
Choose an item. 

 

 

PNNL-34961   

  
 

GRaman 
Graph Network based Simulator for 
Forecasting Molecular Polarizability 
September 2023 

Marco Minutoli 
Mahantesh Halappanavar 
Edoardo Aprà 
Patrik El-Khoury 
Niri Govind 
 
 

  
 

  

Prepared for the U.S. Department of Energy  
under Contract DE-AC05-76RL01830 

  



Choose an item. 

 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility 
for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by 
the United States Government or any agency thereof, or Battelle Memorial 
Institute. The views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency thereof. 

 

PACIFIC NORTHWEST NATIONAL LABORATORY 
operated by 
BATTELLE 

for the 
UNITED STATES DEPARTMENT OF ENERGY 

under Contract DE-AC05-76RL01830 

 

Printed in the United States of America 

Available to DOE and DOE contractors from  
the Office of Scientific and Technical Information,  

P.O. Box 62, Oak Ridge, TN 37831-0062  
www.osti.gov  

ph: (865) 576-8401  
fox: (865) 576-5728  

email: reports@osti.gov  
 

Available to the public from the National Technical Information Service  
5301 Shawnee Rd., Alexandria, VA 22312  

ph: (800) 553-NTIS (6847)  
or (703) 605-6000  

email: info@ntis.gov  
Online ordering: http://www.ntis.gov 

 

 
 

http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/


PNNL-34961 

GRaman 
Graph Network based Simulator for Forecasting Molecular Polarizability 

September 2023 

Marco Minutoli 
Mahantesh Halappanavar 
Edoardo Aprà 
Patrik El-Khoury 
Niri Govind 

Prepared for 
the U.S. Department of Energy 
under Contract DE-AC05-76RL01830 

Pacific Northwest National Laboratory 
Richland, Washington 99354 



PNNL-34961 

Abstract ii 
 

Abstract 
This report presents the work performed under the GRaman project, sponsored by the PCSD 
LDRD Seed program.  The project aimed at accelerating ab initio molecular dynamics 
simulation using Graph Networks.  The Graph Network framework is a ML framework that has 
been successfully employed to simulate the dynamics of several physical systems: including 
water splashing in a container and flags moving with the wind. 

In this effort, we performed a data collection campaign for 3 different molecules of interest. We 
have built tools for preprocessing the trajectories obtained by simulating Raman Spectroscopy 
with NWChem and translating them into a suitable format for training. We have developed a 
training algorithm to train the Graph Network based simulators based on our data and 
developed a simulator that produces trajectories in the same NWChem format. 

While the tool has improved with each iteration of development and subsequent experiments, 
the current state of the tool does not allow to directly incorporate the technology within the 
NWChem framework because the trajectories produced by the tool are not yet accurate enough. 
However, the technology has proved to hold significant promise to accelerate molecular 
dynamics simulations upon further research and development. 
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1.0 Introduction 
The key problem addressed in the GRaman project is the acceleration of the computation of 
molecular properties in ab initio molecular dynamics (AIMD) simulation using artificial 
intelligence techniques. AIMD simulations have shown remarkable accuracy for the predicting 
Raman spectra, either ensemble-averaged molecular spectra or single molecule Raman 
scattering. However, a considerable number of long simulations are required to reach accurate 
results for medium size molecules. Previous attempts of applying time series forecasting 
demonstrated the possibility of shortening the length of AIMD simulations required for the 
dynamical evaluation of molecular properties. 

We aim to build on the novel concept of graph network-based simulator for studying the time-
domain (dynamic) Raman spectral simulations and comparing these theoretical results with 
experimental studies. A “graph network” is a type of graph neural network designed for learning 
the forward dynamics of a system using the message-passing framework (Battaglia 2018). This 
approach has been demonstrated for learning the dynamics in a variety of contexts such as 
simulation of rigid body, mass-spring, n-body, and robotic control systems, as well as non-
physical systems, such as multi-agent dynamics and algorithm execution (Sanchez-Gonzalez 
2020). Several downstream tasks such as classification and prediction at node-, subgraph- and 
graph-level can be performed. The decoder component can be used for forecasting the time 
series among other generative tasks. 

1.1 Contributions and Achievements 

In summary the project made the following contributions: 

• Development of a PyTorch based software library implementing the fundamental blocks 
of a graph-network simulator; 

• Development of data preprocessing tools to transform NWChem trajectory in a format 
suited for training; 

• Data collection of NWChem-based datasets for training; 

• Scaling the simulator on multi-GPU platforms using PyTorch-Lightening framework; and 

• Preliminary exploration of the tool using the newly developed software library. 
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2.0 Data Collection 
This section gives an overview of the data collection effort that was part of this project. We start 
by providing details on the molecular trajectories that we have collected to train the model (see 
2.1). Then, we provide an overview of the pre-processing steps and give a high-level overview 
of a tool that we have developed to generate suitable training data for the GRaman simulator 
(see 2.2). We conclude by giving an overview of the training data released as part of the project 
(see 0). 

2.1 NWChem Trajectories 

We have collected trajectories of four different molecules by running simulations using 
NWChem (Apra 2020). Each simulation consists of and AIMD run using a timestep of 25 atomic 
units (corresponding to 0.60 femtoseconds) for a total time of around 6 picosends. For each 
molecular system described below, we ran multiple trajectories in order to reach a total 
simulation time of the order of 100s of picoseconds. More details about the computational 
protocol used here can be found in (Fischer, et al. 2016). 

Our study used: 

• 𝐻𝐻2: the hydrogen molecule was chosen for its small size the simplicity of its vibrational 
spectrum due to its linear structure.  

• pNTP (p-nitrothiophenol): this molecule was chosen since there is an extensive literature 
of the experimental and theoretical studies of its Raman spectra. 

• NTP dimer (Ling 2016): this molecule was chosen to see how the Raman spectrum 
would change going for the pNTP monomer to its dimer. 

• dmab (dimercaptoazobenzene): dimer structure like the pNTP dimer. Chosen to see if 
the modeling tools would be able to distinguish the two different dimers 

Table 1: Summary of NWChem trajectories collected. 
Molecule Number of Trajectories Total Size (MB) 

𝐻𝐻2 1  
pNTP 26 739 

NTP dimer 7 375 
dmab 10 489 
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Figure 1: A trajectory as output from NWChem. The snippet includes two consecutive steps of 
the simulation. The format includes local properties of atoms (i.e., type, position, and velocities) 
and global properties of the molecule (i.e., dipole). 

2.2 Data Preprocessing Tool 

Figure 1 show the structure of the language that is output by NWChem.  The language 
represents lists of molecule states at each step of the simulation.  Each molecule state includes 
the energy, the dipole, and, for each atom in the molecule, positions and velocities. In this 
format, the information that is associated with each atom at every time step of the simulation 
only describes the current state of the molecule and does not provide information about the 
history. Therefore, we have built a language translator (Minutoli, Halappanavar, et al., GRaman 
Utils: https://stash.pnnl.gov/projects/GRAMAN/repos/graman-utils 2022) that converts NWChem 
trajectories files into a JSON format that we have designed to store the training data for the 
GRaman Simulator. 

Figure 2 shows a formal description of the output file format from NWChem expressed as a 
grammar of the language of valid trajectories. This grammar has been used to implement the 
parsing module needed by the translator in two ways.  First the lexer and parser for the input file 
are generated by the Parsec library through a description of the grammar in Figure 2 in the DSL 
defined by Parsec. Second, the internal data structures to represent the NWChem trajectory 
mimic the representation in Figure 2 (e.g., the trajectory is a list of TrajectoryPoints). 



PNNL-34961 

Data Collection 4 
 

Once the input file has been parsed and its content translated into a list of trajectory point, the 
tool performs a series of transformations on the information contained in the list with three 
objectives: 

1. Compute missing information. For computational efficiency reasons, NWChem trajectory 
files often represent a subsample of the simulation run with the tool. For example, each 
state in a trajectory file could have been obtained by saving the state of the molecule 
every 10 simulation steps.  In this case, the velocity recorded in the trajectory does not 
match the actual position of the atoms at the following step. To overcome the issue, the 
tool computes the “average” velocity that justifies the new position of the atoms in the 
molecule. 

2. Provide a window of the trajectory in the past for each data point. One of the input 
arguments of the tool is the size of a window of past states that is used to augment the 
feature vector associated with the atoms in the system and constructs the data points 
that will be given to the model for training. Augmenting the current state with information 
from the past simulation steps was proposed by (Sanchez-Gonzalez 2020). We leverage 
the same approach and have built a tool that enables to explore different window sizes. 

3. Transform the internal tool representation into JSON file for reloading by the 
downstream tool. Once step two is completed, the tool lowers the internal representation 
into a JSON format that we have designed.  The format includes for each data point 
constructed: 

a. the edge list of the graph encoding the molecule; 

b. the feature vectors associated with each atom; 

c. and, the next state to be predicted by the model. 

More details on the algorithms used and the implementation details of the tool can be found in 
the git repository implementing the GRaman Utils (Minutoli, Halappanavar, et al., GRaman Utils: 
https://stash.pnnl.gov/projects/GRAMAN/repos/graman-utils 2022). 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 | 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁 ← < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑁𝑁𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 > 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← < 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑁𝑁𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 > 

𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3𝐷𝐷 
𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3𝐷𝐷 ← < 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑁𝑁𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 > < 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑁𝑁𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 > < 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑁𝑁𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 > 

𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 ← 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 | 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐴𝐴𝑇𝑇𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 ← < 𝑁𝑁𝑇𝑇 𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁 𝑁𝑁𝑇𝑇𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇 𝑓𝑓𝑇𝑇𝑇𝑇𝑁𝑁 𝑇𝑇ℎ𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇 > 
𝑇𝑇𝑇𝑇𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3𝐷𝐷 
𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ← 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3𝐷𝐷 

Figure 2: The grammar of NWChem trajectory files 
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2.3 Training Data 

(Minutoli, Halappanavar, et al., GRaman Experiments: 
https://stash.pnnl.gov/projects/GRAMAN/repos/graman-experiments 2022) contains all the data, 
the NWChem scripts, and descriptions of the trajectories.  We have worked closely with the 
DataHub team (e.g., Shannon Sheridan) to comply to the FAIR standards1 and to make the data 
available on DataHub. 

The tool described in Section 2.2 allows to efficiently regenerate all the training data that we 
have used on a need basis.  In fact, the formatted training data is much larger than the raw 
NWChem trajectory files due to the richer information associated with each step of the 
simulation. This approach enables to more easily share the data avoiding unnecessarily large 
downloads. 

 
1 https://www.go-fair.org/ 
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3.0 The Graph Networks Framework 
This section will follow the same notation from (Battaglia 2018). We will define a graph as a 
tuple of the form 𝐺𝐺 = (𝒖𝒖,𝑉𝑉,𝑇𝑇), where 𝒖𝒖 is a global attribute of the system being modelled, 𝑉𝑉 is a 
set of vertices modelling the entities (or actors) of the system. Each vertex 𝑇𝑇 has attributes 𝒗𝒗𝒊𝒊 
and each edge 𝑇𝑇𝑘𝑘 = (𝑇𝑇𝑘𝑘 , 𝑁𝑁𝑘𝑘) has attributes 𝒆𝒆𝑘𝑘 . 

A Graph Network block uses three update functions (𝜙𝜙), and three aggregation functions (𝜌𝜌): 

𝒆𝒆𝑘𝑘′ = 𝜙𝜙𝑒𝑒�𝒆𝒆𝑘𝑘 ,𝒗𝒗𝑟𝑟𝑘𝑘 ,𝒗𝒗𝑠𝑠𝑘𝑘,𝒖𝒖� 
𝒆𝒆𝚤𝚤� = 𝜌𝜌𝑒𝑒→𝑣𝑣(𝑇𝑇𝑖𝑖′) 
𝒗𝒗𝑖𝑖′ =  𝜙𝜙𝑣𝑣�𝒆𝒆𝚤𝚤′���� ,𝒗𝒗𝑖𝑖 ,𝒖𝒖� 
𝒆𝒆′� = 𝜌𝜌𝑒𝑒→𝑢𝑢(𝑇𝑇′) 
𝒖𝒖′ = 𝜙𝜙𝑢𝑢(𝒆𝒆′� ,𝒗𝒗′� ,𝒖𝒖) 
𝒗𝒗′� = 𝜌𝜌𝑣𝑣→𝑢𝑢(𝑉𝑉′) 

where 𝑇𝑇𝑖𝑖′ is the set of edges incident on vertex 𝑇𝑇 with updated attributes, 𝑉𝑉′ is the set of vertices 
with updated attributes, and 𝑇𝑇′ is the edge list of the graph with updated attributes. Therefore, 
the function 𝜙𝜙𝑒𝑒 is mapped over each edge in the graph to compute the update on the edges, 
while the 𝜙𝜙𝑣𝑣 function is mapped over each vertex in the graph to compute the update attributes.  
The function  𝜙𝜙𝑢𝑢 is applied only once to compute the update global attributes. The aggregation 
functions (𝜌𝜌) are instead computed on sets of elements and their results in aggregated 
information.  The 𝜌𝜌 functions take a variable number of arguments and must be permutation 
invariant. Examples of such functions are summation, mean, minimum, and maximum. 

The theoretical framework of Graph Networks is rather general and has the potential to be 
adapted for learning the dynamics of systems that can be modelled using graphs. For example, 
the work in (Sanchez-Gonzalez 2020) that has motivated this investigation adapted the 
framework of Graph Networks to learn the dynamics of several different substances including 
water, sand, and goop. In their implementation, Sanchez-Gonzalez et al. simplified the 
framework by removing the functions related to the global state and by concatenating the global 
state to each feature vector associated with each of the particle in the systems that they have 
considered. 

3.1 GRaman Simulator 

3.1.1 The Machine Learning Task 

We aimed at building a trained Graph Network model that given a state of an input molecule 𝐴𝐴 =
(𝐺𝐺,𝐹𝐹𝑣𝑣 ,𝐹𝐹𝑒𝑒 ,𝐹𝐹𝑢𝑢) at a time 𝑇𝑇 will predict the state of the same molecule 𝐴𝐴′ = (𝐺𝐺′,𝐹𝐹𝑣𝑣′,𝐹𝐹𝑒𝑒′,𝐹𝐹𝑢𝑢′) at time 𝑇𝑇 +
1.  We define the state of a molecule 𝐴𝐴 as a 4-tuple (𝐺𝐺,𝐹𝐹𝑣𝑣 ,𝐹𝐹𝑒𝑒 ,𝐹𝐹𝑢𝑢), where 𝐺𝐺 is a graph 
representation of the molecule where vertices are atoms and bonds are edges, 𝐹𝐹𝑣𝑣 is a feature 
vector associated with every atom (vertices of 𝐺𝐺), 𝐹𝐹𝑒𝑒 is a feature vector associated with the 
bonds (edges in 𝐺𝐺), and 𝐹𝐹𝑢𝑢 is a global feature vector. 

The graph representation of a molecule used in GRaman is isomorphic to the chemical graphs 
(or molecular graphs) as described in  (McNaught and Wilkinson. 2019). However, the feature 
vectors associated with vertices (𝐹𝐹𝑣𝑣) and edges (𝐹𝐹𝑒𝑒) are richer than those used in chemical 
graphs.  We define 𝐹𝐹𝑣𝑣1 as a tuple (𝑇𝑇,𝐷𝐷𝑡𝑡 ,𝐷𝐷𝑡𝑡−1, … ,𝐷𝐷𝑡𝑡−𝑤𝑤,𝑣𝑣𝑡𝑡 ,𝑣𝑣𝑡𝑡−1, … , 𝑣𝑣𝑡𝑡−𝑤𝑤), where 𝑇𝑇 is the atom type, 
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and 𝐷𝐷𝑖𝑖 and 𝑣𝑣𝑖𝑖  include a window of length 𝑤𝑤 of past positions and velocities of the atom. We 
define 𝐹𝐹𝑒𝑒 as the distance in 3-D space between the atoms forming the edge 𝑇𝑇 (bond) in 𝐺𝐺. The 
same structure of the feature vectors 𝐹𝐹𝑣𝑣 and 𝐹𝐹𝑒𝑒 can be used with positions and velocities in 
different coordinate systems (e.g., absolute or relative with respect to other atoms). 

3.1.2 The Model Architecture 

Figure 3 presents a block diagram of the model architecture used in GRaman. The architecture 
mimics the one of (Sanchez-Gonzalez 2020). The model takes as input the state 𝐴𝐴 (as 
described in 3.1.1) at time 𝑇𝑇 and produces as output the state 𝐴𝐴′ of the molecule at time 𝑇𝑇 + 1. 

The pipeline is constituted by three blocks: an Encoder, the Graph Neural Network, and a 
Decoder. The Encoder/Decoder pair enable the model to learn a representation of the state 
space of the simulation that is optimized for the task. In our implementation, both Encoder and 
Decoders are Multi-Level Perceptrons. The Graph Neural Network block in Figure 3 is the core 
of the architecture and, conceptually, it is responsible of learning an approximator of the state 
transition function of the system we want to simulate. 

 
Figure 3: A block diagram of the GRaman simulator model architecture. Given the current state 
𝐴𝐴 the trained model predicts the state of the molecule at the next time step of the simulation 𝐴𝐴′. 
 
The Graph Neural Network block is itself a pipeline of components working in the latent space 
where the states 𝐴𝐴 are projected from the Encoder. Each element of the pipeline constitutes one 
step of Message Passing and Aggregation in the Graph Network framework (described in 3.0). 
The length of this pipeline constitutes one of the hyper-parameters that must be tuned for 
optimal performance. Our implementation uses the guidance given in (Sanchez-Gonzalez 2020) 
and sets its length to 5. 

3.2 GRaman Simulator Software Tool 

The GRaman simulator software tool (Minutoli, Halappanavar, et al., Graman Simulator: 
https://stash.pnnl.gov/projects/GRAMAN/repos/graman-sim 2022) comprises of two 
components: 
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1. the train module; 

2. the simulate module. 

The train module implements the training algorithm used for the training of the GRaman Graph 
Network based simulator.  This module went through several iteration before reaching its 
current state. Its first implementation attempted at predicting both position and velocity (as 
reported in the output of NWChem) as a single output. Over the length of the project, we have 
evolved the module in its current state where the Graph Network based simulator uses two 
different predictors (trained separately) to predict position and velocities.  While the predictor for 
the velocity is trained on the output from NWChem, the predictor for the position is trained using 
the average velocity in the data and the position is then obtained through integration during 
simulation. The train module outputs periodic checkpoints of the two predictors retaining the 
best performing predictors. The module leverages GPU acceleration as provided by Pytorch 
lightning and uses early stopping to terminate the training loop when no more improvements are 
observed from the model. 

The simulate module implements a simulator using the trained Graph Network model. The 
module takes as input an initial trace (usually 5 steps) used to establish enough history to 
compute the node features for the GRaman simulator and the checkpoint files to reload the two 
predictors composing the Graph Network simulator. At each step of the simulation, the simulator 
computes the current feature vectors associated with the graph representation of the molecule 
and uses the GRaman model to predict the instantaneous velocity of each atom and the 
average velocity that will move the molecule from the current state to the next state of the 
simulation. The position in space of each of the atoms is then obtained through a simple Euler 
integrator.  The choice of the integrator was made to match the work from (Sanchez-Gonzalez 
2020).  The output of the simulate module has the same format as a NWChem trajectory as 
shown in Figure 1. During the project, we have focused on reproducing the dynamics of the 
molecule and, therefore, some of the global properties in the trajectory are mocked out.  More 
precisely, our software does not make predictions about the energy of the system nor its dipole. 
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4.0 Experimental Evaluation 
4.1 Experimental Setup 

All our experiments have been conducted on a DGX-2 box (Enigma) with 4 NVIDIA A100 GPU. 
The implementation of the GRaman simulator (Minutoli, Halappanavar, et al., Graman 
Simulator: https://stash.pnnl.gov/projects/GRAMAN/repos/graman-sim 2022) leverages PyTorch 
1.13.1, PyTorch Geometric 2.3.0, and Torch Lightning 2.0.3. 

The model is trained using the Mean Square Error (MSE) of predicted quantities as 
performance metric. We have set the maximum number of epochs to 100, but allowed the 
framework to stop the training sooner if no sensible improvement on the validation MSE is 
detected. We have observed that generally between 3 and 6 epochs the training always 
stopped. 

Once the training of the predictors was completed, we have used the checkpoints of the best 
performing iteration in our experiments to perform one step predictions and long simulation roll 
outs.  To evaluate the goodness of long simulation, we have used Avogadro 1 to load the 
trajectory files produced by the GRaman simulator and to qualitatively assess the quality of the 
trajectory obtained. 

4.2 One Step Predictions 

In our first experiment, we tested the performance of the model when predicting the next step of 
the simulation starting from the ground truth states extracted from the NWChem trajectories. 
The trajectories used in these experiments were part of the data used during the training 
process. For each prediction, the model was given as input the graph representing the molecule 
and the feature vectors associated with each atom constructed from a NWChem trajectory. The 
model was then asked to predict the state of the molecule at the next step of the simulation. 

Figure 4 presents the results of this experiments for the NTP molecule. Each row of the plot 
represents the dynamics of each of the 15 atoms composing the NTP molecule while the 
columns plot the x, y, and z components. It can be observed that from the picture that the model 
performs well when provided as input data coming from NWChem trajectories. In fact, the actual 
NWChem dynamic (blue line on the plots) and the one step prediction dynamics (red line on the 
plots) are almost identical. 

While these initial results were promising, we will see in the next section that the problem of 
predicting these molecule trajectories is harder than what the experimental results presented in 
Figure 4. 
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Figure 4: One Step Prediction of the model when using ground truth as input. Blue line is the 
ground truth while red line is what the model predicts. 
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4.3 Long Trajectory Rollout 

After assessing that a trained GNS model could well predict the next state when the input is 
provided by a NWChem trace, the next question is if the model has the same level of accuracy 
when being fed its own predictions.  Therefore, we built a simulator module that is described in 
section 3.2. 

After building a simulator module where predictions made by the GRaman model are fed back 
into it as part of the history of the trajectory, we notice that trajectories obtained by the tools 
were not behaving as expected. Figure 5 shows the outcome of one such simulation. Many of 
the simulations output showed deformation of the aromatic ring and the molecule breaking the 
bonds on the longest trajectories. 

Our initial hypothesis was that a single monolithic predictor was not sufficiently accurate to 
perform well at the task.  Therefore, we decided to split the model in two independent 
predictors: one predicting the atom velocity and the other predicting its position. We 
experimented with the training process and attempted to optimize the two separate predictors 

t=1 t=10 t=20 t=30 t=40 t=50 

t=1 t=10 t=20 t=30 t=40 
Figure 6: Long Trajectory Rollouts after training the model with noisy inputs. Top: 𝐻𝐻2. 
Bottom: NTP. 

Rollout Start Rollout End 
Figure 5: Long Trajectory Rollouts obtained by training the model on ground truth. 
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both conjunctly and independently.  Optimizing the two predictors independently provided the 
best performing model. However, the simulator was still generating unrealistic trajectories. 

We hypothesize that the unrealistic rollouts produced by the model obtained by combining the 
velocity and position predictors in our latest implementation are caused by a lack of correction to 
the noisy input fed to the model itself. Therefore, we experimented with injecting noise in the 
training data aiming at improving robustness in the model. Noise was injected in the custom 
Data Loader for NWChem trajectories that we have implemented in the GRaman simulator. The 
approach ensured that the training data was perturbed with different noise at every epoch of the 
training process. The Data Loader leaves the ground truth values representing the next state 
unaffected by the added noise. The spirit of the approach was to have the model learn to predict 
the correct next state when only the input is noisy. 

Figure 6 show the results of our model after training with noisy data. The picture was obtained 
taking snapshots from Avogadro. While the top row shows a roll out from the 𝐻𝐻2 molecule, the 
bottom row shows a rollout obtained for NTP by this last version of the simulator. The trajectory 
of 𝐻𝐻2 produced by training the model adding noise is very close to what is simulated by 
NWChem.  The only difference is that the GRaman simulator is inducing a rotational moment.  
In contrast to the H2 molecule, the NTP molecule produces improved but still unrealistic rollouts. 
In fact, while the aromatic ring is now preserved by the simulation, it is affected by a 
translational moment that separates it from the rest of the atoms. 
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5.0 Dissemination Activities and Business Development 
During the length of the project, the team engaged with peers to disseminate the work 
performed under the auspices of this project and to developed business opportunities. 

The effort in GRaman has enabled the PI Marco Minutoli to get in contact with other scientists 
within PNNL to discuss about the technology developed in GRaman. These interactions have 
proved to extremely fruitful. In fact, these interactions materialized into four proposals: 

• LDRD Open Call (PI: Dr. Laura M Fierce): the proposal will explore the training 
simulators for turbulent microphysics and chemistry to expand the representation of 
complex aerosol-cloud-precipitation processes in particle-based simulations. (Funded) 

• NIH Proposal (PI: Dr. Laura M. Fierce): the aim of the proposal is to understand the 
influence of mechanism controlling exposure to airborne pathogens within buildings. The 
project aims at extending the PREEMPT model for network intervention to incorporate 
these mechanisms. The project plans to train AI/ML based model to extend the 
simulation of pathogen transmission to incorporate more precise indoor dynamics. 
(Submitted 09/2023). 

• DOE ASCR Proposal (PI: Antonino Tumeo): The RADARSCOPE project proposed to 
develop a framework that will facilitate deployment of next-generation intelligent scientific 
workflows on highly heterogeneous dispersed systems. Part of the proposal builds on 
the technology developed in GRaman to build digital twins of the sensing infrastructure. 
The proposal was not selected for funding. 

• DOE ASCR Proposal (PI: Mahantesh Halappanavar): SciQ proposed to develop a novel 
multi-stage uncertainty quantification framework for complex dynamical networks. One of 
the central pieces of the proposal was to develop a theory to understand and quantify 
uncertainties in Graph Networks. The proposal was not selected for funding. 
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