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Abstract 

This report provides an overview of the domain space and solution techniques that could be used 

to create a robust, flexible app deconfliction service. Three approaches are reviewed with 

summaries of the characteristics, elements, and results from preliminary demonstrations of 

solution techniques based on each approach: 1) rules and heuristics, 2) cooperation, and 3) 

optimization.  

The strengths and weaknesses of each solution technique were explored through a set of numerical 

demonstrations on modified IEEE 123 node and 9500 node test feeders. An alternatives analysis 

of individual deconfliction elements was performed with each solution technique element 

evaluated against criteria reflecting the dynamic app environment, need to balance app objectives, 

and scalability issues versus the number of applications, setpoints, and distributed control areas.  

It is anticipated that a combined solution for a GridAPPS-D Deconfliction Service can be 

formulated using a combination of elements from each solution technique. The combined solution 

would combine 1) device control budgets to reduce the size of the solution space by constraining 

system setpoints to those will not result in accelerated degradation of physical assets, 2) system 

operations rules to constrain the solution space by eliminating setpoints that result in violations of 

system limits or operational best practices, 3) contextual status signals shared with or among apps 

such that they could update their desired setpoints based on the evolving context, 4) a mediator 

that incentivizes apps to come to a cooperative solution, and 5) Setpoint-informed optimization as 

a fallback mechanism if a cooperative solution cannot be agreed upon by applications. 
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Acronyms and Abbreviations 

ADMS  Advanced Distribution Management System 

CIM  Common Information Model 

CVR  Conservation Voltage Reduction 

DER  Distributed Energy Resource 

DSO  Distribution System Operator 

EIA  Energy Information Administration 

JSON  JavaScript Object Notation 

MAS  Multi-Agent System 

MCDM  Multi-Criteria Decision Making 

MILP  Mixed Integer Linear Program 

SMARTER Simple Multi-Attribute Rating Technique Exploiting Ranks 

SoC  State of Charge 

WAPA  Western Area Power Administration 

XML  eXtensible Markup Language 
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1.0 Introduction 

This report summarizes and synthesizes approaches from different domains for solving the “app 

deconfliction” problem. that arises when different applications – or apps – in an advanced 

distribution management system (ADMS) or similar app-hosting platform attempt to control the 

same devices or actuators. In advanced distribution operations, the introduction of an open data-

integration platform promises two advantages over vertically integrated platforms: 1) the open 

platform increases the total decision space available to apps by removing hidden restrictions on 

app functionality, operating conditions, and access to devices that effectively create orthogonal 

decision spaces for each app in order to avoid conflict; and 2) the open platform enables 

implementers to choose a set of best-of-breed apps rather than those paired with a vertically 

integrated solution. In this way, the open platform will tend to lead to device-setpoint conflicts as 

independently developed apps attempt to achieve their best outcomes by controlling as many 

devices as they can. 

Prior work identified a formal deconfliction problem [1] and three categories of techniques – or 

solution domains – that can be used to solve multi-criteria, multi-stakeholder, and/or multi-

objective problems like the deconfliction problem; namely, 1) rules & heuristics, 2) cooperation 

or negotiation, and 3) optimization. These three solution domains were investigated independently 

under the premise that solutions could be decomposed into elements and that elements from any 

or all domains can be recombined to describe a wide range of multi-domain strategies. In Section 

2, a summary characterization is provided for each solution domain. In Section 3 a demonstration 

testbed is described. In Section 4, at least one example solution technique from each solution 

domain is presented. The parameters for each example were selected to highlight unique aspects 

of the corresponding domain and technique; therefore, example scenarios are technique-specific, 

and results cannot be compared side-by-side. In Section 5, an alternatives analysis examines 

elements of each solution domain for suitability in the GridAPPS-D environment. GridAPPS-D is 

an open-source platform that supports the development and maturation of modular and distributed 

apps for advanced grid operations [2]. A technique that combines elements from each solution 

domain is described. This combined-technique description will inform design and implementation 

of an initial GridAPPS-D deconfliction service. 
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2.0 Background 

This section summarizes prior work that characterized three domains of solutions to multi-criteria, 

multi-stakeholder, and/or multi-objective problems. The solution domains were described based 

on the premise that individual solutions can be decomposed into elements, which can be 

recombined to describe a wide range of possible solutions to the deconfliction problem. Section 

2.1 describes using rules and heuristics to solve the deconfliction problem. Section 2.2 describes 

using cooperative multi-agent frameworks to solve the deconfliction problem. Section 2.3 

describes using optimization to solve the deconfliction problem. 

2.1 Rules & Heuristics Characterization 

The rules-based deconfliction methodology is the first of three alternative numerical solution 

techniques that can be used within the deconflictor. The approach applies a set of asset-based 

heuristics to reduce the size of the solution domain and then select the combination of device 

setpoints that results in an optimal tradeoff between technical, economic, environmental, and social 

decision criteria selected by the distribution system operator (DSO).  

Selection of the decision criteria used within the deconflictor is based on the operational priorities 

of the DSO and can incorporate objective functions shared by apps to incentivize cooperation. The 

decision criteria are ranked by the DSO from most important to least important for each set of 

operating conditions and then weighted based on their relative importance. The set of criteria and 

their importance ranking may change based on evolving grid conditions as the system degrades 

from “normal” to “alert” to “emergency” operations. Thus, during “normal” operations, the DSO 

may value operating profit and carbon emissions as most important, but during a storm, restoration 

times and customers served may be the most important criteria [3]. 

The set of device setpoints that result in an optimal tradeoff between the selected decision criteria 

can be located through a discrete optimization approach or discrete multi-criteria decision-making 

(MCDM) techniques. In [4], [5], the simple multi-attribute rating technique (SMARTER) [6] was 

used to select discrete alternatives formulated as combinations of discretized device setpoints. The 

degree to which each setpoint combination satisfied the decision criteria was evaluated through 

snapshot power flows calculated for the given timestep with all devices set to the selected setpoint 

or control mode. This approach is useful for both devices with discrete controls (such as voltage 

regulator taps and capacitor banks) and new inverter-based resources controlled through 

specification of control modes via the MESA-DER protocol [7]. Implementation of discrete 

inverter control modes (such “volt-watt” and “power-factor-correction”) as discrete alternatives 

within an MCDM framework is much simpler than within a multi-objective optimization scheme. 

To avoid multiplicative growth of number of alternatives to be evaluated, a distributed approach 

was used, in which devices were grouped into local control areas based on the network topology. 

Three approaches were compared in [5]  to decompose the deconfliction: 1) by grouping all devices 

within each topological area, 2) by grouping all devices connected to each phase, and 3) by 

considering each device separately in a fully decentralized manner. The fully decentralized method 

was shown to produce near-optimal results with significantly reduced computation times.  
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To further reduce the size of the solution space and number of alternatives to be considered, the 

rules-based deconfliction methodology applies a set of heuristic asset rules derived from the 

temporal reservoir drainage water budgets used for over fifty years in dispatch of hydroelectric 

power plants [8], [9]. Device controls budgets are established for each asset by the DSO and 

specify the maximum number of duty cycles and actions that impact asset lifespan that may be 

performed over a given time interval. Examples of controls budgets include battery 

charge/discharge cycles per day, regulator tap changes per hour, and transformer winding 

overheating minutes per year. A full list of 30 asset-centric technical, economic, environmental, 

and social rules are given in [4]. The deconflictor may use these asset rules to evaluate whether 

any setpoints violate any of the selected rules and eliminate those setpoints from the solution space 

prior to solving snapshot power flows and calculating criteria scores. 

2.2 Cooperation Summary Characterization 

Cooperative decision-making has been a commonly used approach for conflict resolution in multi-

agent system (MAS) [10] for various engineering apps, including distributed artificial intelligence, 

building energy and comfort management, and multi-microgrid coordination. Stemming from the 

general theory of cooperation, this approach focuses on a cooperative decision-making framework 

for conflict resolution among distribution system apps, thereby enabling independently developed 

apps to operate together in a compatible and constructive way.  
 

Figure 1: Process flow for enabling cooperation among distribution apps [25] 
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From the operations perspective of an electric power distribution system, conflicts may arise in 

modular platforms when multiple apps with different objectives share controllable resources. 

These conflicts may create the following operational issues: arbitrary response of devices, 

oscillating system behavior, or apps failing to achieve their respective objectives.  Existing 

literature presents a set of conceptual process elements for enabling cooperation in MAS [10],  

[11]. Cooperative decision-making for conflict resolution among distribution system apps can be 

achieved through systematically implementing a cooperative process. Figure 1 presents the flow 

of the processes involved in enabling cooperative behavior among apps. To begin the process of 

cooperation, the primary components driving the need for cooperation need to be identified. From 

the DSO perspective, these include the objectives of the apps, their span of control, and any overlap 

in their goals.  The next stage of achieving cooperation is enabling coordination among the agents, 

which aims at the joint determination of common goals. From the perspective of the apps, such 

goals can be the ability to trade-off objectives and control resources in a shared fashion. In order 

to enable apps to achieve deconfliction cooperatively, potential mediation techniques for conflict 

resolution need to be identified. 

Mediation for conflict resolution can be realized through numerical techniques which can be 

broadly categorized into a combination of press-, compensate-, advise-, and ignore-based actions. 

Cooperation can be enabled by implementing the conflict resolution techniques to achieve the 

identified common goals. This can be achieved through systematically determined contextual 

signals that can influence the behavior of the apps through a combination of the above-mentioned 

actions towards archiving a cooperative trade-off among all participants.   

There exists a wide range of cooperative solutions available to influence the behavior of apps 

through a combination of contextual signals (press, compensate, advise, and ignore) towards a 

desirable compromise for all participating actors.  Some of the primary solution techniques include 

game theory, multi criteria decision making (MCDM), and decomposition-based methods.  Game 

theory is a key mathematical tool for solving decision-making problems involving multiple entities 

or players. Game theory techniques can be broadly categorized into 1) non-cooperative games that 

focus on strategic decision-making problems among greedy players with conflicting objectives or 

payoffs over the strategy space and 2) cooperative games that focus on stable coalition among 

players, in the presence of some binding agreements, that can improve their overall utility. MCDM 

techniques focus on subjective evaluation of criteria based on combining conflicting qualitative 

and quantitative goals into a single weighted objective. Decomposition techniques present an 

approach to transforming a multi-objective decision-making problem into simpler subproblems 

through a weighted sum of objective functions that would enable individual apps to solve their 

objectives separately by adjusting their decision variables based on information received from 

other participants toward achieving a global objective.  

2.3 Optimization Summary Characterization 

Optimization strategies play a key role in the operation and control of the power grid; we even 

expect that many (or even all) of the individual apps of interest will implement an optimization 

problem internally to aid them in deciding their setpoint requests. We started our effort with an 

exhaustive mapping of the sources and types of information that the deconflictor can utilize to 

build and solve an optimization problem to determine deconflicted setpoint commands [12]. 
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The first potential source of information to the deconflictor is, of course, apps themselves. They 

can provide mathematical representations of their internal models and/or goals, thus allowing the 

deconflictor to get a better understanding of their operation and reach a more optimal conflict 

resolution. This necessitates a pre-agreed communications framework between apps and the 

deconflictor to ensure efficient exchange of information that is comprehensible by both sides of 

the exchange. It is worth noting here that the only strict requirement placed on individual apps that 

wish to engage with our deconfliction framework is to provide setpoint requests for the grid 

devices they want to control. All additional types of information are optional.  

The deconflictor can obtain supplementary information from enabling systems, as well as 

knowledge of system constraints. Enabling systems are systems other than apps that provide the 

deconflictor with awareness of the past, present, and future grid conditions. These include 

databases that store historic information about the grid, measuring devices that supply information 

on currents and voltages at different parts of the power system, and load and temperature forecasts. 

System constraints are the requirements placed on the power grid by the laws of physics and 

society. In this category we can find power flow equations, limits on the voltage supplied to 

customers, and renewable energy integration mandates. Information from these non-app sources 

can also be mathematically modeled and passed to the deconflictor. 

Our optimization-based deconfliction methods should at a minimum be able to calculate 

deconflicted setpoints when individual apps provide only the required setpoint requests. We have 

already described how the deconflictor utilizes setpoint requests to detect conflict [1]. Once this 

step is finished, an optimization-based deconflictor can proceed to conflict resolution for each 

device setpoint control variable over which a conflicted was detected by minimizing the distance 

between that variable and all app-provided setpoint requests. Equations obtained from enabling 

systems as well as system constraints can be used at this stage as constraints to the minimization 

problem.  

On the other hand, the deconflictor can also obtain the full internal optimization problems from 

conflicting apps, aggregate them, augment them with potential information added by enabling 

systems and/or system constraints, and build a complete optimization problem that describes 

system operation. By solving this problem, deconflicted setpoint commands for the grid can once 

more be obtained. 

The proposed optimization-based deconflictor can handle both the minimum information scenario 

of knowing only setpoint requests and the maximum information scenario of full visibility into 

app internal optimization problems. For intermediate points on the information spectrum two 

definitions are needed. Utility functions mathematically represent the objectives and preferences 

of the corresponding app. App-provided constraint functions describe the views of the 

corresponding app on what constitutes permissible system operation. Apps can choose how 

detailed their provided functions are up to and including using their actual internal objective 

functions and constraints. In case of conflict apps can elect to provide at least one utility function 

and/or at least one app-provided constraint function. The deconflictor can then use this information 

for the formation of a deconflictor-level optimization problem whose solution can provide 

deconflicted setpoint commands. 
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3.0 Simulation Testbed 

In this section we introduce a simulation testbed featuring a set of competing apps utilized in the 

evaluation of deconfliction methods. 

3.1 GridAPPS-D Deconfliction Software Framework 

A prototype deconfliction software framework serving as a simulation testbed has been 
implemented in Python and consists of several interoperating components: 1) 
Deconfliction Simulator; 2) Competing Apps; 3) Deconfliction Methods; and 4) 
Deconfliction Pipeline. The Deconfliction Pipeline coordinates the other components 
communicating with them over the GridAPPS-D message bus (Deconfliction 
Simulator and Competing Apps) or Python module import and class invocation 
(Deconfliction Methods). Figure 16: Deconfliction software framework with 
interoperating components. The arrows represent GridAPPS-D messaging. 

 

Figure 17: Battery and regulator taps requested by each app, compared to deconfliction solution 

decomposed by switch-delimited topological area.Figure 18: Deconfliction software framework 

with interoperating components. The arrows represent GridAPPS-D messaging. shows the 

interoperation of all the software framework components including the data passed between them 

over the message bus. Time-series-based load and solar profiles along with device status data (e.g., 

battery SoC) are generated by the Deconfliction Simulator and published on the message bus. One 

or more Competing Apps running concurrently consume profile and device data and produce new 

device setpoint requests published back to the message bus. The Deconfliction Pipeline maintains 

an evergreen Conflict Matrix data structure based on setpoint requests from the set of running 

Competing Apps and invokes the Deconfliction Method to produce a Resolution Vector data 

structure. The Resolution Vector is then translated into device setpoints also put on the message 

bus. Finally, the Deconfliction Simulator processes the deconflicted setpoints dispatching them to 

devices and for input in generating subsequent profile and device status data completing the 

roundtrip workflow. 
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The two primary tasks of the Deconfliction Pipeline are maintaining the Conflict Matrix, as well 

as directing and supporting the Deconfliction Method in creating Resolution Vectors from the 

Conflict Matrix snapshots. In the initial prototype implementation, the Deconfliction Pipeline 

performs all GridAPPS-D messaging on behalf of the Deconfliction Method. The Conflict Matrix 

stores the most recently requested setpoints for all running competing apps over all devices. The 

Deconfliction Pipeline must account for the asynchronous nature of competing apps, which not 

only can request setpoints on an everchanging time scale, but also stop completely and restart at a 

later time. Due to this unpredictable nature of competing apps requesting setpoints, the 

Deconfliction Pipeline design dictates a Resolution Vector be produced immediately for every 

setpoints request. In the prototype implementation, this can result in several different setpoints 

being dispatched to the same device in quick succession when multiple competing apps are 

requesting setpoints based on the same time-series profile data. Future enhancements will curtail 

these dispatches when they would compromise device reliability/longevity such as with multiple 

quick or large regulator tap position changes. 

Figure 16: Deconfliction software framework with interoperating 
components. The arrows represent GridAPPS-D messaging. 

 

Figure 17: Battery and regulator taps requested by each app, compared 
to deconfliction solution decomposed by switch-delimited 
topological area.Figure 18: Deconfliction software framework 
with interoperating components. The arrows represent 
GridAPPS-D messaging. 
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The Deconfliction Method is a dynamically configurable or pluggable module for the 

Deconfliction Pipeline implemented via the standard Python import capability in the prototype. 

The responsibility of the Deconfliction Method is generating a Resolution Vector structure from 

the Conflict Matrix provided by the calling Deconfliction Pipeline. A Resolution Vector consists 

of a single setpoint value, deconflicted based on the underlying technique that has been 

implemented within the method, for each device appearing in the Conflict Matrix. Deconfliction 

Methods are implemented as a Python class with a class method being called to perform 

deconfliction and produce a Resolution Vector. Basic sample classes have been created that 

implement exclusivity with a single competing app controlling setpoints and simple compromise 

taking the mean of device setpoint requests between a specified set of competing apps to produce 

a deconflicted setpoint. The deconfliction software framework was implemented as a testbed for 

the investigation, development, testing, and refinement of the deconfliction techniques and 

methodologies described in this report. The pluggable Deconfliction Method class provides a 

simple standardized means for deconfliction technique integration while a testbed wrapper script 

for invoking all software framework components from a single point also supports deconfliction 

technique development. 

3.2 Competing Apps 

We have developed three competing apps with the primary objective of illustrating operational 

conflicts. These apps serve purely demonstrative purposes and have intentionally constrained 

functionalities (as compared to commercial ADMS apps). It is essential to note that they do not 

reflect the overarching goals or the level of sophistication typically associated with real-time 

operational systems.  

Competing apps are developed in two distinct versions. The first version adopts a workflow-centric 

design approach, crafting apps through condition-based decision-making as described in [1]. In 

contrast, the second version employs an optimization-oriented formulation.  For simplicity, we 

have chosen linear objectives for each of the competing apps. The distribution network is modeled 

using linear constraints with binary decision variables. As a result, the optimization problem for 

the competing apps is structured as mixed-integer linear programs [13]. A short description of each 

competing app is given below: 

1) Resilience: The primary goal of the Resilience App is to optimize the system's 

instantaneous reserve capacity. It accomplishes this by both charging the batteries and 

maintaining the highest state of charge (SoC) to uphold adequate reserves. Thus, the 

Resilience App charges batteries regardless of the power source, whether it's from the 

grid or renewable energy. 

2) Decarbonization: The objective of the Decarbonization App is to reduce reliance on grid 

power, which is assumed to be predominantly generated from fossil fuels. It achieves this 

by minimizing the need for importing energy from the grid. Simultaneously, the app 

ensures that surplus solar power within the feeder is harnessed efficiently, i.e., supplying 

local loads and charging batteries. 

3) Conservation Voltage Reduction (CVR): The CVR App reduces energy consumption by 

decreasing the voltage supplied to end-users while ensuring performance levels remain 
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within acceptable bounds. This app can yield energy savings by optimizing voltage 

levels, directly leading to reduced electricity procurement expenses, particularly during 

periods of peak demand. In our work, the CVR App is designed by the utilization of 

voltage regulators and battery dispatches aimed at reducing voltage levels.  

3.3 Simulation Setup 

Load and solar profiles are generated at 15-minute intervals over a 24-hour period for the 

demonstration. Device status information, specifically battery SoC values, are provided along with 

the profile data. This set of profile and device status information is taken by any running competing 

apps to produce new device setpoint requests. Two different test cases are used in developing and 

testing the performance of competing apps. A brief description of each test case is provided below. 

• Test Case I: The 9500-node test feeder [14] is used in the development of workflow-based 

competing apps where two batteries are considered as the controllable devices. The 

Common Information Model (CIM) representation of the test feeder model is maintained 

within a GridAPPS-D Blazegraph database and is publicly available in extensible markup 

language (XML) format1.  

• Test Case II: The original IEEE 123-bus is modified to include batteries and solar PVs. 

This modified test feeder is leveraged by the optimization-based competing apps where the 

controllable devices are batteries and regulators. The CIM representation of this test feeder 

model2 should be uploaded into the GridAPPS-D Blazegraph database before starting a 

simulation. 

 
1 https://github.com/GRIDAPPSD/Powergrid-Models/tree/develop/platform/cimxml 
2 https://github.com/GRIDAPPSD/app-deconfliction/tree/main/competing-apps/sim-starter 
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4.0 Illustrative Examples of Solution Techniques  

This section summarizes a specific solution from each of the three domains characterized in 

Section 2. The testbed described in Section 3 was used to demonstrate the specific solutions. 

Results from each solution demonstrate strengths and weaknesses of each domain; however, each 

solution was designed according to and evaluated based on domain-specific criteria and results 

cannot be compared directly.  

4.1 Rules & Heuristics 

The rules-based deconfliction methodology was formulated for the three competing apps described 

on the modified IEEE 123 bus test case with additional DER, described in Test Case II above. The 

deconfliction methodology was implemented as a microservice that received only the Conflict 

Matrix of competing setpoints at each timestep and returned a Resolution Vector of deconflicted 

setpoints after completion of the deconfliction solution. 

4.1.1 Formulation of Snapshot Power Flows 

To create predictive estimates of system outcomes for each of the combinations of setpoint 

alternatives, the deconfliction system implemented a bridge to OpenDSS through the 

OpenDSSDirect.py package1. The setpoints received through Conflict Matrix were separated into 

a minimum and maximum for each device, forming the bounds on the available solution space. 

The solution space was subsequently discretized into individual alternatives. For devices with 

discrete controls (e.g. regulator taps), each intermediate discrete setpoint between the minimum 

and maximum available as an alternative. For devices with continuous ranges (e.g. inverters), the 

range was divided into equal intervals with solution resolution adjustable by the user. Setpoints 

that violated any of the device controls budgets described below were eliminated prior to solving 

the snapshot power flows. Setpoints were then grouped into distributed control areas using a 

configuration file that listed the controllable devices in each area, as determined using the 

GridAPPS-D Topology Processor Service [15].  

Each combination of deice setpoints was passed to OpenDSS by modifying the device setpoints in 

the active circuit object and running a snapshot power flow. The solution results were obtained by 

iterating through each device class to obtain key measurement data needed to calculate the decision 

criteria and to determine whether any system-level rules were violated by the given setpoint 

combination. The decision criteria values were calculated and assembled into a matrix and then 

normalized into non-dimensional utility functions for use within the SMARTER multi-criteria 

decision-making framework.   

4.1.2 Formulation of System and Asset Rules 

Four system and asset health rules were selected for implementation through constraints and 

controls budgets. The first was restricting the voltage of all nodes to remain between 0.95 pu and 

1.10 pu. The second was limiting the total apparent power flow through the source bus (equivalent 

to a substation transformer) to 5000 kVA. Two rules were formulated for voltage regulators based 

 
1 https://github.com/dss-extensions/OpenDSSDirect.py 
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on vendor nameplate data [16], where winding current was limited to 668 A. Additionally, a 

controls budget of 6 tap changes per hour (approximately equal to one million tap changes over a 

twenty-year lifespan) was set for all regulators. The formulation included a fallback “do-nothing” 

solution to return the current device settings as the Resolution Vector if all requested setpoints 

from the apps and all combinations of setpoints resulted in violations of the system and asset rules. 

4.1.3 Formulation of Decision Criteria 

For the deconfliction demonstration, three system-level metrics (technical, economic, and 

environmental) and the shared objective function of one app were chosen. The selected technical 

decision criterion was the total real power loss in the network, which was obtained from the 

snapshot power flow results. The utility function for this criterion was assumed to decrease linearly 

with network losses. 

The selected economic criterion was calculated as the revenue from serving retail distribution loads 

and cost of purchases from the transmission system, net metering agreements, and fuel cost of 

utility-owned distributed generation: 

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑐𝑟𝑃𝑙𝑜𝑎𝑑 − 𝑐𝑡𝑃𝑡𝑟𝑎𝑛𝑠 − 𝑐𝑛𝑃𝑛𝑒𝑡𝑚𝑡𝑟
− 𝑐𝑑𝑔𝑃𝑑𝑔 

The values of the coefficients were derived from publicly available utility documents for the state 

of Colorado, as summarized in Table 1. The utility function for this criterion was assumed to 

increase linearly with profit. 

Table 1: System-level Coefficient Values 

Coefficient Description Value Reference 

𝑐𝑡 
Cost of energy purchased from 
transmission grid 

$0.02817/kWh [17] 

𝑐𝑟 Retail distribution tariff rate $0.1090/kWh [18] 

𝑐𝑛 Net metering tariff rate  $0.01786/kWh [19] 

𝑐𝑙𝑛𝑔 Cost of natural gas DER $0.25/kWh  

𝑐𝑑𝑖𝑒𝑠 Cost of diesel DER 0.34/kWh  

𝑒𝑡𝑟𝑎𝑛𝑠 
Emissions from energy purchased  
from transmission grid 

1.205 lb/kWh [18] 

𝑒𝑙𝑛𝑔 Emissions of natural gas DER 0.97 lb/kWh [20] 

𝑒𝑑𝑖𝑒𝑠 Emissions of diesel DER 2.44 lb/kWh [20] 
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The selected environmental decision criterion was total CO2 emissions from the feeder, which was 

expressed as the sum of emissions from power purchased from the bulk transmission system, 

emissions from diesel DERs, and emissions from natural gas-fired DERs: 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝑒𝑡𝑟𝑎𝑛𝑠𝑃𝑠𝑢𝑏 + 𝑒𝑑𝑖𝑒𝑠𝑃𝑑𝑖𝑒𝑠 + 𝑒𝑙𝑛𝑔𝑃𝑙𝑛𝑔 

The values of the coefficients were derived from EIA datasets for Colorado and common fuel 

sources, as summarized in Table 2. The utility function for this criterion was assumed to decrease 

linearly with emissions. 

The last decision criterion was the objective function of the Resilience App, which was shared by 

the developers and is included to incentivize cooperation among the apps. The utility function for 

this criterion was assumed to increase linearly with the total battery charging power. 

4.1.4 Comparison of Decomposition Methods 

The rules-based deconfliction service was run in the testbed for a 24-hour simulation period using 

a decision criterion preference ranking (from most important to least important) that profit > losses 

> emissions > resilience. The distributed solution applied three different methods for decomposing 

the deconfliction problem. A distributed deconfliction solver was established for each control area 

and sequentially solved the deconfliction problem for that area using the results of the lower 

downstream deconfliction solution.  

The first method divided the feeder into switch-delimited topological areas with a substation and 

five downstream distributed control areas that represent the portion of the feeder between an 

upstream and downstream switch(es). The second method grouped devices by the phase on which 

they are connected, such that the deconfliction agent formed setpoint alternatives for devices on 

each phase (A, B, C) and then for 3-phase devices. The third method was fully decentralized and 

deconflicted each device individually.  

Table 2: Cumulative 24-hr System Outcomes for each Decomposition Method 

Method 

Average Solution 

Time (s) 

Total Profit  

($) 

Total Losses 

(kWh) 

Total Emissions 

(ton CO2) 

By Switch Area 0.46 2148 631 -531 

By Phase 1.22 2135 621 -412 

Fully Decentralized 0.14 2147 635 -367 

 

The results from the decomposition methods are largely similar, as can be seen from Table 2 and 

Figures 3 and 4. All of the apps are able to receive their preferred setpoints over certain periods of 

the day. During the night, Decarbonization App setpoints are selected when importing from the 

bulk grid. During the daytime, setpoints from the CVR App are often chosen to maximize profit. 

Negative emission values are caused by net backfeed from photovoltaic DERs. 
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Figure 19: Battery and regulator taps requested by each app, compared to deconfliction solution 
decomposed by switch-delimited topological area. 

 

Figure 20: Battery and regulator taps requested by each app, compared to deconfliction solution 
considering each device separately in a fully decentralized manner.Figure 21: Battery 
and regulator taps requested by each app, compared to deconfliction solution 
decomposed by switch-delimited topological area. 

Figure 22: Battery and regulator taps requested by each app, compared to deconfliction solution 
considering each device separately in a fully decentralized manner. 

 

Figure 23: Simulation conditions along with for app-preferences (left) and battery-dispatch with 
naïve and cooperative apps with mediation (right). The shaded portion indicates the 
operational status during outage interval.Figure 24: Battery and regulator taps 
requested by each app, compared to deconfliction solution considering each device 
separately in a fully decentralized manner. 
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4.2 Cooperation  

The simulation scenario outlined in Section 3.3 for Test Case I was used with the following 

modifications: 

• Only Decarbonization and Resilience Apps were compared to simplify the definition of 

conflict between apps. Alongside normal operations, an outage event was simulated 

between 18:00-21:00 PM where the grid supply was considered to be interrupted and the 

Resilience App operates exclusively to dispatch the batteries to maximize the loads that 

can be served.  

• The two controllable batteries, used for the test case, were assumed to start with their 

minimum SoC levels.   

• The objectives of the Decarbonization and Resilience Apps were modified to include a 

burden constraint on the mediators’ advice based on the following conditions:  

1) If the compensate signal was greater than the burden; the advice would be the 

accepted setpoints by the Apps. 

2) Otherwise, the apps would update their setpoints to minimize the burden based on 

the press signal received.  

burden =  
𝑑𝑖𝑠𝑡(𝑆𝑃𝐴𝑝𝑝1

𝐷1 , 𝑆𝑃𝑎𝑑𝑣𝑖𝑐𝑒
𝐷1 )

𝑑𝑖𝑠𝑡(𝑆𝑃𝐴𝑝𝑝1
𝐷1 , max)

 

The mediator only intercedes when there is conflict with another app. When a conflict is detected 

it first attempts to advice the apps with a centroid setpoint between the conflicting apps. If the apps 

do not accept the advice, then a press or compensate signal is used to drive cooperation between 

conflicting apps.  

When the press signal is used it is sent to each app along with the advice. When new setpoints are 

received the penalty is calculated and applied to the apps setpoints. If conflict is reduced to 

acceptable margins the new setpoints are sent to the DER. If conflict is not resolved the press 

signal is increased and a new advice is calculated based on the mediated setpoints with the previous 

penalty.   

𝑎𝑑𝑣𝑖𝑐𝑒 = 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑎𝑝𝑝1, … , 𝑎𝑝𝑝𝑁) 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑝𝑟𝑒𝑠𝑠 ∗ 𝑑𝑖𝑠𝑡(𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡, 𝑎𝑑𝑣𝑖𝑐𝑒) 

𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑑 = (1 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦) ∗ 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 

𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑎𝑝𝑝1, … , 𝑎𝑝𝑝𝑁)) 
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Intelligent apps will respond with modified setpoints based on the advice and penalty / 

compensation signal they have received driving them closer to the advice. If an app does not or 

cannot respond it will be either not receive the compensation or experience the full penalty. This 

ensures flexible apps still experience some percentage of their objective without completely 

compromising with an app that refuses to participate.  

Figure 5 (left) demonstrates system conditions for the chosen simulation scenario along the 

dispatch preferences for the Decarbonization and Resilience Apps if operated exclusively. As 

outlined in Section 3.2, the objective for decarbonization is to reduce overall import of electricity 

and capture excess solar. This objective can be summarized by minimizing the overall distance 

between solar and demand, whereas the objective for Resilience can be summarized by 

maximizing the power delivered: 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑐𝑒𝐴𝑝𝑝 =
𝐴𝑝𝑝𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 − 𝐴𝑝𝑝𝑏𝑎𝑠𝑒

𝐴𝑝𝑝𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 − 𝐴𝑝𝑝𝑏𝑎𝑠𝑒
 

𝐷𝑒𝑐𝑎𝑟𝑏𝑜𝑛𝑖𝑧𝑒𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = − ∑ 𝑑𝑖𝑠𝑡 (𝑠𝑜𝑙𝑎𝑟, 𝑙𝑜𝑎𝑑 + 𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠) 

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = ∑ 𝑙𝑜𝑎𝑑 − 𝑠𝑜𝑙𝑎𝑟 + 𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠, 

Figure 25: Simulation conditions along with for app-preferences (left) and battery-dispatch with 
naïve and cooperative apps with mediation (right). The shaded portion indicates the 
operational status during outage interval.   

 

Figure 26: Simulation results for cooperative apps with continuous- (left) and blocking-based 
(right) solutions.Figure 27: Simulation conditions along with for app-preferences (left) 
and battery-dispatch with naïve and cooperative apps with mediation (right). The 
shaded portion indicates the operational status during outage interval.   



Illustrative Examples of Solution Techniques 16 
 

where 𝑏𝑎𝑠𝑒 denotes the base app performance determined by excluding batteries throughout the 

entire day, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 refers to the exclusive app performance determined by only allowing control 

of batteries by one application throughout the entire day, and 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 describes the 

cooperative app performance determined by comparing the mediated control between cooperating 

Apps with their base and exclusive operation.  

Table 3 and Table 4 highlights the performance of the Decarbonization and Resilience App 

respectively. There is an additional indicator of load lost during fault period and excess solar to 

highlight the effects of each App’s objective. There are five scenarios: 

• Exclusive without dispatch to create a baseline performance of the application objective 

with no participation from batteries. 

• Exclusive with dispatch to determine what the app would consider ideal performance. 

• Naïve cooperation where neither app participates in deconfliction through mediation. 

• Cooperative Decarbonization and naïve Resilience to highlight effect of unfair 

participation.  

• Cooperative Decarbonization and Resilience to demonstrate benefits of both applications 

participating to the best of their ability.  

 

Table 3: Decarbonization App Performance 

Description Performance (%) Excess Solar (W) Load Lost (W) 

Cooperative Decarbonization 
& Resilience 

0.51 0.00 47597 

Only Cooperative 
Decarbonization 

0.11 0.00 44576 

Exclusive Decarbonization 1.00 2.76 51895 

Exclusive Decarbonization 
(Without Dispatch) 

0.00 1693.76 51895 

Naïve Decarbonization & 
Resilience 

-0.01 0.00 44024 

 

Table 4: Resilience App Performance 

Description Performance (%) 
Excess Solar 
(Wh) 

Load Lost (W) 

Cooperative Resilience & 
Decarbonization 

0.35 0.00 47597 

Only Cooperative 
Decarbonization 

0.54 0.00 44576 

Exclusive Resilience 1.00 1693 42901 
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Exclusive Resilience 
(Without Dispatch) 

0.00 1693 51895 

Naïve Resilience & 
Decarbonization 

0.58 0.00 44024 

 

Table 5 compares the average performance between each of the apps for each of the operating 

scenarios. The three scenarios are: two intelligent apps, intelligent Decarbonization with a naïve 

Resilience, and both naïve apps. A direct average of performance was used assuming each 

application has the same weighting. The two intelligent apps scenario demonstrates the highest 

performance. A perfect cooperation solution would yield an equal split in performance; however, 

each application chooses its own flexibility through its burden calculation. The dispatch setpoints 

of Battery#1 for the scenarios where both apps are naïve and both apps are intelligent respectively 

is shown in Figure 5 (right).  

Table 5: Cooperation Performance Comparison 

Description Decarbonization Resilience Average 
Excess Solar 
(W) 

Load Lost 
(W) 

Cooperative 
Resilience & 
Decarbonization Apps 

0.51 0.35 0.43 0.00 47597 

Only Cooperative 
Decarbonization App 

0.11 0.54 0.33 0.00 44576 

Naïve Resilience & 
Decarbonization Apps 

-0.01 0.58 0.29 0.00 44024 

 

In order to characterize the behavior of cooperative solution with respect to the time-

synchronization, an additional set of simulations were evaluated under the following scenarios:  
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• Continuous – Cooperative:  This scenario assumes that the interim setpoints of the apps 

are continuously sent for dispatch each time the apps update their preferred setpoints based 

on the cooperative signal.  

• Blocking – Cooperative: For this case the apps are permitted to iteratively update their 

preferred setpoints based on the cooperative signal before a solution is sent for dispatch.   

Figure 6 shows the simulation results for the continuous- and the blocking-based cooperation cases 

respectively. The results indicate the cooperative solution both the cases achieve almost similar 

trends for the deconflicted-setpoints. Although the continuous case alleviates the synchronization 

requirements for the cooperative solution, there is a higher volatility in the dispatched setpoints. 

This can be attributed to the cooperative behavior of apps as they iteratively update their preferred 

setpoints towards reaching a trade-off among all participants and their interim preferred setpoints 

are continuously dispatched by the deconflcitor.   

4.3 Optimization 

The optimization-based approach to deconfliction was demonstrated on the modified IEEE 123-

bus feeder described in Section 3 using the Resilience App and Decarbonization App.  

4.3.1 Problem Formulation 

Both competing apps implement mixed integer linear programming (MILP) problems internally; 

for simplicity, the same type of problem was chosen for the optimization-based Deconflictor. In 

order to build a MILP problem for deconfliction purposes, one objective function and one or more 

constraints are needed.  

The Deconflictor objective function is built by combining the utility functions of participating apps 

with appropriate weights. Specifically, the Resilience App maximizes the sum of the SoCs of the 

Figure 28: Simulation results for cooperative apps with continuous- (left) and blocking-based (right) 
solutions. 

 

Figure 29: Optimization-based deconfliction results for battery power (left) and SoC (right) with the 
weight, α, equal to 0.0, 0.5 and 1.0.Figure 30: Simulation results for cooperative apps 
with continuous- (left) and blocking-based (right) solutions. 
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batteries installed in the feeder. By dividing the internal app objective function by the total number 

of batteries we obtain a utility function that takes values in the [0, 1] interval. Moreover, the 

Decarbonization App minimizes the absolute value of the power flowing on the interconnection 

between the simulated feeder and the external sub-transmission network. Thus, we can obtain an 

appropriately normalized utility function by dividing the absolute value of the power flow by the 

kVA limit of the interconnection. Before summing the two utility functions we multiply the 

Decarbonization App utility function by an operator-defined weight 𝛼, and the Resilience App 

utility function by (1 − 𝛼).  

The Deconflictor problem formulation also needs constraints. In this work, constraints describe 

the physical operation of the test system. For example, equality constraints are used to ensure that 

the studied system obeys the relevant power flow equations. The implemented Deconflictor 

receives these constraints from one of the apps. As the Resilience App and the Decarbonization 

App both use the same system model, the Deconflictor can obtain its constraints from either app.  

The mathematical formulation described above has been implemented using PuLP [21] in Python. 

4.3.2 Resolution Vector Calculation 

Once we formulate a Deconflictor-level MILP problem, we can proceed to solving it. We selected 

CBC [22] as our solver. The optimality gap was set to 0.01 and the time limit to 8s. The 

deconflicted commands for the batteries and the regulators, which are also known as Resolution 

Vector, can be directly obtained from the corresponding decision variables of the solution. Figure 

7 shows the results for the power and SoC of Battery 2 for the weight, 𝛼 , equal to 0.0, 0.5 and 1.0.  



Illustrative Examples of Solution Techniques 20 
 

 

Even though the utility functions of the two apps are combined with equal weights, the results for 

Battery 2 seem to be very close to the  𝛼 = 1.0 case. This case is also known as Decarbonization 

App exclusivity because this weight combination eliminates the Resilience App utility function. 

While Battery 2 is presented here as a representative example, the same conclusion can be reached 

by observing all other batteries of the system. A plot of the app utility functions alongside the 

Deconflictor-level objective function can help clarify this. Figure 8 (left) shows the objective 

function value, the Decarbonization App utility function value, and the Resilience App utility 

function value, respectively for 𝛼 = 0.5. 

 

As the SoC of each battery is limited between 0.2 and 0.9 to ensure longevity, the solution of the 

combined problem shows that the optimization-based Deconflictor gets relatively little gain from 

its Resilience App component, which explains why the Decarbonization App utility function seems 

to dictate the Deconflictor’s actions. In order to further investigate this hypothesis, our sensitivity 

analysis focused next on 𝛼 values of 0.25 and 0.75. Figure 8 (right) shows the Deconflictor 

objective function value, the Decarbonization App utility function value, and the Resilience App 

utility function value, respectively for 𝛼 =  0.25. 

In Figure 8 (right), the Resilience App utility function contribution seems to dominate the behavior 

of the Deconflictor, as expected due to the difference in weight. In order to verify this, Figure 9 

shows the results for the SoC of Battery 2 for 𝛼 equal to 0.0, 0.25 and 1.0, respectively. It can be 

clearly seen that the Resilience App indeed dominates the Decarbonization App for 𝛼 equal to 

0.25. 

Figure 31: Optimization-based deconfliction results for battery power (left) and SoC (right) with the 
weight, α, equal to 0.0, 0.5 and 1.0. 

 

Figure 32: Optimization-based deconfliction results for weight, α, equal to 0.5 (left) and 0.25 
(right).Figure 33: Optimization-based deconfliction results for battery power (left) and 
SoC (right) with the weight, α, equal to 0.0, 0.5 and 1.0. 
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The main conclusion of this sensitivity analysis is that the normalization of utility functions is not 

enough. Seemingly unexpected results can be caused by the different ways that decision variables 

are related to each other through both the objective function and the constraints of the optimization 

problem. Therefore, users of the Deconflictor should make an extra effort to properly study its 

behavior based on the specific types of apps that it might encounter, and properly calibrate it before 

operations.  

 

Figure 34: Optimization-based deconfliction results for weight, α, equal to 0.5 (left) and 0.25 (right). 

 

Figure 35: Optimization-based deconfliction results for battery SoC with the weight, α, equal to 0.0, 
0.25 and 1.0.Figure 36: Optimization-based deconfliction results for weight, α, equal to 
0.5 (left) and 0.25 (right). 
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Figure 37: Optimization-based deconfliction results for battery SoC with the weight, α, equal to 
0.0, 0.25 and 1.0. 

 

Figure 38: Conceptual workflow for a unified deconfliction service within the GridAPPS-D 
Platform.Figure 39: Optimization-based deconfliction results for battery SoC with the 
weight, α, equal to 0.0, 0.25 and 1.0. 
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5.0 Alternatives Analysis 

This section identifies desired functional characteristics of a GridAPPS-D deconfliction service 

and assesses the suitability of elements of each solution domain to implement the desired 

characteristics. This assessment is accomplished by mapping the desired deconfliction service 

characteristics to solution-element attributes. Attributes may be binary, qualitative, or quantitative. 

An alternatives analysis is performed for several elements from each solution domain evaluating 

whether and how-much each element possesses each attribute. A set of elements that are 

particularly well-suited for a deconfliction service is identified along with a subset of those 

elements that are compatible with each other. 

The envisioned GridAPPS-D Deconfliction Service has six functional characteristics: 

1) Solutions balance app objectives, subject to operator decisions and system constraints. 

2) The environment of apps is dynamic: apps can join or leave the operational platform and 

do not need to conform to archetypes; messages can be asynchronous. 

3) Apps are be supported regardless of whether and to what extent they are designed to 

actively participate in any deconfliction scheme.  

4) Apps are black boxes from the platform perspective. The deconfliction service may define 

an interface but cannot assume that it will know internal logic or objectives of apps. 

5) Solutions scale in a way that is compatible with the level detail in GridAPPS-D and a 

number of apps that will be present in advanced distribution operations. 

6) A solution is guaranteed. 

In addition to the overall functional characteristics listed above, it is possible to define a set of key 

attributes to quantify those requirements. The attributes are used to evaluate components of each 

solution technique and highlight strengths and weaknesses of components suitable for adoption 

into a combined solution.   

Attributes of elements that support the deconfliction service characteristics: 

• Arriving / Departing Apps (binary): This attribute is related to the dynamic app 

environment and evaluates whether a solution component is compatible with apps joining 

and leaving the deconfliction framework, possibly without any notification. Within the 

combined solution, the starting point is the Conflict Matrix such that when apps arrive and 

depart, new rows are added (or removed) from the Conflict Matrix). 

• Asynchronous Setpoints (binary): This attribute is also derived from the dynamic app 

environment and evaluates whether a solution component is compatible with asynchronous 

messages. Apps will likely send setpoint messages at different times and different intervals, 
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and thus, it is important that the deconfliction service is able to handle asynchronous 

setpoints. 

• Requires Participation (binary): This attribute describes whether participation by apps is 

required by the solution component to achieve desired results. It is anticipated that the 

deconfliction service cannot constrain app design to require participation, thereby 

excluding naïve applications.  

• Incentivizes Participation (binary): Simultaneously, it is desirable for the deconfliction 

service to incentivize and possibly reward active participation in the deconfliction solution. 

• Balances App Objectives (binary): To avoid the deconfliction service from simply 

overriding all applications or ignoring all objectives of an app in favor of those from 

another, it is important that the deconfliction solution balance objectives, subject to 

operator decisions and system constraints. 

• Requires App Objectives (binary): Conversely, solutions that require all app objectives 

to be shared will be impact the ability of the deconfliction service to handle naïve apps and 

black box apps that do not share their objectives or internal formulation. 

• Scalability with Number of Apps (scaling factor): As the number of apps increases, it is 

desirable that the overall deconfliction complexity remain constant or increase linearly with 

the number of apps sending setpoints for a given iteration. 

• Scalability with Number of Setpoints (scaling factor): Similarly, as the number of 

controllable devices increases, it is desired that the solution complexity scale linearly. 

• Scalability with Distributed Decomposition (scaling factor): This attribute captures two 

aspects of distributed decomposition. The first is scalability with the number of times the 

overall problem is decomposed into distributed control areas. The second is the increases 

in complexity as the number of distributed areas increases. 

• Guaranteed Solution (binary): The deconfliction service is required to guarantee a final 

solution that can be translated in protocol-specific control messages. This attribute 

evaluates whether a solution component can (by itself) guarantee a solution result.  

In Table 6. The components of each of the solution techniques described in Section 2 and 

illustrated numerically in Section 4 are evaluated for the attributes above. Scalability issues in 

Table 6 are indicated using big-O notation [23], which describes the function that bounds the 

computation time or memory needed for a given problem of size 𝑛. The concept of NP-hardness 

[24] is also used, which identifies whether the problem is at least as hard as the hardest problem in 

NP, which in turn, refers to whether the problem can be solved and verified in polynomial time 

(rather than exponentially increasing time).  
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Table 6: Alternatives Analysis of Deconfliction Solution Elements 
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Device control budgets Yes Yes No No No No O(1) O(n) O(1) No 

System-status based rules Yes Yes No No No No O(1) O(n) O(n) No 

Decomposition by distributed 
area 

Yes Yes No Yes Yes* No O(1) O(n2) O(n) Yes 

Device-level decomposition Yes Yes No No No No O(1) O(n) O(n) Yes 

Predictive snapshot power 
flows 

Yes Yes No No No No O(1) O(n2) O(1) No 

Use of generic deconfliction 
decision criteria 

Yes Yes No No No No O(1) O(n) O(1) Yes 

Setpoint weighting/selection Yes Yes Yes Yes Yes* No O(n) O(n) O(1) No 

Criteria weighting/selection Yes Yes No Yes Yes* No O(1) O(1) O(1) No 

Ranking criteria based on 
real-time conditions 

Yes Yes No Yes No No O(1) O(1) O(1) Yes 

App-to-app iterations before 
solving (e.g., blocking) 

No No No No Yes No O(n2) O(n) O(n) Yes 

Solves every time apps 
update “opening-bid” 
setpoints (e.g., continuous) 

Yes Yes No No Yes No O(n2) O(n) O(n) Yes* 

Mediator design considers 
app-characteristics (at app-
design phase) 

No Yes No No Yes No O(n) O(n) O(1) Yes 

Mediator supports 
unknown app 
characteristics  

Yes Yes No Yes Yes No O(n) O(n) O(1) Yes 

Apps respond to 
contextual status signals  

Yes Yes Yes Yes Yes No O(n2) O(n) O(1) No 

Apps respond to incentive 
signals 

Yes Yes Yes Yes Yes No O(1) O(1) O(n) No 

Using weight factors to 
incentivize flexibility 

Yes Yes No Yes Yes No O(n2) O(n) O(n) No 

Setpoint-informed 
optimization 

Yes Yes No No No* No O(n) O(n)* O(1) Yes 

Penalty for distance from 
app targets (e.g., setpoints 
or utility functions) 

No Yes Yes Yes Yes Yes O(n) NP-H* O(1) No 

Utility function No Yes Yes Yes Yes Yes* O(n) NP-H* O(1) Yes 

Weighted utility-function No Yes Yes Yes Yes Yes* O(n) NP-H* O(1) Yes 

App-provided constraints No Yes Yes* Yes No No O(n) NP-H* O(1) No 

Use distributed optimization 
for distributed deconfliction 

No Yes Yes* Yes No No O(n2) NP-H* O(n) No 
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5.1 Element Description and Discussion 

Each key element of the three solution techniques is described in this section, with further details 

and reasoning for the attributes scores provided in Table 6. Elements in orange text will be included 

in the combined solution in Section 5.2. 

5.1.1 Rules-Based Elements 

The rules-based solution technique described in Section 2.1 and demonstrated in Section 4.1 

contains nine core elements, which are scored in the first portion of Table 6. 

• Device control budgets: Setpoints are constrained according to device lifecycle and asset 

health considerations. This component is compatible with most other elements, does not 

require sharing/cooperation of black-box apps, and scales linearly with all attributes.  

• System operation rules: System status information is used to constrain setpoints that would 

violate system limits or operational practices. This component is compatible with most 

other elements but may need to be relaxed during abnormal operations to ensure a solution 

is found. 

• Decomposition by distributed area: The deconfliction problem is decomposed using the 

Laminar Coordination Framework into local sub-problems, with each deconfliction agent 

only solving for setpoints in its area. An area-independence approximation is applied to 

limit consideration of conflicts per area; system-level criteria are considered on a per-area 

basis. Decomposition is critical for the predictive snapshots to reduce multiplicative growth 

of the solution space. 

• Device-level decomposition: The deconfliction problem is solved in a fully decentralized 

manner with predictive snapshots and decision criteria calculated on a per-device basis. 

This approach is massively scalable but does not guarantee optimality. 

• Predictive snapshot power flows: Snapshot power flows are used to predict outcomes of 

setpoints and assess decision criteria and violations of system rules (using distributed area 

or device-level decomposition as applicable). 

• Use of generic deconfliction decision criteria: Candidate outcomes are evaluated using 

criteria selected by the DSO, with or without objectives shared by apps; criteria may be 

system-driven or app-objective-driven. 

• Setpoint weighting / selection: Device setpoints are weighed according to operator- or app-

driven inputs. Assignment of exclusive control of a given device to a specific app can be 

accomplished with setpoint weights, as long as exclusive access is applied narrowly and 

during abnormal conditions 
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• Criteria weighting / selection: Decision criteria are weighted according to operator- or app-

driven inputs with participants able to specify preference for specific decision criteria. 

• Ranking decision criteria based on real-time conditions: Criteria weighting and selection 

are adjusted in real time based on normal/alert/emergency grid conditions. 

5.1.2 Cooperative Elements 

The cooperative solution technique described in Section 2.2 and demonstrated in Section 4.2 

contains seven core elements, which were evaluated in the second portion of Table 6: 

• App-to-app iterations before solving (e.g., blocking): Apps are permitted to consider 

context iteratively and update setpoints before a solution is published. 

• Solves every time apps update “opening-bid” setpoints (e.g., continuous): The 

Deconflictor tracks context-independent setpoints (i.e., opening bids) separate from 

context-informed setpoints and produces a solution from previous iterations each time an 

app updates its opening bid. 

• Mediator design considers app-characteristics (at app-design phase): App interfaces 

and/or behaviors drive mediator design.  

• Mediator supports unknown app characteristics: A mediator is designed around a 

specified app-to-mediator interface, allowing the mediator to support uncharacterized apps.  

• Apps respond to contextual status signals: Apps may update setpoints based on context, 

e.g., setpoints generated by other apps or system status. 

• Apps respond to incentive signals: Apps may update setpoints based on incentive signals 

produced by a mediator. 

• Using weight factors to incentivize flexibility: Deconflictor design includes reward 

mechanisms that may influence app behavior. 

5.1.3 Optimization Elements 

The optimization-based approach to deconfliction described in Section 2.3 and demonstrated in 

Section 4.3 contains six core elements, which are presented in the third portion of Table 6. 

Scalability of all elements in this list (except the first which admits a closed form solution) with 

respect to number of setpoints is NP-hard because they require the solution of an optimization 

problem that includes discrete decision variables. Practical solvers usually terminate after 

satisfying some conditions such as identifying a local optimum point in poly time and/or an upper 

limit on execution time with a solution that is not strictly guaranteed to be globally optimal. 

• Setpoint-informed optimization: Deconfliction is performed using optimization informed 

only by system-level information (if available) and setpoint requests produced by apps. 
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• Penalty for distance from app targets (e.g., setpoints or utility functions): Apps can provide 

functions expressing their dissatisfaction with deviations from setpoint requests (e.g., 

through monotonically decreasing functions for setpoint values above or below the 

requested value).  

• Utility function: Apps can provide utility functions alongside their setpoint requests; the 

deconflictor can add these constraints to an optimization formulation to aid deconfliction. 

• Weighting of utility functions: Utility functions provided by apps can be multiplied by 

operator-selected weights before being incorporated into a Deconflictor-level optimization 

problem. 

• App-provided constraints: Apps can provide their constraints (usually called “app-

provided constraint functions) alongside their setpoint requests; the Deconflictor can add 

these constraints to an optimization formulation to aid deconfliction. 

• Use distributed optimization for distributed deconfliction: The Deconflictor can 

decompose its internal optimization problem into separate sub-problems for separate, 

clearly delimited areas of the grid. 

5.2 Combined Solution 

The following elements combine to produce a solution that has all of the GridAPPS-D 

deconfliction service functional characteristics. 

• Device control budgets: Budgets can be used in the combined solution to reduce the size 

of the solution space by constraining system setpoints to those will not result in accelerated 

degradation of physical assets through frequent control actions and oscillating setpoints. 

• System operations rules: Similarly, rules can constrain the solution space by eliminating 

setpoints that result in violations of system limits or operational best practices. The rules 

could be implemented as direct heuristics or constraints on an optimization problem. 

• Contextual status signals: In the combined solution, status signals would be shared with or 

among apps such that they could update their desired setpoints based on the evolving 

context. 

• Mediator with support of unknown app characteristics: The combined solution would 

include a mediator that incentivizes apps to come to a cooperative solution. The mediator 

in the combined solution would be able to support apps with unknown internal 

characteristics. 

• Setpoint-informed optimization: As a fallback mechanism if a cooperative solution cannot 

be agreed upon by applications, the combined solution would solve an appropriately-

distributed optimization problem that reflects the shared objectives of applications to 

determine an acceptable deconfliction solution. 
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It is anticipated that a GridAPPS-D deconfliction service combining the above elements (as shown 

in Figure 9) would satisfy all six core functional requirements identified:  

1) Solutions balance app objectives: The combined solution would reflect the objectives of 

the apps through the use of mediation and optimization incorporating their objectives. 

2) The environment of apps is dynamic: Both the individual elements and overall workflow 

of building the Conflict Matrix supports the ability for apps to join or leave without 

changing the structure or code of the deconfliction service. 

3) Apps can choose whether or not to participate: The functional elements selected enable 

deconfliction of a combination of naïve and intelligent apps that are allowed to choose 

whether or not they want to respond to mediation signals and whether they want to share 

their objective functions. 

4) Apps are black boxes from the platform perspective: None of the functional elements 

prescribe a particular manner in which the apps must be built. All interactions (including 

intercepting setpoints, offering mediation, and passing context signals) can be performed 

through a standards-based interface with consistent semantics and syntax. 

5) Scalable for realistic ADMS apps: All of the selected elements scale either linearly or 

quadratically with the number of apps, devices, and distributed decomposition iterations. 

6) A solution is guaranteed: The combination of elements guarantees that a deconfliction 

solution can be obtained through a set of rules, cooperation, and optimization that may be 

adjusted as the grid evolves through normal / alert / emergency operating conditions. 
 

Rules

• Purpose: Shape the decision space

• Elements: Control Budgets, System Operations Rules

Cooperation

• Purpose: Drive apps towards a consensus

• Elements: Mediator, Context Signals

Optimization

• Purpose: Close any remaining conflict gap

• Elements: Setpoint-informed Optimization

Figure 40: Conceptual workflow for a unified deconfliction service within the GridAPPS-D 
Platform. 
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6.0 Conclusion 

This report provided an overview of the domain space and solution techniques that could be used 

to create a robust, flexible app deconfliction service. Three approaches were reviewed with 

summaries of the characteristics, elements, and results from preliminary demonstrations of 

solution techniques based on each approach. The first technique applied a combination of rules 

and heuristics to force a deconfliction solution that did not violate any rules for asset health and 

system operational constraints. The solution was chosen based on a set of predictive snapshot 

power flows used to calculate ranked utility function decision criteria formed from system-level 

objectives and optionally shared app objectives. The second technique applied a cooperative game 

theory strategy based on a combination of press, compensate, advise, and ignore contextual 

signals. This method applied these signals to drive applications to agree on a solution cooperatively 

through a mediator. The third technique combined the objective functions of each application into 

a global optimization problem. The problem was solved using utility functions supplied by each 

app with varying weights applied to each optimization goal shared by the apps. 

The strengths and weaknesses of each solution technique were explored through a set of numerical 

demonstrations on modified IEEE 123 node and 9500 node test feeders. An alternatives analysis 

of individual deconfliction elements was performed with each solution technique element 

evaluated against criteria reflecting the dynamic app environment, need to balance app objectives, 

and scalability issues versus the number of applications, setpoints, and distributed control areas. 

A combined solution integrating one to two elements from each solution technique was proposed. 

The combined solution would be implemented in the GridAPPS-D platform to achieve two 

prospective benefits 1) the open platform increases the total decision space available to apps by 

removing hidden restrictions on app functionality, operating conditions, and access to devices that 

effectively create orthogonal decision spaces for each app in order to avoid conflict; and 2) the 

open platform enables implementers to choose a set of best-of-breed apps rather than those paired 

with a vertically integrated solution. In this way, the open platform will tend to lead to device-

setpoint conflicts as independently developed apps attempt to achieve their best outcomes by 

controlling as many devices as they can. 
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