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Abstract 
Extended X-ray absorption fine structure (EXAFS) spectroscopy is crucial for determining the 
coordination environment of impurities and dopants; however, it requires difficult measurements. 
X-ray absorption near edge structure (XANES) spectroscopy and X-ray emission spectroscopy 
(XES) can be obtained easily but cannot be converted to determine structures. In this work we 
develop tools to map measured XANES to the EXAFS signal through machine learning, thereby 
facilitating the use of EXAFS structural-determination analyses on XANES data. Through the 
use of Deep Operator Networks (DeepONets), we are able to accurately predict the EXAFS 
spectrum between 6 and 14 Å-1 from the first 6 Å-1 (~100 eV)  of the absorption spectrum of Cu2+ 
substitutional defects in the Fe3+ mineral hematite (𝛼𝛼 −Fe2O3). This surprising finding implies 
that theoretical analyses of X-ray absorption spectra could be implemented that extract the 
same conclusions as high-quality EXAFS studies from spectra collected over a much smaller 
range of photon energies. To encourage similar efforts, the simulated x-ray spectra, machine 
learning, and fitting code is made publicly available. 
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Acronyms and Abbreviations 
AIMD: Ab initio molecular dynamics 
DNN: Deep neural network 
DeepONet: Deep Operator Network 
EXAFS: Extended x-ray absorption fine structure 
FFT: Fast Fourier transform 
NN: Neural network 
XANES: X-ray absorption near edge 
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1.0 Introduction 
This work involves relating two different types of x-ray absorption spectra: x-ray absorption near 
edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) (Sayers, Lytle, 
and Stern 1969), which are conventionally used to probe the local electronic and atomic 
structures, respectively, of a specific chemical element in a sample. The experimental 
accessibility of the two types of spectral data is different: XANES can be measured on more 
dilute samples and with less stringent requirements on the x-ray source and detector. Hence it 
is of interest to understand the relationship between EXAFS and XANES. Machine learning has 
proven useful for uncovering subtle relationships that are not apparent using traditional analysis. 
In this work we demonstrate that, in a certain class of simulated data, machine learning can 
predict the EXAFS of a sample when shown only the XANES and not the atomic structure that 
would normally be used to simulate the EXAFS. This finding suggests that it may be possible to 
extend experimentally measured XANES spectra to the EXAFS and thereby increase the 
conditions under which EXAFS can be obtained. We achieved this using the DeepONet 
framework (Lu et al. 2021), which is part of body of work for operator learning (Lu et al. 2022; Li 
et al. 2020a; 2020b; You et al. 2022)  inspired by the universal approximation theorem for 
operators (Chen and Chen 1995; Back and Chen 2002). DeepONets have been shown to 
accurately predict a wide range of physical systems (Sharma Priyadarshini, Venturi, and Panesi 
2021; Ranade, Gitushi, and Echekki 2021; 2021; Di Leoni et al. 2021; He et al. 2023; Goswami 
et al. 2022; 2023; Lin et al. 2021). In this report we summarize our main findings, showing that 
DeepONets can accurately predict EXAFS profiles from corresponding XANES profiles. 

2.0 DeepONets to predict EXAFS from XANES 
2.1 Synthetic XAS Spectra 

We conducted this research using ab initio molecular dynamics (AIMD) from our previous work 
(Mergelsberg et al. 2021) that describe Cu bearing hematite, a naturally occurring mineral. We 
used the FEFF code (Kas et al. 2021) to simulate both XANES and EXAFS for many 
instantaneous structures form the AIMD simulations. Key settings were kept fixed for all runs: 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 9 Å, 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 = 8.5 Å and 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 = 3. 

2.2 DeepONets 

The primary objective of this work was to train a machine learning surrogate model to find the 
mapping from the space a XANES profiles generated by the training set to the space of EXAFS 
profiles. Through testing, we found success using a variation of DeepONets (Lu et al. 2021) 
called the modified DeepONet (Wang, Wang, and Perdikaris 2021). A DeepONet has two deep 
neural networks, which take as input the XANES profile to the branch net and the independent 
variables, typically spatial coordinates, to the trunk net. The branch and trunk net are combined 
with a dot product to give the output, in this case a prediction of the EXAFS profile. In modified 
DeepONets, encoder layers are added to enable more communication between the input 
variables, in the form of a convex combination at each hidden layer of the branch and trunk 
DNNs. 
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Figure 1: Diagram of the DeepONet 

Through trial, we found that the modified DeepONet surrogate model produces more robust and 
accurate results if instead of training for the EXAFS profile directly, we instead learn the Fourier 
transform of the EXAFS with respect to 𝑘𝑘. In this variation, the trunk network takes as input the 
𝑘𝑘 grid of the Fourier transform, and the output of the modified DeepONet is the Fourier 
transform of the EXAFS corresponding to XANES profile used as input to the branch network. A 
diagram of the training process is given in Figure 1.  

We generated training and testing sets from snapshots from ab initio molecular dynamics 
(AIMD) simulations. Because the ultimate use case for this work consists of identifying linear 
combinations of given configurations, we also included linear combinations of the snapshots 
from the AIMD simulations. Additionally, we included the averages of all the snapshots from a 
given simulation, and linear combinations of those averages. The training set consisted of data 
from 10 configurations, and three configurations were withheld to comprise the test set. This 
resulted in a total training set size of 2349, consisting of 10 averages of all snapshots for a given 
configuration, 1000 linear combinations of the averaged profiles, 339 unaveraged snapshots, 
and 1000 linear combinations of the unaveraged snapshots. The testing set had total size 235, 
consisting of 3 averages of all snapshots for a given configuration, 21 linear combinations of the 
averaged profiles, 111 unaveraged snapshots, and 100 linear combinations of the unaveraged 
snapshots. To improve training, each type of data was assigned a weight 𝑤𝑤, which was included 
in the lost function to assign higher weight to the averaged profiles. The weights used were 3 for 
the averaged profiles and linear combinations of averaged profiles, 2 for linear combinations of 
snapshots, and 1 for the snapshots.  

The output of the DeepONet is denoted by 𝒩𝒩�𝑋𝑋𝑖𝑖�𝑘𝑘𝑗𝑗; 𝜃𝜃��, where 𝜃𝜃 is the set of all trainable 
parameters, 𝑘𝑘𝑗𝑗 is a given Fourier coordinate, and 𝑋𝑋𝑖𝑖 is the EXAFS profile for sample i.  The goal 
in training is to minimize the loss function, given by   

ℒ(𝜃𝜃) =
1
𝑁𝑁𝑏𝑏

1
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The loss function contains terms for the mean squared error (MSE) for the real part of the 
Fourier transform, the imaginary part of the Fourier transform, and the magnitude of the Fourier 
transform.  
 
The DeepONet is implemented in Jax (Bradbury et al. 2018), and all training parameters are 
given in Table 1.  
 
 

Table 1: Hyperparameters for training the DeepONet 
Training parameter Value 

Number of Fourier coefficients 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 =40 
FFT input scaling 4/282 
FFT coordinate scaling 1/40 
XANES shift -1 
DNN network size 6 hidden layers, 200 neurons 

each 
Number of training iterations 600,000 
Learning rate exponential_decay function in 

Jax with initial learning rate 5 ×
10−5 and 2000 decay steps with 
a decay rate of 0.99 

Activation function scaled exponential linear unit 
(SELU) 

XANES data used in training 𝑘𝑘 ∈ [0, 6] (Å-1) 
 

To calculate the accuracy of the trained DeepONet surrogate, we calculated the relative l2 error, 
given by 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
‖𝜒𝜒𝐷𝐷𝐷𝐷𝐷𝐷(𝑘𝑘) − 𝜒𝜒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑘𝑘)‖2

‖𝜒𝜒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑘𝑘)‖2
 

where ‖⋅‖2 denotes the l2 norm, and 𝜒𝜒𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑘𝑘) and 𝜒𝜒𝐷𝐷𝐷𝐷𝐷𝐷(𝑘𝑘) are the FEFF and DeepONet EXAFS 
spectra, respectively. Note that the error is calculated as a post processing step, after the 
inverse Fourier transform is taken. The mean relative l2 error from our trained DeepONet model 
is 0.176, calculated over the full test set. When calculated only over averaged profiles and linear 
combinations of averages, the mean relative l2 error is 0.163. The results represent accurate 
predictions of EXAFS profiles that can accurately be used in further work where EXAFS profiles 
are needed, without the need to do costly experiments to find the EXAFS profile. Example 
profiles generated by training are given in Figure 2 for the three averaged profiles in the test set.  
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Figure 22: DeepONet predictions for the three profiles of averaged snapshots in the training set. 

From left to right we plot the input XANES profile, the scaled FFT values, and the predicted, 
unscaled, EXAFS profiles. 

 

3.0 Conclusions 
We have shown that DeepONets can be trained to predict FEFF EXAFS from FEFF XANES 
with high fidelity, suggesting that machine learning can be used to extend experimental XANES 
spectra to include the EXAFS region without explicit measurements. We invite others to join this 
effort by providing the codes used to generate the results, the trained DeepONet parameters, 
and simulation results used on http://datahub.pnnl.gov and 
https://github.com/pnnl/DeepONets_for_spectroscopy/.  
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