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Abstract 
Single-cell multiomics provides comprehensive insights into gene regulatory networks, cellular 

diversity, and temporal dynamics. While tools for co-profiling single-cell genomes, 

transcriptomes, and epigenomes are available, accessing proteomes in parallel is more 

challenging. We developed nanoSPLITS (nanodroplet SPlitting for Linked-multimodal 

Investigations of Trace Samples), an integrated platform that enables global profiling of the 

transcriptome and proteome from same single cells using RNA sequencing and mass 

spectrometry-based proteomics, respectively. nanoSPLITS can precisely quantify over 5000 

genes, 2000 proteins, and 140 phosphopeptides per single cell and identify candidate cell 

markers from these modalities. By exploring Cdk1-mediated cell cycle arrest, we demonstrate 

how nanoSPLITS single-cell multiomics can provide comprehensive cellular characterization 

with insights into covarying protein/gene clusters, unique phosphorylation events, and mitotic 

pathways. 
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1.0 Introduction 
Multicellular organisms contain a variety of cell populations and subpopulations, which are well-

organized in defined patterns to implement critical biological functions. The development and 

rapid dissemination of single-cell omic technologies have dramatically advanced our knowledge 

on cellular heterogeneity,(Picelli et al. 2014; Macosko et al. 2015; Klein et al. 2015) cell 

lineages,(Rust et al. 2020) and rare cell types.(Montoro et al. 2018) However, most existing 

technologies only capture single modalities of molecular information. Such measurement 

provides only a partial picture of a cell’s phenotype, which is determined by the interplay 

between the genome, epigenome, transcriptome, proteome, and metabolome. Moreover, 

proteins are of particular interest in establishing cellular identities because they are the 

downstream effectors and their abundance cannot be reliably inferred from other modalities, 

including mRNA(Liu, Beyer, and Aebersold 2016). Unfortunately, multimodal transcriptome-

proteome(Stoeckius et al. 2017; Chung et al. 2021; Peterson et al. 2017; Frei et al. 2016; 

Darmanis et al. 2016) measurements are restricted to at most a few hundred (and often 

significantly fewer) protein targets. These measurements also require intermediate antibodies to 

recognize epitopes, which can be limited by availability and specificity(Baker 2015; Marcon et al. 

2015).  

A route for overcoming these limitations is through the adoption of a mass spectrometry-based 

approach. With the advance of microfluidic sample preparation(Zhu, Clair, et al. 2018) and 

isobaric labeling(Budnik et al. 2018), single-cell proteomics (scProteomics) is now capable of 

measuring thousands of proteins from single-cells globally.(Woo et al. 2021; Cong et al. 2021; 

Brunner et al. 2022) Encouraged by these developments, we sought to acquire multimodal 

transcriptome-proteome measurements from the same single-cell by integrating single-cell RNA 

sequencing (scRNAseq) with scProteomics. To enable efficient integration, we developed 

nanoSPLITS (nanodroplet SPlitting for Linked-multimodal Investigations of Trace Samples), a 
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method capable of dividing nanoliter-scale cell lysates via two droplet microarrays and 

separately measuring them with RNA sequencing and mass spectrometry. NanoSPLITS builds 

on the nanoPOTS platform that allows for high-efficiency proteomic preparation of single cells 

by miniaturizing the assay to nanoliter scale volumes(Zhu, Piehowski, et al. 2018; Woo et al. 

2021). We have previously demonstrated reaction miniaturization not only reduces non-specific 

adsorption-related sample losses, but also enhances enzymatic digestion kinetics.(Zhu, 

Piehowski, et al. 2018) Similarly, we reason the use of nanoliter droplets can improve overall 

sample recovery of both mRNA transcripts and protein for sensitive single-cell multiomics. 
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2.0 Results 
2.1 Optimization of nanoSPLITS provides precise and deep protein-

mRNA coverage in single cells 

 

Figure 1. Overview of the nanoSPLITS-based single-cell multiomics platform.  

Schematic illustration showing the workflow including cell sorting, lysis, droplet merging/mixing, and 
droplet separation for downstream scRNAseq and scProteomics measurement. 

 

The overall workflow of the nanoSPLITS-based single-cell multiomics platform is illustrated in 

Fig. 1. Briefly, we employed an image-based single-cell isolation system to directly sort single 

cells into lysis buffer, followed by a freeze-thaw cycle to achieve cell lysis. Next, the microchip 

containing single-cell lysate is manually aligned with a separate chip containing only cell lysis 

buffer. The droplet arrays on the two chips are merged for 15 seconds and then separated, 

before repeating twice more to mix completely. The chip receiving lysate ( “acceptor” chip) was 

then transferred into a 384-well plate for scRNAseq with Smart-seq 2 protocol(Picelli et al. 

2014), while the chip initially containing the lysate (“donor” chip) is digested with an n-dodecyl-β-

D-maltoside (DDM)-based sample preparation protocol and directly analyzed with an ion-

mobility-enhanced MS data acquisition method for scProteomics(Woo et al. 2022).  
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We first optimized cell lysis buffer conditions to ensure compatibility with proteomic and 

transcriptomic workflows. Typically, scProteomics utilizes a buffer containing DDM to reduce 

non-specific binding of proteins to surfaces while scRNAseq often includes recombinant protein-

based RNase inhibitors to reduce degradation of mRNA. To evaluate their impacts on both 

methods, we tested the inclusion of these additives in a moderately buffered hypotonic solution 

(10 mM Tris, pH 8) with 20 mouse alveolar epithelial cells (C10). We found the inclusion of 1 x 

RNase inhibitor suppressed proteomic identifications while 0.1% DDM had no significant impact 

on transcriptomic identifications. Furthermore, removal of RNase inhibitor from RNAseq analysis 

had minimal effect on gene identifications. Therefore, we decided to use 0.1% DDM (w/v) in 10 

mM Tris solution as the cell lysis buffer for nanoSPLITS workflow.  

Next, we evaluated the split ratios between two 200-nL droplet arrays. Using fluorescein as an 

initial model, the nanoSPLITS procedure achieved splitting ratios between 46% to 47%, with 

50% representing a perfectly equal split. As the properties of fluorescein may not fully model 

proteins, we tested the protein splitting ratio by splitting 10 C10 cells (n = 6) and quantifying 

both chips with LC-MS.  Encouragingly, we found the split ratios to be consistent and precise 

across the chips, with a median CV of 0.12 for the 10 pooled cell samples. Using the mean 

protein abundance for each protein identified from both chips, we determined the relative 

proportion of each protein found on either chip. Surprisingly, the median proportion of protein 

retained on the donor chip was greater than what would be expected in a perfect split (~75%). 

One potential explanation is that the cell lysate may require more time for diffusion between the 

merged droplets, although the diffusion coefficient of GFP in water (100 µm2s-1) suggests 

merging on the order of seconds should be sufficient. In addition, a diffusion-based effect would 

be expected to have a size dependence, which is not apparent based on the proteins quantified. 

The more convincing explanation might be that the chlorotrimethylsilane coating (to prevent 

hydrogen-bonding between mRNA molecules and the glass surface) of the nanowells captured 
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proteins on the surface, resulting in more proteins retained on the donor chip. Thus, we took 

advantage of the phenomena and chose the donor chip for scProteomic measurements to 

obtain deeper proteome coverage (Fig. 1).  

As a proof-of-concept experiment to evaluate the nanoSPLITS, we next sorted several 

quantities (11, 3, and 1) of C10 cells and measured them using the multiomics workflow. 

Considering a minimum of 5 reads per gene for transcript identifications and 5% FDR cutoff for 

protein identifications, robust coverage of both, genes and proteins, could be achieved across 

all tested conditions (Fig. 2a).  

 

Figure 2. Qualitative and quantitative assessment of nanoSPLITS for transcriptome and 
proteome measurements 

(a) Mean number of detected genes and proteins for each modality (n = 6, 6, and 7 for 11, 3, and 1 C10 
cell, respectively). Error bars indicate standard deviations (±s.d.). (b) CCO of genes (scRNAseq) and 
proteins (scProteomics) identified in the single-cell data (n = 7). (c) Distributions of the coefficients of 

variation (CV) for all genes and proteins with at least 2 observations across replicates. Indicated values 
represent median CVs, which are also indicated at the center point within each distribution. (d) The ratios 
of protein abundance were calculated for comparisons between the different pooled cell samples (11 vs 
1, 11 vs 3, and 3 vs 1). Experimental medians are indicated at the black crossbar while the theoretical 
ratio for each comparison is shown at the red dotted line within each boxplot. (e) Pearson correlation 
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heatmap with clustering of transcriptomics and proteomics results. Only the proteomic data showed 
complete clustering of 11,3 and 1 cell samples, indicated by the inscribed white squares. Self-

comparisons along the diagonal are excluded (white). 

As expected, coverage reduced with decreasing cell numbers. Single-cell transcriptome and 

proteome measurements provided 5,848 and 2,934 identifications on average, respectively. To 

ensure nanoSPLITS did not introduce bias toward different cellular components due to the 

nanodroplet splitting process, we also investigated the distribution of gene and protein 

identifications from single cells within the  cellular component ontology (CCO). We found 

scProteomics and scRNAseq had corresponding identifications within cellular components that 

encompassed all major organelles (Fig. 2b). Furthermore, 1,521 proteins from the scProteomics 

analyses had CCO localizations to the nucleus, 219 of which have known roles in transcription. 

This is notable as nuclear proteins are typically drivers in gene regulation and transcription, and 

current multimodal technologies have been limited in the ability to directly measure nuclear 

protein abundances. 

We next evaluated the quantitative reproducibility for each modality by calculating the 

coefficients of variation (CVs) of transcriptome and proteome abundances. Median 

transcriptome CVs ranged from 0.49 for 11 cells to 0.68 for single cells, while proteome median 

CVs ranged from 0.17 for 11 cells to 0.34 for single cells (Fig. 2c). The modestly higher CVs for 

single cells were expected, as the mixed cell populations represent averages of the underlying 

cell to cell variation. Notably, we observed significantly higher CVs for transcript measurements 

relative to proteomic measurements, in agreement with recent reports(Woo et al. 2021; Brunner 

et al. 2022). Presumably, these higher CVs reflect the dynamic nature of mRNA relative to their 

protein counterparts, which have longer half-lives on average(Buccitelli and Selbach 2020). We 

also compared the ratios of the measured protein abundances between the different cell 

populations. Encouragingly, the experimental fold differences between the median intensities for 

11, 3, and 1 C10 cell are very close to the expected theoretical values (Fig. 2d). For example, 
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the median protein abundance ratio for 3 cells compared to single cells was 3.34, within 12% of 

the theoretical 3-fold difference. These results provide strong evidence that nanoSPLITS-based 

single-cell multiomics platform can provide sensitive and reproducible measurement of both the 

transcriptome and proteome of the same single cells. 

Finally, we determined the Pearson correlation coefficients (r) across and within modalities 

using conceptually similar normalized transformations for each modality (Fig. 2e; TPM, 

transcripts per million for transcriptomics, and riBAQ, relative intensity-based absolute 

quantification for proteomics). In line with the CV distributions (Fig. 2c), proteomics data had 

better agreement between samples compared with transcriptomics data, once again highlighting 

the dynamic nature of the transcriptome where many genes are often expressed in short 

transcriptional “bursts” (Buccitelli and Selbach 2020). The cross-correlation between the 

transcriptome and proteome in single cells was moderate with most correlation coefficients 

falling within the range of 0.35 to 0.45, on par with previous reports (Brunner et al. 2022; Woo et 

al. 2021; Buccitelli and Selbach 2020). 

2.2 Classification of cell types and identification of markers with 
nanoSPLITS 

 Having established baseline characteristics of multimodal data, we then applied 

nanoSPLITS to a larger single-cell multimodal analysis encompassing two cell types, mouse 

epithelial (C10) and endothelial cells (SVEC). As the nanoSPLITS approach uses approximately 

half the cellular content we sought to determine whether the multimodal measurements could 

precisely distinguish the two cell types and detect gene and/or protein markers, and we also 

desired to further characterize protein-transcript correlations at the single-cell level. 
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Figure 3. Underlying cell phenotype signatures are maintained after nanoSPLITS. 

(a). Pearson correlation heatmap with clustering of scRNAseq and scProteomic results for both single 
C10 (n = 26, paired) and SVEC (n = 23, paired) cells. (b) Box plots showing the distributions of Pearson 
correlations, separated by cell type (C10 and SVEC) and modality (scProteomics and scRNAseq). (c) The 
overlap in gene and protein identifications for each modality separately, as well as across modalities. (d) 
Top 5 gene markers from scRNAseq data and protein markers from scProteomics data for each cell type. 
Candidate marker features were determined using a Wilcoxon Rank Sum test (FDR corrected p-values 
<0.001). (e) Weighted-nearest neighbor (WNN) Uniform Manifold Approximation and Projection (UMAP) 
generated using Seurat in order to integrate the scRNAseq and scProteomic data. Middle and right 
panels are colored based on H2-K1 gene (purple) and protein (red) abundance, respectively. (f) Feature-
based UMAP generated for C10 cells using cell-cycle markers measured in the scRNAseq data. Middle 
and right panels are colored based on Cdk1 gene (purple) and protein (red) abundance, respectively. All 
abundance values shown in d, e, and f are derived from Z-scores after scaling and centering of data. 
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As shown in Fig. 3a, both cell types and modalities could be easily clustered based on 

correlations alone. In line with our first experiment, within-modality correlations were higher in 

scProteomics than scRNAseq for both cell types (Fig. 3b).  Cross-modality correlation analysis 

between scRNAseq and scProteomics produced a slightly broader range of r, ranging from 0.26 

to as high as 0.52 with a median of 0.44. We also compared the cross-modality correlations 

between same single cells (“intracell”) and different single cells (“intercell”), however there 

appeared to be no difference between them (Fig. 3b). Overall, SVEC cells exhibited lower 

correlations, presumably due to their smaller cell size and correspondingly reduced 

measurement depth/precision (Fig. 3c). The protein/gene overlap analysis shows how 

measurement depth is strongly linked to cell size (Fig. 3c). On average, C10 cells had  ~1,800 

overlapping identifications while SVEC cells had ~900 overlapping identifications across 

modalities. All proteins (3,609) detected in the scProteomic data could be detected as mRNA 

transcripts in the scRNAseq data; and, as expected, the majority of detected proteins were 

derived from transcripts of higher abundance. Finally, we calculated an mRNA-protein 

correlation for each gene that was observed in both modalities, provided there were at least 4 

paired observations. Correlations were further separated by cell type to avoid Simpson’s 

paradox(Franks, Airoldi, and Slavov 2017). Although there were 15 significant mRNA-protein 

correlations with an FDR < 0.05 and the distribution of mRNA-protein correlations was 

statistically different compared to a distribution of randomly sampled correlations (Mann-

Whitney test, p-value < 2.2 x 10-16), the mRNA-protein correlations still centered near an r of 0. 

These results highlight that even at the single cell level, challenge associated with the using 

mRNA measurements to predict protein counterparts remain. 

Next, we evaluated if the multiomics data could be used to identify cell-type-specific marker 

genes and proteins. Fig. 3d shows the top 5 significant enriched genes and proteins for each 

cell type. Interestingly, the overlap between scProteomics and scRNAseq of these significant 
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markers was relatively low, indicating the widely used scRNAseq method may not be sufficient 

to provide reliable marker genes for protein-based functional assays. Despite this, the 

previously established SVEC-cell marker H2-K1 was identified here at both, the protein and 

mRNA level (Fig. 3d). Dimensionality reduction with principal component analysis (PCA) 

delineated both cell types for scRNAseq and scProteomics despite the cell contents being 

divided. The integration of both modalities through an unsupervised weighted nearest neighbor 

(WNN)(Hao et al. 2021) analysis provided robust clustering in the two-dimensional space (Fig. 

3e). This also provided us the ability to visualize both protein and mRNA abundances, offering 

visual confirmation of H2-K1 as a potential marker that is differentially abundant at the protein 

and gene level (Fig. 3e). Using canonical cell cycle markers,(Nestorowa et al. 2016) we could 

also identify sub-populations constituting specific cell cycle phases, demonstrating that even 

subtle cell to cell variation was retained after the droplet splitting process (Fig. 3f) . For example, 

cyclin-dependent kinase 1 (Cdk1) is upregulated at the transcriptional level in S and G2M phase 

C10 cells (Fig. 3f). Several other established cell cycle phase genes demonstrated similar 

differential abundance at the transcriptional level, including DNA topoisomerase IIα (Top2a), 

cyclin B1 (Ccnb1), G2 and S phase expressed protein 1 (Gtse1), cytoskeleton-associated 

protein 5 (Ckap5), and anillin (Anln). Furthermore, Top2a protein appeared to be increased in 

G2/M cells as well.  

2.3 Characterization of cell cycle features through the integration of 
scRNAseq, scProteomics, and single-cell phosphoproteomics 
analyses of same single cells 

Although C10 and SVEC cells could easily be discriminated, the large differences in 

protein/gene composition between the two distinct cell types precluded establishing whether the 

technology could be applied to study biological systems with more subtle changes. Therefore, 

we sought to investigate different cell cycle phase features for C10 cells by arresting them in 

G2/M phase using the Cdk1 cell cycle inhibitor RO-3306 and comparing them to an untreated 
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C10 cell population as control(Vassilev et al. 2006). The nanoSPLITS approach allowed us to 

obtain deep coverage of both the proteome and transcriptome, with an average of 2,942 

proteins and 5,559 genes being identified in G2/M arrested cells, as well as 2,574 proteins and 

4,173 genes for control cells. The higher number of identifications for G2/M arrested cells can 

be attributed to their larger size (and therefore higher protein/mRNA content), which was noted 

during cell sorting. Although no phosphopeptide enrichment was performed(Orsburn, Yuan, and 

Bumpus 2022), the FragPipe proteomics pipeline with FDR-controlled MBR(Yu, Haynes, and 

Nesvizhskii 2021) also identified over 300 unique phosphopeptides, of which 138 of these were 

reproducibly observed (<50% missing value). Encouragingly, G2/M arrested and untreated cells 

could easily be clustered and separated by dimensionality reduction (PCA and WNN-UMAP) for 

scProteomic and scRNAseq data. Overall, 2,842 proteins and 4,186 mRNA transcripts had 

sufficient observations for testing differential abundance and 1,930 protein-gene pairs 

overlapped. Quantitative analysis afforded 327 proteins, 1,434 genes, and 29 phosphopeptides 

that were differentially abundant (log2FC > 0.5 or < -0.5 and FDR < 0.01). Importantly, covariant 

protein and mRNA clusters were identified (Fig. 4a and Fig. 4b). 
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Figure 4. Defining the G2/M protein and mRNA landscape with nanoSPLITS. 

(a) Clustergram of log2 centered intensities for differentially abundant proteins from scProteomic data with 
FDR < 0.01 and log2FC of +/-0.5 (327 proteins). Columns (cells) are clustered by K-means (k = 2), while 
rows cluster proteins (k = 6). Colored areas along the y-axis indicate protein clusters. (b) Volcano plot of 

G2/M arrested cells/untreated cells for scProteomic data (3,182 proteins quantified), scRNAseq data 
(4,186 genes with < 50% missing values), and peptide level (16,938 peptides). (c) Enrichment of GO 
terms (y-axis) for differentially abundant proteins and genes found in the scProteomic and scRNAseq 

data (x-axis) with FDR < 0.01 and log2FC of +/- 0.5. Point size represents number of genes (proteins) and 
color represents -log10(FDR) (d) Integration of scRNAseq, scProteomic, and phosphoproteomic data 
comparing relative abundances from each modality for Vim. **** FDR < 0.00001, *** FDR < 0.0001, ** 

FDR < 0.001, and ns indicates not significant. (e) Same as (d) but with Hnrnpu 

Of the proteomic clusters identified, clusters 2, 3, and 4 contained members with the strongest 

functional relationships. Cluster 2 (Fig. 4a and Fig. 4b) contained 7 proteins that were 

significantly more abundant in the untreated C10 cells. These were principally extracellular 
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matrix  (ECM)proteins, including three collagens (Col1a1, Col3a1, and Col12a1), fibronectin 

(Fn1), and procollagen C-endopeptidase enhancer 1 (Pcolce). The remaining two proteins were 

endoplasmic reticulum junction formation protein lunapark (Lnpk) and Synembryn-A (Ric8A), 

both of which play important roles within mitosis(Woodard et al. 2010; Wang et al. 2016). 

Cluster 3 provided 13 proteins that were more abundant in G2/M arrested C10 cells, all of which 

had mitotic-relevant annotations (Fig.S11a). This included Anln, Gste1, Top2a, targeting protein 

for Xklp2 (Tpx2), and Ccnb1. Other notable mitotic proteins include aurora kinase B (Aurkb), the 

mitotic checkpoint serine/threonine-protein kinase BUB1 beta (Bub1b), and the mitotic spindle 

regulator ubiquitin-conjugating enzyme 2C (Ube2c). These proteins all displayed exceptionally 

strong correlations with each other, with an average r of 0.71 and some correlations as high as 

0.9, such as between Top2a, importin subunit alpha-1 (Kpna2), and Tpx2. 

Cluster 4 contained proteins with higher abundance in G2/M arrested cells like cluster 3, but 

notably all members had p-values of larger significance and no functional annotations related to 

cell cycle (Fig. 4b). Cluster 4 is also notable in that several of the scProteomic fold-changes are 

reproduced in the scRNAseq results, demonstrating concordance between mRNA and protein 

(Fig. 4b). Three subclusters could be identified within cluster 4 based on protein covariation. 

These subclusters, though small in membership, still provided statistically significant functional 

and pathway enrichment, with subcluster 4.1 showing clear enrichment for lysosomal processes 

and subcluster 4.2 being linked to hypoxia and metabolic pathways. Proteins with close 

functional relationships (for example, prosaponin, progranulin, cathepsin A, and cathepsin D) 

exhibited strong correlations with each other. Finally, the largest clusters (5 and 6) represented 

proteins with more modest differences in abundance for either condition.  

The paired scRNAseq could cluster arrested and control C10 cells as well; however clustering 

of genes was less structured, which we attribute to the “bursty” nature of mRNA expression. 

Several of the proteins described above clustered together in the scRNAseq data. For example, 
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cluster 1 from the scRNAseq data contained genes that were less abundant in G2/M arrested 

C10 cells and included several of the proteins noted in cluster 2 from the scProteomic data 

(Col1a1, Col3a1, and Pcolce). We also found particularly strong concordance with mRNA and 

protein covariation for the extracellular modulator osteonectin (Sparc) and Col1a1 in G2/M 

arrested cells. Cluster 4 of the scRNAseq data contained genes with the greatest log2FC in 

G2/M arrested C10 cells, including several glutathione S-transferase genes and cathepsin 

genes, many of which were clustered together in the scProteomic results and showed 

concordance with protein abundance.  

We next explored how the global functional enrichment compares between modalities, as well 

as to the clusters previously identified. Despite relatively poor overlap in differentially abundant 

genes and proteins, many enriched GO terms were shared between the two modalities (Fig. 4). 

For terms related to cell cycle and mitochondria, the combination of differentially expressed 

genes and proteins produced enrichments with greater statistical significance, suggesting the 

two modalities are more divergent in their identifications within these cases. Several of the 

protein clusters also produced enrichments with greater significance than what was found 

globally (Fig. 4c), and terms related to sphingolipid metabolism and ECM were exclusively found 

at the protein level.  

From the over 300 phosphopeptides identified from the scProteomic data, 29 were differentially 

abundant in G2/M arrested cells (Fig. 4b). We also related the relative abundance of these 

phosphopeptides to their corresponding protein and mRNA abundances. Notably, vimentin 

(Vim) pSer55,a known phosphosite generated by Cdk1 typically observed during the transition 

from prometaphase to metaphase(Yamaguchi et al. 2005; Chou et al. 1990),  was significantly 

decreased in abundance in G2/M arrested cells (Fig. 4d), and this decrease in protein 

phosphorylation appears to be independent of the global protein abundance (Fig. 4d), providing 

the most direct evidence for the loss of Cdk1 kinase activity inhibited by RO-3306 (Vassilev et 
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al. 2006). Another phosphosite, pSer247, on heterogeneous nuclear ribonucleoprotein U 

(Hnrnpu) was also found to be independent of overall protein abundance, following a similar 

trend as Vim pSer55 and suggesting it may be a target of Cdk1 (Fig. 4e). Interestingly, the 

phosphorylation of Hnrpu (also known as scaffold attachment factor A, SAF-A) by Plk1 at a 

separate site (pSer59) is known to be a key step in mitosis that requires an upstream priming 

phosphorylation event by Cdk1, but the exact site that Cdk1 acts on Hnrnpu has yet to be 

identified(Douglas et al. 2015). Our data suggests this upstream priming by Cdk1 may be 

positioned at Ser247. Further evidence of Cdk1’s direct action on Vim and Hnrnpu is supported 

by the observation that both serine residues are flanked by a proline, which is an established 

motif of proline-directed kinase substrates. 
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3.0 Discussion 
Compared with previous technologies that utilize antibodies to infer protein abundances in 

multimodal experiments, the nanoSPLITS platform employs mass spectrometry to globally 

detect proteins and post-translational modifications. We have demonstrated how the 

nanoSPLITS approach can enable multimodal profiling of thousands of transcripts and proteins, 

as well as hundreds of phosphopeptides from same single cells. The multiomics data acquired 

on same single cells allowed us to precisely quantify the abundances of both transcripts and 

proteins, and identify marker genes and proteins from both modalities. Quantification of protein 

abundances from 11, 3, and 1 C10 cells demonstrated high-precision (median CV < 0.34 for 

single cells) and experimental abundance ratios were found to be close to theoretical. Despite 

splitting cellular contents, we found the molecular coverage to be broadly distributed across 

different cellular compartments for both modalities, and global across-modality correlations were 

in line with prior studies(Buccitelli and Selbach 2020). We also demonstrated how nanoSPLITS 

could delineate different cell types and identify candidate marker genes or proteins. Notably, the 

overlap of marker genes/proteins between scRNAseq and scProteomics was low, suggesting 

identifying reliable markers could benefit from collecting data with both modalities. 

Although our experimental design was not targeted towards clarifying the relationship between 

mRNA and protein abundance, we could calculate the correlations for all genes with 

corresponding mRNA-protein measurements derived from the same single cell. The mRNA-

protein correlations measured could be distinguished from a distribution of randomly sampled 

measurements, and a trend towards more positive correlations was observed. Conversely, the 

overall distribution was found to center near an r of 0, providing further evidence that the lack of 

correlation between mRNA and protein levels is a general phenomenon(Taniguchi et al. 2010; 

Darmanis et al. 2016). Indeed, the inherent stochasticity of gene expression is well 

documented(Sanchez and Golding 2013). Overall, our results agree with the perspective that 
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correlations between mRNA and proteins at the single-cell level are less correlated relative to 

bulk measurements which “average out” sources of variance within a population of cells(Liu, 

Beyer, and Aebersold 2016; Darmanis et al. 2016). However, the modest shift in correlations 

towards positive r  leaves open the possibility that at least some transcripts are more tightly 

linked to their translated products.  

We also investigated how nanoSPLITS can assign more subtle cell states, such as mitotic cell 

cycle phases. By comparing cells arrested in G2/M via the Cdk1 inhibitor RO-3306 to an actively 

cycling C10 population, we could identify numerous changes in protein and mRNA abundance 

in line with the expected phenotype. Increases in the abundance of cyclin-dependent kinase 2 

(Cdk2) and cyclin-B1 (Ccnb1) were noted, as well as other cyclin-dependent kinases such as 

Cdk16, Cdk11b, and Cdk6., This revealed broad reorganization of cyclin-CDK complexes in 

response to the inhibition of Cdk1,in agreement with prior work investigating CDK1 loss(Lau et 

al. 2021). Over 300 phosphopeptides were also identified without phosphopeptide enrichment, 

providing one of the deepest single-cell phosphoproteomic datasets to date(Orsburn, Yuan, and 

Bumpus 2022; Tsai et al. 2023). We identified the previously described Cdk1 phosphosite 

pSer55 Vim and the lesser characterized pSer247 Hnrnpu as being directly impacted by Cdk1 

inhibition, with the latter phosphosite being implicated as a priming site for Cdk1(Yamaguchi et 

al. 2005; Chou et al. 1990; Douglas et al. 2015). These phosphoproteomic findings provided 

additional insight into post-translational regulation(Orsburn, Yuan, and Bumpus 2022), 

exemplifying the benefits of global mass-spectrometry based proteomics in single-cell analysis. 

One advantage of single-cell approaches is the identification of covarying protein or gene 

clusters in specific cell types or biological contexts(Budnik et al. 2018; Leduc et al. 2022). In the 

context of cell cycle arrest, we identified several covarying clusters of proteins and genes 

including a cluster composed exclusively of canonical cell cycle proteins. Many of these proteins 

had exceptionally strong correlations, such as Top2a and Kpna2 with r  of 0.92 in G2/M arrested 
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cells. The strength of this correlation suggests the relative abundances of these proteins are 

tightly regulated. Tpx2, a highly correlated protein within this cluster that is involved in spindle 

assembly, is known to be sequestered by importins-α/β with 1:1 stoichiometry through its 

nuclear localization sequence (NLS) before being released during G2 phase by Hmmr (strongly 

correlated in this cluster as well) at the nuclear envelope (Safari et al. 2020; Chu et al. 2018). 

Considering Top2a contains a similar NLS(Mirski, Gerlach, and Cole 1999), our data raises the 

possibility that Top2a is regulated in a similar manner. Interestingly, many of the mitotic proteins 

described above did not show concordance with the scRNAseq data. One interpretation is that 

once the critical concentrations of these mitotic proteins are met, only lower levels of 

transcription are necessary to maintain proteins at that level. Furthermore, abundance (as 

measured by mRNA) of Top2a, Gtse1, and Ccnb1 has been shown to peak at G2 or in early 

mitosis(Hwang, McKenna, and Muschel 1998; Nielsen et al. 2020) before rapid degradation at 

the protein level during mitotic exit(Abdelbaki et al. 2020). Indeed, the G2/M arrested cells 

appear to be in the later stages of mitosis based on the mitotic protein cluster we identified(Kelly 

et al. 2022). Therefore, it can be inferred that under cell cycle arrest the peak transcriptional 

states of many mitotic proteins are not continuously maintained. 

We also observed a protein cluster containing ECM proteins (Pcolce, Fn1, Col1a1, Col3a1, and 

Col12a1), Lnpk, and Ric8a decreasing in abundance in G2/M arrested cells. Lnpk is known to 

be an endoplasmic reticulum(ER)-shaping protein, and reduction of Lnpk facilitates the 

transition from tubular to sheet ER morphology during mitosis(Wang et al. 2016). Ric8a is a key 

regulator during metaphase for mitotic spindle orientation, and reduction of Ric8a has been 

demonstrated to lead to prolonged mitosis and spindle defects(Woodard et al. 2010). As Ric8a 

was considerably less abundant in G2/M arrested cells, it may play a direct role in Cdk1-

inhibited mechanism of arrest. The remaining ECM proteins also shed light on cell 

morphological changes that occur during mitosis. It has been established that Cdk1 regulates 
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the remodeling of cell adhesion complexes during the cell cycle, and endogenous inactivation of 

Cdk1 triggers this remodeling event(Jones et al. 2018; Jones, Zha, and Humphries 2019). 

Typically, this remodeling is thought to involve rapid recycling of cytoskeletal components. Our 

results demonstrate these ECM proteins are being reduced at both the transcriptional and 

translational level during G2/M arrest, suggesting ECM degradation and transcriptional 

repression are also key to the adhesion complex remodeling process during mitosis. Hence, 

nanoSPLITS-based single-cell multiomics can not only reconstruct known mitotic processes but 

also identify new processes underlying biology. 

The nanoSPLITS platform holds promise to become a powerful discovery tool for biomedical 

applications, such as characterizing tissue, peripheral blood cell, and circulating tumor cell 

heterogeneity. Notably, nanoSPLITS is not restricted to the two modalities applied here 

(transcriptomics and proteomics); other modalities such as metabolomics, genomics, and 

epigenomics can conceptually be integrated into the workflow. As more analytical frameworks 

for integrating multimodal data are created, we anticipate nanoSPLITS (and/or nanoSPLITS-

derived technologies) will also enable greater insight into how different modalities interact with 

each other to orchestrate single-cell phenotypes in health and disease.  

Although a low throughput approach was employed in this study, high-throughput multiplexing 

approaches such as CEL-Seq(Hashimshony et al. 2012) for transcriptomics and SCoPE-

MS(Budnik et al. 2018) for proteomics can be readily integrated into the nanoSPLITS workflow. 

The integration of multiplexing approaches to nanoSPLITS would enable effective analysis of 

thousands of single cells with reasonable throughput and cost(Dephoure and Gygi 2012). 

Regardless, nanoSPLITS enables scProteomic data to be directly connected to much higher-

throughput scRNAseq results, providing the opportunity for proteomic data to be bridged to 

large single-cell atlases(Tabula Sapiens et al. 2022; Hu 2019). Additionally, the scRNAseq 

component of nanoSPLITS can serve as a preselection tool to identify rare cell phenotypes for 
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further analysis by scProteomics, obviating the need for collecting data on thousands of cells 

with scProteomics. 
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4.0 Methods 
4.1 Reagents and chemicals 

Deionized water (18.2 MΩ) was purified using a Barnstead Nanopure Infinity system (Los 

Angeles, CA, USA). n-dodecyl-β-D-maltoside (DDM), Cdk1 inhibitor RO-3306, iodoacetamide 

(IAA), ammonium bicarbonate (ABC), and formic acid (FA) were obtained from Sigma (St. 

Louis, MO, USA). Nuclease-free water (not DEPC-treated) ,Trypsin (Promega, Madison, WI, 

USA) and Lys-C (Wako, Japan) were dissolved in 50 mM ABC before usage. Dithiothreitol 

(DTT, No-Weigh format), acetonitrile (ACN) with 0.1% FA, and water with 0.1% FA (MS grade) 

were purchased from ThermoFisher Scientific (Waltham, MA, USA). SMART-Seq V4 Plus kit 

(Cat# R400753) was purchased from Takara Bio USA. 

4.2 Design, fabrication, and assembly of the nanoSPLITS chips 

The nanoSPLITS chips were fabricated using standard photolithography, wet etching, and 

silanization as described previously(Zhu, Piehowski, et al. 2018) . Two different chips were 

designed and used in this study. Both contained 48 (4 x12) nanowells with a well diameter of 

1.2 mm. The inter-well distance for the first chip was 2.5 mm while the second was 4.5 mm. 

Chip fabrication utilized a 25 mm x 75 mm glass slide pre-coated with chromium and photoresist 

(Telic Company, Valencia, USA). After photoresist exposure, development, and chromium 

etching (Transene), select areas of the chip were protected using Kapton tape before etching to 

a depth of ~5 µm with buffered hydrofluoric acid. The freshly etched slide was dried by heating it 

at 120 °C for 1 h and then treated with oxygen plasma for 3 min (AP-300, Nordson March, 

Concord, USA). 2% (v/v) heptadecafluoro-1,1,2,2-tetrahydrodecyl-dimethylchlorosilane (PFDS, 

Gelest, Germany) in 2,2,4-trimethylpentane was applied onto the chip surface and incubated for 

30 min to allow for silanization. The remaining chromium covering the wells was removed with 

etchant, leaving elevated hydrophilic nanowells surrounded by a hydrophobic background. To 

prevent retention of mRNA via interaction with free silanols on the hydrophilic surface of the 
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nanowells, freshly etched chips were exposed to chlorotrimethylsilane under vacuum overnight 

to passivate the glass surface.  A glass frame was epoxied to a standard glass cover slide so 

that it could be easily removed from the 2.5 mm inter-well distance chips for droplet splitting. For 

the 4.5 mm inter-well distance chips, PEEK chip covers were machined to fit the chip. Chips 

were wrapped in parafilm and aluminum foil for long-term storage and intermediate steps during 

sample preparation. 

4.3 Cell culture 

Two murine cell lines (NAL1A clone C1C10 is referred to as C10 and is a non-transformed 

alveolar type II epithelial cell line derived from normal BALB/c mouse lungs; SVEC4-10, an 

endothelial cell line derived from axillary lymph node vessels) were cultured at 37°C and 5% 

CO2 in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal bovine serum and 1× 

penicillin-streptomycin (Sigma, St. Louis, MO, USA). For the RO-3306 treatment, C10 cells were 

seeded at 200,000 cells per dish and incubated overnight. Treated cells were cultured with 10 

µM RO-3306 for 36 h before harvesting. Control C10 cells were cultured similarly with vehicle 

(DMSO). The cultured cell lines were collected in a 15 ml tube and centrifuged at 1,000 × g for 3 

min to remove the medium. Cell pellets were washed three times by PBS, then counted to 

obtain cell concentration. PBS was then added to achieve a concentration of ~200 x 106 

cells/mL. Immediately before cell sorting, the cell-containing PBS solution was passed through a 

40 µm cell strainer (Falcon™ Round-Bottom Polystyrene Test Tubes with Cell Strainer Snap 

Cap, FisherScientific) to remove aggregated cells. 

4.4 CellenONE cell sorting and nanoSPLITS workflow 

Before cell sorting, nanoSPLITS chips were prepared by the addition of 200-nL hypotonic 

solution consisting of 0.1% DDM in 10 mM Tris to each nanowell. A cellenONE instrument 

equipped with a glass piezo capillary (P-20-CM) for dispensing and aspiration was utilized for 
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single-cell isolation. Sorting parameters included a pulse length of 50 µs, a nozzle voltage of 80 

V, a frequency of 500 Hz, a LED delay of 200 µs, and a LED pulse of 3 µs. The slide stage was 

operated at dew-point control mode to reduce droplet evaporation. Cells were isolated based on 

their size, circularity, and elongation to exclude apoptotic cells, doublets, or cell debris. For C10 

cells, this corresponded to 25 to 40 µm in diameter, maximum circularity of 1.15, and maximum 

elongation of 2, while SVEC cells were 24 to 32 µm in diameter, maximum circularity of 1.15, 

and maximum elongation of 2. All cells were sorted based on brightfield images in real time. The 

pooled C10 experiment had 11, 3, and 1 C10 cells sorted into each nanowell on a single 2.5 

mm inter-well distance chip. For the SVEC and C10 comparison experiment, a single 48 well 

chip with 4.5 mm inter-well distance was used for each cell type and had a single cell sorted into 

each well. To perform the transferring identifications based on FAIMS filtering (TIFF) 

methodology for scProteomics(Woo et al. 2022), a library chip was also prepared containing 20 

cells per nanowell, with each cell type sorted separately on the same chip to reduce technical 

variation. After sorting, all chips were wrapped in parafilm and aluminum foil before being snap-

frozen and stored at -80ºC, which partially served to induce cell lysis via freeze-thaw. All 

associated settings, single-cell images, and metadata can be accessed at the GitHub repository 

provided (https://github.com/Cajun-data/nanoSPLITS). 

To accomplish splitting of the cell lysate, chips were first allowed to thaw briefly on ice. For each 

split, a complementary chip was prepared that contained the same 200 nL of 0.1% DDM in 10 

mM Tris on each nanowell. The bottom chip containing the cell lysate was placed on an 

aluminum chip holder that was pre-cooled to 4ºC within a PCR workstation (AirClean Systems 

AC600). Precut 1/32” thick polyurethane foam was placed around wells on the exterior of this 

bottom chip while the top chip was slowly lowered onto the polyurethane foam (Movie S1). 

Wells were manually aligned for each chip before manual pressure was applied equally across 

the chip to merge the droplets for each chip. Pressure was held for 15 seconds before 
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releasing. The droplets were merged twice more following this process. For consistency, the top 

chip was used for scRNAseq in all experiments while the bottom chip that initially contained the 

cell lysate was utilized in scProteomics (with the exception of the data generated for Fig. S3). 

After merging, the top chip was immediately transferred into a 96-well or 384-well UV-treated 

plate containing RT-PCR reagents. For the pooled C10 (11, 3, and 1 cell) experiment, the 

transfer was performed by adding 1µL of RT-PCR buffer to each nanowell before withdrawing 

the entire volume and adding it to a 96-well plate. For the C10 and SVEC comparison 

experiment, the transfer was accomplished by laying the 4.5 mm inter-well distance chip onto a 

384-well plate containing wells with the RT-PCR mix, sealed with a PCR plate seal, and then 

centrifuged at 3,500 x g for 1 minute. 

4.5 Sample preparation and LC-MS/MS analysis 

All post-split chips were first allowed to dry out before placing them into the humidified 

nanoPOTS platform for sample processing. Protein extraction was accomplished by dispensing 

150 nL of extraction buffer containing 50 mM ABC, 0.1% DDM, 0.3 x diluted PBS, and 2 mM 

DTT and incubating the chip at 50ºC for 90 min. Denatured and reduced proteins were alkylated 

through the addition of 50 nL 15 mM IAA before incubation for 30 min in darkness at room 

temperature. Alkylated proteins were then digested by adding 50 nL 50 mM ABC with 0.1 ng/nL 

of Lys-C and 0.4 ng/nL of trypsin and incubating at 37ºC overnight. The digestion reaction was 

then quenched by adding 50 nL of 5% formic acid before drying the chip under vacuum at room 

temperature. All chips were stored in a -20ºC until LC-MS analysis. 

We employed the in-house assembled nanoPOTS autosampler for LC-MS analysis(Zhu, 

Piehowski, et al. 2018). The autosampler contains a custom packed SPE column (100 μm i.d., 4 

cm, 5 μm particle size, 300 Å pore size C18 material, Phenomenex) and analytical LC column 

(50 μm i.d., 25 cm long, 1.7 μm particle size, 190 Å pore size C18 material, Waters) with a self-

pack picofrit (cat. no. PF360-50-10-N-5, New Objective, Littleton, MA). The analytical column 



PNNL-34730 

Methods 25 
 

was heated to 50 °C using AgileSleeve column heater (Analytical Sales and services, Inc., 

Flanders, NJ). Briefly, samples were dissolved with Buffer A (0.1% formic acid in water) on the 

chip, then trapped on the SPE column for 5 min. After washing the peptides, samples were 

eluted at 100 nL/min and separated using a 60 min gradient from 8% to 35% Buffer B (0.1% 

formic acid in acetonitrile). 

An Orbitrap Eclipse Tribrid MS (ThermoFisher Scientific) with FAIMS, operated in data-

dependent acquisition mode, was used for all analyses. Source settings included a spray 

voltage of 2,400 V, ion transfer tube temperature of 200ºC, and carrier gas flow of 4.6 L/min. For 

TIFF method(Woo et al. 2022) samples, ionized peptides were fractionated by the FAIMS 

interface using internal CV stepping (-45, -60, and -75 V) with a total cycle time of 0.8 s per CV. 

Fractionated ions within a mass range 350-1600 m/z were acquired at 120,000 resolution with a 

max injection time of 500 ms, AGC target of 1E6, RF lens of 30%. Tandem mass spectra were 

collected in the ion trap with an AGC target of 20,000, a “rapid” ion trap scan rate, an isolation 

window of 1.4 m/z, a maximum injection time of 120 ms, and a HCD collision energy of 30%. 

For the TIFF library samples, a single CV was used for each LC-MS run with slight modifications 

to the above method where cycle time was increased to 2 s and maximum injection time was 

set to 118 ms. Precursor ions with a minimum intensity of 1E4 were selected for fragmentation 

by 30% HCD and scanned in an ion trap with an AGC of 2E4 and an IT of 150 ms. Precursor 

ions with intensities > 1E4 were fragmented by 30% HCD and scanned with an AGC of 2E4 and 

an IT of 254 ms. 

4.6 RT-PCR, sequencing, and read mapping for scRNAseq 

Following the transfer of samples into a 384-well plate containing RT-PCR buffer with 3’ 

SMART-Seq CDS Primer IIA (SMART-Seq® v4 PLUS Kit, cat# R400753), the samples were 

immediately denatured at 72ºC for 3 min and chilled on ice for at least 2 min.  Full length cDNA 

was generated by adding RT mix to each tube and incubating at 42ºC for 90 min; followed by 
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heat inactivation at 70ºC for 10 min. 18 cycles of cDNA amplification were done to generate 

enough cDNA for template library according to SMART-Seq® v4 PLUS Kit instruction. The 

SMART-Seq Library Prep Kit and Unique Dual Index Kit (cat# R400745) were used to generate 

barcoded template library for sequencing. Single-read sequencing of the cDNA libraries with a 

read length of 150 was performed on NextSeq 550 Sequencing System using NextSeq 500/550 

High Output v2 kit (150 cycles, cat#20024907). Data quality was assessed with fastqc and read-

trimming was conducted using bbduk. Reads were aligned to the mouse genome (Genome 

Reference Consortium Mouse Build 39) using STAR (https://github.com/alexdobin/STAR). BAM 

file outputs were mapped to genes using htseq-count with default settings. TPM counts were 

derived using an R script based on TPM procedure. 

4.7 Database searching and data analysis 

All proteomic data raw files were processed by FragPipe(Kong et al. 2017) version 17.1 and 

searched against the Mus musculus UniProt protein sequence database with decoy sequences 

(Proteome ID: UP000000589 containing 17,201 forward entries, accessed 12/02/21). Search 

settings included a precursor mass tolerance of +/- 20 ppm, fragment mass tolerance of +/- 0.5 

Da, deisotoping, strict trypsin as the enzyme, carbamidomethylation as a fixed modification, and 

several variable modifications, including oxidation of methionine, N-terminal acetylation, and 

S/Y/T phosphorylation. Protein and peptide identifications were filtered to a false discovery rate 

of less than 0.01 within FragPipe. For the TIFF methodology, IonQuant match-between-runs 

(MBR) and MaxLFQ were set to “TRUE” and library MS datasets were assigned as such during 

the data import step. An MBR FDR of 0.05 at ion level was used to reduce false matching. 

FragPipe result files were then imported into RStudio (Build 461) for downstream analysis in the 

R environment (version 4.1.3). With regards to quality control filtering of samples in 

scProteomics and scRNAseq, thresholds were set based on the degree of protein or gene 

missingness. For scRNAseq data, a minimum of 5 read counts were used to filter genes with 
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low abundance. When mRNA and protein abundances were directly correlated or compared 

between each other, TPM and riBAQ values were applied, otherwise only intensity or 

log2(intensity) were used with scProteomic data. With scRNAseq data, raw counts were used 

for analysis in Seurat and CPM was utilized for within-modality correlations. For cases where 

dimensionality reduction was applied to proteomic data, imputation was performed with k-

nearest neighbors imputation on proteins with <50% missing values. When K-means clustering 

was  applied, appropriate range for clusters was identified using the “elbow method,” defined by 

plotting within-cluster sum of squares versus number of clusters. GO analysis was performed 

with the gprofiler2 R package and web application. All of the figures generated, and associated 

code are included in R markdown or script files at the nanoSPLITS GitHub repository  

(https://github.com/Cajun-data/nanoSPLITS). 

 

https://github.com/Cajun-data/nanoSPLITS
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