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Abstract 
Modern scientific applications are complicated and require coordination of several components. 
Proxy application driven software-hardware co-design plays a vital role in driving innovation 
among the developments of applications, software infrastructure and hardware architecture. 
Proxy applications are self-contained and simplified codes that are intended to model the 
performance-critical computations within applications.  
 
Applications executing on modern High Performance Computing (HPC) systems are susceptible 
to network congestion, insufficient memory bandwidth within and across compute nodes, and 
inadvertent loss of performance due to bugs and unoptimized programming models. Modern 
numerical simulations and machine learning models play a critical role in studying physical 
phenomenon under myriad uncertainties. Such applications often exhibit irregular computation 
and memory accesses at specific regions of the application code, which can contribute to 
various performance bottlenecks at scale. To mitigate such issues and prepare the next 
generation hardware for a variety of computation and data movement contingencies, a well-
known practice is to consider "proxy" applications as representative motifs for various classes of 
scientific applications. While there is disagreement in the HPC community on the mechanisms 
of construction of the proxy applications, there is a strong consensus on their positive impact in 
co-design.   
 
Proxy Applications for Converged Workloads (PACER) is about facilitating software-hardware 
co-design through proxy applications with the goal of improving the performance of converged 
science workflows on heterogeneous systems.  
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Summary 
We discuss several proxy applications from multiple computational domains, and apart from the 
variety of the application patterns, the need to expose myriad customizable trade-offs impacting 
the resource usage within the proxies is a crucial aspect, often requested by hardware 
designers. This deviates slightly from the traditional concept of proxies, which mandates a 
reasonable degree of equivalence with the parent or original application. In our work, we have 
been cognizant of the importance of similarity between parent and a proxy application, however, 
we have put more weightage on customizability and parameterizability to be able to test a 
spectrum of application scenarios. This is particularly important for irregular cases like graph 
analytics, where it is challenging to capture the relative structuredness of multifarious input 
graphs. Due to this choice, our artifacts can be made to behave traditionally, following a specific 
(larger) application scenario, or in potentially new ways to trade-off solution quality with 
performance (or vice versa). Another crucial choice we made early in the project lifetime was 
the usage of community-driven programming models for constructing the proxy applications, 
which can work on laptops to supercomputers and can be interoperable. As a result, proxies 
discussed in this report can work with a range of computational resources, on a variety of input 
data sizes and parameters.    
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1.0 Introduction 
Classic HPC applications have been dominated by Floating Point Operations (FLOPS) intensive 
linear algebra operations. On the other hand, modern science workflows are complicated tasks 
that coordinate data collection (e.g., from a beamline) and poised to perform simulations on 
multiple computational sites. Current heterogeneity in the hardware (GPUs, CPUs, and AI 
Accelerators [AIA]) and software/programming models’ maturity has further set the stage for 
converged applications --- potentially combining HPC programming models, ML frameworks, 
combinatorics algorithms, scientific toolkits, etc. This increased convergence requires 
coordination between disparate programming systems, dealing with different data feeds and 
speeds, co-location of irregular and data intensive computation scenarios with regular arithmetic 
intensive cases, etc.  

As the hardware landscape becomes more heterogeneous and unconventional, it is important 
for applications to be adaptive and customizable. Current trends in advanced chip packaging 
demonstrate reduced memory per processing element (PE), requiring distributed-memory 
considerations. As a result, strong scalability is becoming a hard requirement for efficiency. 
Unfortunately, community-driven distributed-memory models still suffer from limited 
composability to express a variety of application patterns. Additionally, some data-intensive 
applications such as graph analytics inherently exhibit patterns that are difficult to optimize at 
scale due to repetitive uncoalesced memory accesses. Since graphs are rapidly increasing in 
size, graph-based analytics such as similarity detection of proteins are becoming exorbitant to 
run on traditional GPU-based systems (thousands of core-hours), necessitating newer 
algorithms and methodologies to limit intermediate data. Data manipulation and movement 
operations are endemic in modern machine learning workflows, which requires careful 
exploitation of the reduced precision units in modern GPUs and AI Accelerators (AIA), in 
addition to optimal scheduling of myriad computational tasks. Machine Learning methods can 
complement simulation-driven analytics, such as molecular property prediction in biophysical 
systems and cascading failure detection in power grids.  

As a result, it is important to invest in new algorithms, heuristics, and trade-offs to leverage the 
massive parallelism available in modern extreme-scale systems. We need a multi-pronged 
strategy to 1) develop/utilize high-level distributed-memory programming abstractions for rapid 
prototyping of application scenarios, 2) devise efficient heuristics and methods to reduce data 
movement for (irregular) graph analytics and combinatorial methods, and 3) quantitative 
evaluation of machine learning methodologies to predict domain properties efficiently. 
Forthcoming sections discuss these three application thrusts in details. These workloads can be 
constructed following the best practices of proxy application development [1], capturing the 
compute/throughput patterns in existing or prospective applications. The goals of our proxy 
application-based development strategy are as follows:  

• Quantify bottlenecks in hardware and software – influence future systems. 

• Expose fundamental trade-offs (e.g., memory and computation). 

• Sandbox to design and expand applications on future systems. 

• Enable systematic profiling and analysis. 

• Caters to a wide variety – researchers, vendors, tool/runtime/compiler developers, etc. 
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2.0 Distributed-Memory Prototyping and Analysis 
To improve the composability of existing distributed-memory models such as Message Passing 
Interface (MPI), we investigated the application of modern C++ programming paradigm. The 
C++ programming language has made significant strides in improving performance and 
productivity across a broad spectrum of applications and hardware. The C++ language bindings 
to MPI had been deleted since MPI 3.0 (circa 2009) because it reportedly added only minimal 
functionality over the existing C bindings relative to modern C++ practice while incurring 
significant amount of maintenance to the MPI standard specification. Two years after the MPI 
C++ interface was eliminated, the ISO C++ 11standard was published, which paved the way for 
modern C++ through numerous improvements to the core language. Since then, there has been 
continuous enthusiasm among application developers and the MPI Forum for modern C++ 
bindings to MPI. In this paper, we discuss ongoing efforts of the recently formed MPI working 
group on language bindings in the context of providing modern C++ (C++11 and beyond) 
support to MPI. Because of the lack of standardized bindings, C++-based MPI applications will 
often layer their own custom subsets of C++ MPI functionality on top of lower-level C; 
application- and/or domain-specific abstractions are subsequently layered on this custom 
subset. From such efforts, it is apparently a challenge to devise a compact set of C++ bindings 
over MPI with the “right” level of abstractions to support a variety of application uses cases 
under the expected performance/memory constraints. This work is used to identify and 
eventually standardize a normative set of C++ bindings to MPI that can provide the basic 
functionality required by distributed-memory applications. To engage with the broader MPI and 
C++ communities, we discuss a prototypical interface derived from mpl, an open-source C++17 
message passing library based on MPI (referred to as mpl-subset) [2]. We port LULESH mini-
application using mpl-subset and demonstrate identical performance to baseline MPI version, 
enhancing the productivity and composability without affecting performance.  

 
Figure 1. MPL(-subset) relative to MPI performances are identical (left) and an unstructured 

hex mesh used in LULESH (right). 

Parallel scientific applications can benefit from decoupling communication and synchronization. 
One-sided programming abstractions, which separate communication from synchronization, 
have in fact served as a motivation for Partitioned Global Address Space (PGAS) models. 
However, the use of PGAS models in application codes in a manner that fully exploits the 
benefit of these programming models requires significant development effort. Meanwhile, a vast 
majority of scientific codes already use the Message Passing Interface (MPI) and need 
convenient features to support application-specific one-sided communication scenarios. MPI 
Remote Memory Access (RMA)can be employed for this purpose. MPI is a low-level API, 
however, and developing applications with MPI RMA requires programmers to be well versed in 
its nuances. We developed RMACXX [3], a compact set of C++ bindings to MPI-3 RMA, to ease 
the use of MPI RMA. Unlike other PGAS models, which may have interoperability issues with 
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MPI, RMACXX is written on top of MPI and uses the same runtime as MPI. The basic 
functionality of RMACXX adds only a relatively small number of extra instructions (about 20) to 
the critical communication path. Moreover, RMACXX provides an intuitive API for building a 
wide variety of scientific applications while enjoying performance matching handwritten MPI-3 
RMA codes. 

 
Figure 2. RMACXX relative to MPI and other models (left) and demonstrating distributed global 

array creation using RMACXX -- 6x8 array distributed over a logical 2x2 grid (right). 

We further developed a state-of-the-art application proxy for electronic structure calculations 
that forms the basis of several accurate time-dependent studies of unitary fermi gas, cold atom 
systems, and nuclear phenomenon on distributed-memory systems derived from [4]. The proxy 
performs a superfluid Time-Dependent Density Functional Theory (TDDFT) on a lattice is 
dominated by the evaluation of first and second order derivatives on the lattice, function 
evaluations for the time-stepping scheme, and regular density computations. The current 
version uses MPI and OpenMP code to time evolve a fictitious 4-component superfluid system 
based only on densities required for unitarity from dimensional analysis easily extensible to real 
microscopic systems. Subsets of the solutions are evolved independently in different PEs for 
scaling and efficient evaluations, and in each time step, three forward and inverse discrete 3D 
complex to complex Fourier transforms are performed on each solution to obtain highly accurate 
numerical derivatives and Laplacian terms from the theory.  
 
The proxy demonstrates strong scalability with larger number of PEs. Following table lists the 
results obtained from NERSC Cori Haswell supercomputer comparing 4/8/16-OpenMP threads 
per process (tppn) varying #processes/node (ppn), keeping tppn*ppn quantity the same.  The 
scalability is better with larger #threads (52x between 1 & 64 nodes for 16-tppn, vs. 45x for 8-
tppn and 36x for 4-tppn).  
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NERSC Cori 
Haswell 

(20 20 20 
10 10) 

NERSC Cori 
Haswell 

 
(20 20 20 
10 10) 

NERSC Cori 
Haswell 

 
(20 20 20 
10 10) 

n-ppn(tppn) Avg Time n-ppn(tppn) Avg Time n-ppn(tppn) Avg Time 

1-4(16) 146.90 1-8(8) 74.60 1-16(4) 42.16 

2-4(16) 73.03 2-8(8) 37.26 2-16(4) 21.13 

4-4(16) 36.79 4-8(8) 18.93 4-16(4) 10.93 

8-4(16) 18.72 8-8(8) 9.74 8-16(4) 5.75 

16-4(16) 9.62 16-8(8) 5.24 16-16(4) 3.12 

32-4(16) 5.04 32-8(8) 2.84 32-16(4) 1.81 

64-4(16) 2.78 64-8(8) 1.67 64-16(4) 1.16 
Table 1. Performance on distributed memory (NERSC Cori supercomputer) with varying 
number of threads/processes exhibit strong scalability. 
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3.0 Graph Analytics Co-Design 
Distributed-memory graph algorithms are fundamental enablers in scientific computing and analytics 
workflows. Most graph algorithms rely on the graph neighborhood communication pattern, i.e., repeated 
asynchronous communication between a vertex and its neighbors in the graph. The pattern is 
adversarial for communication software and hardware due to high message injection rates and input-
dependent, many-to-one traffic with variable destinations and volumes. This pattern also gives rise to a 
high amount of irregularity and poses a challenge for GPGPU porting of graph workloads. We have 
performed elementary analysis of the impact of graph structure on communication performance and 
observe multiple orders of degree slowdown in terms of average and 99th percentile latencies when the 
communication pattern mimics a graph. We develop a proxy application that provides several options in 
tweaking the graph structure, to observe the impact of communication and memory-access overheads 
on heterogeneous systems [5]. 

 

Figure 3. Graph proxy application generator for analysis (left) and average latencies of data 
exchanges for minor variations of a billion-edge graph relative to best latency (right). 

Apart from distributed-memory evaluation, we use the same proxy application for single-node 
partitioned-memory analysis, exploiting the same graph neighborhood access pattern for 
multiple PEs within a single node. We measure the overhead of loading large graphs (requiring 
terabytes of memory) by leveraging persistent memory systems such as Intel Optane [6] and 
observe same access patterns but different allocation locations can cause major performance 
divergences. These issues only creep up for irregular graph workloads and remain hidden for 
regular memory-access benchmarks that measure best-case memory bandwidth. 
 

 

 

 

 

 

Page faults during loading graph from 
Optane persistent memory 

 
 
 
 
 

NUMA-aware graph 
loading 

resolves page fault overhead 
 
 
 
 
 

Figure 2 Loading large graphs can expose issues in Linux memory management system 
when persistent memory is involved 
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Certain classes of graph workloads generate arbitrary intermediate data, which loosely 
resembles the structure of the graph. A canonical example is patter enumeration, which involves 
enumeration or counting specific patterns of a subgraph found in a larger graph. A more specific 
example is that of graph triangle counting, which entails counting the number of “triangles” in a 
graph (a triangle is referred to as a 3-vertex subgraph where every vertex is connected to the 
remaining vertices, forming a triangle). Since the underlying scheme require explicit assessment 
of the edges, the volume of intermediate data and communication depends on the 
structure/connectivity of a graph. Since the number of edges in a graph can be significantly 
larger than the number of vertices, and graphs can exhibit diverse node-degree distributions, 
exact counting methodologies are challenging to sustainably scale on distributed-memory 
systems. One of the first practical extensions to our distributed-memory approach was allowing 
users to specify a buffer size for the communication to happen over increments. The buffered 
version ensures that the code will run to completion on a set of nodes large enough to 
approximately hold the entire graph (regardless of the volume of the intermediates when edge 
enumeration begins for triangle counting). We also identified a few simple heuristics (constant 
time overhead) to reduce the number of remote edges for enumeration, just by checking 
whether a remote node ID falls within the edge range held by a specific process. We also 
realized that aside from communication, searching for an edge (in the Compressed Sparse Row 
representation of a graph) was another bottleneck affecting the performance. We tried using 
different C++ associative data structures to store a partial list of edges, leading to a further 20–
30% improvement in the overall execution times. Encouraged by these advances, we explored 
other means of overhauling the edge membership query performance. To that end, we 
observed remarkable performance enhancements (up to 7x) by employing a probabilistic data 
structure such as Bloom Filter [7]. 

 

 

Our last discussion on graph analytics concerns GPU implementation and trade-offs for a 
complex graph algorithm – namely graph clustering. Graph clustering or community detection is 
a novel method to identify closely related structures within a graph. Applications of graph 
clustering can be found in cybersecurity, computational biology, proteomics, power grids, et al. 
Graph algorithms/heuristics are usually part of existing data analytics and scientific computing 
pipelines (such as NVIDIA RAPIDS, Tridata, Apache Spark, etc.) and have the potential to be 
embedded into a larger "converged" application context. As such, developing high performance 
implementations of graph clustering can enhance analytics pipelines. Currently, GPUs are an 
integral part of HPC systems, especially dense-GPU systems are ubiquitous. Hence, there is a 
significant effort to port applications on GPUs to extract maximal performance from modern 
single-node HPC platforms. In general, designing graph applications efficiently on GPUs is 

Figure 3 Edge query scenario in computing triangle counts, depicting exact and estimated 
methods (left) and performance of exact and estimated for large graphs (right). 
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challenging, due to relatively low arithmetic computational intensity and arbitrarily high irregular 
memory accesses. The graph clustering problem is inherently serial, and the current modularity-
maximization based parallel graph clustering implementations usually incorporate additional 
heuristics such as distance-k coloring to improve the overall quality and convergence. In 
contrast, we introduce a batched method for clustering on GPUs that allow users to achieve the 
desirable amount of quality without compromising the performance and involving sophisticated 
algorithms/heuristics [8]. Due to a partition-based design, we can process graphs larger than the 
combined GPU memory of a node. Despite of increasing the frequency of synchronization 
through batches (batches are processed in a bulk-synchronous manner among GPUs), the 
effect on the performance is mild for large graphs. Our implementation is based on the popular 
Louvain method for graph clustering, and we compare our performance and quality with existing 
parallel Louvain implementations on CPU and GPU systems. Overall, we observed speedups of 
about 2–14x/1.3–7.5x on up to 16/8 NVIDIA V100/A100 GPUs and a maximum speedup of 
50x/30x as compared to state-of-the-art shared-memory and GPU-based Louvain 
implementations, as shown in the results below for a variety of input graphs. 

 
Figure 4 GPU partitioning and batched Louvain clustering (left) and performance in terms of 

speedup compared to multithreaded parallel CPU implementation (right). 
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4.0 Machine Learning for Predictive Analytics 
Our work on Machine Learning spans optimization techniques for elementary machine learning 
kernels using different programming models, such as sparse matrix-dense matrix multiplication 
(SpMM) to data parallelism targeting multiple GPUs for spatio-temporal modeling. Latest work 
also proposes a proxy for predicting molecular properties via Graph Neural Networks. Our goals 
are to develop proxy applications that can leverage multiple machine learning frameworks (both 
Tensorflow and PyTorch) and parallelism strategies on broad variety of hardware architectures.  

 
Figure 5 Machine Learning can benefit from broad variety of hardware. 

Sparse deep neural networks have gained increasing attention recently in achieving speedups 
on inference with reduced memory footprints. Real-world applications often must deal with 
sparse data and irregularities in the computations, yet a wide variety of Deep Neural Network 
(DNN) tasks remain dense without exploiting the advantages of sparsity in networks. Recent 
works presented in MIT/IEEE/Amazon GraphChallenge have demonstrated significant 
speedups and various techniques. Still, we find that there is limited investigation of the impact of 
various Python and C/C++ based programming models to explore new opportunities for the 
general cases. In our work [9], we provide first-of-its-kind extensive quantitative evaluations of 
various contemporary GPGPU programming models such as CUPY, CUDA CUSPARSE, and 
OPENMP in the context of Sparse Deep Neural Network (SPDNN) implementations (derived 
from the Graph Challenge reference serial code) on single and multiple GPUs from NVIDIA 
DGX-A100 40GB/80GB platforms. 

 
Figure 6 OpenMP-offload based SpDNN exhibits 18x speedup compared to NVIDIA CuPy on a 

single A100 GPU, depicting tremendous promise for traditional HPC programming models. 
 
Dependencies between layers makes SpDNN difficult to scale across GPUs (limited 
parallelism), but for larger number of neurons, a trivial 1D partitioning of features can lead to a 
sudden performance spike (for CuPy) until a limited number of GPUs, due to reduction in the 
data volume per GPU (alluding to sub-optimal implementation of CuPy). 
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For the next work, we discuss time-series prediction, a common application scenario for several 
domains, which exhibit a lack of representative benchmarks and proxies.  To facilitate the co-
design of next generation hardware architectures, it is critical to characterize the workloads of 
deep learning (DL) applications and assess their computational patterns on different levels of 
the execution stack. Time series prediction is one such DL application heavily used in areas that 
include critical decision making: ensuring power grid resiliency, climate forecasting, 
transportation infrastructure optimization, stock market prediction, etc. Unlike cross-sectional 
data (e.g., images), time-series data is inherently sequential, posing challenges to parallelization 
in the context of deep learning. In this work [10], we developed a proxy application for deep 
learning-based time-series application that uses spatio-temporal data from a dynamical system 
for model training and inference. We study the performance profiles of the associated 
computational patterns for both training and inference on four different levels: models (Long 
short-term Memory and Convolutional Neural Network), DL frameworks (Tensorflow and 
PyTorch), datatypes (FP64, mixed-precision), and single-node dense GPU platforms (Nvidia 
DGX A100 and DGX-2 V100). Overall, our findings indicate that, in the context of multiple 
variants of our time-series prediction proxy application, computational profiles of Tensorflow and 
PyTorch mostly exhibit divergent overheads across GPU platforms. Our studies also 
demonstrate that associated data movement, transformation and combination can take more 
than 50% of the overall execution times. 

 
Figure 7 Machine Learning is data-centric, areas which does not have standard models (like 

time-series prediction) lack representative proxies and benchmarks. 
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Data / Models / 
#RDUs 

/ Training Time (s) 

1 2 4 8 

Grid LSTM 190 129 65 34 (31) 

CNN 94 63 41 28 (32) 

Climate LSTM 622 397 222 118 (136) 

CNN 454 311 194 126 (135) 

Figure 8 Strong scaling on Sambanova RDUs (compared to NVIDIA A100 on 8 RDUs). 
 
Our proxy application demonstrates scalable performance on Sambanova Data-Flow 
architecture known as Reconfigurable Dataflow Unit (RDU), in comparison with NVIDIA A100 
GPU, providing a template for contemporary spatio-temporal models. Further optimizations are 
possible via synthesizing specific kernels through compiler-based High-Level Synthesis (HLS) 
tools, targeting custom accelerators such as FPGAs.    
 
Graph Neural Networks (GNN) are neural networks for processing data represented as graphs, 
with applications in diverse science domains, such as chemistry, particle physics, molecular 
biology, etc. Molecules represented as graphs can be applied to various GNN models for 
predicting molecular properties. Hence, leveraging GNN techniques in quantum chemistry is 
crucial for molecular modeling and drug design. However, the complexity of scientific data and 
lack of expertise create challenges in selecting an accurate machine learning model and 
parameters with reasonable turn-around times in the training and prediction phases, especially 
for large molecules. Our work provides case studies for prioritizing accurate GNN models for 
density calculations using adaptive techniques carried out on contemporary GPU-based 
platforms. We have developed a prototypical application pipeline with state-of-the-art libraries 
that replicate quantum chemistry pipelines and thermo-dynamics of biochemical reactions to 
compare different models, considering the structure of molecules and properties into graphs. 
We compare the resulting molecular predictions of our prototypical GNN framework with ab 
initio techniques for DFT calculations using the NWChem computational chemistry package. 
Unlike the proxies discussed, quality assessment is important in this case, which can indicate 
the level of success one could expect modeling myriad molecules. 

 
Figure 9 GNN-based MPNN vs. NWChem DFT performance for Zeolite fragments (left) and 

QM9 Mean Average Error (MAE) per atoms indicating good model accuracy (right) 
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Figure 10 Overview of the proxy setup for GNN-based molecular property prediction. 

Preliminary results show that our PyTorch Geometric based GNN method (leveraging Message 
Passing Neural Network, MPNN) can predict the molecular properties by reducing the 
computation time significantly without any feature engineering (directly learns their own features 
from the molecular graphs) and returns relatively stable MAE for molecules less than 20 atoms, 
while depicting slight fluctuations for cases with higher number of atoms. 
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