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Abstract 
Extreme weather events, including fires, heatwaves, and droughts, have significant impacts on 
earth, environmental, and energy systems. Mechanistic and predictive understanding, as well as 
probabilistic risk assessment of these extreme weather events, are crucial for detecting, 
planning for, and responding to these extremes. Records of extreme weather events provide an 
important data source for understanding present and future extremes, but the existing data 
needs preprocessing before it can be used for analysis. Moreover, there are many nonstandard 
metrics defining the levels of severity or impacts of extremes. In this study, we have compiled a 
comprehensive benchmark data inventory of extreme weather events, including fires, 
heatwaves, and droughts. The dataset covers the period from 2001 to 2020 with a daily 
temporal resolution and a spatial resolution of 0.5°×0.5° (~55km×55km) over the continental 
United States (CONUS), and a spatial resolution of 1km × 1km over the Pacific Northwest 
(PNW) region, together with the co-located and relevant meteorological variables.  By exploring 
and summarizing the spatial and temporal patterns of these extremes in various forms of 
marginal, conditional, and joint probability distributions, we gain a better understanding of the 
characteristics of climate extremes. The resulting AI/ML-ready data products can be readily 
applied to ML-based research, thereby fostering and encouraging AI/ML research in the field of 
extreme weather. This study can contribute significantly to the advancement of extreme weather 
research, aiding researchers, policymakers, and practitioners in developing improved 
preparedness and response strategies to protect communities and ecosystems from the 
adverse impacts of extreme weather events. 
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Acronyms and Abbreviations 
AI  Artificial Intelligence 
AR  Arkansas 
BA  Burned Area 
BC+OC Black Carbon and Organic Carbon Aerosols 
CA  California 
CONUS The Continental United States 
CPC  Climate Prediction Center 
Daymet Daily Surface Weather Data for North America 
DOE  U.S. Department of Energy 
FAIR  Finable, Accessible, Interoperable, Reusable 
FHS  Fire Hot Spot 
gridMET Gridded Surface Meteorological 
HI  Heat Index 
HW  Heatwave 
ID  Idaho 
LA  Louisiana 
LHF   Latent Heat Flux 
maxFRP Maximum Fire Radiative Power 
MCD64A1       MODIS Thermal Anomalies and Fire Daily 
MERRA-2 Modern-Era Retrospective Analysis for Research and Applications, Version 2 
ML             Machine Learning 
MODIS            Moderate Resolution Imaging Spectroradiometer 
MOD14A1       MODIS Thermal Anomalies and Fire Daily 
NARR  North American Regional Reanalysis 
NLDAS-2 North American Land Data Assimilation System Phase 2 
OR  Oregon 
PDSI  Palmer Drought Severity Index 
PNNL  Pacific Northwest National Laboratory 
PNW  Pacific Northwest 
PRISM  Parameter-elevation Regressions on Independent Slopes Model  
Qv  Specific Humidity 
WA  Washington 
RH  Relative Humidity 
SH  Sensible Heat Flux 
SM  Soil Moisture 
SPEI  Standardized Precipitation Evapotranspiration 
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SPI  Standardized Precipitation Index 
T  Temperature 
Tmax  Maximum Temperature 
Tmean  Mean Temperature 
Tmin  Minimum Temperature 
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1.0 Introduction 
Extreme weather events such as fires, heatwaves(HWs), and droughts cause significant 
socioeconomic and environmental damage around the worldwide. Understandings the 
mechanisms of these events and their potential drivers is crucial for detecting, planning, and 
responding to such challenges as well as mitigating their impacts. Historical records of extreme 
weather and their associated meteorological parameters offer invaluable data for identifying 
trends of the extremes, assessing, and managing risks associated with these events, 
deciphering their primary determinants, and projecting potential alterations under climate 
change. Previous studies show that machine learning (ML) algorithms are increasingly 
employed in weather prediction research, extreme event analysis, meteorological patterns 
extractions using historical weather data and simulations. However, one of the challenges facing 
scientists who conduct ML-based extreme weather analysis is that data from multiple sources 
are rarely in a form suitable for direction application. These datasets typically exhibit varying 
fidelity, spatiotemporal resolution and coverage, and therefore need preprocessing before they 
can be used for analysis. High-quality, AI-ready datasets enable scientists and researchers to 
apply data-driven ML/AI methods to extreme weather research without expending excessive 
time on data collection and compilation. Such datasets not only streamline the data collection 
and compilation process but also empower scientists and researchers to apply cutting-edge 
ML/AI techniques to their studies of extreme weather.  

The objective of this study is to develop a benchmark data inventory of US extreme weather 
events (i.e., fires, HWs, and droughts) to support advanced ML/AI research in extreme weather. 
The data inventory is based on the intensive compilation of multi-fidelity data from various 
sources, resulting an AI-ready FAIR(i.e., finable, accessible, interoperable, reusable) dataset 
that users can easily query, search, and extract attributes of interest for advanced ML 
development. The data inventory includes two data products with a daily temporal resolution 
covering the period from 2001 to 2020: (1) fires, heatwaves, and droughts with a spatial 
resolution of 0.5°×0.5° (~55km×55km) over the continental United States (CONUS); (2) fires, 
heatwaves, and droughts with a spatial resolution of 1km × 1km over the Pacific Northwest 
(PNW) region. The choice of different spatial resolution for CONUS and PNW is because the 
trade-off between spatial resolution and coverage.  Coarser spatial resolution allows for the 
efficient coverage of large geographic area (CONUS) and datasets are more manageable in 
terms of computing power and storage capacity. While for relatively small region like PNW, finer 
spatial resolution provides more detail and precision, and the datasets are also manageable. 
Both data products include the co-located and relevant meteorological variables. Evaluating 
extreme events across areas with significant differences on a daily scale can be challenging, 
especially when accounting for the variability of local extremes. Consequently, we incorporate 
multiple extreme event characteristics (e.g., coverage, timing, intensity, frequency) into the 
datasets and label these events using threshold-based methods. This approach help establish 
standards for defining extreme events from various perspectives. Furthermore, we use the 
compiled datasets to investigate spatial and temporal patterns of compound extremes, 
specifically fires, HWs, and droughts across PNW and CONUS. Exploratory data analysis is 
employed to identify co-occurrence and describe the cross-dependence conditional distribution 
of the compound extremes. The overview of the generation process for the AI-ready data 
inventory of extreme events is shown in Figure 1. 

In summary, our work consists of the following specific steps: 
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(1) Data compilation - Integrating fires, HWs, and drought data and their co-located 
meteorological parameters from multiple sources with different fidelity, spatial and temporal 
resolution/coverage to produce more consistent, informative, and AI-ready datasets surpassing 
those offered by any individual data source. 

(2) Labeling or characterizing extreme events at daily resolution and in a long-term (i.e., 20 
years) dataset, as well as defining extreme events that cover different areas using data with 
different spatial resolutions (i.e., a spatial resolution of 1km × 1km for PNW, and a spatial 
resolution of 0.5°×0.5° for CONUS). 

(3) Applying exploratory data analysis to visualize and summarize the spatiotemporal 
distributions of individual and compound extremes in PNW and CONUS. 

(4) Gathering user feedbacks from potential stakeholders to enhance the quality and utility of 
data packages or to inform future improvements and maintenance. 

(5) Ensuring accessibility and usability of the AI-Ready data inventory on the PNNL DataHub 
platform. 

 
Figure 1. Schematic overview of the generation process for the AI-ready data inventory of 

extreme events. 
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2.0 Data Source Identification and Acquisition 
The raw data concerning extreme events such as fires, HWs, and droughts primarily originate 
from the sources outlined in Table 1, which include the temperature anomaly data from CPC 
and Dayment; fire related data from two MODIS products; drought indices from gridMET; and 
meteorological data from gridMET, NARR and MERRA-2. Detailed descriptions about the data 
sources are elaborated in the subsequent subsections. 

Table 1. Summary of data sources used in this study. 

○ Description Variables 
Study 

Region   
Original 

resolution 
Targeted 
resolution 

CPC  Global Unified temperature 
data (daily) 

Tmax, Tmin, Tmean CONUS 0.5°×0.5° 0.5°×0.5° 

Daymet Daily Surface Weather 
Data(daily) 

Tmax, Tmin, Tmean PNW 1km x 1km 1km x1km 

MODIS 
MOD14A1 

Thermal Anomalies and Fire 
Detection data (daily) 

FHS, MaxFRP CONUS/P
NW 

500m x 500m 0.5°×0.5° 
1km x1km 

MODIS 
MCD64A1 

Fire Burned Area Product 
(monthly) 

Burned Area (BA) CONUS 1km x 1km 0.5°×0.5° 

gridMET Gridded Surface 
Meteorological data (daily) 

Drought indices (i.e., 
SPI, SPEI, PDSI), 
RH, QV,  etc. 

CONUS/P
NW 

4km x 4km 0.5°×0.5° 
1km x1km 

NARR North American Regional 
Reanalysis data (3-hourly) 

RH, SM, QV, U-
wind,V-wind etc. 

CONUS ~32km 0.5°×0.5° 

MERRA-2 Modern-Era Retrospective 
Analysis for Research and 
Applications (3-hourly) 

RH,BC+OC etc. CONUS 0.5°×0.625° 0.5°×0.5° 

2.1 Heatwave data 

HWs over CONUS are defined using the temperature data sourced from the Climate Prediction 
Center (CPC) Global Unified daily gridded temperature data provided by NOAA Physical 
Sciences Laboratory. This daily data product is obtained from the global telecommunications 
system (GTS) data and is gridded using the Shepard Algorithm. The spatial resolution of this 
data is 0.5°×0.5°( approximately 55km×55km).  

To define HWs in the PNW region, temperature data with a 1km × 1km spatial resolution from 
the Daily Surface Weather Data for North America (Daymet) are employed. Daymet is a 
research product of the Environmental Sciences Division at Oak Ridge National Laboratory, 
Oak Ridge. Daymet provides long-term, continuous, gridded estimates of daily weather and 
climatology variables by interpolating and extrapolating ground-based observations through 
statistical modeling techniques. The maximum temperature, duration, start and end date of all 
HWs are defined for each grid (i.e., 0.5°×0.5°, or 1km × 1km) using selective heat indices 
defined with daily mean, maximum and minimum of temperature, its historical percentiles, and 
duration of high temperature days, as shown in Table 2. 
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Table 2.  Heat indices (HIs) used to define HW events. 

Heat indices (HI) Temp Metric Threshold Duration 
HI02 Daily Mean > 95th percentile 3+ consecutive days 
HI04 Daily Mean > 99th percentile 3+ consecutive days 
HI05 Daily Max > 95th percentile; 3+ consecutive days 
HI06 Daily Max T1 > 97.5th percentile 

T2 >  81st percentile 
Everyday >T2; 3+ consecutive days >T1 

Avg T max > T1 for the whole period 
HI09 Daily Min > 95th percentile 3+ consecutive days 
HI10 Daily Min T1> 97.5th percentile 

T2> 81st percentile 
Everyday >T2; 3+ consecutive days >T1 

Avg T max > T1 for the whole period 

 

2.2 Fire data 

In this study, two MODIS products are utilized:  the MODIS Thermal Anomalies and Fire Daily 
(MOD14A1) Version 6, and MODIS Burned Area Product (MCD64A1) Version 6. MOD14A1 
datasets encompass all fire‐related thermal anomaly detection, including those caused by 
wildfires, agricultural field burning, prescribed fires, etc. These datasets are generated at 
approximately 1-kilometer (km) spatial resolution and daily temporal resolution. The variables 
within these datasets include the fire mask, pixel quality indicators, maximum fire radiative 
power (MaxFRP), and the position of the fire pixel within the scan.  

Individual 1-km pixels (grids) are assigned to one of nine fire mask pixel classes, which indicate 
the different confidence levels of fire occurrence. A value of 7 indicates a low confidence 
detection, a middle value of 8, and a value of 9 signifies a high confidence detection. In this 
study, we only use the fire pixels (grids) with the two highest confidence levels of fire occurrence 
to summarize the daily fire features. The fire features over CONUS include the maximum 
MaxFRP, and the total number of fire hotspots (FHS) within each 0.5°×0.5° (~55km×55km) grid. 
Here, a FHS is a 1-km pixel with confidence levels of fire occurrence not less than 8. To 
estimate the daily fire burned area (BA) for CONUS, an event-delineation algorithm is utilized to 
derive fire events from the MODIS MCD64A1 burned area product by identifying the optimal 
spatial-temporal aggregation of burned pixels. For the PNW region, the summarized fire 
features include the maximum MaxFRP, and fire occurrence with confidence levels not less 
than 8 for each 1km×1 km grid.  

2.3 Drought data 

The drought indices used in this study are obtained from the Gridded Surface Meteorological 
(gridMET) dataset, which has a 4-km spatial resolution and 5-day temporal resolution. These 
drought indices include the standardized precipitation index (SPI) , the standardized 
precipitation evapotranspiration index(SPEI) , the Palmer Drought Severity Index (PDSI) , 
among others. The SPI and SPEI indices are provided at different time scales, corresponding to 
the time aggregation of precipitation, reference evapotranspiration, and precipitation minus 
reference evapotranspiration, respectively. The available time scales are 14-day, 30-day, 90-
day, 180-day, 270-day, 1 year, 2 years and 5 years.  
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In this study, we include the SPI indices (i.e., SPI-14d, SPI-30d, SPI-90d,) and SPEI indices 
(i.e., SPEI-14d, SPEI-30d, SPEI-90d), aggregated at time scales of 14 days, 30 days, and 90 
days. The sub-monthly PDSI is calculated using a modified version of the Palmer formula which 
uses reference evapotranspiration and precipitation from gridMET, and a static soil water 
holding capacity layer (top 1500mm) from STATSGO. Modifications to the coefficients of the 
original Palmer formula are applied to calculate PDSI. The baseline period for PDSI calculations 
is 1979-2018. 

2.4 Relevant meteorological variables 

An extensive compilation of meteorological variables that spatially and/or temporally coincide 
with HWs, fires, and droughts is created to enable and facilitate the development of AI-driven 
insights into the underlying physical mechanisms and possible predictive models of these 
extremes. These meteorological variables include accumulated precipitation, soil moisture (SM), 
latent heat flux (LHF), sensible heat flux (SH), and specific humidity (Qv) at 250 and 850 hPa, 
relative humidity (RH), U-wind and V-wind at 250, 500, and 850 hPa, and carbonaceous 
aerosols, namely black carbon and organic carbon aerosols (BC+OC), among others. The 
meteorological parameters mentioned above are sourced from the North American Regional 
Reanalysis (NARR) , the Modern-Era Retrospective Analysis for Research and Applications, 
Version 2 (MERRA-2) , and gridMET. 

NARR data is available every 3 hours at a 32-km horizontal grid spacing and comprises 45 
vertical layers. Data from MERRA-2 is available every 3 hours at an approximate spatial 
resolution of 0.5° × 0.625° and includes 72 hybrid-eta levels. We use precipitation, SM, LHF, SH 
from NARR,  and RH, QV, BC+OC, U-wind, and V-wind at 250, 500, and 850 hPa from 
MERRA-2.  

The daily meteorological variables from gridMET are available at a spatial resolution of 4 km. 
Variables from gridMET include RH, QV, precipitation, vapor pressure deficit, wind speed, and 
direction at 10 m. gridMET blends spatial attributes of gridded climate data from the Parameter-
elevation Regressions on Independent Slopes Model (PRISM) with desirable temporal attributes 
(and additional variables) from regional reanalysis - the North American Land Data Assimilation 
System Phase 2 (NLDAS-2) using climatically aided interpolation. The resulting gridMET is a 
spatially and temporally complete gridded dataset of surface meteorological variables. 
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3.0 Data Compilation and Labeling of Extreme Events 
The data compilation steps for this study involve several key stages, including defining HW 
events, labeling temperature data, summarizing fire-related features, rescaling fire features, 
drought indices, as well as the co-located meteorological variables, to the same spatial and 
temporal resolution. The outputs include two data products, both with daily temporal resolution. 
The data product for CONUS has a spatial resolution of 0.5°×0.5°, while the data product for 
PNW has a spatial resolution of 1km×1km. The following paragraphs describe these steps in 
detail. 

First, we utilize the CPC Global Unified daily temperature anomaly data and Daymet daily 
temperature anomaly data to summarize HW events over CONUS and PNW based on the Heat 
indices (HIs) defined in Table 2. For each HI, the duration, start dates and end dates, maximum 
temperature for each grid (i.e., 0.5°×0.5°, 1km × 1km) are summarized. According to the 
summarized HW characteristics, we then label the daily temperature data as HW days or not 
(0/1), with 1 indicating a HW day and 0 meaning a non-HW day for a specific grid. Since there 
are six HIs in Table 2, we have six different HW labels, one for each HI.  This labeling process 
helps identify and characterize the occurrence of HWs across the specific study area (i.e., 
CONUS, PNW). 

The fire-related features from the MODIS thermal anomaly data product, MOD14A1, have daily 
temporal and 1km×1km spatial resolution. For PNW, the fire-related features are the daily fire 
occurrence and fire intensity, i.e., MaxFRP (fire radiative power), for each 1km×1km spatial grid. 
Only fire pixels with the two highest confidence level(e.g., level 8 and level 9) of fire occurrence 
are considered. The nearest neighbor method is used to match fire features to 1km×1km spatial 
grid. For CONUS, the ~1km MODIS fire features are summarized  by treating each ~1km fire 
pixel as an active FHS and calculate the number of FHS within each 0.5°×0.5° grid. When 
calculating the number of FHS, only the fire pixels with the two highest confidence level (e.g., 
level 8 and level 9) of fire occurrence are considered. For each 0.5°×0.5° grid, we also 
summarize the maximum of MaxFRP  to represent the fire intensity. The daily fire burned area 
within each 0.5°×0.5° grid is estimated from the MODIS MCD64A1 burned area product by 
using an event-delineation algorithm to aggregate burned area pixels into distinct fire events. 
These steps help characterize fire activity in our study area (i.e., CONUS).  

The drought indices from gridMET have 4-km spatial resolution and daily temporal resolution. 
For the seven drought indices (i.e., PDSI, SPI-14d, SPI-30d, SPI-90d, SPEI-14d, SPEI-30d, 
SPEI-90d), we rescale their spatial resolution from 4km×4km to 0.5°×0.5° (CONUS) and 
1km×1km (PNW), using bilinear interpolation and nearest neighbor method, respectively. For 
the meteorological variables from the NARR and MERRA-2, the  daily mean, maximum and 
minimum values within each 0.5°×0.5° grid are summarized to match the resolution of the CPC 
Global Unified temperature data for CONUS. Meteorological variables from gridMET are 
rescaled to 1km×1km spatial resolution using the nearest neighbor method for PNW. 

Finally, the HW labels, temperature data, the summarized fire-related features (e.g., maximum 
of MaxFRP, total number of FHS), the drought indices, as well as the meteorological variables 
are combined to create comprehensive data products for both PNW and CONUS. These data 
products will facilitate a more in-depth analysis of the relationships between heatwaves, fires, 
and droughts. 



PNNL-34891 

 

4.0 Extremes’ Behavioral Characteristics Data through 
Exploratory Data Analysis 

To enhance the efficiency of AI/ML development and implementation, we have generated 
spatial and temporal joint distributions and behaviors of compound extremes over the study 
period and regions, which can be directly employed for risk estimation and other predictive 
models. The co-occurrence of heatwaves, wildfires, and droughts during 2001 to 2020 has also 
been closely examined. Additionally, the study delved into the differences in fire patterns and 
behaviors on days with heatwaves (HW) compared to non-heatwave (non-HW) days, using 
statistical tests to assess hypotheses regarding the average number of wildfire occurrences. To 
gain deeper insights, particular emphasis was placed on a historical summer period, specifically 
May to October in 2018. 

4.1 Temporal and spatial distribution of HWs, fires and droughts 

The spatial distributions of the total HW days over the period from 2001 and 2020 are shown in 
Figure 2 (CONUS) and Figure 3 (PNW). While there are fewer HW days for HI04 and more HW 
days for HI10,  heat indices HI02, HI05,HI06 and IH09 have a comparable number of HW days 
over the 20 years period. The overall patterns of these HIs are quite similar, with more HW days 
in the western and southern regions of the US. The distribution of HW days in PNW defined 
using the Daymet temperature data (1km × 1km) (Fingure3) shows similar patterns with those 
defined using the CPC Global Unified temperature data (0.5°×0.5°) (Figure2), with more HWs in 
the central and southeast of PNW. 

 
Figure 2.  The distribution of total HW days from 2001 to 2020 over CONUS  for  different HIs 

i.e., (a) HI02, (b) HI04, (c) HI05, (d) HI06, (e) HI09, (f) HI10. The HWs are defined 
using the 0.5°×0.5° CPC Global Unified daily temperature anomaly data. 
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Figure 3.  The distribution of total HW days from 2001 to 2020 over PNW  for HWs defined 

using different HIs i.e., (a) HI02, (b) HI04, (c) HI05, (d) HI06, (e) HI09, (f) HI10. The 
HWs are defined using the 1km × 1km Daymet daily temperature data. 

The spatial distribution of fire characteristics, including the maximum of maxFRP, total number 
of FHS(i.e., 0.5°×0.5° for CONUS), and fire occurrence (1km×1 km for PNW ) for each grid over 
the period from 2001 -2020, are summarized. Figure 4 display the distribution of total number of 
FHS  in CONUS (Figure 4a) and  fire occurrence in PNW (Figure 4c) . Overall, there are more 
fires occurred in the western US and southeast US(Figure 4a) in terms of frequency. Fires in the 
western US, especially in CA, OR, WA and ID, have higher intensity (maxFRP) (Figure 4b). 
Fires occurred in other regions of the US are notably smaller in spatial extent, frequency, and 
intensity. For PNW, the  fire characteristics with spatial resolution of 0.5°×0.5°(Figure 4a) and 
1km×1 km(Figure 4c) both show that more fires occur in central WA, southwest OR and north 
ID. 
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Figure 4.  The distribution of (a) the total number of FHS and (b) the maxFRP for each 0.5°×0.5°  

over  CONUS from 2001 to 2020; (c) the total number of fire occurrence and (d)the 
maxFRP for each 1km×1 km over  PNW from 2001 to 2020. 

In addition to checking the spatial distribution of HWs and Fires, we also explored their temporal 
variability and seasonal patterns over CONUS and PNW, and the co-occurrence of these events 
during 2001 to 2020. Figure 5a shows the time series of annual average HW days for different 
HIs. The gridded average HW days for a specific year are obtained by first calculating the 
annual total HW days for each grid, and then calculating their mean values over all grids. The 
gridded annual average values for fire features and drought indices are summarized in the 
same way.  

For HWs, the six indices have very similar variabilities over the years(Figure 5a). But we can 
see that the average number of HW days defined using index HI04 is obviously less than HW 
defined using other indices. The occurrence and burned area of fires are summarized using 
MODIS data. FHS_c8c9 are the total number of FHS summarized using MODIS active fire data 
with confidence level not less than 8 (orange line in Figure 5b), while FHS_c9 are the total 
number FHS summarized using MODIS activate file data with confidence level 9 only (blue line 
in Figure 5b). For drought indices, when calculating the drouth days we only include the days 
labeled as severe drought and extreme drought, that’s for days with PDSI values less than -4.0 
and other drought indices less than -1.6. From Figure 5, we can see that the peaks of the time 
series for HWs, fires and drought align quite well, especially in 2002, 2007, 2012, and 2020. 
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Figure 5.  The time series of (a) gridded annual mean of HW days, (b)total number of  FHS and 

Burned Area ,and (c) gridded annual mean drought days for extremes over 
CONUS(0.5°×0.5°); The time series of (d) gridded annual mean of HW days, (e)total 
number of  FHS and Burned Area ,and (f) gridded annual mean drought days for 
extremes over PNW(1km×1 km). 

We also examined the distribution of HW and fires across different summer months (Figure 6). 
More than 80% of the HWs occur in July and August, about 15% of them occur in June and 
September (Figure 6a). The fire season typically starts around May and reaches its peak in 
August. There are more HW-related Fires in July and August than in other months (Figure 6b). 
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Figure 6.  The total HW days for months from May to October; (b) stacked bar plots showing 

total FHS count in HW days and non-HW days(middle). 

Statistical t-tests were conducted to check the hypothesis that the number of FHS is the same 
for fires occurred in HW and non-HW days, and the hypothesis that the average number of FHS 
is the same for fires occurred with or without long HWs (duration greater than 8 days). Both t-
tests return p-values much smaller than 0.05, suggesting a statistically significant difference in 
the average number of FHS for fires occurred on different HW-related or non-HW days (Figure 
7). 

 
Figure 7.   (a)The distribution of the number of FHS for fires occurred on HW days(red) versus 

non-HW days(green); (b) the distribution of the number of FHS for fires occurred 
with(red) or without(green) long HWs (duration greater than 8 days ). 

Next, we investigated one historical period, namely, May to October 2018, to check the co-
occurrence of HWs, fires, and droughts across CONUS and the PNW region. The 2018 North 
American HW season started in late May and reached its peak in mid-July (Figure 8a). HW in 
the PNW region started a little bit late, around July (Figure 8d).   We can see fire seasons 



PNNL-34891 

 

started early and reached its peak in August for the CONUS (Figure 8b). Fire season for PNW 
started a bit late in mid-July and reached its peak in August too (Figure 8e). The fires that 
started around July coincided with the HW events during July and August. Regarding the 
drought index, there is an obvious peak in August for drought indices over PNW region (Figure 
8f). 

 
Figure 8.  The time series of daily total HW days, total number of FHS, and total drought days 

from May to October  in 2018 over CONUS (a, b, c) and PNW (d, e, f). 

4.2 The cross-dependence of compound extremes 

The cross-dependence between fires and HWs over CONUS are evaluated by examining the 
marginal and conditional probabilities of HWs and fires from 2000 to 2020. Overall, the 
probability maps show that the western(e.g., CA, OR,WA,ID) and south region(e.g., LA,AR) of 
the US have higher probability for the co-occurrence of compound extremes (i.e., fires and 
HWs) compared to other regions; the occurrence of HW will increase the chance of fire 
occurrence, especially in western US. 

The marginal and conditional probabilities of HWs and fires are defined as follows: 
P(H): the marginal probability of the occurrence of HWs. 
P(F): the marginal probability of the occurrence of fires. 
P(H∩F): the probability of the co-occurrence of HWs and fires  
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P(F|H): the probability of the occurrence of fires given that HWs have occurred. 
       P(F|H )=(p(F∩H))/(p(H)) 

P(H|F): the probability of the occurrence of HWs given that fires have occurred. 
             P(H|F)=  (p(F∩H))/(p(F)) 
We can see that the probability for the occurrence of HW - P(H) over CONUS is around 0.02 to 
0.06, with higher probability in the western and southern regions of the US than in other regions 
(Figure 9a). The probability of the occurrence of fires P(F) over CONUS is around 0 to 0.05. The 
west costal region and southeast region have notably higher probabilities of fire occurrence 
(Figure 9b). The probability of the co-occurrence of fires and HWs P(H∩F) is generally low, with 
probability values less than 0.005. However, if HWs have occurred, the probability of fire 
occurrence (i.e., P(F|H)) increases significantly compared to the marginal probability of fire 
occurrence P(F), especially in the western region of the US (Figure 9c). Similarly, in western 
US, if fires occur, it’s very likely that day is a HW day (Figure 9d) with P(H|F) around or greater 
than 0.5. 

 
Figure 9.   (a)Marginal probability of HW labeled using index HI02;(b) Marginal probability for 

fires; (c) conditional probability of the occurrence of fires given that HWs (HI02) have 
occurred; (d) conditional probability of the occurrence of HWs (HI02) given that fires 
have occurred;(e) the probability of the co-occurrence of HWs (HI02) and fires. 
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5.0 Data Availability and Usage Notes 
The data inventory of US fires, HWs, droughts and the co-located meteorological data are 
available in CF compliant netCDF file format for the time period 2001–2020, covering the 
separate spatial extents of CONUS (0.5°×0.5°) and PNW(1km×1km). These data products have 
been published to the PNNL DataHub, a data management and sharing platform used by 
researchers and scientists to store, organize, and collaborate on various types of data. The 
complete data products can be accessed and downloaded at https://doi.org/10.25584/2004956. 
 
The dataset with 0.5°×0.5° resolution for CONUS can be used to help build more accurate 
climate models for the entire CONUS, which can help in understanding long-term climate 
trends,  including changes in the frequency and intensity of extreme events, predicting future 
extreme events as well as understanding the implications of extreme events on society and the 
environment. The data can also be applied for risk assessment of the extremes. For example, 
ML/AI models can be developed to predict wildfire risk or forecast HWs by analyzing historical 
weather data, and past fires or heatwaves, allowing for early warnings and risk mitigation 
strategies. Using this dataset, AI-driven risk assessment models can also be built to identify 
vulnerable energy and utilities infrastructure, improve grid resilience, and suggest adaptations to 
withstand extreme weather events.  
 
The high-resolution 1km×1km dataset over PNW are advantageous for real-time, localized, and 
detailed applications. It can enhance the accuracy of early warning systems for extreme 
weather events, helping authorities and communities prepare for and respond to disasters more 
effectively. For example, ML models can be developed to provide localized HW predictions for 
specific neighborhoods or cities, enabling residents and local emergency services to take 
targeted actions; the assessment of drought severity in specific communities or watersheds 
within the PNW can help local authorities manage water resources more effectively. 

https://doi.org/10.25584/2004956
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6.0 Summary and Next Steps 
In this study, we compiled a comprehensive AI-ready data inventory of historical extreme events 
with daily temporal resolution. This inventory covers the separate spatial extents of CONUS 
(0.5°×0.5°) and PNW(1km×1km) and is intended for various applications and studies. 
Exploratory data analysis was performed to examine the spatial and temporal distribution of 
these events over the study period (i.e., 2001-2020) in these regions using the developed data 
products. The co-occurrence of HWs, fires, and droughts from 2001 to 2020 has also been 
closely examined. Furthermore, we calculated the marginal, conditional, and joint probabilities of 
these HWs and fires to understand how the presence of heatwaves influences the likelihood of 
wildfires and the cross-dependencies among these compound extreme events. 

The main outcome of this study contains two data products for CONUS and PNW,  and a 
scientific data paper offering a comprehensive and structured description and exploratory data 
analysis of the data products. The data products have been published on the PNNL DataHub to 
enhance the accessibility and usability of the AI-Ready data inventory. We are currently working 
on the data manuscript, and plan to publish it within the next one or two months.  

The AI-ready data inventory can serve the following purposes: (1) support the mechanistic and 
predictive understanding of extreme events and their impact on the earth's biological and 
environmental systems; (2) provide probabilistic maps for both individual and compound 
extreme events, enhancing the direct risk assessment of these extreme weather events for 
future detection, planning, and decision making; (3) generate various extreme event scenarios 
and approximate electricity load and generation profiles in energy systems to enhance 
infrastructure resilience in the face of extreme events. 

With additional funding, we aim to further develop, consolidate, and utilize the data products to 
advance extreme event analysis for general applications in earth, environmental and energy 
systems, including but are not limited to the following: 

(1) Publication of the data paper: An additional month is needed to refine the data paper.  

(2) Expansion of exploratory data analysis: Our current exploratory data analysis focuses on 
the spatial and temporal distribution of single or compound extremes. Further analysis 
can delve into discovering correlations and causal inference of these extremes in 
different regions. 

(3) AI/ML driven analysis for mechanistic and predictive understanding of extreme events: 
Extreme events are influenced by a combination of co-located environmental factors 
which are essential for mechanistic and predictive understanding of extremes. ML/AI 
models can be developed to predict wildfire risk or forecast HWs by analyzing historical 
weather data, and past fires or HWs, enabling early warnings and risk mitigation 
strategies. 

(4) Incorporation of co-located environmental factors for AI/ML driven analysis: While our 
data products include co-located meteorological variables such as precipitation, soil 
moisture (SM), relative humidity, specific humidity (Qv), and wind data, feedback from 
energy and earth system experts suggested the need for more. Variables such as 
vegetation distributions, land cover types, population and housing density could be 
important controlling factors for the occurrence of wildfires and droughts. Inclusion of 
such data would enable a more comprehensive analysis of extreme events. 
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(5) Addition of data for future projections/trends: Our current data products span the 
historical period from 2001 and 2020. It’s sufficient for studies such as mechanistic 
understanding of extremes and probabilistic risk assessment. But it may not suffice for 
exploring future trends of these extremes. To scrutinize long-term climate shifts and 
forecast these extremes, data from climate model simulations and fire behavior model 
simulations that consider both natural variability and human-induced fluctuations are 
indispensable. 

We anticipate these additional efforts will significantly amplify our comprehension of extreme 
events and provide a more comprehensive and inclusive data inventory for AI/ML-centric 
studies on these extremes. 
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