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Abstract 
Virulence assessment of new, emerging, and engineered pathogens is critical to mounting an 
appropriate response to a biothreat agent. The capacity of the pathogen to colonize human and 
harm tissues must be characterized to understand pathogenicity pathways and optimize 
diagnosis and treatment of resulting disease. Respiratory pathogens are of interest because 
they can have high transmissibility rates, as observed with the SARS-CoV-2 virus, the causative 
agent of Covid-19. Current technologies are insufficient to assess threats due to their reliance 
on systems with only one cell type and on sequencing the pathogen. However, it is known that 
sequence is not an accurate predictor of function, and sequencing can be unreliable for newly 
emerged or engineered pathogens. An ideal system would consist of relevant epithelial cell 
types and an assay sensitive enough to detect changes in host responses that do not rely on 
DNA sequencing. We chose a system consisting of host lung epithelial cells that can be used to 
assess the virulence of unknown respiratory pathogens. We interrogated pathogens using this 
model and assess features of pathogenicity. Our objective is to leverage PNNLs strengths in 
tissue engineering and proteomics capabilities to build a multiple reaction monitoring (MRM) or 
parallel reaction monitoring (PRM) liquid chromatography-tandem mass spectrometry assay for 
human host cell proteins whose abundance is influenced by infection. These responses can 
were then assessed for relative virulence using pathogen agnostic signatures. When confronted 
with a pathogen, cells activate dedicated signaling pathways, typically through phosphorylation 
of regulatory proteins and downstream activation of host cell networks. As a model system, we 
used two different pathogens that can cause lung disease: the bacteria, Pseudomonas 
aeruginosa, and one virus, influenza A H1N1. As nonpathogenic controls we included 
commensal bacteria. Our main hypothesis was that pathogens elicit a differential early host 
response than nonpathogens within 6 to 18 hours post infection. We also expected that we will 
be able to differentiate between bacterial and viral pathogens given that the pathogen activated 
molecular pathways vary between bacterial and viral pathogens. To establish the appropriate 
time frame for taking measurements for proteomics, we ran imaging assays to determine the 
onset of cell death, and selected time points upstream of these extreme cytotoxic effects. 
Expected outcomes from the project include the development of proteomics assays that enable 
assessment of whether or not a respiratory pathogen has the potential to be virulent in the 
human airway. Our approach is agent agnostic in that any agent that influenced response 
pathways in human cells could be characterized. This platform could form a key part of a 
response to a novel/emerging pathogen and the molecular basis of its pathogenicity would be 
directly revealed. By understanding the basis of pathogenesis, specific and rapid mitigation 
response and targeted treatments could be deployed on a shorter timescale compared to 
traditional methods. The final outcome of this work will be the development of a framework for 
rapid virulence assessment of bacterial and viral pathogens that can be translated to other 
tissue types. 
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1.0 Introduction 
Two of the major goals of the National Biodefense Strategy are: 1) Enable risk awareness to 
inform decision making across the biodefense enterprise; 2) Rapidly respond to limit the impacts 
of biological incidents. Virulence assessment of new, emerging, and engineered pathogens is 
critical to mounting an appropriate response to a biothreat agent. Respiratory pathogens are of 
interest because they can have high transmissibility rates. When confronted with a pathogen, 
cells activate dedicated signaling pathways, typically through phosphorylation of regulatory 
proteins and downstream activation of host cell networks. These changes can be measured 
through proteomics analysis to determine the abundance of change in these proteins and 
provide confirmation of the pathogen’s virulence (Figure 1). Current technologies are insufficient 
to assess threats due to their reliance on on genome sequencing of the pathogen. However, it is 
known that genomes are not an accurate predictor of function (Alberts et al). In contrast, a 
targeted multiplexed proteomics assay could specifically detect activation of over 100 target 
proteins, allowing for readouts from multiple pathways. 

 

Figure 1. Differentially 
expressed pathogen 
activated molecular pathway 
proteins expressed in a 
“friendly” bacterium, S. 
epidermidis, compared to a 
“foe” bacterium, P. 
aeruginosa, in the lung co-
culture system at 10 hours 
post infection. 
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2.0 Objective and Approach 
2.1 Objective 

We will leverage existing PNNL capabilities to develop a threat agnostic proteomics assay for 
detecting respiratory pathogens and predicting their virulence. Our central hypothesis is that 
pathogens will elicit a differential early host response compared to nonpathogens within 6 to 48 
hours of infection, enabling a rapid threat response. Biomarkers are measurable indicators of 
biological processes such as normal metabolism, disease-state, infection, or an environmental 
exposure. The identification of host molecular biomarkers in response to pathogen exposure, 
especially in the period before clinical signs and symptoms are observable, is essential to 
develop rapid diagnostics and therapeutics for disease. Mass spectrometry (MS) based 
proteomic approaches are one of the most powerful tools to identify potential disease specific 
molecular biomarkers (e.g. enzymes, transporters) in complex biological samples from in vitro 
cell-based assays to in vivo samples from hosts. MS-based biomarker proteomics can be 
divided into two main steps: discovery and targeted proteomics. The “discovery phrase” uses 
global proteomic approaches to identify potential protein targets of interest. Targeted proteomics 
is a hypothesis-driven approach that monitors specific protein targets with high specificity and 
sensitivity for accurate quantitation across many samples. 

In the discovery phase, global/shot-gun proteomic approaches will be used such as iTRAQ and 
TMT which use isobaric tags to label peptides within a sample with a specific “barcode” allowing 
multiplexing of up to 12 different samples enabling parallel analysis across multiple proteomes 
(Figure 2). In this approach identical peptides with different isobaric tags co-migrate during MS 
separations enabling downstream analysis of differential protein expressions between samples 
using existing methods developed by the Chemical and Biological Signatures group. By 
examining differential protein expression between samples exposed to either a pathogen or 
non-pathogen a candidate list of potential protein biomarkers for host responses to pathogen 
infection can be determined; general inflammatory markers will be carefully reviewed to ensure 
a general response to a microbe does not serve as a confounding factor in analysis. In addition 
to performing in-house experiments, potential protein targets and their peptide signatures will 
also be gleaned from literature-based resources including primary literature and targeted 
biomarker databases including SRMAtlas (Kusebauch et al., 2016) and PASSEL (Farrah et al., 
2012).  

Targeted proteomic approaches include selected reaction monitoring (SRM; also known as 
multiple reaction monitoring: MRM) and parallel reaction monitoring (PRM). Targeted 
proteomics provides sensitive and accurate quantitation of up to hundreds of specific proteins 
from samples with detection down to the low nanograms per mL. This selectivity and sensitivity 
are not achievable by current global proteomics approaches.  Both SRM and PRM utilize 
isotope-labeled synthetic peptides that are spiked into the sample as internal standards and 
quantitation is based on the ratio of intensities of the specific peptides in the sample and their 
matching internal standards. Part of developing an SRM assay is developing and optimizing of 
these isotope-labeled synthetic peptides (often needing 1 to 6) for each protein of interest. 
Some of this development can be leveraged by using internal peptide standards from biomarker 
databases (i.e. SRMAtlas) or previous work. Data processing and analysis of SRM proteomics 
is well established with the use of tools such as Skyline (MacLean et al., 2010). Once protein 
targets are quantified, statistical approaches including regressions can be used to determine 
differential expression of the candidate biomarkers. We will implement our established mass 
spectrometry (MS)-based proteomics quantitative data analyses pipelines including outlier 
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sample detection, normalization, and differential statistics, which are implemented in 
standardized workflows in R (Stratton, et al.). Univariate differential expression discovery, of 
friend vs foe samples, will fit models independently for each protein using generalized linear 
mixed models. These results can be used to quantify baseline discriminatory efficacy. 
Classification models will be used for the identification of biomolecule signatures that 
differentiate friend vs foe samples. For the biosignature discovery, statistical classification 
approaches such as elastic nets (Zou et al. and Friedman et al.) coupled with cross-validation 
(Friedman et al) will be used to discriminate friend vs foe. These methods also select the 
features (i.e. proteins) that most strongly contribute to the predicted class and identify the 
optimal set of proteins for predicting friend vs foe for unseen samples. Classification metrics 
such as accuracy, F1 score, and area under the curve (AUC) will be used to measure models’ 
predictive performance (Friedman et al). These classifiers can be used to predict disease state 
in other samples. If successful, the proposed co-culture system/targeted proteomics platform 
would provide a method to characterize the threat posed by novel or engineered pathogens. 
More advanced machine learning methods can also be explored to develop classifiers based on 
expression patterns of different proteins. 

 

Figure 2. 
Summary of 
discovery and 
targeted phase 
of proteomics 
and phospho-
proteomics 
analysis with 
replicate analysis 
planned in each 
phase. 

2.2 Proposed Approach 

We propose to interrogate respiratory pathogens using a lung cell culture model (A-549 cells) 
and assess features of pathogenicity (i.e., the ability to harm host cells and niche find). As a 
model system in Year 1, we will use two different pathogens that can cause human lung 
disease: the bacteria, Pseudomonas aeruginosa, and a virus such as influenza A H1N1. As 
non-pathogenic controls we will include the commensal bacteria, S. epidermidis, that do not 
confer pathogenicity. Once we have established signatures using pathogenic controls, we will 
expand our data set to include both high pathogenicity and low pathogenicity viruses. The 
predictive value of the assay will be critically dependent on testing a range of pathogen types to 
ensure a broad set of signatures is obtained using this approach. Examples of “highly 
pathogenic” bacteria include P. aeruginosa, Y. pseudotuberculosis, S. aureus, and K. 
pneumoniae. With respect to viruses, “low pathogenic” viruses include HCoV-NL63 and “highly 
pathogenic” viruses include H5N1 influenza.    

During the discovery phase, samples will be taken over an infection time course and analyzed 
using a TMT proteomics assay to identify and measure signaling pathway activity associated 
with pathogenesis. We will use the lung culture system to identify the interplay between host 
cells and the pathogens that contribute to pathogenesis. This approach builds on PNNL’s 
experience and successful execution in the DARPA Friend or Foe program, as well as our 
expertise in targeted mass spectrometry.  PNNL will develop a targeted proteomics approach 
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using multiple reaction monitoring (MRM) or parallel reaction monitoring (PRM) liquid 
chromatography-tandem mass spectrometry assay for human host cell proteins whose 
abundance levels are indicative of pathogenicity.  MRM enables targeted and sensitive 
monitoring of the abundance of hundreds of protein targets from samples with detection down to 
low nanograms per mL; a more sensitive approach compared to global proteomics methods. 
We will leverage this approach based upon a growing understanding of how human cells 
respond to bacterial and viral pathogens. One aspect that MRM will elucidate is the temporal 
regulation of post translation modifications (PTMs) such as phosphorylation in the host 
proteome response. These modifications of existing host proteins, as opposed to protein 
replication, may shed light on the earliest stages of infection. A targeted proteomics assay will 
be developed to detect activation of these host cell networks.  A multiplexed assay could 
specifically detect activation of over 100 targets for early host cell response proteins, allowing 
for readouts from multiple pathways. By comparing target protein abundance in human cell 
samples that have been exposed to infectious and non-infectious agents, we will develop an 
analysis pipeline that will lead to a set of decision criteria for classifying organisms as 
infectious/virulent or avirulent. There is also a potential that this project will identify suites of 
protein biomarkers that can differentiate between bacterial and viral infections. This method 
would be applicable to any respiratory pathogen, even if it is unknown or engineered.  Our 
approach would be agent agnostic in that any agent that influenced the targeted immune 
response pathways in human cells could be characterized.  This platform could form a key 
part of a response to a novel pathogen—in addition to identification, the molecular basis of its 
pathogenicity would be directly revealed. By understanding the basis of pathogenesis, 
specific and rapid mitigation response and targeted treatments could be deployed on a 
shorter timescale compared to current methods. 
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3.0 Results and Discussion 
3.1 Time Point Selection for Challenge Assays 

3.1.1 Bacterial Challenge Assays, Time Point Selection for Proteomics 
Analysis 

We used a high throughput imaging system (the Cytation5 coupled to a BioSpa automated 
incubator) to determine the time points for proteomics analysis of host cells. The hours post 
infection (hpi) for collection of the host cells following the bacterial challenge with pathogenic 
Pseudomonas aeruginosa were determined by manual review of lung cell phenotype over time. 
The goal was to collect healthy cells (i.e., uninfected controls), challenged cells (early in 
infection), and stressed cells (mid infection). As shown in Figure 3, the 0 hpi, 2 hpi, and 6 hpi 
samples, respectively, met these criteria. At 0 hpi, the cells have tight junctions and are 
adherent, which are all indicators of healthly cell culture. At 2 hpi, the cells begin to lose tight 
junctions, which is an indicator of early infection, and at 6 hpi, the cells are rounding and 
beginning to lose adherence, which indicates active infection. 

A 

0 hpi 

 

Figure 3. Lung cells (A-549) exposed to the 
pathogenic bacteria, P. aeruginosa at A) 0 hpi 
(uninfected), B) 2 hpi, and C) 6 hpi. Over time, 
the cells begin to lose tight junctions between 
each other, begin to round, and ultimately lose 
adherence. 

B 

2 hpi 

 

C 

6 hpi 
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3.1.2 Viral Challenge Assays, Time Point Selection for Proteomics Analysis 

The hours post infection (hpi) for collection of the host cells following the viral challenge with 
pathogenic Influenza A were determined by manual review of lung cell phenotype over time. 
The goal was to collect healthy cells (i.e., uninfected controls), challenged cells (early in 
infection), and stressed cells (mid infection). As shown in Figure 4, the 0 hpi, 5 hpi, and 18 hpi 
samples, respectively, met these criteria. At 0 hpi, the cells have tight junctions and are 
adherent, which are all indicators of healthly cell culture. At 5 hpi, the cells begin to lose tight 
junctions, which is an indicator of early infection, and at 18 hpi, the cells are rounding and 
beginning to lose adherence, which indicates active infection. 

A 

0 hpi 

 

Figure 4. Lung cells (A-549) 
exposed to the pathogenic virus, 
Influenza A at A) 0 hpi 
(uninfected), B) 5 hpi, and C) 18 
hpi. Over time, the cells begin to 
lose tight junctions between 
each other, begin to round, and 
ultimately lose adherence. 

B 

5 hpi 

 

C 

18 hpi 

 

 

3.2 Global Proteomics Analysis 

We first ran global proteomics analysis of the lung cells challenged with the commensal 
bacteria, S. epidermidis (SE) and the pathogenic bacteria, P. aeruginosa (PA). We also included 
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an uninfected control (C). We prepared four biological replicates of each sample type. The 
normalized peptide data from these assays is provided in Figure 5. 

 

Figure 5. Boxplots of reference standardized normalized peptide data ordered by group. 

After normalization, we conducted pairwise comparisons at the 2 hpi and 6 hpi time points for 
the commensal and pathogenic bacteria (SE vs. PA). As shown in Figure 6, four proteins were 
highly varied in the two time points: SODM, HDHD1, GLYC, and IGBP1. 

A B 

   

Figure 6. Volcano plots of the pairwise comparison of the commensal bacteria, S. epidermidis (SE) 
and the pathogenic bacteria, P. aeruginosa (PA) at A) 2 hpi and B) 6 hpi. 

Based on the number of significant proteins identified at each time point in the pairwise 
comparison, we chose to conduct machine learning using sparse partial least squares 
discriminant analysis (sPLS-DA). This approach enables the identification of a multivariate 
signature of proteins to discriminate samples exposed to pathogenic bacteria versus 
commensal bacteria versus the uninfected control samples (Figures 7 and 8).  
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A 

 

B 

 

Figure 7. Multivariate comparison of the control to SE to PA from global proteomics data at 2 hpi. The 
most critical proteins responsible for the observed clustering (A) provided (B). 

As shown in Figures 7 and 8, at 2 hpi and 6 hpi the exposure time results in significant variability 
with respect to expression of specific proteins. These data indicate that the kinetics of infection 
are critical to determining appropriate biomarkers for a targeted assay. 
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A 

  

B 

 

Figure 8. Multivariate comparison of the control to SE to PA from global proteomics data at 6 hpi. The 
most critical proteins responsible for the observed clustering (A) provided (B). 

The biological relevance of each of these proteins was investigated to determine which 
pathways are involved in responding to infection at early and mid-stages of the challenge assay. 
As shown in Figures 9 and 10, the function of each protein identified in the multivariate analysis 
is identified and a short analysis is provided given the collection of the proteins. 
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Figure 9. Biological relevance of the critical proteins identified by machine learning at 2 hpi. 

The variability in biological relevance is evident between early and mid-infection based on the 
host response. 

 

Figure 10. Biological relevance of the critical proteins identified by machine learning at 6 hpi. 

3.3 Phospho-proteomics Analysis 

The samples used for phosphor-proteomics analysis were identical to those used for global 
proteomics analysis. The goal of the phospho-proteomics data is to gain an understanding of 
the pathways that are activated by kinases or deactivated by phosphatases. Similar to the 
global proteomics analysis, we first normalized the peptide data for this data set (Figure 11). 
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Figure 11. Boxplots of reference standardized normalized peptide data ordered by group. 

After normalization, we conducted pairwise comparisons at the 2 hpi and 6 hpi time points for 
the commensal and pathogenic bacteria (SE vs. PA). As shown in Figure 12, multiple proteins 
were highly varied in the two time points. 

A B 

  

Figure 12. Volcano plots of the pairwise comparison of the commensal bacteria, S. epidermidis (SE) 
and the pathogenic bacteria, P. aeruginosa (PA) at A) 2 hpi and B) 6 hpi. 

We conducted pathway analysis from these data and identified four critical pathways that 
require investigation: Interleukin-7 signaling, defective pyroptosis, RHO GTPase activation of 
protein kinase networks, and oxidative stress induced senescence. 

Based on these promising data, we conducted additional challenges assays with lung cells 
challenged with viruses and additional commensal and pathogenic bacteria to improve the 
robustness of the data sets. Unfortunately, these samples were lost during the proteomics 
preparation process and require them to be reprepared. Due to this issue, this LDRD project is 
continuing into FY24. Future directions are provided in the Appendix. 
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Appendix A – Future Directions 
In order to improve the robustness of the data already collected in this effort, we plan to conduct 
challenge assays followed by global and phospho-proteomics with Influenza A, HCoV-NL63, 
RSV, K. pneumoniae, and P. putida. 

Once these data have been generated, we will use the same machine learning approach to 
identify the critical nodes in the pathways that will serve as biomarkers for developing a targeted 
mass spectrometry assay for threat agnostic virulence assessment.  
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