dendroides plant samples. Specifi-

cally, we focused on a highly connected subcomponent of 10 nodes that contained six 4-

deoxyphorbol ester isomers (lower right of Figure 8A and Figure 8B). While the MN readily

showed that the component is highly connected, it was difficult to determine whether the

subcomponent is fully connected (Figure 8A). On the other hand, the MHN easily showed

that while these 10 nodes are not fully connected, a subset of eight nodes (blue edge) and

seven nodes (brown edge) are fully connected (Figure 8B).

Discussion

In a conventional graph, if there are multiple relationships among a group of nodes, each

relationship must be represented by a separate edge, which can lead to a cluttered visual

representation. In a hypergraph, a single hyperedge can connect multiple nodes, which sim-

plifies the visual representation by reducing the number of edges. For example, consider the

network depicted in Figure 8: the MN representation (Panel A) has a high degree of inter-

connectedness among nodes representing 4-deoxyphorbol esters, yet the explicit relationships
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B

Figure 8: Comparison of molecular network and molecular hypernetwork for Eu-
phorbia dendroides plant samples (A) A molecular network view of 4-deoxyphorbol esters
(red nodes) that was derived from Figure 2B of Nothias et al .1 (B) A molecular hypernet-
work view of the data in (A). Note that edge colors are for visualization purposes only. In
this example, hypernetworks improve interpretability among highly connected vertices with
a high degree of edge occlusion in the MN representation.
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are difficult to interpret due to edge occlusion. This enables immediate interpretability of

the apparent many-way relationships, as well as the degree of relatedness between collections

of nodes. More generally, this representation of hierarchical relationships, wherein a node

can be a part of multiple hyperedges, is more readily apparent by hypergraph visualization.

Additionally, the connectivity relative to a feature of interest arises naturally from hypernet-

work construction. Again consulting Figure 8, the MN representation generated in Nothias

et al. truncates the graph relative to the 4-deoxyphorbaol ester isomers. In the MHN rep-

resentation, hyperedge connectivity resolves to a natural terminus, whereby prospectively

relevant features are visualized without stoppage criteria defined by the user.

However, there are challenges that arise from representing connectivity in this multiway

fashion, most notably how to transfer annotations often present along binary edges in MN

representations to corresponding hyperedges in an MHN derived through clique reconstruc-

tion. In the context of GNPS-based structure similiarity MNs, these typically represent

differences in m/z between connected nodes. The information conveyed by this network

adornment has useful implications, such as identifying in-source fragments, changes in func-

tional groups, and other structural motifs, which are currently absent in MHN renderings.

We note that the software used to generate the MHNs, HNX, is highly flexible and stew-

arded by the authors’ institution. As such, a future extension to reveal binary edges and

corresponding annotations upon node hover will be developed, achieving a hybrid, best-of-

both-worlds solution.

Conclusion and Future Work

Determining the relatedness of metabolites studied by hyphenated mass spectrometry tech-

niques poses a significant challenge, simplified to some degree by representing detected fea-

tures as a graph. To advance the interpretation of mutually related features, whether by

structural similarity or otherwise, we developed an extension of binary molecular networks to
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molecular hypernetworks, enabling multiway, multidimensional connectivity among network

vertices. While this effort represents only a proof-of-principle application of hypernetworks

to metabolomics, improvements to exploratory data analysis activities, such as visual inter-

pretability, are readily apparent. Additionally, this work serves as a foundational point of

departure towards more principled application of network and hypernetwork science. For

example, there are a multitude of statistics widely applied in network science to facilitate

exploratory data analysis, including path lengths, connectivity analysis, centrality analysis,

etc. Congruently, similar metrics exist for hypergraphs, though with differing assumptions

and resulting interpretations. For example, the concepts of s-connectivity and edge size

(the number of vertices contained by a hyperedge) could be used to (i) triage annotation

propagation targets, (ii) identify in-source fragments, and (iii) identify chemical background

and/or contamination, such as analytes that elute throughout the LC experiment, among

others. More advanced topics like hypergraph clustering could be applied to identify groups

of related spectra in a new way that respects the varying levels of s-connectivity provided

when modeling this data as an MHN. Critically, while the literature reviewed for this work

mentions the suitability of MNs for analysis by graph/network theory algorithms, such appli-

cations have been limited to minimum path length queries.4,17 In future works, we intend to

further develop MHN functionality to facilitate a “network analysis tool suite”, prospectively

easing the process by which data-informed (bio)chemical interpretations are made.

Another forward-looking extension of the MHN representation is to define connectivity rela-

tive to multiple representations of the underlying data. While not unique to MHNs relative

to MNs, as evidenced by Ernst et al.,18 the suitability of multilayer MHN connectivity has

yet to be assessed. For example, a structural similarity MHN constructed from MS/MS

spectra can be connected to a MHN relating features and adducts to “ion identity”, such

as in Schmid et al.19 In turn, these networks can additionally connect to a mass difference

network, defined by m/z deltas among precursor ions, to engender a more complete view of

the underlying biochemical relatedness among analytes under study.
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In all, MHNs represent a promising tool in the analysis of complex relationships underlying

high-dimensional mass spectrometry data.
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