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Abstract

With the rise of cheap data and sensors, more use cases are emerging for multi-input models.
Research has shown that including multiple data modalities can improve performance,
suggesting that deep learning models can successfully learn to leverage complementary
information from different modalities. However, this improved predictive power comes with
unanticipated costs: additional inputs change model resiliency and expand the threat space for
adversarial attacks. We first provide theoretical underpinnings for how adversarial success
scales with input dimension. We then characterize the performance of a suite of multispectral
deep learning models with different fusion approaches, quantify their relative reliance on
different input bands, and evaluate their robustness to naturalistic and adversarial image
corruptions.
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standard basis vectors. Adversarial examples are computed for a random
subsample of 10,000 datapoints from the ImageNet validations set. The
x-axis is the bound e used during example generation and the different
colored curves indicate the dimension dim V of the subspace to which the
examples were constrained to, relative to the dimension dim X (= 3 -
2242) of the ambient input space. When only a small number of
dimensions can be perturbed, adversarial examples are challenging to
generate even with large e-bounds. (b) These curves become almost
perfectly aligned when we reparameterize the x-axis by scaling by
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1.0 Introduction

Over the past decade, there has been growing interest in understanding the robustness of
deep learning models. Robustness refers to a model’s ability to maintain performance under
various input shifts, including natural shifts (e.g., weather, environment) and adversarial shifts
(e.g., attacks or digital perturbations). While many advancements have emerged in the field of
robustness, deep learning models remain vulnerable to various attacks and distribution shifts.
To date, much of this research has focused on evaluating model performance on image
classification tasks using benchmark RGB image datasets. As such, our understanding of model
robustness for other tasks and data modalities remains incomplete.

Additional information may improve a model’s ability to distinguish malicious inputs or simply
provide new attack avenues and vulnerabilities. In Section 2.0 (work published in [1]), we
investigate how adversarial vulnerability depends on the dimension of the space of model
inputs. Since incorporating data from additional sensors in model inputs necessarily increases
the input dimensionality, the results obtained from the study provide a means of estimating the
risk of expanding the amount of information included in model input data.

In Section 3.0 (work published in [3], [7]) we consider both adversarial robustness and
natural robustness for deep vision models applied to overhead multispectral imagery, focusing
on the combination of RGB and near-infrared (NIR) bands. In [3], we quantify the robustness of
different model architectures and their relative reliance on different inputs in classification and
segmentation tasks. In [7], we consider both adversarial robustness and natural robustness for
multispectral segmentation models, placing an emphasis on perturbations and attacks that are
physically meaningful.

Introduction 1
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2.0 Quantifying the Relationship Between Adversarial
Vulnerability and Input Dimension

Adversarial examples are data points that have been intentionally been modified in some
(often imperceptible to humans) way with the goal of causing a machine learning model to
output an incorrect prediction. Vulnerability to adversarial examples as often viewed as an
obstacle to deploying deep learning systems, especially in situations where the stakes of
incorrect prediction are relatively high. Since they were first identified in [2] a vast body of
empirical work has shown that essentially all neural networks are susceptible to adversarial
examples, and there has been a strong sense that a model’s level of vulnerability is strongly
connected to the dimension of its input space. This connection has been mined by a range of
works which use it as a perspective with which to explain the prevalence of adversarial
examples in certain model types (e.g., computer vision). As deep learning models are applied to
more and more safety critical applications, there is also an increasing practical relevance to
understanding any general connections between adversarial vulnerability and the properties of a
problem. In such settings, a simple statistic that can be easily computed (such as model input
dimension) is useful for gauging the general adversarial risk for a proposed deep learning
system.

This is especially true when the proposed system uses less familiar modalities/tasks to
which one cannot easily refer to studies in the literature. For example, suppose one needs to
evaluate the safety of applying deep learning to the output of a range of different sensors. Past
work has considered the ambient dimension in which this data is collected. Should we worry
less if a sensor captures a signal as a 50-dimensional vector rather than a 5,000-dimensional
vector? In this paper we take this line of reasoning a step further and ask how this situation
changes when instead of changing the ambient dimension we change the dimension of the
subspace in which an adversary is constrained to perturb input. Such a thought experiment has
practical relevance. Suppose that of the 500 input dimensions to our model, we believe that an
adversary is only likely to get access to 50 dimensions (this may happen in multimodal settings
where an adversary has much better access to a subset of the modalities). How should we
compare this to a situation in which are only able to perturb a fixed 100-dimensional subspace
of the input? How about a 5-dimensional subspace?

Motivated by this, in this work we revisit the connection between dimension and adversarial
vulnerability. Unlike most other works in this research area, which look at susceptibility to
adversarial examples as a function of the number of input dimensions dim(X) alone, we explore
model susceptibility to adversarial examples constrained to a subspace V<X as a function of
dim(V)/dim(X). We find that unsurprisingly, for fixed dim(X), as dim(V) decreases average
adversarial success rate (ASR) also decreases, though ASR only drops significantly when the
quotient dim(V)/dim(X) drops below around 10% (see figure below). In other words, a model
remains vulnerable when an adversary is only able to perturb a subset of input dimensions, but
as this subset covers an ever smaller fraction of the available dimensions an adversary has to
put increasing effort into finding adversarial examples.

Quantifying the Relationship Between Adversarial Vulnerability and Input Dimension 2
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Figure 1: (a) Success of PGD adversarial attacks on an ImageNet trained ResNet50
constrained to subspaces V € X spanned by dim V randomly selected standard basis vectors.
Adversarial examples are computed for a random subsample of 10,000 datapoints from the
ImageNet validations set. The x-axis is the bound e used during example generation and the
different colored curves indicate the dimension dim V of the subspace to which the examples
were constrained to, relative to the dimension dim X (= 3 - 224?) of the ambient input space.
When only a small number of dimensions can be perturbed, adversarial examples are
challenging to generate even with large e-bounds. (b) These curves become almost perfectly
aligned when we reparameterize the x-axis by scaling by dim(V)/dim(X).

We further study how the adversarial budget € (the extent to which a model input can be
modified) interacts with dim(V) and dim(X). We find that the relationships of € to ASR for
different dim(V) are nearly identical up to scaling: more specifically, suppose that C;:R — [0,1]
and C,:R - [0,1] map adversarial budget to ASR when adversarial examples are constrained to
subspaces V; and V;, respectively. We find that

dimV; dimV,

C1 ( (dimX) 6) ~ G ( ( dimX) 6)'
This points to a strong relationship between dim(V), p, and € that to our knowledge is novel. It
further tells us that risk from adversarial examples can be mitigated by either restricting the
dimensions that data can be manipulated (dimV) in or restricting the amount they can be
manipulated before they are noticed (€). This relationship is consistent across values of
dim(V)/dim(X): if one wanted to understand the risk of an adversary perturbing data in a 50-
dimensional subspace of a 500-dimensional-input space, one could for example estimate the
success rate of an adversary with access to the entire input space and extrapolate using our
equation. Finally, we provide a theoretical backing for our results as well as analyze their
implications on common theories behind the prevalence of adversarial examples.

Quantifying the Relationship Between Adversarial Vulnerability and Input Dimension 3
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3.0 Deep Learning Models Applied to Overhead
Multispectral Imagery for Image Classification and
Segmentation

With the wealth of publicly available satellite imagery data and the development of large
annotated satellite imagery datasets, deep learning models routinely achieve state-of-the-art
performance in a number of important remote sensing applications, including land cover
classification, agricultural monitoring, and disaster assessment. Typically, satellite sensors
collect multispectral imagery, or imagery observed at wavelength bands beyond the traditional
Red, Green, and Blue (RGB) bands found in natural imagery datasets. For many overhead
imagery applications, spectral bands beyond the visible spectrum (e.g., near-infrared or short-
wave infrared) are essential in distinguishing different surface materials or penetrating
atmospheric haze. Deep learning models that leverage multispectral imagery are becoming
increasingly common, and outperform RGB-only models in some applications [8], [9], [10].

For a given model, there are many possible ways to synthesize or fuse information from
different inputs or data modalities. Models that combine data modalities at the input stage are
sometimes called “early fusion” models (e.g., a 4-band image, or projecting 3D LIDAR data onto
an RGB image). In contrast, models that process the different data modalities separately and
combine them after feature extraction or in the final layer before classification are called “late
fusion” models. Here, we are specifically interested in quantifying the robustness of different
fusion approaches. To this end, we explore different combinations of input bands (NIR, RGB,
RGB+NIR) and architectures (early vs. late fusion) to better understand how each of these
variables affects the model’s overall robustness, and explore any potential trade-offs with model
performance in image classification and segmentation tasks.

For adversarial robustness, we focus on data poisoning, wherein adversaries inject
malicious data into the training data to cause erroneous classifications or backdoor access
during test time. For natural robustness, we develop an approach for physically realistic
perturbations that can be applied to multispectral imagery, building upon ImageNet-C [11], the
industry standard for RGB imagery. We then quantify the robustness of the segmentation
models, assessing the relative accuracy and robustness of different fusion approaches as
compared to an RGB model baseline.

In 3.1, we quantify the performance and robustness of models with different fusion
approaches, and assess model reliance on different input types. In 3.2, we provide a more
comprehensive picture of model robustness and consider both adversarial and natural
robustness.

3.1 Architecture impact on robustness and interpretability

In [3], we study multispectral models operating on RGB and NIR channels on two different
data sets and tasks (one involving image classification, the other image segmentation). In
addition, for each dataset/task we consider two different multispectral fusion architectures, early
and late (see Figure 2).

Deep Learning Models Applied to Overhead Multispectral Imagery for Image Classification and Segmentation 4
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Figure 2: RGB+NIR fusion architectures for classifiers predicting aircraft role. Top: early, bottom:
late. Braces denote image/feature concatenation.

classifier

Even when different fusion architectures achieve near-identical performance as measured
by test accuracy, they leverage information from the various spectral bands to varying degrees:
we find that for classification models trained on a dataset of RGB+NIR overhead images, late
fusion models place far more importance on the NIR band in their predictions than their early
fusion counterparts. Here we measure “importance” using a metric called perceptual score [4].
In contrast, for segmentation models we observe that both fusion styles resulted in models that
place greater importance on RGB channels, and this effect is more pronounced for late fusion
models. See Figure 3.

0.8
0.4
0.3 0.6
0.2 Dt
0.1 0.2
0.0 0.0
Early Fusion Late Fusion Early Fusion Late Fusion

Figure 3: Left: perceptual scores for the multispectral classifiers on the RarePlanes dataset [5].
Blue: RGB, orange: NIR. The early fusion models have a higher perceptual score for RGB
channels (i.e., more reliance on RGB inputs), whereas the late fusion models have higher
perceptual score for NIR channels (i.e., more reliance on NIR input). Right: perceptual scores
for the multispectral segmentation models on the US3D dataset [6]. Both early and late fusion
models have higher perceptual scores for RGB data, demonstrating that model performance

Deep Learning Models Applied to Overhead Multispectral Imagery for Image Classification and Segmentation 5
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relies more strongly on the RGB inputs. For late fusion models this effectis even more dramatic,
suggesting that the NIR input is less important, in contrast to the classification model scores
shown at left.

Perhaps unsurprisingly, these effects are mirrored in an evaluation of model robustness to
naturalistic image corruptions affecting one or more input channels — in particular, early fusion
classification models are more sensitive to corruptions of RGB inputs, and segmentation models
with either architecture are comparatively immune to corruptions affecting NIR inputs alone (see
Figure 4, Figure 5). In order to carry out this analysis, we created to the best of our knowledge
the first benchmark datasets for evaluating robustness of multispectral image models to
naturalistic corruptions (see Figure 9, Figure 10 for example datapoints).

Early Fusion Late Fusion RGB NIR

e

\<\\

accuracy
o o o
[=2] ~ ==]

o
w

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
severity severity severity severity
Corrupted Input
—— NIR — RGB — All

Figure 4: Corruption robustness of RarePlanes classifiers. Each subplot corresponds to a model
architecture, and each line corresponds to a choice of input (RGB, NIR or both) to corrupt.
Accuracy is averaged over 15 types of corruptions.

Early Fusion Late Fusion RGB NIR

0.7 \ \
-
5
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Corrupted Input
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Figure 5: Corruption robustness of US3D segmentation models. Each subplot corresponds to a
model architecture, and each line corresponds to a choice of input (RGB, NIR or both) to
corrupt. loU (a segmentation model accuracy metric) is averaged over 15 types of corruptions.

On the whole, our experiments suggest that segmentation models and classification models use
multispectral information in different ways.
3.2 Robustness to natural and adversarial corruptions

In [7], we study the adversarial and natural robustness of multispectral classification and

segmentation models for overhead imagery. While existing adversarial and natural robustness
research has focused primarily on digital perturbations, we prioritize on creating realistic

Deep Learning Models Applied to Overhead Multispectral Imagery for Image Classification and Segmentation 6
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perturbations designed with real-world physical conditions in mind. For adversarial robustness,
we focus on data poisoning attacks, as shown in Figure 6. For natural robustness, we focus on
extending ImageNet-C common corruptions [11] for fog and snow that coherently and self-
consistently perturbs the input data, as shown in Figure 7.

Training Time Test Time
Poisoned Image Ground Truth Poisoned Prediction

Flgure 6: Examples of data poisoning attacks implemented in this work: square, line, and
texture. The square and line attacks (top and middle rows) operate like a trigger; when present,
the model should erroneously classify foliage pixels as the “building” class. In contrast, the
texture attack (bottom row) trains the model to learn a targetable representation - here, foliage
that is classified as a building. All attacks were highly successful with only 10% of the training

data poisoned.

Ground Truth Poison Labels

Poisoned Image

Unclassified

Elevated Roadway

Water

Building

line

Foliage

Ground

Unclassified

texture

Physically Realizable Fog/Haze

RGB

Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

Figure 7: An example of the physically realistic fog/haze perturbations used in this work. We
modify the original implementation of the ImageNet-C perturbations to account for the fact that
NIR light more easily penetrates fog, haze, and smoke.

Deep Learning Models Applied to Overhead Multispectral Imagery for Image Classification and Segmentation 7
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We compare the performance and robustness of the multispectral segmentation models for
the two fusion approaches introduced in Section 3.1 (early, late) on the US3D dataset. Baseline
performance metrics are shown in columns two and three of Table 1. All models perform
similarly across the considered metrics (pixel accuracy and IOU score), with the multispectral
early fusion model showing the best overall performance. The last column of Table 1 shows the
adversarial robustness of the models, as measured by the success of the poisoning attacks.
Overall, we find both RGB and multispectral models are vulnerable to data poisoning attacks
regardless of input or fusion architectures, with adversarial success rates of over 90%.
Interestingly, while the multispectral models are the best performing models, they also have the
highest overall adversarial success rates. This suggests that the extra information provided by
additional bands boosts performance but also reduces the overall adversarial robustness.

Table 1: Baseline Segmentation Model Performance and Adversarial Robustness
Adversarial Robustness

Model Input Pixel Accuracy IOU Score Poisoning Success Rate
NIR 0.919 0.757 0.921
RGB 0.917 0.761 0.924
Early Fusion 0.921 0.769 0.932
Late Fusion 0.917 0.764 0.937

For natural robustness, we show the performance degradation from natural perturbations in
Figure 8. We find that the physically realizable natural perturbations degrade model
performance in all cases, however the impact differs with fusion architecture and input data. In
particular, the early and late fusion models show improved robustness to natural perturbations
over the baseline RGB model, suggesting that these models are able to leverage information
from additional bands to improve segmentation performance in adverse weather conditions. The
early fusion model shows the best overall robustness; which agrees with findings in Section 3.1
that suggest that early fusion models rely more on NIR inputs.

0.8

NIR
= RGB
=== Early Fusion
== | ate Fusion

0.74

o
o

o
7]

Mean IOU

0.4

0.3

1 2 4 5

3
Corruption Severity

Figure 8: Natural Robustness. Segmentation model performance on data corrupted with
physically realistic show at varying levels of severity (see example datapoints in Figure 7).
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Our findings can be summarized accordingly:

1. We find that all segmentation models are vulnerable to data poisoning attacks,
regardless of input (NIR, RGB, NIR+RGB) or fusion architecture (early, late). Both the
fine-grained attacks and physically realizable texture attacks are highly successful (ASR
> 90%) with only 10% of the training images poisoned; however, the texture attacks are
less likely to be detected by the victim.

2. The two RGB+NIR models show the best overall performance as measured by accuracy
and IOU, but also the worst overall robustness to adversarial attacks. We conclude that
the additional information provided by the additional input bands boosts overall
performance, but does so at the expense of adversarial robustness.

3. In contrast with previous work in object detection [12], we did not find any significant
difference in adversarial robustness between early and late fusion approaches,
suggesting that the adversarial robustness of fusion approaches varies with attack type
and model task.

4. We create a physically realistic version of the ImageNet-C snow and fog corruptions that
are appropriate for multispectral data and faithfully preserve the real-world observational
signatures of snow and fog/haze.

5. We find that both RGB+NIR models show improved robustness to natural perturbations
over RGB only models, suggesting that these models are able to successfully leverage
NIR information to improve segmentation performance in adverse weather conditions.
We find that the early fusion models have the best overall natural robustness, which
aligns with our results from [3] that find that the early fusion models rely more on NIR
inputs. Additionally, the foliage class, which has a distinct NIR signature, shows
significant improvement in the early fusion model.

Deep Learning Models Applied to Overhead Multispectral Imagery for Image Classification and Segmentation 9
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Appendix A — Datasets for Benchmarking Robustness of
Multispectral Image Models

In Figure 9 and Figure 10, we provide example datapoints obtained by applying naturalistic
corruptions to images from RarePlanes.

clean contrast motion blur shot noise

pixelate

glass blur
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fog defocus blur brightness elastic transform

zoom blur impulse noise gaussian noise

Figure 9: RGB corruptions of a RarePlane chip from our test set.
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Figure 10: NIR corruptions of a RarePlane chip from our test. Note that the motion blur (2nd
row, 3rd column) is applied in the same direction as in Figure 9.
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