
Choose an item.

PNNL-34841

Proxy Applications for
Converged Workloads
DMC LDRD Initiative
September 2023

Sayan Ghosh
Milan Jain
Hyungro Lee
Kenneth Roche

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibi l it y
for the accuracy, completeness, or usefulness of any information, apparat u s,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessar ily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical

Information,
P.O. Box 62, Oak Ridge, TN 37831-0062

www.osti.gov
ph: (865) 576-8401
fox: (865) 576-5728

email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)
 or (703) 605-6000
email: info@ntis.gov

Online ordering: http://www.ntis.gov

http://www.osti.gov/
mailto:info@ntis.gov
http://www.ntls.gov/

PNNL-34841

Proxy Applications for Converged Workloads
DMC LDRD Initiative

September 2023

Sayan Ghosh
Milan Jain
Hyungro Lee
Kenneth Roche

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

PNNL-34841

Abstract ii

Abstract
Modern scientific applications are complicated and require coordination of several components.
Proxy application driven software-hardware co-design plays a vital role in driving innovation
among the developments of applications, software infrastructure and hardware architecture.
Proxy applications are self-contained and simplified codes that are intended to model the
performance-critical computations within applications.

Applications executing on modern High Performance Computing (HPC) systems are susceptible
to network congestion, insufficient memory bandwidth within and across compute nodes, and
inadvertent loss of performance due to bugs and unoptimized programming models. Modern
numerical simulations and machine learning models play a critical role in studying physical
phenomenon under myriad uncertainties. Such applications often exhibit irregular computation
and memory accesses at specific regions of the application code, which can contribute to
various performance bottlenecks at scale. To mitigate such issues and prepare the next
generation hardware for a variety of computation and data movement contingencies, a well-
known practice is to consider "proxy" applications as representative motifs for various classes of
scientific applications. While there is disagreement in the HPC community on the mechanisms
of construction of the proxy applications, there is a strong consensus on their positive impact in
co-design.

Proxy Applications for Converged Workloads (PACER) is about facilitating software-hardware
co-design through proxy applications with the goal of improving the performance of converged
science workflows on heterogeneous systems.

PNNL-34841

Summary iii

Summary
We discuss several proxy applications from multiple computational domains, and apart from the
variety of the application patterns, the need to expose myriad customizable trade-offs impacting
the resource usage within the proxies is a crucial aspect, often requested by hardware
designers. This deviates slightly from the traditional concept of proxies, which mandates a
reasonable degree of equivalence with the parent or original application. In our work, we have
been cognizant of the importance of similarity between parent and a proxy application, however,
we have put more weightage on customizability and parameterizability to be able to test a
spectrum of application scenarios. This is particularly important for irregular cases like graph
analytics, where it is challenging to capture the relative structuredness of multifarious input
graphs. Due to this choice, our artifacts can be made to behave traditionally, following a specific
(larger) application scenario, or in potentially new ways to trade-off solution quality with
performance (or vice versa). Another crucial choice we made early in the project lifetime was
the usage of community-driven programming models for constructing the proxy applications,
which can work on laptops to supercomputers and can be interoperable. As a result, proxies
discussed in this report can work with a range of computational resources, on a variety of input
data sizes and parameters.

PNNL-34841

Acknowledgments iv

Acknowledgments
This research was supported by the Data Model Convergence Initiative, under the
Laboratory Directed Research and Development (LDRD) Program at Pacific Northwest
National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for
the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No.
DE-AC05-76RL01830.

PNNL-34841

Contents v

Contents
Abstract... ii
Summary ... iii
Acknowledgments .. iv
1.0 Introduction.. 1
2.0 Distributed-Memory Prototyping and Analysis ... 2
3.0 Graph Analytics Co-Design ... 5
4.0 Machine Learning for Predictive Analytics ... 8
5.0 References .. 12
Appendix A – Title .. Error! Bookmark not defined.

Figures
Figure 1. MPL(-subset) relative to MPI performances are identical (left) and an

unstructured hex mesh used in LULESH (right). .. 2
Figure 2 Performance on distributed memory (NERSC Cori supercomputer) with varying

number of threads/processes exhibit strong scalability... 4
Figure 3 Loading large graphs can expose issues in Linux memory management system

when persistent memory is involved... 5
Figure 4 Edge query scenario in computing triangle counts, depicting exact and

estimated methods (left) and performance of exact and estimated for
large graphs (right). .. 6

Figure 5 GPU partitioning and batched Louvain clustering (left) and performance in
terms of speedup compared to multithreaded parallel CPU
implementation (right). ... 7

Figure 6 Machine Learning can benefit from broad variety of hardware. 8
Figure 7 OpenMP-offload based SpDNN exhibits 18x speedup compared to NVIDIA

CuPy on a single A100 GPU, depicting tremendous promise for traditional
HPC programming models. .. 8

Figure 8 Machine Learning is data-centric, areas which does not have standard models
(like time-series prediction) lack representative proxies and benchmarks. 9

Figure 9 Strong scaling on Sambanova RDUs (compared to NVIDIA A100 on 8 RDUs). 10
Figure 10 GNN-based MPNN vs. NWChem DFT performance for Zeolite fragments (left)

and QM9 Mean Average Error (MAE) per atoms indicating good model
accuracy (right) .. 10

Figure 11 Overview of the proxy setup for GNN-based molecular property prediction. 11

file://Users/ghos167/Library/CloudStorage/OneDrive-PNNL/Documents/reports/DMC/closing/PACER_Finals_report.docx#_Toc144912295
file://Users/ghos167/Library/CloudStorage/OneDrive-PNNL/Documents/reports/DMC/closing/PACER_Finals_report.docx#_Toc144912295
file://Users/ghos167/Library/CloudStorage/OneDrive-PNNL/Documents/reports/DMC/closing/PACER_Finals_report.docx#_Toc144912296
file://Users/ghos167/Library/CloudStorage/OneDrive-PNNL/Documents/reports/DMC/closing/PACER_Finals_report.docx#_Toc144912296
file://Users/ghos167/Library/CloudStorage/OneDrive-PNNL/Documents/reports/DMC/closing/PACER_Finals_report.docx#_Toc144912296

PNNL-34841

Introduction 1

1.0 Introduction
Classic HPC applications have been dominated by Floating Point Operations (FLOPS) intensive
linear algebra operations. On the other hand, modern science workflows are complicated tasks
that coordinate data collection (e.g., from a beamline) and poised to perform simulations on
multiple computational sites. Current heterogeneity in the hardware (GPUs, CPUs, and AI
Accelerators [AIA]) and software/programming models’ maturity has further set the stage for
converged applications --- potentially combining HPC programming models, ML frameworks,
combinatorics algorithms, scientific toolkits, etc. This increased convergence requires
coordination between disparate programming systems, dealing with different data feeds and
speeds, co-location of irregular and data intensive computation scenarios with regular arithmetic
intensive cases, etc.

As the hardware landscape becomes more heterogeneous and unconventional, it is important
for applications to be adaptive and customizable. Current trends in advanced chip packaging
demonstrate reduced memory per processing element (PE), requiring distributed-memory
considerations. As a result, strong scalability is becoming a hard requirement for efficiency.
Unfortunately, community-driven distributed-memory models still suffer from limited
composability to express a variety of application patterns. Additionally, some data-intensive
applications such as graph analytics inherently exhibit patterns that are difficult to optimize at
scale due to repetitive uncoalesced memory accesses. Since graphs are rapidly increasing in
size, graph-based analytics such as similarity detection of proteins are becoming exorbitant to
run on traditional GPU-based systems (thousands of core-hours), necessitating newer
algorithms and methodologies to limit intermediate data. Data manipulation and movement
operations are endemic in modern machine learning workflows, which requires careful
exploitation of the reduced precision units in modern GPUs and AI Accelerators (AIA), in
addition to optimal scheduling of myriad computational tasks. Machine Learning methods can
complement simulation-driven analytics, such as molecular property prediction in biophysical
systems and cascading failure detection in power grids.

As a result, it is important to invest in new algorithms, heuristics, and trade-offs to leverage the
massive parallelism available in modern extreme-scale systems. We need a multi-pronged
strategy to 1) develop/utilize high-level distributed-memory programming abstractions for rapid
prototyping of application scenarios, 2) devise efficient heuristics and methods to reduce data
movement for (irregular) graph analytics and combinatorial methods, and 3) quantitative
evaluation of machine learning methodologies to predict domain properties efficiently.
Forthcoming sections discuss these three application thrusts in details. These workloads can be
constructed following the best practices of proxy application development [1], capturing the
compute/throughput patterns in existing or prospective applications. The goals of our proxy
application-based development strategy are as follows:

• Quantify bottlenecks in hardware and software – influence future systems.

• Expose fundamental trade-offs (e.g., memory and computation).

• Sandbox to design and expand applications on future systems.

• Enable systematic profiling and analysis.

• Caters to a wide variety – researchers, vendors, tool/runtime/compiler developers, etc.

PNNL-34841

Distributed-Memory Prototyping and Analysis 2

2.0 Distributed-Memory Prototyping and Analysis
To improve the composability of existing distributed-memory models such as Message Passing
Interface (MPI), we investigated the application of modern C++ programming paradigm. The
C++ programming language has made significant strides in improving performance and
productivity across a broad spectrum of applications and hardware. The C++ language bindings
to MPI had been deleted since MPI 3.0 (circa 2009) because it reportedly added only minimal
functionality over the existing C bindings relative to modern C++ practice while incurring
significant amount of maintenance to the MPI standard specification. Two years after the MPI
C++ interface was eliminated, the ISO C++ 11standard was published, which paved the way for
modern C++ through numerous improvements to the core language. Since then, there has been
continuous enthusiasm among application developers and the MPI Forum for modern C++
bindings to MPI. In this paper, we discuss ongoing efforts of the recently formed MPI working
group on language bindings in the context of providing modern C++ (C++11 and beyond)
support to MPI. Because of the lack of standardized bindings, C++-based MPI applications will
often layer their own custom subsets of C++ MPI functionality on top of lower-level C;
application- and/or domain-specific abstractions are subsequently layered on this custom
subset. From such efforts, it is apparently a challenge to devise a compact set of C++ bindings
over MPI with the “right” level of abstractions to support a variety of application uses cases
under the expected performance/memory constraints. This work is used to identify and
eventually standardize a normative set of C++ bindings to MPI that can provide the basic
functionality required by distributed-memory applications. To engage with the broader MPI and
C++ communities, we discuss a prototypical interface derived from mpl, an open-source C++17
message passing library based on MPI (referred to as mpl-subset) [2]. We port LULESH mini-
application using mpl-subset and demonstrate identical performance to baseline MPI version,
enhancing the productivity and composability without affecting performance.

Figure 1. MPL(-subset) relative to MPI performances are identical (left) and an unstructured

hex mesh used in LULESH (right).

Parallel scientific applications can benefit from decoupling communication and synchronization.
One-sided programming abstractions, which separate communication from synchronization,
have in fact served as a motivation for Partitioned Global Address Space (PGAS) models.
However, the use of PGAS models in application codes in a manner that fully exploits the
benefit of these programming models requires significant development effort. Meanwhile, a vast
majority of scientific codes already use the Message Passing Interface (MPI) and need
convenient features to support application-specific one-sided communication scenarios. MPI
Remote Memory Access (RMA)can be employed for this purpose. MPI is a low-level API,
however, and developing applications with MPI RMA requires programmers to be well versed in
its nuances. We developed RMACXX [3], a compact set of C++ bindings to MPI-3 RMA, to ease
the use of MPI RMA. Unlike other PGAS models, which may have interoperability issues with

PNNL-34841

Distributed-Memory Prototyping and Analysis 3

MPI, RMACXX is written on top of MPI and uses the same runtime as MPI. The basic
functionality of RMACXX adds only a relatively small number of extra instructions (about 20) to
the critical communication path. Moreover, RMACXX provides an intuitive API for building a
wide variety of scientific applications while enjoying performance matching handwritten MPI-3
RMA codes.

Figure 2. RMACXX relative to MPI and other models (left) and demonstrating distributed global

array creation using RMACXX -- 6x8 array distributed over a logical 2x2 grid (right).

We further developed a state-of-the-art application proxy for electronic structure calculations
that forms the basis of several accurate time-dependent studies of unitary fermi gas, cold atom
systems, and nuclear phenomenon on distributed-memory systems derived from [4]. The proxy
performs a superfluid Time-Dependent Density Functional Theory (TDDFT) on a lattice is
dominated by the evaluation of first and second order derivatives on the lattice, function
evaluations for the time-stepping scheme, and regular density computations. The current
version uses MPI and OpenMP code to time evolve a fictitious 4-component superfluid system
based only on densities required for unitarity from dimensional analysis easily extensible to real
microscopic systems. Subsets of the solutions are evolved independently in different PEs for
scaling and efficient evaluations, and in each time step, three forward and inverse discrete 3D
complex to complex Fourier transforms are performed on each solution to obtain highly accurate
numerical derivatives and Laplacian terms from the theory.

The proxy demonstrates strong scalability with larger number of PEs. Following table lists the
results obtained from NERSC Cori Haswell supercomputer comparing 4/8/16-OpenMP threads
per process (tppn) varying #processes/node (ppn), keeping tppn*ppn quantity the same. The
scalability is better with larger #threads (52x between 1 & 64 nodes for 16-tppn, vs. 45x for 8-
tppn and 36x for 4-tppn).

PNNL-34841

Distributed-Memory Prototyping and Analysis 4

NERSC Cori
Haswell

(20 20 20
10 10)

NERSC Cori
Haswell

(20 20 20
10 10)

NERSC Cori
Haswell

(20 20 20
10 10)

n-ppn(tppn) Avg Time n-ppn(tppn) Avg Time n-ppn(tppn) Avg Time

1-4(16) 146.90 1-8(8) 74.60 1-16(4) 42.16

2-4(16) 73.03 2-8(8) 37.26 2-16(4) 21.13

4-4(16) 36.79 4-8(8) 18.93 4-16(4) 10.93

8-4(16) 18.72 8-8(8) 9.74 8-16(4) 5.75

16-4(16) 9.62 16-8(8) 5.24 16-16(4) 3.12

32-4(16) 5.04 32-8(8) 2.84 32-16(4) 1.81

64-4(16) 2.78 64-8(8) 1.67 64-16(4) 1.16
Table 1. Performance on distributed memory (NERSC Cori supercomputer) with varying
number of threads/processes exhibit strong scalability.

PNNL-34841

Graph Analytics Co-Design 5

3.0 Graph Analytics Co-Design
Distributed-memory graph algorithms are fundamental enablers in scientific computing and analytics
workflows. Most graph algorithms rely on the graph neighborhood communication pattern, i.e., repeated
asynchronous communication between a vertex and its neighbors in the graph. The pattern is
adversarial for communication software and hardware due to high message injection rates and input-
dependent, many-to-one traffic with variable destinations and volumes. This pattern also gives rise to a
high amount of irregularity and poses a challenge for GPGPU porting of graph workloads. We have
performed elementary analysis of the impact of graph structure on communication performance and
observe multiple orders of degree slowdown in terms of average and 99th percentile latencies when the
communication pattern mimics a graph. We develop a proxy application that provides several options in
tweaking the graph structure, to observe the impact of communication and memory-access overheads
on heterogeneous systems [5].

Figure 3. Graph proxy application generator for analysis (left) and average latencies of data
exchanges for minor variations of a billion-edge graph relative to best latency (right).

Apart from distributed-memory evaluation, we use the same proxy application for single-node
partitioned-memory analysis, exploiting the same graph neighborhood access pattern for
multiple PEs within a single node. We measure the overhead of loading large graphs (requiring
terabytes of memory) by leveraging persistent memory systems such as Intel Optane [6] and
observe same access patterns but different allocation locations can cause major performance
divergences. These issues only creep up for irregular graph workloads and remain hidden for
regular memory-access benchmarks that measure best-case memory bandwidth.

Page faults during loading graph from
Optane persistent memory

NUMA-aware graph
loading

resolves page fault overhead

Figure 2 Loading large graphs can expose issues in Linux memory management system
when persistent memory is involved

PNNL-34841

Graph Analytics Co-Design 6

Certain classes of graph workloads generate arbitrary intermediate data, which loosely
resembles the structure of the graph. A canonical example is patter enumeration, which involves
enumeration or counting specific patterns of a subgraph found in a larger graph. A more specific
example is that of graph triangle counting, which entails counting the number of “triangles” in a
graph (a triangle is referred to as a 3-vertex subgraph where every vertex is connected to the
remaining vertices, forming a triangle). Since the underlying scheme require explicit assessment
of the edges, the volume of intermediate data and communication depends on the
structure/connectivity of a graph. Since the number of edges in a graph can be significantly
larger than the number of vertices, and graphs can exhibit diverse node-degree distributions,
exact counting methodologies are challenging to sustainably scale on distributed-memory
systems. One of the first practical extensions to our distributed-memory approach was allowing
users to specify a buffer size for the communication to happen over increments. The buffered
version ensures that the code will run to completion on a set of nodes large enough to
approximately hold the entire graph (regardless of the volume of the intermediates when edge
enumeration begins for triangle counting). We also identified a few simple heuristics (constant
time overhead) to reduce the number of remote edges for enumeration, just by checking
whether a remote node ID falls within the edge range held by a specific process. We also
realized that aside from communication, searching for an edge (in the Compressed Sparse Row
representation of a graph) was another bottleneck affecting the performance. We tried using
different C++ associative data structures to store a partial list of edges, leading to a further 20–
30% improvement in the overall execution times. Encouraged by these advances, we explored
other means of overhauling the edge membership query performance. To that end, we
observed remarkable performance enhancements (up to 7x) by employing a probabilistic data
structure such as Bloom Filter [7].

Our last discussion on graph analytics concerns GPU implementation and trade-offs for a
complex graph algorithm – namely graph clustering. Graph clustering or community detection is
a novel method to identify closely related structures within a graph. Applications of graph
clustering can be found in cybersecurity, computational biology, proteomics, power grids, et al.
Graph algorithms/heuristics are usually part of existing data analytics and scientific computing
pipelines (such as NVIDIA RAPIDS, Tridata, Apache Spark, etc.) and have the potential to be
embedded into a larger "converged" application context. As such, developing high performance
implementations of graph clustering can enhance analytics pipelines. Currently, GPUs are an
integral part of HPC systems, especially dense-GPU systems are ubiquitous. Hence, there is a
significant effort to port applications on GPUs to extract maximal performance from modern
single-node HPC platforms. In general, designing graph applications efficiently on GPUs is

Figure 3 Edge query scenario in computing triangle counts, depicting exact and estimated
methods (left) and performance of exact and estimated for large graphs (right).

PNNL-34841

Graph Analytics Co-Design 7

challenging, due to relatively low arithmetic computational intensity and arbitrarily high irregular
memory accesses. The graph clustering problem is inherently serial, and the current modularity-
maximization based parallel graph clustering implementations usually incorporate additional
heuristics such as distance-k coloring to improve the overall quality and convergence. In
contrast, we introduce a batched method for clustering on GPUs that allow users to achieve the
desirable amount of quality without compromising the performance and involving sophisticated
algorithms/heuristics [8]. Due to a partition-based design, we can process graphs larger than the
combined GPU memory of a node. Despite of increasing the frequency of synchronization
through batches (batches are processed in a bulk-synchronous manner among GPUs), the
effect on the performance is mild for large graphs. Our implementation is based on the popular
Louvain method for graph clustering, and we compare our performance and quality with existing
parallel Louvain implementations on CPU and GPU systems. Overall, we observed speedups of
about 2–14x/1.3–7.5x on up to 16/8 NVIDIA V100/A100 GPUs and a maximum speedup of
50x/30x as compared to state-of-the-art shared-memory and GPU-based Louvain
implementations, as shown in the results below for a variety of input graphs.

Figure 4 GPU partitioning and batched Louvain clustering (left) and performance in terms of

speedup compared to multithreaded parallel CPU implementation (right).

PNNL-34841

Machine Learning for Predictive Analytics 8

4.0 Machine Learning for Predictive Analytics
Our work on Machine Learning spans optimization techniques for elementary machine learning
kernels using different programming models, such as sparse matrix-dense matrix multiplication
(SpMM) to data parallelism targeting multiple GPUs for spatio-temporal modeling. Latest work
also proposes a proxy for predicting molecular properties via Graph Neural Networks. Our goals
are to develop proxy applications that can leverage multiple machine learning frameworks (both
Tensorflow and PyTorch) and parallelism strategies on broad variety of hardware architectures.

Figure 5 Machine Learning can benefit from broad variety of hardware.

Sparse deep neural networks have gained increasing attention recently in achieving speedups
on inference with reduced memory footprints. Real-world applications often must deal with
sparse data and irregularities in the computations, yet a wide variety of Deep Neural Network
(DNN) tasks remain dense without exploiting the advantages of sparsity in networks. Recent
works presented in MIT/IEEE/Amazon GraphChallenge have demonstrated significant
speedups and various techniques. Still, we find that there is limited investigation of the impact of
various Python and C/C++ based programming models to explore new opportunities for the
general cases. In our work [9], we provide first-of-its-kind extensive quantitative evaluations of
various contemporary GPGPU programming models such as CUPY, CUDA CUSPARSE, and
OPENMP in the context of Sparse Deep Neural Network (SPDNN) implementations (derived
from the Graph Challenge reference serial code) on single and multiple GPUs from NVIDIA
DGX-A100 40GB/80GB platforms.

Figure 6 OpenMP-offload based SpDNN exhibits 18x speedup compared to NVIDIA CuPy on a

single A100 GPU, depicting tremendous promise for traditional HPC programming models.

Dependencies between layers makes SpDNN difficult to scale across GPUs (limited
parallelism), but for larger number of neurons, a trivial 1D partitioning of features can lead to a
sudden performance spike (for CuPy) until a limited number of GPUs, due to reduction in the
data volume per GPU (alluding to sub-optimal implementation of CuPy).

PNNL-34841

Machine Learning for Predictive Analytics 9

For the next work, we discuss time-series prediction, a common application scenario for several
domains, which exhibit a lack of representative benchmarks and proxies. To facilitate the co-
design of next generation hardware architectures, it is critical to characterize the workloads of
deep learning (DL) applications and assess their computational patterns on different levels of
the execution stack. Time series prediction is one such DL application heavily used in areas that
include critical decision making: ensuring power grid resiliency, climate forecasting,
transportation infrastructure optimization, stock market prediction, etc. Unlike cross-sectional
data (e.g., images), time-series data is inherently sequential, posing challenges to parallelization
in the context of deep learning. In this work [10], we developed a proxy application for deep
learning-based time-series application that uses spatio-temporal data from a dynamical system
for model training and inference. We study the performance profiles of the associated
computational patterns for both training and inference on four different levels: models (Long
short-term Memory and Convolutional Neural Network), DL frameworks (Tensorflow and
PyTorch), datatypes (FP64, mixed-precision), and single-node dense GPU platforms (Nvidia
DGX A100 and DGX-2 V100). Overall, our findings indicate that, in the context of multiple
variants of our time-series prediction proxy application, computational profiles of Tensorflow and
PyTorch mostly exhibit divergent overheads across GPU platforms. Our studies also
demonstrate that associated data movement, transformation and combination can take more
than 50% of the overall execution times.

Figure 7 Machine Learning is data-centric, areas which does not have standard models (like

time-series prediction) lack representative proxies and benchmarks.

PNNL-34841

Machine Learning for Predictive Analytics 10

Data / Models /
#RDUs

/ Training Time (s)

1 2 4 8

Grid LSTM 190 129 65 34 (31)

CNN 94 63 41 28 (32)

Climate LSTM 622 397 222 118 (136)

CNN 454 311 194 126 (135)

Figure 8 Strong scaling on Sambanova RDUs (compared to NVIDIA A100 on 8 RDUs).

Our proxy application demonstrates scalable performance on Sambanova Data-Flow
architecture known as Reconfigurable Dataflow Unit (RDU), in comparison with NVIDIA A100
GPU, providing a template for contemporary spatio-temporal models. Further optimizations are
possible via synthesizing specific kernels through compiler-based High-Level Synthesis (HLS)
tools, targeting custom accelerators such as FPGAs.

Graph Neural Networks (GNN) are neural networks for processing data represented as graphs,
with applications in diverse science domains, such as chemistry, particle physics, molecular
biology, etc. Molecules represented as graphs can be applied to various GNN models for
predicting molecular properties. Hence, leveraging GNN techniques in quantum chemistry is
crucial for molecular modeling and drug design. However, the complexity of scientific data and
lack of expertise create challenges in selecting an accurate machine learning model and
parameters with reasonable turn-around times in the training and prediction phases, especially
for large molecules. Our work provides case studies for prioritizing accurate GNN models for
density calculations using adaptive techniques carried out on contemporary GPU-based
platforms. We have developed a prototypical application pipeline with state-of-the-art libraries
that replicate quantum chemistry pipelines and thermo-dynamics of biochemical reactions to
compare different models, considering the structure of molecules and properties into graphs.
We compare the resulting molecular predictions of our prototypical GNN framework with ab
initio techniques for DFT calculations using the NWChem computational chemistry package.
Unlike the proxies discussed, quality assessment is important in this case, which can indicate
the level of success one could expect modeling myriad molecules.

Figure 9 GNN-based MPNN vs. NWChem DFT performance for Zeolite fragments (left) and

QM9 Mean Average Error (MAE) per atoms indicating good model accuracy (right)

PNNL-34841

Machine Learning for Predictive Analytics 11

Figure 10 Overview of the proxy setup for GNN-based molecular property prediction.

Preliminary results show that our PyTorch Geometric based GNN method (leveraging Message
Passing Neural Network, MPNN) can predict the molecular properties by reducing the
computation time significantly without any feature engineering (directly learns their own features
from the molecular graphs) and returns relatively stable MAE for molecules less than 20 atoms,
while depicting slight fluctuations for cases with higher number of atoms.

PNNL-34841

References 12

5.0 References
1. Cook, Jeanine, Hal Finkel, Christoph Junghams, Peter McCorquodale, Robert Pavel, and David

F. Richards. Proxy app prospectus for ECP application development projects. No. LLNL-TR-
740859. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2017.

2. Ghosh, Sayan, Clara Alsobrooks, Martin Rüfenacht, Anthony Skjellum, Purushotham V.
Bangalore, and Andrew Lumsdaine. "Towards modern C++ language support for MPI." In 2021
Workshop on Exascale MPI (ExaMPI), pp. 27-35. IEEE, 2021.

3. Ghosh, Sayan, Yanfei Guo, Pavan Balaji, and Assefaw H. Gebremedhin. "RMACXX: An Efficient
High-Level C++ Interface over MPI-3 RMA." In 2021 IEEE/ACM 21st International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), pp. 143-155. IEEE, 2021.

4. Bulgac, Aurel, and Kenneth J. Roche. "Time-dependent density functional theory applied to
superfluid nuclei." In Journal of Physics: Conference Series, vol. 125, no. 1, p. 012064. IOP
Publishing, 2008.

5. Ghosh, Sayan, Nathan R. Tallent, and Mahantesh Halappanavar. "Characterizing performance of
graph neighborhood communication patterns." IEEE Transactions on Parallel and Distributed
Systems 33, no. 4 (2021): 915-928.

6. Ghosh, Sayan, Nathan R. Tallent, Marco Minutoli, Mahantesh Halappanavar, Ramesh Peri, and
Ananth Kalyanaraman. "Single-node partitioned-memory for huge graph analytics: cost and
performance trade-offs." In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1-14. 2021.

7. Ghosh, Sayan. "Improved distributed-memory triangle counting by exploiting the graph structure."
In 2022 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1-6. IEEE, 2022.

8. Chou, Han-Yi, and Sayan Ghosh. "Batched Graph Community Detection on GPUs."
In Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques, pp. 172-184. 2022.

9. Lee, Hyungro, Milan Jain, and Sayan Ghosh. "Sparse Deep Neural Network Inference Using
Different Programming Models." In 2022 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1-6. IEEE, 2022.

10. Jain, Milan, Sayan Ghosh, and Sai Pushpak Nandanoori. "Workload characterization of a time-
series prediction system for spatio-temporal data." In Proceedings of the 19th ACM International
Conference on Computing Frontiers, pp. 159-168. 2022.

PNNL-34841

Pacific Northwest
National Laboratory
902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

	Abstract
	Summary
	Acknowledgments
	Contents
	Figures
	1.0 Introduction
	2.0 Distributed-Memory Prototyping and Analysis
	3.0 Graph Analytics Co-Design
	4.0 Machine Learning for Predictive Analytics
	5.0 References
	Standard Disclaimer no limitations (no adonis).pdf
	PACIFIC NORTHWEST NATIONAL LABORATORY
	email: reports@osti.gov

