
Choose an item.

PNNL-34961

GRaman
Graph Network based Simulator for
Forecasting Molecular Polarizability
September 2023

Marco Minutoli
Mahantesh Halappanavar
Edoardo Aprà
Patrik El-Khoury
Niri Govind

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Choose an item.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062
www.osti.gov

ph: (865) 576-8401
fox: (865) 576-5728

email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)
or (703) 605-6000

email: info@ntis.gov
Online ordering: http://www.ntis.gov

http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/

PNNL-34961

GRaman
Graph Network based Simulator for Forecasting Molecular Polarizability

September 2023

Marco Minutoli
Mahantesh Halappanavar
Edoardo Aprà
Patrik El-Khoury
Niri Govind

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

PNNL-34961

Abstract ii

Abstract
This report presents the work performed under the GRaman project, sponsored by the PCSD
LDRD Seed program. The project aimed at accelerating ab initio molecular dynamics
simulation using Graph Networks. The Graph Network framework is a ML framework that has
been successfully employed to simulate the dynamics of several physical systems: including
water splashing in a container and flags moving with the wind.

In this effort, we performed a data collection campaign for 3 different molecules of interest. We
have built tools for preprocessing the trajectories obtained by simulating Raman Spectroscopy
with NWChem and translating them into a suitable format for training. We have developed a
training algorithm to train the Graph Network based simulators based on our data and
developed a simulator that produces trajectories in the same NWChem format.

While the tool has improved with each iteration of development and subsequent experiments,
the current state of the tool does not allow to directly incorporate the technology within the
NWChem framework because the trajectories produced by the tool are not yet accurate enough.
However, the technology has proved to hold significant promise to accelerate molecular
dynamics simulations upon further research and development.

PNNL-34961

Acknowledgments iii

Acknowledgments
This research was supported by the PCSD LDRD Mission Seeds Program, under the
Laboratory Directed Research and Development (LDRD) Program at Pacific Northwest National
Laboratory (PNNL). PNNL is a multi-program national laboratory operated for the U.S.
Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DE-AC05-
76RL01830.

PNNL-34961

Contents iv

Contents
Abstract... ii
Acknowledgments .. iii
1.0 Introduction.. 1

1.1 Contributions and Achievements .. 1
2.0 Data Collection .. 2

2.1 NWChem Trajectories .. 2
2.2 Data Preprocessing Tool .. 3
2.3 Training Data ... 5

3.0 The Graph Networks Framework ... 6
3.1 GRaman Simulator .. 6

3.1.1 The Machine Learning Task .. 6
3.1.2 The Model Architecture ... 7

3.2 GRaman Simulator Software Tool .. 7
4.0 Experimental Evaluation .. 9

4.1 Experimental Setup .. 9
4.2 One Step Predictions ... 9
4.3 Long Trajectory Rollout .. 11

5.0 Dissemination Activities and Business Development ... 13
6.0 References .. 14

Figures
Figure 1: A trajectory as output from NWChem. The snippet includes two consecutive

steps of the simulation. The format includes local properties of atoms (i.e.,
type, position, and velocities) and global properties of the molecule (i.e.,
dipole). ... 3

Figure 2: The grammar of NWChem trajectory files... 4
Figure 3: A block diagram of the GRaman simulator model architecture. 7
Figure 5: One Step Prediction of the model when using ground truth as input........................... 10
Figure 6: Long Trajectory Rollouts obtained by training the model on ground truth. 11
Figure 7: Long Trajectory Rollouts after training the model with noisy inputs. Top: 𝐻𝐻2.

Bottom: NTP. ... 11

Tables
Table 1: Summary of NWChem trajectories collected. .. 2

https://pnnl-my.sharepoint.com/personal/marco_minutoli_pnnl_gov/Documents/Documents/LDRD-GNN/GRaman%20Report.docx#_Toc146022602
https://pnnl-my.sharepoint.com/personal/marco_minutoli_pnnl_gov/Documents/Documents/LDRD-GNN/GRaman%20Report.docx#_Toc146022605
https://pnnl-my.sharepoint.com/personal/marco_minutoli_pnnl_gov/Documents/Documents/LDRD-GNN/GRaman%20Report.docx#_Toc146022606
https://pnnl-my.sharepoint.com/personal/marco_minutoli_pnnl_gov/Documents/Documents/LDRD-GNN/GRaman%20Report.docx#_Toc146022606

PNNL-34961

Introduction 1

1.0 Introduction
The key problem addressed in the GRaman project is the acceleration of the computation of
molecular properties in ab initio molecular dynamics (AIMD) simulation using artificial
intelligence techniques. AIMD simulations have shown remarkable accuracy for the predicting
Raman spectra, either ensemble-averaged molecular spectra or single molecule Raman
scattering. However, a considerable number of long simulations are required to reach accurate
results for medium size molecules. Previous attempts of applying time series forecasting
demonstrated the possibility of shortening the length of AIMD simulations required for the
dynamical evaluation of molecular properties.

We aim to build on the novel concept of graph network-based simulator for studying the time-
domain (dynamic) Raman spectral simulations and comparing these theoretical results with
experimental studies. A “graph network” is a type of graph neural network designed for learning
the forward dynamics of a system using the message-passing framework (Battaglia 2018). This
approach has been demonstrated for learning the dynamics in a variety of contexts such as
simulation of rigid body, mass-spring, n-body, and robotic control systems, as well as non-
physical systems, such as multi-agent dynamics and algorithm execution (Sanchez-Gonzalez
2020). Several downstream tasks such as classification and prediction at node-, subgraph- and
graph-level can be performed. The decoder component can be used for forecasting the time
series among other generative tasks.

1.1 Contributions and Achievements

In summary the project made the following contributions:

• Development of a PyTorch based software library implementing the fundamental blocks
of a graph-network simulator;

• Development of data preprocessing tools to transform NWChem trajectory in a format
suited for training;

• Data collection of NWChem-based datasets for training;

• Scaling the simulator on multi-GPU platforms using PyTorch-Lightening framework; and

• Preliminary exploration of the tool using the newly developed software library.

PNNL-34961

Data Collection 2

2.0 Data Collection
This section gives an overview of the data collection effort that was part of this project. We start
by providing details on the molecular trajectories that we have collected to train the model (see
2.1). Then, we provide an overview of the pre-processing steps and give a high-level overview
of a tool that we have developed to generate suitable training data for the GRaman simulator
(see 2.2). We conclude by giving an overview of the training data released as part of the project
(see 0).

2.1 NWChem Trajectories

We have collected trajectories of four different molecules by running simulations using
NWChem (Apra 2020). Each simulation consists of and AIMD run using a timestep of 25 atomic
units (corresponding to 0.60 femtoseconds) for a total time of around 6 picosends. For each
molecular system described below, we ran multiple trajectories in order to reach a total
simulation time of the order of 100s of picoseconds. More details about the computational
protocol used here can be found in (Fischer, et al. 2016).

Our study used:

• 𝐻𝐻2: the hydrogen molecule was chosen for its small size the simplicity of its vibrational
spectrum due to its linear structure.

• pNTP (p-nitrothiophenol): this molecule was chosen since there is an extensive literature
of the experimental and theoretical studies of its Raman spectra.

• NTP dimer (Ling 2016): this molecule was chosen to see how the Raman spectrum
would change going for the pNTP monomer to its dimer.

• dmab (dimercaptoazobenzene): dimer structure like the pNTP dimer. Chosen to see if
the modeling tools would be able to distinguish the two different dimers

Table 1: Summary of NWChem trajectories collected.
Molecule Number of Trajectories Total Size (MB)

𝐻𝐻2 1
pNTP 26 739

NTP dimer 7 375
dmab 10 489

PNNL-34961

Data Collection 3

Figure 1: A trajectory as output from NWChem. The snippet includes two consecutive steps of
the simulation. The format includes local properties of atoms (i.e., type, position, and velocities)
and global properties of the molecule (i.e., dipole).

2.2 Data Preprocessing Tool

Figure 1 show the structure of the language that is output by NWChem. The language
represents lists of molecule states at each step of the simulation. Each molecule state includes
the energy, the dipole, and, for each atom in the molecule, positions and velocities. In this
format, the information that is associated with each atom at every time step of the simulation
only describes the current state of the molecule and does not provide information about the
history. Therefore, we have built a language translator (Minutoli, Halappanavar, et al., GRaman
Utils: https://stash.pnnl.gov/projects/GRAMAN/repos/graman-utils 2022) that converts NWChem
trajectories files into a JSON format that we have designed to store the training data for the
GRaman Simulator.

Figure 2 shows a formal description of the output file format from NWChem expressed as a
grammar of the language of valid trajectories. This grammar has been used to implement the
parsing module needed by the translator in two ways. First the lexer and parser for the input file
are generated by the Parsec library through a description of the grammar in Figure 2 in the DSL
defined by Parsec. Second, the internal data structures to represent the NWChem trajectory
mimic the representation in Figure 2 (e.g., the trajectory is a list of TrajectoryPoints).

PNNL-34961

Data Collection 4

Once the input file has been parsed and its content translated into a list of trajectory point, the
tool performs a series of transformations on the information contained in the list with three
objectives:

1. Compute missing information. For computational efficiency reasons, NWChem trajectory
files often represent a subsample of the simulation run with the tool. For example, each
state in a trajectory file could have been obtained by saving the state of the molecule
every 10 simulation steps. In this case, the velocity recorded in the trajectory does not
match the actual position of the atoms at the following step. To overcome the issue, the
tool computes the “average” velocity that justifies the new position of the atoms in the
molecule.

2. Provide a window of the trajectory in the past for each data point. One of the input
arguments of the tool is the size of a window of past states that is used to augment the
feature vector associated with the atoms in the system and constructs the data points
that will be given to the model for training. Augmenting the current state with information
from the past simulation steps was proposed by (Sanchez-Gonzalez 2020). We leverage
the same approach and have built a tool that enables to explore different window sizes.

3. Transform the internal tool representation into JSON file for reloading by the
downstream tool. Once step two is completed, the tool lowers the internal representation
into a JSON format that we have designed. The format includes for each data point
constructed:

a. the edge list of the graph encoding the molecule;

b. the feature vectors associated with each atom;

c. and, the next state to be predicted by the model.

More details on the algorithms used and the implementation details of the tool can be found in
the git repository implementing the GRaman Utils (Minutoli, Halappanavar, et al., GRaman Utils:
https://stash.pnnl.gov/projects/GRAMAN/repos/graman-utils 2022).

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 | 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁 ← < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑁𝑁𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 >
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← < 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑁𝑁𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 >

𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3𝐷𝐷
𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3𝐷𝐷 ← < 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑁𝑁𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 > < 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑁𝑁𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 > < 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑁𝑁𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 >

𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 ← 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 | 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 ← < 𝑁𝑁𝑇𝑇 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁 𝑁𝑁𝑇𝑇𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 𝑓𝑓𝑇𝑇𝑇𝑇𝑁𝑁 𝑇𝑇ℎ𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇 >
𝑇𝑇𝑇𝑇𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3𝐷𝐷
𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3𝐷𝐷

Figure 2: The grammar of NWChem trajectory files

PNNL-34961

Data Collection 5

2.3 Training Data

(Minutoli, Halappanavar, et al., GRaman Experiments:
https://stash.pnnl.gov/projects/GRAMAN/repos/graman-experiments 2022) contains all the data,
the NWChem scripts, and descriptions of the trajectories. We have worked closely with the
DataHub team (e.g., Shannon Sheridan) to comply to the FAIR standards1 and to make the data
available on DataHub.

The tool described in Section 2.2 allows to efficiently regenerate all the training data that we
have used on a need basis. In fact, the formatted training data is much larger than the raw
NWChem trajectory files due to the richer information associated with each step of the
simulation. This approach enables to more easily share the data avoiding unnecessarily large
downloads.

1 https://www.go-fair.org/

PNNL-34961

The Graph Networks Framework 6

3.0 The Graph Networks Framework
This section will follow the same notation from (Battaglia 2018). We will define a graph as a
tuple of the form 𝐺𝐺 = (𝒖𝒖,𝑉𝑉,𝑇𝑇), where 𝒖𝒖 is a global attribute of the system being modelled, 𝑉𝑉 is a
set of vertices modelling the entities (or actors) of the system. Each vertex 𝑇𝑇 has attributes 𝒗𝒗𝒊𝒊
and each edge 𝑇𝑇𝑘𝑘 = (𝑇𝑇𝑘𝑘 , 𝑁𝑁𝑘𝑘) has attributes 𝒆𝒆𝑘𝑘 .

A Graph Network block uses three update functions (𝜙𝜙), and three aggregation functions (𝜌𝜌):

𝒆𝒆𝑘𝑘′ = 𝜙𝜙𝑒𝑒�𝒆𝒆𝑘𝑘 ,𝒗𝒗𝑟𝑟𝑘𝑘 ,𝒗𝒗𝑠𝑠𝑘𝑘,𝒖𝒖�
𝒆𝒆𝚤𝚤� = 𝜌𝜌𝑒𝑒→𝑣𝑣(𝑇𝑇𝑖𝑖′)
𝒗𝒗𝑖𝑖′ = 𝜙𝜙𝑣𝑣�𝒆𝒆𝚤𝚤′���� ,𝒗𝒗𝑖𝑖 ,𝒖𝒖�
𝒆𝒆′� = 𝜌𝜌𝑒𝑒→𝑢𝑢(𝑇𝑇′)
𝒖𝒖′ = 𝜙𝜙𝑢𝑢(𝒆𝒆′� ,𝒗𝒗′� ,𝒖𝒖)
𝒗𝒗′� = 𝜌𝜌𝑣𝑣→𝑢𝑢(𝑉𝑉′)

where 𝑇𝑇𝑖𝑖′ is the set of edges incident on vertex 𝑇𝑇 with updated attributes, 𝑉𝑉′ is the set of vertices
with updated attributes, and 𝑇𝑇′ is the edge list of the graph with updated attributes. Therefore,
the function 𝜙𝜙𝑒𝑒 is mapped over each edge in the graph to compute the update on the edges,
while the 𝜙𝜙𝑣𝑣 function is mapped over each vertex in the graph to compute the update attributes.
The function 𝜙𝜙𝑢𝑢 is applied only once to compute the update global attributes. The aggregation
functions (𝜌𝜌) are instead computed on sets of elements and their results in aggregated
information. The 𝜌𝜌 functions take a variable number of arguments and must be permutation
invariant. Examples of such functions are summation, mean, minimum, and maximum.

The theoretical framework of Graph Networks is rather general and has the potential to be
adapted for learning the dynamics of systems that can be modelled using graphs. For example,
the work in (Sanchez-Gonzalez 2020) that has motivated this investigation adapted the
framework of Graph Networks to learn the dynamics of several different substances including
water, sand, and goop. In their implementation, Sanchez-Gonzalez et al. simplified the
framework by removing the functions related to the global state and by concatenating the global
state to each feature vector associated with each of the particle in the systems that they have
considered.

3.1 GRaman Simulator

3.1.1 The Machine Learning Task

We aimed at building a trained Graph Network model that given a state of an input molecule 𝐴𝐴 =
(𝐺𝐺,𝐹𝐹𝑣𝑣 ,𝐹𝐹𝑒𝑒 ,𝐹𝐹𝑢𝑢) at a time 𝑇𝑇 will predict the state of the same molecule 𝐴𝐴′ = (𝐺𝐺′,𝐹𝐹𝑣𝑣′,𝐹𝐹𝑒𝑒′,𝐹𝐹𝑢𝑢′) at time 𝑇𝑇 +
1. We define the state of a molecule 𝐴𝐴 as a 4-tuple (𝐺𝐺,𝐹𝐹𝑣𝑣 ,𝐹𝐹𝑒𝑒 ,𝐹𝐹𝑢𝑢), where 𝐺𝐺 is a graph
representation of the molecule where vertices are atoms and bonds are edges, 𝐹𝐹𝑣𝑣 is a feature
vector associated with every atom (vertices of 𝐺𝐺), 𝐹𝐹𝑒𝑒 is a feature vector associated with the
bonds (edges in 𝐺𝐺), and 𝐹𝐹𝑢𝑢 is a global feature vector.

The graph representation of a molecule used in GRaman is isomorphic to the chemical graphs
(or molecular graphs) as described in (McNaught and Wilkinson. 2019). However, the feature
vectors associated with vertices (𝐹𝐹𝑣𝑣) and edges (𝐹𝐹𝑒𝑒) are richer than those used in chemical
graphs. We define 𝐹𝐹𝑣𝑣1 as a tuple (𝑇𝑇,𝐷𝐷𝑡𝑡 ,𝐷𝐷𝑡𝑡−1, … ,𝐷𝐷𝑡𝑡−𝑤𝑤,𝑣𝑣𝑡𝑡 ,𝑣𝑣𝑡𝑡−1, … , 𝑣𝑣𝑡𝑡−𝑤𝑤), where 𝑇𝑇 is the atom type,

PNNL-34961

The Graph Networks Framework 7

and 𝐷𝐷𝑖𝑖 and 𝑣𝑣𝑖𝑖 include a window of length 𝑤𝑤 of past positions and velocities of the atom. We
define 𝐹𝐹𝑒𝑒 as the distance in 3-D space between the atoms forming the edge 𝑇𝑇 (bond) in 𝐺𝐺. The
same structure of the feature vectors 𝐹𝐹𝑣𝑣 and 𝐹𝐹𝑒𝑒 can be used with positions and velocities in
different coordinate systems (e.g., absolute or relative with respect to other atoms).

3.1.2 The Model Architecture

Figure 3 presents a block diagram of the model architecture used in GRaman. The architecture
mimics the one of (Sanchez-Gonzalez 2020). The model takes as input the state 𝐴𝐴 (as
described in 3.1.1) at time 𝑇𝑇 and produces as output the state 𝐴𝐴′ of the molecule at time 𝑇𝑇 + 1.

The pipeline is constituted by three blocks: an Encoder, the Graph Neural Network, and a
Decoder. The Encoder/Decoder pair enable the model to learn a representation of the state
space of the simulation that is optimized for the task. In our implementation, both Encoder and
Decoders are Multi-Level Perceptrons. The Graph Neural Network block in Figure 3 is the core
of the architecture and, conceptually, it is responsible of learning an approximator of the state
transition function of the system we want to simulate.

Figure 3: A block diagram of the GRaman simulator model architecture. Given the current state
𝐴𝐴 the trained model predicts the state of the molecule at the next time step of the simulation 𝐴𝐴′.

The Graph Neural Network block is itself a pipeline of components working in the latent space
where the states 𝐴𝐴 are projected from the Encoder. Each element of the pipeline constitutes one
step of Message Passing and Aggregation in the Graph Network framework (described in 3.0).
The length of this pipeline constitutes one of the hyper-parameters that must be tuned for
optimal performance. Our implementation uses the guidance given in (Sanchez-Gonzalez 2020)
and sets its length to 5.

3.2 GRaman Simulator Software Tool

The GRaman simulator software tool (Minutoli, Halappanavar, et al., Graman Simulator:
https://stash.pnnl.gov/projects/GRAMAN/repos/graman-sim 2022) comprises of two
components:

PNNL-34961

The Graph Networks Framework 8

1. the train module;

2. the simulate module.

The train module implements the training algorithm used for the training of the GRaman Graph
Network based simulator. This module went through several iteration before reaching its
current state. Its first implementation attempted at predicting both position and velocity (as
reported in the output of NWChem) as a single output. Over the length of the project, we have
evolved the module in its current state where the Graph Network based simulator uses two
different predictors (trained separately) to predict position and velocities. While the predictor for
the velocity is trained on the output from NWChem, the predictor for the position is trained using
the average velocity in the data and the position is then obtained through integration during
simulation. The train module outputs periodic checkpoints of the two predictors retaining the
best performing predictors. The module leverages GPU acceleration as provided by Pytorch
lightning and uses early stopping to terminate the training loop when no more improvements are
observed from the model.

The simulate module implements a simulator using the trained Graph Network model. The
module takes as input an initial trace (usually 5 steps) used to establish enough history to
compute the node features for the GRaman simulator and the checkpoint files to reload the two
predictors composing the Graph Network simulator. At each step of the simulation, the simulator
computes the current feature vectors associated with the graph representation of the molecule
and uses the GRaman model to predict the instantaneous velocity of each atom and the
average velocity that will move the molecule from the current state to the next state of the
simulation. The position in space of each of the atoms is then obtained through a simple Euler
integrator. The choice of the integrator was made to match the work from (Sanchez-Gonzalez
2020). The output of the simulate module has the same format as a NWChem trajectory as
shown in Figure 1. During the project, we have focused on reproducing the dynamics of the
molecule and, therefore, some of the global properties in the trajectory are mocked out. More
precisely, our software does not make predictions about the energy of the system nor its dipole.

PNNL-34961

Experimental Evaluation 9

4.0 Experimental Evaluation
4.1 Experimental Setup

All our experiments have been conducted on a DGX-2 box (Enigma) with 4 NVIDIA A100 GPU.
The implementation of the GRaman simulator (Minutoli, Halappanavar, et al., Graman
Simulator: https://stash.pnnl.gov/projects/GRAMAN/repos/graman-sim 2022) leverages PyTorch
1.13.1, PyTorch Geometric 2.3.0, and Torch Lightning 2.0.3.

The model is trained using the Mean Square Error (MSE) of predicted quantities as
performance metric. We have set the maximum number of epochs to 100, but allowed the
framework to stop the training sooner if no sensible improvement on the validation MSE is
detected. We have observed that generally between 3 and 6 epochs the training always
stopped.

Once the training of the predictors was completed, we have used the checkpoints of the best
performing iteration in our experiments to perform one step predictions and long simulation roll
outs. To evaluate the goodness of long simulation, we have used Avogadro 1 to load the
trajectory files produced by the GRaman simulator and to qualitatively assess the quality of the
trajectory obtained.

4.2 One Step Predictions

In our first experiment, we tested the performance of the model when predicting the next step of
the simulation starting from the ground truth states extracted from the NWChem trajectories.
The trajectories used in these experiments were part of the data used during the training
process. For each prediction, the model was given as input the graph representing the molecule
and the feature vectors associated with each atom constructed from a NWChem trajectory. The
model was then asked to predict the state of the molecule at the next step of the simulation.

Figure 4 presents the results of this experiments for the NTP molecule. Each row of the plot
represents the dynamics of each of the 15 atoms composing the NTP molecule while the
columns plot the x, y, and z components. It can be observed that from the picture that the model
performs well when provided as input data coming from NWChem trajectories. In fact, the actual
NWChem dynamic (blue line on the plots) and the one step prediction dynamics (red line on the
plots) are almost identical.

While these initial results were promising, we will see in the next section that the problem of
predicting these molecule trajectories is harder than what the experimental results presented in
Figure 4.

PNNL-34961

Experimental Evaluation 10

Figure 4: One Step Prediction of the model when using ground truth as input. Blue line is the
ground truth while red line is what the model predicts.

PNNL-34961

Experimental Evaluation 11

4.3 Long Trajectory Rollout

After assessing that a trained GNS model could well predict the next state when the input is
provided by a NWChem trace, the next question is if the model has the same level of accuracy
when being fed its own predictions. Therefore, we built a simulator module that is described in
section 3.2.

After building a simulator module where predictions made by the GRaman model are fed back
into it as part of the history of the trajectory, we notice that trajectories obtained by the tools
were not behaving as expected. Figure 5 shows the outcome of one such simulation. Many of
the simulations output showed deformation of the aromatic ring and the molecule breaking the
bonds on the longest trajectories.

Our initial hypothesis was that a single monolithic predictor was not sufficiently accurate to
perform well at the task. Therefore, we decided to split the model in two independent
predictors: one predicting the atom velocity and the other predicting its position. We
experimented with the training process and attempted to optimize the two separate predictors

t=1 t=10 t=20 t=30 t=40 t=50

t=1 t=10 t=20 t=30 t=40
Figure 6: Long Trajectory Rollouts after training the model with noisy inputs. Top: 𝐻𝐻2.
Bottom: NTP.

Rollout Start Rollout End
Figure 5: Long Trajectory Rollouts obtained by training the model on ground truth.

PNNL-34961

Experimental Evaluation 12

both conjunctly and independently. Optimizing the two predictors independently provided the
best performing model. However, the simulator was still generating unrealistic trajectories.

We hypothesize that the unrealistic rollouts produced by the model obtained by combining the
velocity and position predictors in our latest implementation are caused by a lack of correction to
the noisy input fed to the model itself. Therefore, we experimented with injecting noise in the
training data aiming at improving robustness in the model. Noise was injected in the custom
Data Loader for NWChem trajectories that we have implemented in the GRaman simulator. The
approach ensured that the training data was perturbed with different noise at every epoch of the
training process. The Data Loader leaves the ground truth values representing the next state
unaffected by the added noise. The spirit of the approach was to have the model learn to predict
the correct next state when only the input is noisy.

Figure 6 show the results of our model after training with noisy data. The picture was obtained
taking snapshots from Avogadro. While the top row shows a roll out from the 𝐻𝐻2 molecule, the
bottom row shows a rollout obtained for NTP by this last version of the simulator. The trajectory
of 𝐻𝐻2 produced by training the model adding noise is very close to what is simulated by
NWChem. The only difference is that the GRaman simulator is inducing a rotational moment.
In contrast to the H2 molecule, the NTP molecule produces improved but still unrealistic rollouts.
In fact, while the aromatic ring is now preserved by the simulation, it is affected by a
translational moment that separates it from the rest of the atoms.

PNNL-34961

Dissemination Activities and Business Development 13

5.0 Dissemination Activities and Business Development
During the length of the project, the team engaged with peers to disseminate the work
performed under the auspices of this project and to developed business opportunities.

The effort in GRaman has enabled the PI Marco Minutoli to get in contact with other scientists
within PNNL to discuss about the technology developed in GRaman. These interactions have
proved to extremely fruitful. In fact, these interactions materialized into four proposals:

• LDRD Open Call (PI: Dr. Laura M Fierce): the proposal will explore the training
simulators for turbulent microphysics and chemistry to expand the representation of
complex aerosol-cloud-precipitation processes in particle-based simulations. (Funded)

• NIH Proposal (PI: Dr. Laura M. Fierce): the aim of the proposal is to understand the
influence of mechanism controlling exposure to airborne pathogens within buildings. The
project aims at extending the PREEMPT model for network intervention to incorporate
these mechanisms. The project plans to train AI/ML based model to extend the
simulation of pathogen transmission to incorporate more precise indoor dynamics.
(Submitted 09/2023).

• DOE ASCR Proposal (PI: Antonino Tumeo): The RADARSCOPE project proposed to
develop a framework that will facilitate deployment of next-generation intelligent scientific
workflows on highly heterogeneous dispersed systems. Part of the proposal builds on
the technology developed in GRaman to build digital twins of the sensing infrastructure.
The proposal was not selected for funding.

• DOE ASCR Proposal (PI: Mahantesh Halappanavar): SciQ proposed to develop a novel
multi-stage uncertainty quantification framework for complex dynamical networks. One of
the central pieces of the proposal was to develop a theory to understand and quantify
uncertainties in Graph Networks. The proposal was not selected for funding.

PNNL-34961

References 14

6.0 References
Apra, E., Bylaska, E.J., de Jong, W.A., Govind, N., Kowalski, K., Straatsma, T.P., Valiev, M.,

van Dam, H.J.J., Alexeev, Y., Anchell, J. and Anisimov, V. 2020. "NWChem: Past,
present, and future." The Journal of Chemical Physics 152 (18): 184102.

Battaglia, Peter W., Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti et al. 2018. "Relational inductive
biases, deep learning, and graph networks." ArXiv preprint, arXiv:1806.01261.

Fischer, Sean A, Tyler W Ueltschi, Patrick Z El-Khoury, Amanda L Miffin, Wayne P Hess, Hong-
Fei Wang, Christorpher J Cramer, and Niranjan Govind. 2016. "Infrared and Raman
Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The
C–H Region of DMSO as a Case Study." The Journal of Physical Chemistry B 120 (8):
1429-1436.

Ling, Y., Xie, W., Liu, G. et al. 2016. "The discovery of the hydrogen bond from p-
Nitrothiophenol by Raman spectroscopy: Guideline for the thioalcohol molecule
recognition tool." Scientific Report 6 (1): 31981.

McNaught, A. D., and A. Wilkinson. 2019. IUPAC. Compendium of Chemical Terminology, 2nd
ed. (the "Gold Book"). Oxford: Blackwell Scientific Publications.

Minutoli, Marco, Mahantesh Halappanavar, Edoardo Apra, Niri Govind, and Patrick El Khoury.
2022. "GRaman Experiments: https://stash.pnnl.gov/projects/GRAMAN/repos/graman-
experiments."

—. 2022. "Graman Simulator: https://stash.pnnl.gov/projects/GRAMAN/repos/graman-sim."
—. 2022. "GRaman Utils: https://stash.pnnl.gov/projects/GRAMAN/repos/graman-utils."
Sanchez-Gonzalez, Alvaro, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and

Peter Battaglia. 2020. "Learning to simulate complex physics with graph networks."
International conference on machine learning. PMLR. 8459-8468.

PNNL-34961

Pacific Northwest
National Laboratory
902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

	GRaman
	Abstract
	Acknowledgments
	Contents
	Figures
	Tables
	1.0 Introduction
	1.1 Contributions and Achievements

	2.0 Data Collection
	2.1 NWChem Trajectories
	2.2 Data Preprocessing Tool
	2.3 Training Data

	3.0 The Graph Networks Framework
	3.1 GRaman Simulator
	3.1.1 The Machine Learning Task
	3.1.2 The Model Architecture

	3.2 GRaman Simulator Software Tool

	4.0 Experimental Evaluation
	4.1 Experimental Setup
	4.2 One Step Predictions
	4.3 Long Trajectory Rollout

	5.0 Dissemination Activities and Business Development
	6.0 References

