
Choose an item. 

PNNL-35049 

Machine Learning for 
Prediction of 
Thermodynamic 
Descriptors 

September 2023 

Eric S Wiedner  

Benjamin A. Helfrecht 

Jeremy D. Erickson 

Nancy M. Washton 

Prepared for the U.S. Department of Energy 
under Contract DE-AC05-76RL01830 



Choose an item. 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 

United States Government. Neither the United States Government nor any agency 

thereof, nor Battelle Memorial Institute, nor any of their employees, makes any 

warranty, express or implied, or assumes any legal liability or responsibility 

for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe 

privately owned rights. Reference herein to any specific commercial product, 

process, or service by trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by 

the United States Government or any agency thereof, or Battelle Memorial 

Institute. The views and opinions of authors expressed herein do not necessarily 

state or reflect those of the United States Government or any agency thereof. 

PACIFIC NORTHWEST NATIONAL LABORATORY 

operated by 

BATTELLE 

for the 

UNITED STATES DEPARTMENT OF ENERGY 

under Contract DE-AC05-76RL01830 

Printed in the United States of America 

Available to DOE and DOE contractors from  

the Office of Scientific and Technical Information, 

P.O. Box 62, Oak Ridge, TN 37831-0062  

www.osti.gov  

ph: (865) 576-8401  

fox: (865) 576-5728  

email: reports@osti.gov  

Available to the public from the National Technical Information Service 

5301 Shawnee Rd., Alexandria, VA 22312  

ph: (800) 553-NTIS (6847)  

or (703) 605-6000  

email: info@ntis.gov  

Online ordering: http://www.ntis.gov

http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/


PNNL-35049 

Machine Learning for Prediction of 
Thermodynamic Descriptors 

September 2023 

Eric S Wiedner  
Benjamin A. Helfrecht 
Jeremy D. Erickson 
Nancy M. Washton 

Prepared for 
the U.S. Department of Energy 
under Contract DE-AC05-76RL01830 

Pacific Northwest National Laboratory 
Richland, Washington 99354 



PNNL-35049 

ii

Abstract 

Our objective is to apply machine learning (ML) algorithms for the prediction of molecular catalysis 
descriptors from geometric properties derived from experimental crystallographic databases. Catalysis is 
often considered a “low-data” discipline that is poorly suited for ML methods. An exception is the extensive 
structural information that is available for molecular catalysts through the Cambridge Structural Database 
(CSD), which contains atomically precise molecular structures from X-ray diffraction analysis for >600K 
metal complexes. As a proof-of-principle, we targeted the prediction of hydricity, a thermodynamic property 
that provides understanding and control of catalytic hydride transfer. We built a training set composed of 
~100 molecular complexes with a known hydricity and structural information from the CSD. This data set 
was converted into a machine-readable format using the smooth overlap of atomic positions (SOAP) 
representation and further labeled with simple electronic descriptors for the metal centers. Multiple different 
neural networks were trained on this data set, and the accuracy of the hydricity predictions ranged from < 
2 kcal/mol to 20 kcal/mol. The accuracy of each model was highly sensitive to which compounds were in 
the train versus test set, underscoring the challenges associated with small and chemically diverse data 
sets. Finally, to further augment the data set, we attempted to experimentally measure several new hydricity 
values, however these experiments were unsuccessful due to undesired chemical reactivity of the selected 
complexes. 
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Acronyms and Abbreviations 

AI artificial intelligence 

CSD Cambridge Structural Database 

ML machine learning 

PDB Protein Data Bank 

ReLU rectified linear unit  

RMSE root mean square error 

SOAP  smooth overlap of atomic positions 
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1.0 Introduction 

The burgeoning application of artificial intelligence and machine learning (AI/ML) in scientific 
research heralds an ostensible sea change in methodological frameworks. However, certain 
scientific domains, particularly catalysis, are often categorized as "low data" regimes, ostensibly 
rendering them suboptimal for the integration of AI/ML paradigms. It's crucial to recognize, though, 
that these "low data" realms offer a fertile ground for specialized AI/ML approaches designed for 
data-scarce environments. Anomalously, catalysis does offer substantial data sets in the form of 
structural information. Molecular catalysts, for instance, have been extensively cataloged in the 
Cambridge Structural Database (CSD), while enzymes find their detailed representations in the 
Protein Data Bank (PDB). The CSD alone comprises over 600,000 atomically precise molecular 
structures, discerned through X-ray diffraction analysis. This repository of structural and 
topographical data provides an invaluable foundation for the development of ML methodologies 
aimed at deciphering the intricate structure-function relationships intrinsic to molecular catalysts. 

Catalytic efficacy is not merely an isolated attribute of the catalyst but a complex interplay between 
its inherent properties and the milieu within which the reaction occurs. Typically, delineating a 
direct correlation between catalytic activity and structural attributes is only feasible for complexes 
functioning under analogous conditions. A more stable parameter—less susceptible to 
environmental variables—is the thermodynamic bond strength, which serves as an insightful 
probe into a catalyst's intrinsic reactivity. In our current undertaking, we focus on hydricity—a 
salient thermodynamic property—as the linchpin for understanding and modulating catalytic 
hydride transfer reactions. Hydricity serves as an invaluable descriptor for the conceptual design 
of catalysts aimed at activating small molecules. Nevertheless, the synthesis and empirical 
determination of hydricity values for prospective catalysts is an arduous and time-intensive 
endeavor. 

The advent of a rigorously calibrated ML tool would significantly truncate the need for labor-
intensive electronic structure calculations. Such a tool would enable a rapid pre-screening of 
hydricity values across a diverse array of potential catalysts. This ML-based approach serves not 
just as an isolated utility for hydricity prediction but sets the stage for future explorations into ML-
aided forecasting of other quintessential thermodynamic attributes and more elaborate catalytic 
systems, such as enzymes or surface-immobilized molecular complexes. 
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2.0 Results 

2.1 Data Set  

A data set containing ~100 transition metal hydride complexes was manually curated by 
identifying complexes having both a known hydricity value and X-ray crystallographic structural 
coordinates present in the CSD.  To create a machine-readable input, the Smooth Overlap of 
Atomic Positions (SOAP) representation1-2 was calculated for each molecule in the training set. 
The SOAP representation calculates the spatial distribution of atoms and their chemical identities 
as a series of vectors between neighboring atoms. While the SOAP representation preserves the 
structural geometry of a given molecule, it does not contain intrinsic electronic information. As a 
result, each molecular entry was manually labeled with simple electronic descriptors of the 
transition metal, including its atomic number, group and period in the periodic table, formal d e− 
count, and the total charge of the metal hydride complex.  

A potential pitfall in using structural coordinates from X-ray crystallography is that they represent 
a single “snapshot” of the molecular conformation. In solution, the ligands have a low energy 
barrier to bend and deform, and hence the complexes can access a wide range of geometric 
conformational space. To better capture this conformational complexity and further augment the 
amount of data, different conformations were generated for each entry using tight-binding-based 
molecular dynamics and metadynamics simulations.3 The conformer generation aims to explore 
as much of the conformational space as possible for each complex, yielding between one and a 
few thousand conformers for each molecule, depending on the degree of ligand flexibility.  

2.2 Neural Networks for Predicting Hydricity 

We employed two distinct neural networks for our hydricity predictions: an autoencoder used to 
define a chemical and structural latent space, and a simple feed-forward network used to predict 
hydricities from the latent space. The rationale behind this design is that a latent space informed 
by all of the conformers across all of the (training) complexes may define a more relevant data 
representation from which property predictions can be made. The encoder portion of the 
autoencoder comprises two hidden layers with 75 and and 50 nodes, with input and output layers 
with 100 and 25 nodes. The decoder portion comprises the same architecture, but reversed in 
order. ReLU activation functions were applied to all but the final encoder and decoder layers. The 
autoencoder was trained for 200 epochs with the Adam optimizer, using a learning rate of 5.0 x 
10-4 and a weight decay of 1 x 10-4. The feed-forward network for predicting hydricities from the
latent space comprised an input layer with 25 nodes, an output layer with a single node, and three
hidden layers with 50, 50, and 25 nodes, respectively. ReLU activation functions and dropout with
probability of 0.3 was applied to all but the final layer. The feed-forward network was trained for
500 epochs using the same optimizer and parameters as the autoencoder. To reduce the
computational cost of the model, we reduced the dimensionality of the feature vectors through a
farthest-point sampling scheme, retaining only the 100 most diverse features (out of more than
8000).

We trained the neural network on the donor forms of the organometallic complexes in our data 
set, except for those of [HNi(MeIm(CH2)2PPh2)2]+,4 HRh(triphos)(PPh3),5 HRh(triphos)(PMe3),5 
and [HPd(depp)2]+,6 which were set aside as a test set. The predictive capability of the neural 
network was examined using these four test molecules. The proximity of these test molecules to 
the training set in the latent space is shown in Figure 1 for two of the latent variables. Three of 
the test molecules are metal complexes with four phosphine ligands, a class which is well-
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represented in the training set. The hydricity predictions for these complexes ranged from 3.4 to 
10.8 kcal/mol difference from the actual hydricity values. The fourth test molecular contained two 
phosphine ligands and two carbene ligands, which are underrepresented in the training set. As 
might be expected, this complex showed a higher error of 18.5 kcal/mol in its predicted hydricity. 
From these results, it can be concluded that the neural network has difficulty in predicting 
hydricities for complexes that inhabit regions of chemical space that are sparsely populated or 
are populated by complexes with dissimilar hydricities. 

Figure 1. A neural network shows good to moderate success in predicting hydricity of test 
compounds, with the numerical value indicating the prediction error relative to the 
known value. Only 2 out of 25 dimensions of the latent space are shown for clarity. 

To further examine the chemical boundaries for accurate prediction of hydricities, a regression-
only neural network was constructed using 100 independent 90/10 train/test splits. The 
performance of this model varied widely based on which compounds were assigned to the training 
and test sets, with a minimum RMSE of 2.03 kcal/mol, a maximum RMSE of 10.25 kcal/mol, and 
an average of 6.04 kcal/mol. This behavior is consistent with a data-limited model, making it 
difficult to accurately predict hydricity values for complexes that lie outside of the chemical space 
occupied by the training set. In future studies, we plan to systematically examine the outliers in 
this model in order to better define the chemical features that lead to good or poor prediction of 
hydricity. We expect such an analysis will help provide indicators for molecules that are expected 
to be predicted well and to help identify improved model features that will improve the range of 
chemical space that can be predicted. 
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Figure 2. Output from regression-only neural network using 100 independent 90/10 train/test 
splits. The predicted hydricity values are the average for each of the models in which 
the compound was included in the test set.  

2.3 Experimental Hydricity Measurements to Augment the Training 
Model 

To augment the chemical space of the hydricity data set, we targeted four complexes to 
synthesize and experimentally measure the hydricity (Figure 3). The first two complexes, 
[Ni(dmpm)2]2+ and [Ni(dppm)2]2+, have phosphine ligands with a much smaller chelate angle (P-
Ni-P) than the complexes in the training set, a structural feature which is known to have a strong 
influence on the hydricity.7 These complexes were readily synthesized by reaction the precursor 
[Ni(CH3CN)6]2+ with two equivalents of the commercial diphosphine ligands. To measure the 
hydricities, these complexes were treated with dihydrogen (H2) and a series of organic bases with 
known basicity values in order to measure the equilibrium between the Ni(II) and Ni(II)H states. 
However, we were unable to identify a base that was strong enough to generate the Ni(II)H without 
also binding to the Ni center. Base binding results in the formation of high-spin Ni(II) species that 
give rise to broadened and paramagnetically shifted resonances in the NMR spectra, thereby 
preventing accurate calculation of the reaction equilibrium.  

Two iron complexes, CpFe(dppe)Cl and Cp*Fe(dppe)Cl, were synthesized and tested for hydricity 
measurements. In a modification of a literature procedure,8 Fe(dppe)Cl2 was reacted with either 
CpLi or Cp*Li to afford the target complexes. In acetonitrile solution, the solvent displaces the 
chloride ligand on the Fe complexes. Due to tight binding of the acetonitrile ligand, attempts to 
generate Fe hydride species by treating with H2 and organic base were unsuccessful and resulted 
in one of three outcomes: (i) no reaction was observed, (ii) the base coordinated to Fe by 
displacing the dppe ligand, or (iii) the complex decomposed into multiple unidentified species. In 
principle the hydricity of these complexes could be measured in a non-coordinating solvent like 
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tetrahydrofuran, but this was not attempted since the neural network was not trained on hydricity 
values measured in non-coordinating solvents. 

An iridium complex, [(H)4Ir(POCOP)]+, was synthesized by literature methods9 and was tested for 
hydricity measurement. Similar to the Fe complexes, acetonitrile was observed to bind tightly to 
the Ir complex by displacing H2. Strong organic bases were observed to deprotonate the 
acetonitrile ligand, again precluding measurement of the hydricity in acetonitrile. 

Figure 3. Complexes that were targeted for synthesis and experimental measurement of 
hydricity. 
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3.0 Conclusion 

In the present study, we pursued a multifaceted approach to model and predict the hydricity of 
transition metal hydride complexes, employing neural networks alongside computational 
simulations and experimental measurements. The data set comprised ~100 transition metal 
hydride complexes with known hydricity values and X-ray crystallographic structural coordinates 
were enriched with additional conformational variants via tight-binding-based molecular dynamics 
and metadynamics simulations. This provided a more nuanced exploration of the complexes' 
conformational space, thereby addressing the intrinsic limitation associated with X-ray 
crystallography-derived structures. 

The neural network architecture employed was bifurcated: an autoencoder for latent space 
definition and a feed-forward network for hydricity predictions. The results suggest moderate 
predictive accuracy; however, the model's performance exhibited sensitivity to the composition of 
the training and test sets. This was particularly noticeable for complexes that were 
underrepresented or occupied sparsely populated regions in the chemical space, corroborated 
by discrepancies in hydricity prediction errors and Root Mean Square Error (RMSE) variations in 
regression-only neural networks. 

Experimental endeavors to augment the training data set unveiled complications. Particularly, 
issues related to base binding interfered with the hydricity measurements, highlighting the 
pertinence of the electronic environment in governing hydric properties. This underscores the 
need for further experimental work that not only expands the compositional diversity of the data 
set but also addresses the limitations related to the choice of base and ligand conformation in the 
measurement of hydricity. 
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