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Abstract 
Traditional methods for detection of nuclear proliferation indicators are usually applied after 
nuclear proliferation has already occurred. There is a need to advance these methods to 
perform early detection of nuclear proliferation indicators. In this project, we formulated an early 
detection problem as a sequential, decision-making, goal inference problem based on research 
publications of authors, to determine whether it is possible to infer whether an author will publish 
on a research activity before it has occurred. To develop and test our approach, we selected a 
civil nuclear activity for our case study. We constructed a state-action-state transition graph from 
publications of authors associated with the activity and the co-authors of their publications, 
using titles, abstracts, and author publication sequences. We then used inverse reinforcement 
learning to model the goal-directed behavior of authors in trajectories that terminate at selected 
goal states. Using a Bayesian formulation, we computed the probability that authors would 
reach each selected state from partially observed trajectories of their state transitions in their 
research topic space. The state with the highest probability was selected as the most probable 
goal state. Based on our results, we found that 60% of the times we can infer the correct goal 
state early; sometimes the inference is either delayed, or multiple states could be inferred as  
goal states. Overall, our results show that it is possible to perform early detection of research 
activities of authors in a nuclear technology area. Further research is necessary to establish a 
more accurate understanding of how topic modeling, topic space grid discretization, and the 
extent of overlap among trajectories of different goal states, affect the goal inference results. 
The methods developed in this work may be used to enhance data-driven methods for early 
detection of nuclear proliferation indicators. 
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Summary 
Traditional methods for detection of nuclear proliferation indicators are usually applied after 
nuclear proliferation has already occurred. There is a need to advance these methods to 
perform early detection of nuclear proliferation indicators. In this project, we formulated an early 
detection problem based on research publications of authors to determine whether it is possible 
to infer whether an author will perform a research activity before it has occurred. To develop and 
test our approach, we selected the development of a civil nuclear activity, such as the 
construction of the Open Pool Australian Lightwater (OPAL) reactor, as the goal activity to be 
inferred.   
 
We formulated the early detection problem as a sequential decision-making, goal inference 
problem, where we represented the publication sequences of authors associated with the goal 
research activity as a sequence of state-action-state transitions in their research topic space. 
We used topic analysis based on non-negative matrix factorization (NMF) algorithm to define 
the research topic space for the OPAL case study. We collected 29,196 Scopus records out of 
which 270 records formed the primary set of research articles written by five authors (referred to 
as “coin” authors) of a flagship publication (coin paper) associated with OPAL. The NMF model 
was trained using the titles and abstracts of these 270 nuclear research articles to define the 
topic vector space of the authors. We identified ten topics using NMF and mapped the records 
on to a 10-dimensional topic grid using their NMF-derived topic weight vectors. Each occupied 
grid cell was then identified as a state in which an author published. We refer the state of the 
OPAL flagship publication as the coin state. The remaining 28,918 Scopus records formed the 
secondary set and included articles written by co-authors of articles in the primary set. These 
were also mapped on to the topic grid using the topic weights computed from the trained NMF 
model. We defined the actions as the difference in the number of years it took for each author to 
move from one state to the other between two consecutive publications. This resulted in 403 
author trajectories with their state-action-state transitions represented as a Markov decision 
process (MDP).  
 
The goal inference problem was to infer whether each of the five coin authors would publish in 
the coin state after observing a partial trajectory of their state transitions. Using inverse 
reinforcement learning, we selected four sets of author trajectories associated with four terminal 
(goal) states (the coin state being one of the goal states) and modeled the goal-directed 
behavior of authors towards publishing in each goal state. We then developed a Bayesian 
formulation to compute the probability that each coin author will publish in the coin state given 
their partial trajectory of state transitions. Our results show that we are able infer the coin state 
as the correct goal state for 3 of the authors after 2 steps of observation. For two authors, the 
inference was delayed until the author was two to three steps from reaching the goal state. 
Specifically, for one of them there were two goal states, including the coin state, that were 
equally probable goal states. Thus, for some trajectories, multiple goal states may be possible, 
and the actual goal state may not be realized until the terminal step of the trajectory. 

This work presents the first attempt at using nuclear research articles for early detection of 
research activities of authors in a nuclear technology area. We showed results for one case 
study associated with a civil nuclear research activity. Further research is necessary to establish 
a more accurate understanding of how topic modeling, topic space grid discretization, and the 
extent of overlap among trajectories of different goal states, affect the goal inference results. 
The methods developed in this work may be used to enhance data-driven methods for early 
detection of nuclear proliferation indicators. 
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1.0 Introduction 
Most methods used for identifying nuclear proliferation indicators such as chemical signatures 
and nuclear activities, often enable detection of nuclear proliferation after an entity has acquired 
special nuclear materials or a specific nuclear technology (Sheffield 2020). Nuclear research 
articles have been used to identify early proliferation indicators such as influential research 
entities and technical expertise levels of a country in a nuclear technology area (Kas et al. 2012, 
Chatterjee et al. 2023). With recent advancements in data science, computing, and artificial 
intelligence, it may be possible to perform early detection of nuclear activities in a technology 
area from scientific and technical documents (Sheffield 2020, Alexander et al. 2020). Detection 
of nuclear proliferation indicators from data is limited due to partial observability, sparse and 
unlabeled information, and confounding signals from multiple concurrent activities. In this work, 
we consider the problem of early detection of research activities in a technology area from 
nuclear research articles to demonstrate a proof-of-concept approach for early detection of 
nuclear proliferation.   

We cast the early detection problem as a sequential decision-making, goal inference problem, 
where the objective is to predict the probability that an agent (e.g., a country) will pursue a 
nuclear activity (e.g., building a reactor) from partially observable sequences of activities, using 
inverse reinforcement learning (IRL) and Bayesian goal inference methods. The problem is 
motivated from the problem of driver destination and route prediction from partial trip 
trajectories; where, given a list of driver trip trajectories on a discretized geographical map, the 
goal is to learn the behavior of these drivers and then to predict the destination of similar 
behaving drivers given their partial trip trajectories (Krumm and Horvitz 2006, Ziebart et al. 
2008).  In our work, we formulate the goal inference problem for nuclear research activities of 
author state-action-state transitions, created based on their temporal sequence of their 
publications. We develop a computational approach using inverse RL to model the authors’ 
behavior towards publishing in a particular goal state (location) in the topic vector space of 
publications in a nuclear research area. We then develop a Bayesian formulation to predict 
whether an author will publish in a particular state associated with a nuclear technology or 
research activity. 

In the basic RL framework, an agent learns to follow a sequence of state-action-state transitions 
to reach a particular goal state depending on the transition probability and the rewards it 
accumulates along the way. The sequence of transitions is modeled as a Markov decision 
process (MDP). The behavior of the agent to reach a goal state is modeled using a reward 
function that depends on the state, state-action, or state-action-state features in the MDP 
environment. In the inverse RL framework, the actual goal state and the associated rewards are 
not known, but only an observed partial sequence of state transitions of an agent. The objective 
of the IRL-based Bayesian goal inference problem is to infer the most probable goal state of the 
agent, given its partial sequence of state transitions. An IRL algorithm is used to solve the 
reward function that models the goal state behavior of the agent using historical data of known 
trajectories that terminate at the same goal state.  Based on the rewards, a policy – the 
probability of performing an action when the agent is in a state – is computed and used in a 
Bayesian formulation to predict the most probable goal state. 
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2.0 Approach 
To demonstrate the application of our IRL-based Bayesian goal inference approach, we 
formulated a goal inference problem surrounding a well-documented civil nuclear activity – the 
construction of the Open Pool Australian Lightwater (OPAL) reactor in Australia. The OPAL 
reactor is a 20-MW multipurpose reactor, used for producing radioisotopes for cancer detection 
and treatment, and neutron beams for fundamental materials research (ansto.gov). It went 
critical in August 2006 and was officially opened in 2007. Our approach to the OPAL activity 
goal inference problem is to use a flagship publication associated with the OPAL reactor as the 
goal activity to be inferred from the publication sequences of authors doing research in the 
nuclear reactor domain. We identified the flagship publication by searching Scopus for records 
with keywords “Opal” and “reactor”, found in the title and abstract. Since the OPAL reactor went 
critical in 2006, search results from 2004 through 2008 were considered. The chosen paper was 
titled “Novel cryogenic engineering solutions for the new Australian research reactor OPAL” 
(Olsen et al. 2008). We refer to this flagship paper as the “coin” paper and the authors of this 
paper as coin authors. The paper was written by nine authors, out of which five authors had 
Scopus ID's associated with a previous publication history.  

There are 3 main steps in our IRL-based Bayesian goal inference approach, as illustrated in 
Figure 1: 

1. Construct state-action-state transition graph from publications using title, abstract, and 
author publication sequences. 

2. Compute rewards for a set of author state-action-state trajectories that terminate at the 
same state, using an IRL algorithm. 

3. Calculate goal probability for a partially observed trajectory of state transitions using a 
Bayesian formulation. 

 

 
Figure 1 IRL-based Bayesian goal inference approach for author publication trajectories. 

2.1 Construction of state-action-state transition graph 

After identifying the coin paper, we constructed a state-action-state transition graph to represent 
the authors’ MDP environment for IRL. This involves defining the state space, action space, and 
state-action-state transition probabilities. There could be multiple ways of defining states and 
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actions. We defined the states as the cells of a K-dimensional grid that represented the topic 
vector space of all the papers published by the five coin authors through the end of 2008. Based 
on the Scopus search records, there were 278 coin-authored papers including the coin paper.  
From each Scopus record, we extracted the titles, abstracts, publication dates, and author ID's 
of each paper. To define the topic vector space of the coin authors, we applied Nonnegative 
Matrix Factorization (NMF) on the titles and abstracts of 270 coin-authored papers – 8 papers 
that were written in 2008 (before or after the coin) were omitted from the NMF training set to 
minimize overlap of topics with the coin paper around its time of publication. We used the NMF 
algorithm implemented in the scikit-learn package (Pedregosa et al. 2011) for the topic analysis. 

We determined an optimal number of ten topics (K = 10) to represent the topic vector space. 
The optimal K value of 10 was identified using the Kneedle algorithm (Satopaa et al 2011), after 
considering various NMF hyperparameter settings and regularization methods. Thus, the 
resulting 270 topic weight vectors, each of length 10, were mapped on to a 10-dimensional 
rectangular grid. The grid cell of each paper is considered the state of the paper or of its 
authors. To introduce noise in the OPAL MDP environment, we applied the trained NMF model 
to calculate the 10-dimensional topic weight vectors for 28,918 Scopus records of the papers 
written by the co-authors of all the 278 papers. Thus, a total of 29,196 papers were mapped 
onto a 10-dimensional grid. 

States in the author MDP environment: The number of grid cells (states) in the OPAL MDP 
environment will depend on the choice of the grid cell spacing along each grid dimension and 
the number of occupied grid cells. We divided each grid dimension into 5 intervals, with outer 
intervals having width equal to half the width of the inner intervals. Mapping the records by their 
topic weights on the grid resulted in 603 grid cells occupied with at least one record. Thus, the 
state space of the OPAL consisted of 603 states. 

Actions in the author MDP environment: We defined the actions as the difference in the number 
of years it took for authors to move from one state to another. For example, if an author 
published in 𝑡𝑡 years from one state to another state, then a directed edge is drawn for the action 
𝑡𝑡 from the first to the second state. Our action definition resulted in 15 actions (the maximum 
year difference observed was 15 and the minimum was 0) in state-action-state transition graph. 
If the year difference was 0, we used the month and day information from the publication dates 
to determine the edge direction along each transition. We computed the state-action-state 
transition probabilities based on the number of authors who moved along each edge. All self-
loops due to an author publishing in the same state in consecutive steps were ignored during 
construction of the state-action-state transition graph. 

2.2 Reward learning using IRL 

All state-action-state transitions (𝑠𝑠 − 𝑎𝑎 − 𝑠𝑠’) were modeled as first order MDPs with transition 
probabilities 𝑇𝑇(𝑠𝑠,𝑎𝑎, 𝑠𝑠′), state rewards 𝑅𝑅1(𝑠𝑠), and state-action rewards 𝑅𝑅2(𝑠𝑠, 𝑎𝑎). We used the 
exact maximum entropy (ExactMaxEnt) IRL algorithm developed by Snoswell et al. (2020) to 
compute the rewards for a group of authors (experts) whose trajectories terminate at the same 
goal state. Since the state and state-action features are not known, we fitted the rewards for all 
states and state-action pairs by using the ExactMaxEnt algorithm to predict and match the 
average state and state-action visitation frequencies observed in the expert trajectory set 
(training set). Starting with a uniform distribution of random values for the rewards, we 
performed 3000 iterations to update the rewards until convergence.  Convergence was based 
on the reward gradients and correlation between the observed and predicted state and state-
action visitation frequencies. 
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2.3 Bayesian formulation for goal inference 

The objective of the goal inference is to predict whether an author with a partially observed 
trajectory of state transitions, will pursue a publication in the coin state. For this purpose, we first 
model the behavior of authors who have previously visited the coin state, by computing the 
rewards based on their trajectories using IRL. Unlike driver trip trajectories, author trajectories 
do not have a definite starting point from which they start to have an intent to publish in a goal 
state. Hence, we can choose any starting point, which will determine the length of the trajectory 
to the goal state. We also assume that the intent to publish in the goal state begin at the 
previous state of each step along the trajectory. For demonstrating the goal inference, we also 
model the behavior of authors who have trajectories terminating at other selected goal states in 
the dataset. Thus, the objective of our Bayesian formulation is to determine which of the 
selected goal states, including the coin state, is an author with a partial trajectory most likely to 
publish in. The trajectories in each set associated with the goal state can be of different lengths 
(number of states). In our analysis, we trim the trajectories to a specified length, 𝐿𝐿, from the 
starting state. This length is determined by the shortest author trajectory in the coin author 
trajectories.  

Let’s consider a partial trajectory of  𝑡𝑡 state transitions, denoted as (𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘)𝑘𝑘=1𝑡𝑡 . Let there be 𝑛𝑛 
possible goal states, denoted as 𝐺𝐺𝑖𝑖 , where 𝑖𝑖 ∈ [1,2, … ,𝑛𝑛].  The probability of an agent 
publishing in a goal state 𝐺𝐺𝑖𝑖 , based on the goal state reward policy, 𝜋𝜋𝑖𝑖, given 𝑡𝑡 observations of 
state transitions of the author’s partial trajectory, is formulated as, 

                              𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖�(𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘)𝑘𝑘=1𝑡𝑡 ) =
∑ 𝑃𝑃𝜋𝜋𝑖𝑖�𝐺𝐺𝑖𝑖�(𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘)�𝑡𝑡
𝑘𝑘=1

∑ ∑ 𝑃𝑃𝜋𝜋𝑗𝑗 �𝐺𝐺𝑗𝑗�(𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘)�𝑡𝑡
𝑘𝑘=1

𝑛𝑛
𝑗𝑗=1

 .                                                (1) 

The term 𝑃𝑃𝜋𝜋𝑖𝑖�𝐺𝐺𝑖𝑖�(𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘)� is the posterior probability of reaching state 𝐺𝐺𝑖𝑖 in 𝐿𝐿 − 1 steps with 
reward policy  𝜋𝜋𝑖𝑖 , given the transition (𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘): 

                              𝑃𝑃𝜋𝜋𝑖𝑖�𝐺𝐺𝑖𝑖�(𝑠𝑠𝑘𝑘−1 , 𝑠𝑠𝑘𝑘)� =
𝑃𝑃𝜋𝜋𝑖𝑖�(𝑠𝑠𝑘𝑘−1 , 𝑠𝑠𝑘𝑘)|𝐺𝐺𝑖𝑖�𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖|𝑠𝑠𝑘𝑘−1)

∑ 𝑃𝑃𝜋𝜋𝑖𝑖 �(𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘)|𝑆𝑆𝑗𝑗�𝑃𝑃𝜋𝜋𝑖𝑖(𝑆𝑆𝑗𝑗|𝑠𝑠𝑘𝑘−1)𝑁𝑁
𝑗𝑗=1

.                                             (2) 

Here, 𝑁𝑁 is the total number of states in the topic grid MDP, 𝑃𝑃𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖|𝑠𝑠𝑘𝑘−1) is the prior goal 
probability based on all observed paths of length ≤ 𝐿𝐿 from 𝑠𝑠𝑘𝑘−1 to 𝐺𝐺𝑖𝑖 in the expert trajectory set, 
and 𝑃𝑃𝜋𝜋𝑖𝑖�(𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘)|𝐺𝐺𝑖𝑖� is the likelihood given by the formula, 

                                                 𝑃𝑃𝜋𝜋𝑖𝑖�(𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘)|𝐺𝐺𝑖𝑖� =
𝑃𝑃𝜋𝜋𝑖𝑖(𝑠𝑠𝑘𝑘 → 𝐺𝐺𝑖𝑖)
𝑃𝑃𝜋𝜋𝑖𝑖(𝑠𝑠𝑘𝑘−1 → 𝐺𝐺𝑖𝑖)

.                                                              (3) 

𝑃𝑃𝜋𝜋𝑖𝑖(𝑠𝑠𝑘𝑘−1 → 𝐺𝐺𝑖𝑖) and 𝑃𝑃𝜋𝜋𝑖𝑖(𝑠𝑠𝑘𝑘 → 𝐺𝐺𝑖𝑖) are the total path probabilities based on all possible paths (of 
steps 1 to 𝐿𝐿 − 1) from 𝑠𝑠𝑘𝑘−1 and 𝑠𝑠𝑘𝑘 to the state 𝐺𝐺𝑖𝑖, respectively. 
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3.0 Results 

 
Figure 2 Goal probabilities for states 35, 72, 375, and 582, using the respective reward policy as 

more number of steps are observed along each coin author trajectory (a-e).   

There were 403 author trajectories in the dataset, which spanned across 603 states in the topic 
author MDP. To test the performance of the IRL-based Bayesian goal inference formulation, we 
considered four goal states, identified here by numbers as 35, 72, 375, and 582. State 35 is the 
coin state and the other goal states were arbitrarily selected such that their highly weighted 
topics were different from each other and that of the coin state. To learn the reward-based 
policy for modeling the goal state-directed behavior of the authors towards each goal state, we 
created a training set of author trajectories that terminate at each goal state. The number of 
trajectories in the training set for goal states 35, 72, 375, and 582 were 16, 14, 18, and 15, 
respectively. The five coin author trajectories (in no particular order) were excluded from the 
training set to use them as a test set for external validation. The number of steps each coin 
author took from their starting state in the trajectory to the coin state were 69, 14, 31, 42, and 
78, respectively. Since the lowest number of steps was 14, we ignored states that were away 
from the goal state by more than 14 steps, so that all the trajectories in the training sets and in 
the 5 coin trajectory set had 14 steps between the starting state and their respective goal state. 
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Thus, all the trajectories used for IRL were of length 𝐿𝐿 =  15. The IRL simulations were run for 
each trajectory set and the results converged in 3000 iterations. The root mean squared values 
of the reward gradients were below 0.004 and the linear correlation coefficients between the 
observed and predicted values of both state as well as state-action visitation frequencies for 
each trajectory set were close to 1. After learning the reward policy for each goal state, we 
performed goal inference test on the five coin author trajectory set. 

For each coin author trajectory we computed the goal probability values for all four goal states, 
using Equation (1), as more number of steps are observed along the trajectory. The state with 
the highest probability value was selected as the most probable goal state. Figure 2 shows the 
goal probability values for the four goal states. The results indicate that for three out of the five 
trajectories (Figures 2(a), 2(b), and 2(d)), the probabilities are the highest for the coin state after 
the first or second step of observation. Thus, the coin state is inferred as the correct goal state 
at least 11 steps before the author reaches the coin state. For the third coin author trajectory the 
inference of the coin state is delayed by 11 steps (Figure 2(c)). It appears that state 582 is the 
goal state until 8 steps. In the 9th and 10th step, either states, 35 or 375, can be the goal state. 
But after 10 steps, it appears the coin state is the most probable state. In the case of the fifth 
trajectory, one would infer state 582 as the most probable goal state (Figure 2(e)). In step 13, 
although the probability was slightly higher by 0.0008 for the coin state, both the coin state and 
state 582 are equally probable. Thus, for some trajectories, multiple goal states may be 
possible, and the actual goal state may not be realized until the terminal step of the trajectory. 
Thus the coin state was the inferred goal state in 60% of the trajectories (i.e., 3 out of 5) after 2 
steps of observation. After 11 steps of observation, the percentage rose to 80% (4 out of 5). 
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4.0 Conclusion 
In this project, we developed an IRL-based Bayesian goal inference approach to determine the 
goal state of an author from partial trajectories of state transitions in their research topic space. 
We showed results for one case study for early detection of a civil nuclear research activity 
using nuclear research articles. Further research is necessary to establish a more accurate 
understanding of how topic modeling, topic space grid discretization, and the extent of overlap 
among trajectories of different goal states, affect the goal inference results. This work presents 
the first attempt at using nuclear research articles for early detection of research activities of 
authors in a nuclear technology area. The methods developed in this work may be used to 
enhance data-driven methods for early detection of nuclear proliferation indicators. 
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