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1.0 Introduction 
Resilience is similar to robustness and reliability, but it deals with large disruptions rather than 
small ones [1]. There are also multiple aspects to resilience [1], which means that it is hard to cap- 
ture with a single definition. The various definitions and measures of resilience should therefore 
be thought of as components of resilience or even necessary conditions for resilience rather than 
complete encapsulations of resilience or sufficient conditions for resilience [2]. Resilience is de- 
fined as the ability to maintain critical system functions in the midst of large disruptions [3–5] and 
as the ability to quickly and fully recover from such disruptions [6–8]. Occasionally, preparation 
before or anticipation of a disruption can also be considered a form of resilience [1]. 

Resilience is hard to quantify: there are many different descriptions of resilience, and even 
once a definition has been chosen, it may not be straightforward to write out that definition in 
a mathematical form. The resilience metrics in the literature can be either generic or model- 
specific. Model-specific metrics are limited to the scope of their respective models, but even 
generic metrics require user input in the form of performance measures (operating cost, efficiency, 
etc.) and/or an explicit prioritization of system functions (depending on the resilience definition 
being used) in order to be calculated. Some of these metrics relate to system stability (e.g., the 
size of a basin of attraction) [6] or to controllability [4, 9], which are both difficult to calculate for 
general nonlinear systems. Moreover, the metrics in the literature are generally formulated as post 
hoc assessment tools, not predictive metrics. They are not designed to inform real-time control 
decisions in general control systems. A recent exception to this used the Koopman Operator (KO) 
to apply linear controllability and observability analyzes to general nonlinear systems and thereby 
derive a generalizable resilience metric by considering a ratio of observability to controllability [2]. 

 
1.1 The Koopman Operator 

The Koopman Operator (KO) is an infinite-dimensional mathematical construct that maps nonlin- 
ear dynamical systems to a space in which the dynamics become linear [10]. Recent works [11] 
show promise in studying nonlinear dynamical system in a higher-dimensional abstract space 
using the KO and the Perron-Frobenius Operator (PFO). The KO and PFO are adjoint to each 
other, but the KO is more commonly used than the PFO for data-driven discovery and analysis of 
dynamical systems. Recent works such as [12, 13] extend these methods to study nonlinear 
systems from data with noisy measurements and when there is sparse data. Data-driven KO 
representations can then be used for tasks such as phase space analysis [14], studying equivari- 
ance [12], and global stability analysis [15], finding observability gramians/observers [16] among 
others. KO theory can also be extended to controlled systems [17–20]. 

Operator-theoretic methods provide a structured, data-driven way to represent dynamical sys- 
tem behavior. This structure both provides analytical insight and enables the use of a wide range 
of computational methods [10]. Operator-theoretic methods have been used to assess control- 
lability [21], observability [22], and nonlocal stability [23]. Some initial work has also been done 
on resilience more generally [2]. This report builds on those contributions, as well as power 
grid applications of operator theoretic methods [24, 25], in using operator-theoretic methods to 
measure system resilience. 

 
1.2 Objectives of this Project 

Develop operational metrics to characterize the resilience of a dynamic network in real-time from 
time-series data. 



PNNL-34858 

Introduction 2 

 

 

 
 

1. Resilience ratio 
2. Recovery energy 
Resilience analysis developed under this project considers the controllability and observability and 
provides a real-time understanding of resilience without creating/simulating the system model. 

 

Figure 1: Capability overview of ORC. 
 
 
 

1.3 Objectives of this Report 

The objective of this report is to discuss the validation study of the resilience metrics developed 
under this project. The data for the validation study is obtained from the HYPERSIM simulation 
generated under the RD2C initiative. 

For detailed technical details of the development of the resilience metrics, we refer the readers 
to [26] and [27]. 
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2.0 Resilience Metrics 
We begin by recalling the resilience metrics developed under this project from [26] and [27]. 

Background 
Consider the input-output system 

x˙ = f (x) + 
∑ 

gi(x)ui, y = h(x), (1) 
i=1 

The controlled nonlinear system (1) has its Koopman linear representation as 

z˙ = Az + B̃ u, y = Chz, (2) 

where B̃ = [B̃1 , · · · , B̃ p ] ∈ Rd×p. 
 

2.1 Resilience Ratio 

The resilience ratio is defined as a ratio of the energy required to observe and the energy required 
to control. Given a controllable and observable nonlinear system of the form (1) and its Koopman 
representation (2), the resilience of a state x is defined as 

x⊤Xox 
R(x) := , (3) 

x⊤X−1x 
where Xc and Xo are the controllability and observability Gramians of the original nonlinear system, 
respectively. 

The resilience of a control dynamical system of the form (1) is given by 
1 1 R := tr(X ) = tr(X 2 X X 2 ). (4) 

r o c  o 

Degree of resilience with respect to resilience ratio: Easy to Observe (maximum output energy) 
and Easy to Control (minimum input energy). 

 
2.2 Recovery Energy 

Energy to recovery is defined as the minimum input energy required to steer the system from the 
disturbance state to the post restoration state. The recovery energy is computed by solving the 
following convex optimization problem. 

EN,M (x) = min 
∑ 

u(i)T Cuu(i) 
u(i) i=1

 

s.t z(i + 1) = Kz(i) + Bu(i) 
z(0) = ψ(x) 
z(i) ∈ ψ(S), N ≤ i ≤ N + M u(i) 
= 0, N ≤ i ≤ N + M 
u(i) ∈ U ⊂ Rm, 1 ≤ i ≤ N + M. 

 
 
 

 
(5) 

Degree of resilience with respect to recovery energy is the amount of input energy needed 
to recover. For more details on computing the resilience metrics discussed above, we refer the 
readers to [26] and [27]. 
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2.3 Application of Resilience Metrics 

The disturbance propagation phase in power systems is usually classified into pre-disturbance 
resilient state, disturbance propagation state and post-restoration state. Furthermore, the distur- 
bance propagation state is further divided into disturbance progress, post-disturbance degraded 
state and restorative state. All these states of operation results in a resilience trapezoid as shown 
in Fig. 2. 

The resilience ratio metric developed under this project is applied in a pre-disturbance state. 
Applying this metric, one can study/analyze the effect of losing a sensor (measuring device such 
as a PMU) or an actuator (inverter or a generator). This helps take proactive control actions to 
achieve a highly resilient system. 

Another resilience metric, the recovery energy is computed by taking an initial condition from 
the post-disturbance. For instance, this metric can be applied immediately after a fault to un- 
derstand the minimum amount of energy required to recover and maintain the desired operating 
state for a given future time window. 

 

 
Resilience Ratio 
How worried should you be 
about disturbances? 
Changes in Controllability 
How worried should you be 
about losing actuators? Are 
there particular actuators that 
need to be protected? 

Changes in Controllability 
Which lost sensors and/or 
actuators are most critical to 
restore? 

How costly (or possible) will it be 
to return to a safe operating 
region? 

 

 
Figure 2: Higher level overview of resilience metric applications to power systems. 

Pre-Event Mid-Event 
Post-Event 
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Post-Disturbance 
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Disturbance 
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Post-Restoration 
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3.0 Resilience Metric Validation 
The 123-bus networked microgrid is considered and the team modeled it with 3 diesel generators 
(DGs), 3 Grid-forming inverters (GFMs), and 3 Grid-following inverters (GFLs) on the HYPERSIM 
by OPAL-RT. The resultant network is shown in Fig. 3 and for more details on this testbed, we 
refer the readers to [28]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Single line representation of the modified IEEE 123-bus networked microgrid. 

The validation study consists of three steps. 
1. The first step involves learning the nominal behavior of the underlying power network. This is 

achieved by making some selective reference real power set point changes at the inverters. 
Then, applying Koopman operator theory, we learn the system dynamics. 

2. Applying the resilience ratio metric on the nominal system, we mimic losing an inverter and 
identify which one results in a relatively less resilient state. 

3. Actual fault scenarios are created at the inverters and the corresponding data is obtained. 
The recovery energy metric is then applied on the fault data and the corresponding energies 
are calculated. 

Finally, the estimated resilience of losing each inverter is compared against the recovery energy 
required to reach the desired operating state to understand the applicability of the proposed 
resilience metrics and validate the estimated resilience findings. 

 
3.1 System Identification 

In total, we made 4 different reference set-point changes from the nominal set-point by increasing 
and decreasing it at each inverter. Therefore, we obtained 24 datasets to learn the Koopman- 
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based dynamical system for the 123-bus system. We refer this data as the training data. 
The real power and frequency measurements are considered as states and the reference 

power input is considered to be the input to learn the controlled dynamical system using Koopman 
operator theory. The time-series data corresponding to a set-point change at each inverter are 
shown in Figs. 4 - 9 and the eigenvalues of the learned Koopman operator are shown in Fig. 10. 
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Figure 4: Time-series data corresponding to the Inverter 1 set-point change. 
 
 

700 
 

600 

 
 

60.1 

700 
 

600 

 
500 

 400 

 300 

200 

 

 
60.05 

 
 
 

60 

 
500 

 
400 

 
300 

 
200 

 
100 100 

 
0 

450 452 454 456 
Time [s] 

 
59.95  

450 452 454 456 
Time [s] 

 
0 

450 452 454 456 
Time [s] 

Figure 5: Time-series data corresponding to the Inverter 2 set-point change. 
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Figure 6: Time-series data corresponding to the Inverter 3 set-point change. 
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Figure 7: Time-series data corresponding to the Inverter 4 set-point change. 
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Figure 8: Time-series data corresponding to the Inverter 5 set-point change. 
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Figure 9: Time-series data corresponding to the Inverter 6 set-point change. 
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3.2 Estimated Resilience Applying the Resilience Ratio 

Once the system is identified, one can perform resilience analysis proactively by mimicking losing 
an actuator or a sensor and study/analyze the resilience with respect to that by calculating the 
resilience ratio. The corresponding resilience ratio values comparing with the size of the inverter 
are shown in the bar plot in Fig. 11. 

 

 
Figure 11: Resilience ratio of losing each inverter. 

 
The bar plots in Fig. 11 are normalized with respect to their maximum values for both resilience 

ratio as well as the inverter rated power. The immediate observations from Fig. 11 are as follows. 
Losing the smallest inverters such as INV 76 and INV 80 does not result in a significant change 
in the resilience ratio, however, losing the largest inverter (INV 42) significantly impacts the 
resilience. One important remark which is not strictly following our immediate observation, is that 
losing INV 51 commits the smallest resilience ratio while it only receives the third largest inverter 
rating, even though the resilience ratio of the largest inverter (INV42) and INV 51 are very close. 
Therefore, this analysis shows that it is not trivial to identify the inverter locations that are least 
(highly) resilient. 

 
3.3 Actual Resilience Applying the Recovery Energy 

Here, we actually create fault scenarios at the inverters and obtain the corresponding data. An 
initial condition from the fault recovery window is chosen to compute the minimal energy it takes 
to reach the desired operating state and maintain it there. 

The fault data is generated on the HYPERSIM such that we lose one inverter at a time. The 
corresponding time-series data are shown in Figs. 12 - 17. 

The recovery energy corresponding to all the 6 cases is shown in Fig. 18. The recovery energy 
values are compared against the resilience ratios and both are normalized with respect to their 
maximum values correspondingly. 

It is clear from Fig. 18 that the inverters with highest resilience ratios require the smallest 
energy to recover (see at INV 76 and INV 80). Contrarily, the inverter with least resilience ratio 
has the largest recovery energy. 
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Figure 12: Data corresponding to fault at Inverter 1. 

 

Figure 13: Data corresponding to fault at Inverter 2. 
 
 

The above simulation experiments validates the complimentary aspects of the proposed re- 
silience metrics and brings in their applicability to power systems. 
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Figure 14: Data corresponding to fault at Inverter 3. 
 
 

Figure 15: Data corresponding to fault at Inverter 4. 
 
 

Figure 16: Data corresponding to fault at Inverter 5. 
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Figure 17: Data corresponding to fault at Inverter 6. 
 
 
 
 
 
 
 
 
 

 

 
Figure 18: Recovery energy after losing each inverter. 
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4.0 Conclusion 
In this project, we provided two definitions of resiliency of a control dynamical system. The first 
definition captures how easy (hard) it is to control and observe the system. For linear systems this 
can be quantified in terms of the controllability and observability Gramians and to extend this for 
nonlinear systems, we used the Koopman operator framework. This is because the evolution of 
the Koopman system is always linear, albeit in the space of functions. This linear representation 
allows us to define controllability and observability Gramians for a class of nonlinear systems and 
thus one can quantify resiliency for a nonlinear system. The second formulation uses the concept 
of recovery energy of a dynamical system and we showed, via numerical simulations, that both 
these metrics are consistent with each other and give the same conclusions. 
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