

PNNL-34331, Rev. 0 EWG-RPT-041, Rev. 0

# Enhanced Hanford Low-Activity Waste Glass Property Data Development: Phase 5 and Phase 6

June 2023

V Gervasio CE Lonergan JD Vienna JB Lang BE Westman JT Reiser JJ Neeway X Lu SM Baird DA Cutforth M Peterson



Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

#### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights**. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

#### PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

#### Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: <u>reports@adonis.osti.gov</u>

Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) email: orders@ntis.gov <<u>https://www.ntis.gov/about</u>> Online ordering: <u>http://www.ntis.gov</u>

PNNL-34331, Rev. 0 EWG-RPT-041, Rev. 0

# Enhanced Hanford Low-Activity Waste Glass Property Data Development: Phase 5 and Phase 6

June 2023

JJ Neeway X Lu SM Baird DA Cutforth M Peterson

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99354

### Summary

This report summarizes the data collected on two test matrices of low-activity waste (LAW) glass compositions intended to expand the composition-property database: *Low-Activity Waste (LAW) Phase 5: Expansion of LAW Glass Composition Boundaries* and *LAW Phase 6: High PCT and VHT Response Glass Matrix.* 

Both matrix glass compositions were statistically designed to expand the LAW glass composition region. The analyses performed on these glasses include chemical composition (for target compositional verification), density, viscosity, electrical conductivity, crystal fraction, container centerline cooling with crystal identification, the product consistency test (PCT) response, the vapor hydration test (VHT) response, and sulfur solubility. Because of the slightly different scope of the two matrices, not all methods were applied to both. Specifically, the following measurements were taken only on the *LAW Phase 5: Expansion of LAW Glass Composition Boundaries* glasses: crystal fraction as a function of temperature, density ( $\rho$ ), viscosity ( $\eta$ ), and electrical conductivity (EC,  $\varepsilon$ ).

Combined, these data contribute a significant amount, 51 glasses, to the database for high LAW loaded enhanced waste glasses. Most of these data are focused near the boundaries of acceptable PCT and VHT responses, where prediction uncertainties are most impactful.

### Acknowledgments

The authors gratefully acknowledge the financial support provided by the U.S. Department of Energy Office of River Protection Waste Treatment and Immobilization Plant Project, managed by Tom Fletcher, with technical oversight by Albert Kruger. The authors thank Madison Hsieh of Savannah River National Laboratory for chemical analysis of the glasses and product consistency test and sulfur solubility solutions. The following Pacific Northwest National Laboratory staff members are acknowledged for their contributions: Jaime George, Diana Bellofatto, Eden Rivers, Dong-Sang Kim, Renee Russell, and Jose Marcial for technical help, Tongan Jin for his technical review, Matt Wilburn for his editorial review, David MacPherson for quality assurance, and Chrissy Charron, Cassie Martin, and Veronica Perez for programmatic support during the conduct of this work.

# Acronyms, Abbreviations, and Symbols

| ASTM                     | American Society for Testing and Materials                           |
|--------------------------|----------------------------------------------------------------------|
| CCC                      | container centerline cooling (heat treatment)                        |
| CF                       | crystal fraction                                                     |
| $C_i$                    | concentration of element <i>i</i> in solution                        |
| DFLAW                    | Direct Feed Low-Activity Waste                                       |
| DI                       | deionized                                                            |
| $d_i$                    | initial thickness of the specimen                                    |
| DOE                      | U.S. Department of Energy                                            |
| $d_r$                    | average thickness of remaining glass layer                           |
| DWPF                     | Defense Waste Processing Facility                                    |
| EC                       | electrical conductivity                                              |
| 3                        | electrical conductivity                                              |
| <b>E</b> <sub>1150</sub> | electrical conductivity at 1150 °C                                   |
| η                        | viscosity                                                            |
| η1150                    | viscosity at 1150 °C                                                 |
| $f_i$                    | mass fraction of element i in the glass                              |
| GFA                      | glass formulation algorithm                                          |
| GFC                      | glass-forming chemical                                               |
| HLW                      | high-level waste                                                     |
| IC                       | ion chromatography                                                   |
| ICP-OES                  | inductively coupled plasma-optical emission spectroscopy             |
| IHLW                     | immobilized high-level waste                                         |
| ILAW                     | immobilized low-activity waste                                       |
| KH                       | potassium hydroxide digestion                                        |
| LAW                      | low-activity waste                                                   |
| LM                       | lithium metaborate fusion                                            |
| т                        | mass of glass converted to alteration products per unit surface area |
| NC                       | normalized concentration                                             |
| NL                       | normalized loss                                                      |
| NQAP                     | Nuclear Quality Assurance Program                                    |
| ORP                      | DOE Office of River Protection                                       |
| РСТ                      | product consistency test                                             |
| PF                       | sodium peroxide fusion                                               |
| PNNL                     | Pacific Northwest National Laboratory                                |
| $r_a$                    | alteration rate (via VHT)                                            |
| ρ                        | density                                                              |
| S                        | glass surface area                                                   |
| SCC                      | single-component constraint                                          |
| SRNL                     | Savannah River National Laboratory                                   |

#### PNNL-34331, Rev. 0 EWG-RPT-041, Rev. 0

| t              | time                                     |
|----------------|------------------------------------------|
| T <sub>K</sub> | temperature expressed in Kelvin          |
| T <sub>L</sub> | liquidus temperature                     |
| TRL            | technology readiness level               |
| V              | volume of solution                       |
| VHT            | vapor hydration test                     |
| vol%           | volume percent                           |
| VFT            | Vogel-Fulcher-Tammann                    |
| wt%            | weight percent                           |
| WTP            | Waste Treatment and Immobilization Plant |
| XRD            | X-ray diffraction                        |
| 3TS            | 3-time remelt saturation method          |
|                |                                          |

## Contents

| Summa  | ary                 |                       |                                                                                   | ii   |
|--------|---------------------|-----------------------|-----------------------------------------------------------------------------------|------|
| Acknow | wledgme             | ents                  |                                                                                   | iii  |
| Acrony | vms, Abb            | previation            | s, and Symbols                                                                    | iv   |
| 1.0    | Introdu             | ction                 |                                                                                   | 1.1  |
| 2.0    | Test M              | ethods                |                                                                                   | 2.1  |
|        | 2.1                 | Glass Ma              | atrix Design                                                                      | 2.1  |
|        |                     | 2.1.1                 | LAW Phase 5: Expansion of LAW Glass Composition Boundaries<br>Glass Matrix Design | 2.1  |
|        |                     | 2.1.2                 | LAW Phase 6: High PCT and VHT Response Glass Matrix Design                        | 2.2  |
|        | 2.2                 | Glass Fa              | brication                                                                         | 2.4  |
|        | 2.3                 | Chemica               | l Analysis of Glass Composition                                                   | 2.7  |
|        | 2.4                 | Containe              | er Centerline Cooling and Crystal Identification                                  |      |
|        | 2.5                 | Crystal F             | Fraction as a Function of Temperature                                             | 2.9  |
|        | 2.6                 | Glass De              | ensity                                                                            | 2.9  |
|        | 2.7                 | Glass Vi              | scosity                                                                           | 2.9  |
|        | 2.8                 | Electrica             | l Conductivity                                                                    | 2.10 |
|        | 2.9                 | Product               | Consistency Test                                                                  | 2.10 |
|        | 2.10                | Vapor H               | ydration Test                                                                     | 2.11 |
|        | 2.11                | Sulfur So             | olubility Procedure                                                               | 2.12 |
|        |                     | 2.11.1                | Step 1: Saturation                                                                | 2.12 |
|        |                     | 2.11.2                | Step 2: Washing                                                                   | 2.12 |
|        |                     | 2.11.3                | Step 3: Analysis                                                                  | 2.12 |
| 3.0    | Results             | and Disc              | ussion                                                                            |      |
|        | 3.1                 | Chemica               | l Analysis of Glass Composition                                                   |      |
|        | 3.2                 | Crystal I             | dentification in Container Centerline Cooling Glasses                             |      |
|        | 3.3                 | Crystal F             | Fraction in Isothermal Heat Treatment                                             |      |
|        | 3.4                 | Density.              |                                                                                   |      |
|        | 3.5                 | Viscosity             | у                                                                                 |      |
|        | 3.6                 | Electrica             | l Conductivity                                                                    |      |
|        | 3.7                 | Product               | Consistency Test                                                                  |      |
|        | 3.8                 | Vapor H               | ydration Test                                                                     | 3.14 |
|        | 3.9                 | Sulfur So             | olubility                                                                         | 3.15 |
| 4.0    | Conclu              | sions                 |                                                                                   | 4.1  |
| 5.0    | Bibliog             | raphy                 |                                                                                   | 5.1  |
| Append | lix A – I<br>Target | LAW Phas<br>Glass Cor | se 5: Expansion of LAW Glass Composition Boundaries Glass Matrix npositions       | A.1  |

| Appendix B – LAW Phase 6: High PCT and VHT Response Glass Matrix Target Glass<br>Compositions                              | B.1 |
|----------------------------------------------------------------------------------------------------------------------------|-----|
| Appendix C – LAW Phase 5: Expansion of LAW Glass Composition Boundaries Glass Matrix<br>Target Modified Glass Compositions | C.1 |
| Appendix D – Morphology/Color of Each Quenched Glass                                                                       | D.1 |
| Appendix E – Comparison Measured and Target Chemical Compositions                                                          | E.1 |
| Appendix F - Morphology/Color of Each CCC Glass and XRD Patterns                                                           | F.1 |
| Appendix G – Crystal Fraction of Heat-Treated Glasses Photographs                                                          | G.1 |
| Appendix H – Viscosity Data                                                                                                | H.1 |
| Appendix I – Electrical Conductivity Data                                                                                  | I.1 |

# Figures

| Figure 2.1. | LP5-06 Glass Fourth Melt at 1350 °C                                                                                                                                                                                                                                                                                                       | 2.5    |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Figure 2.2. | LP5-16 Glass Fifth Melt at 1350 °C                                                                                                                                                                                                                                                                                                        | 2.5    |
| Figure 2.3. | Plot of Temperature Schedule during CCC Heat Treatment of Hanford LAW Glasses                                                                                                                                                                                                                                                             | 2.8    |
| Figure 3.1. | Normalized $NL_B$ and $NL_{Na}$ Release in Natural Logarithm Scale of Quenched vs. CCC LAW Phase 5 Glasses                                                                                                                                                                                                                                | . 3.13 |
| Figure 3.2. | Normalized $NL_B$ and $NL_{Na}$ Release in Natural Logarithm Scale of Quenched vs.<br>CCC LAW Phase 6 Glasses. Blue and orange rhombus represent glass LAW-<br>HPVR-25, the only glass with measurable (by XRD) crystal fraction after CCC,<br>$NL_B$ and $NL_{Na}$ . The triangle represents the $NL_{Na}$ significantly affected by CCC | . 3.14 |

### Tables

| Table 2.1. | Lower and Upper Bounds of Single-Component Constraints in Mass Fractions<br>and Multiple-Component Constraints for the LAW Phase 5 New Compositions              | 2.2 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2.2. | Lower and Upper Bounds of Single-Component Constraints as Mass Fractions<br>and Multiple-Component Constraints for LAW Phase 6                                   | 2.3 |
| Table 2.3. | Melt History for the LAW Phase 5 Glasses (LP5-#) and the LAW Phase 6 Glasses (LAW-HPVR-#). Melt duration was 1 hour if not specified differently in parenthesis. | 2.6 |
| Table 2.4. | Preparation and Measurement Methods Used in Reporting the Analyte<br>Concentrations of the Study Glasses                                                         | 2.7 |
| Table 2.5. | Temperature Schedule during CCC Treatment of Hanford LAW Glasses                                                                                                 | 2.8 |
| Table 2.6. | Measurement Methods Used in Reporting Glass and Wash Solutions Analytes<br>Concentrations (Hsieh 2021b, 2022b)                                                   | .13 |
| Table 3.1. | Primary and Secondary Crystalline Phases in LAW Phase 5 and LAW Phase 6<br>Glasses                                                                               | 3.3 |
| Table 3.2. | Crystalline Phases Recognized by XRD in LAW Phase 5 Glasses Heat Treated at 950 °C. Phases with wt% < 0.1 are not reported.                                      | 3.3 |

| Table 3.3.  | Measured Densities in the LAW Phase 5 Glasses                                                                                      | 3.4  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 3.4.  | Measured $\eta$ (Pa·s) Values vs. Target Temperature (in the sequence of measurement) for the LAW Phase 5 Glasses                  | 3.5  |
| Table 3.5.  | Fitted Coefficients of Arrhenius and VFT Models for Viscosity of the LAW<br>Phase 5 Glasses                                        | 3.6  |
| Table 3.6.  | Measured Electrical Conductivity (S/m) Values vs. Target Temperatures for the LAW Phase 5 Glasses                                  | 3.7  |
| Table 3.7.  | Fitted Coefficients of Arrhenius Model for $\epsilon_{1150}$ of the LAW Phase 5 Glasses                                            | 3.8  |
| Table 3.8.  | Average Normalized PCT Loss (NLs) for the LAW Phase 5 Glasses. Missing values were below the analytical laboratory detection limit | 3.9  |
| Table 3.9.  | Average Normalized PCT Loss (NLs) for CCC LAW Phase 5 Glasses                                                                      | 3.10 |
| Table 3.10. | Average Normalized PCT Loss (NLs) for Q LAW Phase 6 Glasses                                                                        | 3.10 |
| Table 3.11. | Average Normalized PCT Loss (NLs) for CCC LAW Phase 6 Glasses                                                                      | 3.12 |
| Table 3.12. | Alteration Depth and Rate for Quenched and CCC of the LAW Phase 6 Q and CCC Glasses after 24 Day VHT                               | 3.15 |
| Table 3.13. | SO <sub>3</sub> Concentrations in the Sulfur-Saturated Samples of the LAW Phase 5 and LAW Phase 6 Glasses                          | 3.16 |

### 1.0 Introduction

The U.S. Department of Energy (DOE) Hanford Site in Washington state has roughly 56 million gallons of radioactive waste stored in 155 of the original 177 underground tanks, with waste retrieved from 22 of the tanks. The Waste Treatment and Immobilization Plant (WTP) will provide DOE with a capability to treat the waste by vitrification for subsequent disposal. The tank waste will be partitioned into low-activity waste (LAW) and high-level waste (HLW) fractions, which will then be vitrified, respectively, into immobilized low-activity waste (ILAW) and immobilized high-level waste (IHLW) products. The ILAW product will be disposed of in the Integrated Disposal Facility on the Hanford Site, while the IHLW product will be temporarily stored on-site prior to disposal at a national deep geological disposal facility for high-level nuclear waste.

The ILAW and IHLW products must satisfy a variety of requirements with respect to regulatory compliance and protection of the environment before they can be accepted for disposal. Additionally, to be efficiently processed in the WTP, the LAW melts must satisfy process-related properties. Current plans for the WTP envision vitrifying LAW prior to startup of the WTP HLW and Pretreatment facilities using a Direct Feed Low-Activity Waste (DFLAW) approach (Bernards et al. 2020). The glass composition in the WTP LAW Facility will be controlled using a LAW glass formulation algorithm (GFA), with the objective to computationally formulate LAW glass compositions given a waste composition and specific parameters, while applying all property and measurement uncertainties and maximizing the waste loading, i.e., increasing the ratio of waste to glass-forming chemicals (GFCs) in melter feed batches.

Currently, it is envisioned that the preliminary LAW GFA discussed by Kim and Vienna (2012), the LAW glass property-composition models recommended in Piepel et al. (2007), and formulation correlation developed by Muller et al. (2004) will be used for commissioning and initial radioactive operations of the LAW Facility. After commissioning and initial operations, it is intended that the WTP operations contractor will implement an updated LAW GFA, developed at Pacific Northwest National Laboratory (PNNL), in the WTP LAW Facility using the new models in Vienna et al. (2022). The Preliminary Enhanced GFA has been developed by Lumetta et al. (2022) to implement Vienna et al. (2022) models along with several inputs, including the (1) LAW glass formulation methods and constraints, (2) LAW glass property constraints, (3) plant-related uncertainties and operating data, and (4) model validity constraints.

The present tasks, *Low-Activity Waste (LAW) Phase 5: Expansion of LAW Glass Composition Boundaries* and *LAW Phase 6: High PCT and VHT Response Glass Matrix*, support the DOE Office of River Protection (ORP) LAW glass composition property evaluation and model development by improving glass-property/composition data coverage and supply data for potential GFA and/or model updates.

This report presents the glass compositions and glass property data collected during the *Low-Activity Waste (LAW) Phase 5: Expansion of LAW Glass Composition Boundaries* and *LAW Phase 6: High PCT and VHT Response Glass Matrix* tasks. For simplicity, the two matrices will be called Phase 5 and Phase 6, respectively. Where LAW Phase 5 scope was to measure all main glass properties, Phase 6 scope was focused mainly on glass durability testing and SO<sub>3</sub> solubility; thus, not all properties were measured on the glasses belonging to this matrix.

This work was performed in accordance with the PNNL Nuclear Quality Assurance Program (NQAP). The NQAP complies with DOE Order 414.1D, *Quality Assurance*, and 10 CFR 830, *Nuclear Safety Management*, Subpart A, *Quality Assurance Requirements*. The NQAP uses NQA-1-2012, *Quality Assurance Requirements for Nuclear Facility Application*, as its consensus standard and NQA-1-2012, Subpart 4.2.1, as the basis for its graded approach to quality.

The NQAP works in conjunction with PNNL's laboratory-level Quality Management Program, which is based on the requirements as defined in DOE Order 414.1D and 10 CFR 830 Subpart A.

The work of this report was performed to a technology readiness level (TRL) of 6 for LAW Phase 5 and TRL 8 for LAW Phase 6.

### 2.0 Test Methods

This section describes how the two test matrices of simulated LAW glasses were generated and data were obtained. The descriptions include the methods for 1) glass matrix generation, 2) glass fabrication, 3) chemical composition analysis, 4) secondary phase identification from container centerline cooling (CCC) treatment, 5) crystal fraction (CF) as a function of temperature, 6) density ( $\rho$ ) determination, 7) viscosity ( $\eta$ ) measurement, 8) electrical conductivity (EC,  $\epsilon$ ) measurement, 9) product consistency test (PCT) measurement, 10) vapor hydration test (VHT) measurements, and 11) sulfur solubility measurement used.

### 2.1 Glass Matrix Design

The space-filling experimental design capabilities of JMP were used to develop the two matrices in the LAW glass composition region. JMP has a unique approach to space-filling designs that are not available in other software packages and are considered the most appropriate method for developing waste simulated glass matrices (Joseph et al. 2015; Lonergan et al. 2020). Standard software default assumptions were used to design the matrices of glasses with a fixed set of single-component constraints (SCCs) for individual oxide concentration ranges. Multi-component constraints (MCCs) were applied to limit certain predicted properties. The designed glasses were required to 1) fall within pre-defined acceptance ranges defined by the SCCs and MCCs and 2) obtain broad dispersion values of each component across the range compared to those of external vertices.

#### 2.1.1 LAW Phase 5: Expansion of LAW Glass Composition Boundaries Glass Matrix Design

A test matrix of 23 new glass compositions was designed to augment 588 existing LAW compositions compiled in Vienna et al. (2022). SCCs and MCCs, as listed in Table 2.1, were applied to the matrix design to include glasses that cover the range of the glass properties below and above the WTP contract and operating limits. Since the current space-filling technique can use first-order models only, the following models were applied to calculate the MCCs:  $1 \le \eta_{1150} \le 10 \text{ Pa} \cdot \text{s}$ ;  $\ln[NL_B, \text{g m}^{-2}] \ge 0.5$ , with predicted properties based on Vienna et al. (2022).

| Single-Component Constraint                        |                            |             |  |  |  |  |
|----------------------------------------------------|----------------------------|-------------|--|--|--|--|
| Component                                          | Lower Bound                | Upper Bound |  |  |  |  |
| Al <sub>2</sub> O <sub>3</sub>                     | 0.035                      | 0.1475      |  |  |  |  |
| $B_2O_3$                                           | 0.06                       | 0.1383      |  |  |  |  |
| CaO                                                | 0                          | 0.1278      |  |  |  |  |
| Fe <sub>2</sub> O <sub>3</sub>                     | 0                          | 0.01        |  |  |  |  |
| K <sub>2</sub> O                                   | 0                          | 0.0575      |  |  |  |  |
| MgO                                                | 0                          | 0.0502      |  |  |  |  |
| Na <sub>2</sub> O                                  | 0.22                       | 0.27        |  |  |  |  |
| SiO <sub>2</sub>                                   | 0.3352                     | 0.5226      |  |  |  |  |
| SnO <sub>2</sub>                                   | 0                          | 0.045       |  |  |  |  |
| $V_2O_5$                                           | 0                          | 0.0571      |  |  |  |  |
| ZnO                                                | 0                          | 0.0582      |  |  |  |  |
| ZrO <sub>2</sub>                                   | 0                          | 0.0675      |  |  |  |  |
| Others <sup>(a)</sup>                              | ners <sup>(a)</sup> 0.0123 |             |  |  |  |  |
| Multi-Component Constraint                         |                            |             |  |  |  |  |
| Property                                           | Lower Bound                | Upper Bound |  |  |  |  |
| $\eta_{1150} ({\rm Pa}{\cdot}{\rm s})^{({\rm b})}$ | 1                          | 10          |  |  |  |  |
| $NL_B (g \cdot m^{-2})^{(c)}$                      | 1.65                       | -           |  |  |  |  |

 Table 2.1. Lower and Upper Bounds of Single-Component Constraints in Mass Fractions and Multiple-Component Constraints for the LAW Phase 5 New Compositions

(a) The Others component was composed of the following mixture of minor components (expressed as mass fractions): Cl, Cr<sub>2</sub>O<sub>3</sub>, F, P<sub>2</sub>O<sub>5</sub>, SO<sub>3</sub>, TiO<sub>2</sub>, PbO, NiO, Cs<sub>2</sub>O, and Re<sub>2</sub>O<sub>7</sub> in varying concentrations as reported in Appendix A.

(b) Viscosity at 1150 °C (Pa·s)

(c) Normalized loss of boron under PCT-A in  $(g \cdot m^{-2})$ 

In addition to the 23 new compositions, this report describes two previously tested LAW glass compositions: 1) EWG-LAW-Centroid (Russell et al. 2021), identified in the current task as LP5-24, and 2) LAWC22 (Muller et al. 2003), identified here as LP5-25. These two glasses were selected because they have undergone previous testing. Their inclusion and comparison to previously collected results provides assurance that the laboratory testing in the current effort results in similar values as past testing. The glasses from this task are identified with the prefix LP5- and a number from 1 to 25. The 25 glass target compositions are reported in Appendix A.

#### 2.1.2 LAW Phase 6: High PCT and VHT Response Glass Matrix Design

The LAW compositional region with PCT and VHT responses near their limits was the specific focus of this design. The individual oxide concentration ranges and MCCs used to generate the matrix are reported in Table 2.2. The Vienna et al. (2022) models were applied to calculate the MCCs for  $\eta$  at 1150 °C, EC at 1150 °C, as well as the PCT and VHT responses. A matrix with 26 glasses was generated to expand the compositional space near the PCT and VHT WTP constraints and increase the SO<sub>3</sub> saturation data acquired by the 3-time remelt S method (3TS). The glasses from this task were identified with the prefix LAW-HPVR- and a number from 1 to 26. The 26 glass target compositions are reported in Appendix B.

| Single-Component Constraint                        |             |             |  |  |  |  |  |
|----------------------------------------------------|-------------|-------------|--|--|--|--|--|
| Components                                         | Lower Bound | Upper Bound |  |  |  |  |  |
| Al <sub>2</sub> O <sub>3</sub>                     | 3.5         | 11.5        |  |  |  |  |  |
| $B_2O_3$                                           | 6           | 13.8        |  |  |  |  |  |
| CaO                                                | 6           | 12.8        |  |  |  |  |  |
| K <sub>2</sub> O                                   | 0           | 5.9         |  |  |  |  |  |
| Li <sub>2</sub> O                                  | 0           | 4.3         |  |  |  |  |  |
| Na <sub>2</sub> O                                  | 15.7        | 27          |  |  |  |  |  |
| SiO <sub>2</sub>                                   | 34.6        | 50.2        |  |  |  |  |  |
| SnO <sub>2</sub>                                   | 0           | 4.5         |  |  |  |  |  |
| TiO <sub>2</sub>                                   | 0           | 3           |  |  |  |  |  |
| V <sub>2</sub> O <sub>5</sub>                      | 0           | 4           |  |  |  |  |  |
| ZrO <sub>2</sub>                                   | 2           | 6.75        |  |  |  |  |  |
| Others                                             | 1.11        | 3.33        |  |  |  |  |  |
| N <sub>Alk</sub> <sup>(h)</sup>                    | 20          | 27          |  |  |  |  |  |
| N <sub>AlZrSn</sub> <sup>(i)</sup>                 | 3.5         | 16.55       |  |  |  |  |  |
| Multi-Component Constraint                         |             |             |  |  |  |  |  |
| MCCs                                               | Lower Bound | Upper Bound |  |  |  |  |  |
| η <sub>1150</sub> (Pa·s) <sup>(b)</sup>            | 1           | 10          |  |  |  |  |  |
| $\epsilon_{1150}  (S/cm)^{(c)}$                    | 0.1         | 0.7         |  |  |  |  |  |
| $NL_B (g/m^2)^{(d)}$                               | 0.4870931   | 17.84       |  |  |  |  |  |
| $NL_{Na}(g/m^2)^{(e)}$                             | 0.5548264   | 13.407      |  |  |  |  |  |
| pred VHT (pass/fail<br>probability) <sup>(f)</sup> | 0.05        | 0.95        |  |  |  |  |  |
| S/C SO3 <sup>(g)</sup>                             | 1.25        | n/a         |  |  |  |  |  |

| Table 2.2. | Lower and Upper Bounds of Single-Component Constraints as Mass Fractions and Multiple- |
|------------|----------------------------------------------------------------------------------------|
|            | Component Constraints for LAW Phase 6                                                  |

ZnO in varying concentrations as reported in Appendix B.

(b) Viscosity at 1150 °C (Pa·s) (based on reduced linear mixture model in Vienna et al. 2022)

- (c) EC at 1150 °C (S/cm) (based on reduced linear mixture model in Vienna et al. 2022)
- (d) Predicted  $PCT_B$  response (g/m<sup>2</sup>) (based on reduced linear mixture model in Vienna et al. 2022)
- (e) Predicted  $PCT_{Na}$  response (g/m<sup>2</sup>) (based on reduced linear mixture model in Vienna et al. 2022)
- (f) Predicted VHT response (pass/fail probability) (based on reduced linear mixture model in Vienna et al. 2022)
- (g) Predicted SO<sub>3</sub> solubility/SO<sub>3</sub> concentration in glass > 1.25 (based on partial-Quadratic mixture model in Vienna et al. 2022)
- (h)  $N_{Alk} = Na_2O + 0.66 K_2O + 2.07 Li_2O$
- (i)  $N_{AlZrSn} = Al_2O_3 + 0.827 ZrO_2 + 0.677 SnO_2$

#### 2.2 Glass Fabrication

The glasses from both matrices were batched using GFCs and a dry waste simulant composed of singlemetal oxides, single-metal carbonates, and sodium salts in the appropriate masses to form the target composition for each glass (Appendix A and Appendix B).

After thoroughly mixing all the components in a plastic bag for at least 30 seconds and until uniform color developed, the powders were transferred to an agate milling chamber and milled for 4 minutes in a vibratory mill (Angstrom TE110). The powders were then transferred to a clean platinum (Pt)-10% rhodium (Rh) crucible for melting. Initial melting was performed at 1150 °C for 1 hour  $\pm$  10 minutes.

After the first melt was air quenched on a stainless-steel pouring plate, the glass was observed under an optical microscope and the presence of undissolved particles and/or salts was reported. The glass was then ground to a fine powder for 5 minutes in a tungsten carbide vibratory mill (AngstromTE110) and a second melt was performed. The temperature of the second melt varied depending on the outcome of the first melt. If the first melt was homogeneous or had only a small amount of undissolved particles observed by optical microscope, then the second melt was performed again at 1150 °C  $\pm$  10 °C for 1 hour  $\pm$  10 minutes. If undissolved particles were particularly abundant after the first melt, then the temperature of the second melt was increased. In some cases, more than two melts were necessary to fully dissolve the particles in the glass matrix and obtain a homogeneous glass.

Detailed lists of the number of melts and temperatures are reported in Table 2.3. All melts were 1 hour long  $\pm$  10 minutes unless otherwise specified in the table. Re-batched glasses were given a replicate number starting from the value of "1" after the glass ID (e.g., LP5-12-1 in Table 2.3).

Two of the 25 LAW Phase 5 glasses, LP5-06 and LP5-16, displayed heavy sulfur separation even after multiple melts at high temperatures (Figure 2.1 and Figure 2.2, respectively). Therefore, the target compositions of these two glasses were modified to reduce sulfur content and the glasses were remelted. The modified glasses, LP5-06-mod1 and LP5-16-mod1, have been used for the remainder of the study. Target chemical compositions of both original and modified glasses are reported in Appendix C.

The use of higher melting temperature is deemed an acceptable method of fabricating challenging glass compositions. Laboratory crucible-scale fabrication of glasses is not intended to mimic the actual melter process or feed processability; rather, it is intended to fabricate a glass sample with a controlled composition for property testing.

Photographs of each quenched glass are shown in Appendix D.



Figure 2.1. LP5-06 Glass Fourth Melt at 1350 °C



Figure 2.2. LP5-16 Glass Fifth Melt at 1350  $^{\circ}\mathrm{C}$ 

| Glass ID    | 1st Melt (°C) | 2 <sup>nd</sup> Melt (°C) | 3rd Melt (°C) | 4 <sup>th</sup> Melt (°C) | 5 <sup>th</sup> Melt (°C) | Glass ID      | 1st Melt (°C) | 2 <sup>nd</sup> Melt (°C) | 3rd Melt (°C) |
|-------------|---------------|---------------------------|---------------|---------------------------|---------------------------|---------------|---------------|---------------------------|---------------|
| LP5-01      | 1150          | 1150                      |               |                           |                           | LAW-HPVR-01-1 | 1150          | 1150                      |               |
| LP5-02      | 1150          | 1150                      |               |                           |                           | LAW-HPVR-02-1 | 1150          | 1150                      |               |
| LP5-03      | 1150          | 1150                      |               |                           |                           | LAW-HPVR-03-1 | 1150          | 1150                      |               |
| LP5-04      | 1150          | 1150                      |               |                           |                           | LAW-HPVR-04-1 | 1150          | 1150                      |               |
| LP5-05      | 1150          | 1150                      |               |                           |                           | LAW-HPVR-05   | 1150          | 1300                      |               |
| LP5-06      | 1150          | 1150                      | 1250          | 1350                      | 1400 (30 min)             | LAW-HPVR-06   | 1150          | 1150                      |               |
| LP5-06-mod1 | 1150          | 1250                      | 1350          |                           |                           | LAW-HPVR-07   | 1150          | 1300                      | 1300          |
| LP5-07      | 1150          | 1150                      | 1200          |                           |                           | LAW-HPVR -08  | 1150          | 1200                      |               |
| LP5-08      | 1150          | 1150                      |               |                           |                           | LAW-HPVR -09  | 1150          | 1150                      |               |
| LP5-09      | 1150          | 1150                      |               |                           |                           | LAW-HPVR -10  | 1150          | 1150                      |               |
| LP5-10      | 1150          | 1150                      |               |                           |                           | LAW-HPVR -11  | 1150          | 1250                      |               |
| LP5-11      | 1150          | 1150                      | 1250          |                           |                           | LAW-HPVR-12   | 1150          | 1150                      |               |
| LP5-12-1    | 1150          | 1250                      | 1350          | 1450                      | 1450                      | LAW-HPVR-13   | 1150          | 1250                      | 1300          |
| LP5-13      | 1150          | 1150                      |               |                           |                           | LAW-HPVR-14   | 1150          | 1150                      |               |
| LP5-14      | 1150          | 1150                      | 1200          |                           |                           | LAW-HPVR-15   | 1150          | 1150                      |               |
| LP5-15      | 1150          | 1150                      | 1200          | 1300                      |                           | LAW-HPVR-16   | 1150          | 1300                      |               |
| LP5-16      | 1150          | 1150                      | 1270          | 1150                      | 1350                      | LAW-HPVR-17   | 1150          | 1150                      |               |
| LP5-16-mod1 | 1150          | 1300                      | 1400          |                           |                           | LAW-HPVR-18   | 1150          | 1150                      |               |
| LP5-17      | 1150          | 1150                      | 1300          | 1350                      |                           | LAW-HPVR-19   | 1150          | 1150                      |               |
| LP5-18      | 1150          | 1150                      | 1250          |                           |                           | LAW-HPVR-20   | 1150          | 1150                      |               |
| LP5-19      | 1150          | 1150                      |               |                           |                           | LAW-HPVR-21   | 1150          | 1150                      |               |
| LP5-20      | 1150          | 1150                      |               |                           |                           | LAW-HPVR-22   | 1150          | 1300                      | 1350          |
| LP5-21      | 1150          | 1150                      |               |                           |                           | LAW-HPVR-23   | 1150          | 1300                      |               |
| LP5-22      | 1150          | 1150                      |               |                           |                           | LAW-HPVR-24   | 1150          | 1150                      |               |
| LP5-23      | 1150          | 1150                      |               |                           |                           | LAW-HPVR-25   | 1150          | 1300                      | 1350          |
| LP5-24      | 1150          | 1150                      | 1250          |                           |                           | LAW-HPVR-26   | 1150          | 1150                      |               |
| LP5-25      | 1150          | 1150                      | 1300          | 1350                      |                           |               |               |                           |               |

Table 2.3. Melt History for the LAW Phase 5 Glasses (LP5-#) and the LAW Phase 6 Glasses (LAW-HPVR-#). Melt duration was 1 hour if not specified differently in parenthesis.

### 2.3 Chemical Analysis of Glass Composition

To confirm that the "as-fabricated" glasses corresponded to the specified target compositions, a representative sample of each glass was chemically analyzed at the Savannah River National Laboratory (SRNL) Process Science Analytical Laboratory. All analyte concentrations were measured except for Mn. Three dissolution techniques were used to prepare glass samples, in duplicate, for analysis: sodium peroxide fusion (PF), lithium metaborate fusion (LM), and potassium hydroxide fusion (KH). Descriptions of the dissolution processes can be found in Hsieh (2021a, 2022a).

Duplicate samples (two each for the preparation techniques) were analyzed twice for each element of interest by inductively coupled plasma-optical emission spectroscopy (ICP-OES) or ion chromatography (IC). Glass composition standards also were intermittently prepared and analyzed to assess the performance of the ICP-OES and IC instruments over the course of these analyses. Specifically, several samples of the low-level reference material (Ebert and Wolfe 1999) were included as part of the SRNL Process Science Analytical Laboratory analysis plan. The preparation and measurement methods used for each of the reported glass analytes are listed in Table 2.4.

A detailed data analysis of the chemical composition measurements was published elsewhere (Hsieh 2021a, 2022a). A short summary of these data analyses is included in Section 3.1.

| Analyte | Measurement Method | Preparation Method |
|---------|--------------------|--------------------|
| Al      | ICP-OES            | PF                 |
| В       | ICP-OES            | PF                 |
| Ca      | ICP-OES            | LM                 |
| Cl      | IC                 | KH                 |
| Cr      | ICP-OES            | LM                 |
| F       | IC                 | KH                 |
| Fe      | ICP-OES            | LM                 |
| Κ       | ICP-OES            | LM                 |
| Li      | ICP-OES            | PF                 |
| Mg      | ICP-OES            | LM                 |
| Na      | ICP-OES            | LM                 |
| Р       | ICP-OES            | PF                 |
| S       | ICP-OES            | LM                 |
| Si      | ICP-OES            | PF                 |
| Sn      | ICP-OES            | LM                 |
| Ti      | ICP-OES            | LM                 |
| V       | ICP-OES            | LM                 |
| Zn      | ICP-OES            | PF                 |
| Zr      | ICP-OES            | PF                 |

 Table 2.4. Preparation and Measurement Methods Used in Reporting the Analyte Concentrations of the Study Glasses

#### 2.4 Container Centerline Cooling and Crystal Identification

A portion (~45 g) of each test glass was subjected to the simulated CCC temperature profile shown in Table 2.5 and Figure 2.3. This profile is the temperature schedule of CCC treatment for Hanford LAW glasses planned for use at WTP.<sup>1</sup> Pieces of quenched glass, < 3 cm in diameter, were placed in a Pt-alloy crucible and covered with a Pt-alloy lid. Each glass sample was placed in a furnace preheated to the glass last melting temperature as per Table 2.3. After 30 minutes at the melting temperature, the furnace temperature was quickly reduced to 1114 °C, and the cooling profile was started. It progressed down to about 400 °C based on seven cooling segments listed in Table 2.5.

| Segment | Time<br>(min) | Start Temperature | Rate<br>(°C/min) |
|---------|---------------|-------------------|------------------|
| 1       | 30            | Melt temperature  | 0                |
| 2       | 0             | 1114              | -7.125           |
| 3       | 0–16          | 1000              | -1.754           |
| 4       | 16–73         | 900               | -0.615           |
| 5       | 73–195        | 825               | -0.312           |
| 6       | 195–355       | 775               | -0.175           |
| 7       | 355-640       | 725               | -0.130           |
| 8       | 640-1600      | 600               | -0.095           |
| 9       | 1600-3710     | Room temperature  | NA               |

Table 2.5. Temperature Schedule during CCC Treatment of Hanford LAW Glasses



Figure 2.3. Plot of Temperature Schedule during CCC Heat Treatment of Hanford LAW Glasses

<sup>&</sup>lt;sup>1</sup> Memorandum, "Low Activity Container Centerline Cooling Data," CCN: 074181, from LL Petkus to CA Musick, RPP-WTP, October 16, 2003.

The amounts and types of crystalline phases that formed during CCC treatment were analyzed using powder X-ray diffraction (XRD) according to Section 12.4.4 of the American Society for Testing and Materials (ASTM) international procedure *Standard Test Method for Determining Liquidus Temperature of Immobilized Waste Glasses and Simulated Waste Glasses* (ASTM C1720). For each crystallized CCC glass, a piece of about 1.5 g of glass, representative of the whole sample, was milled for 1 minute in a 10 cm<sup>3</sup> vibratory mill with a tungsten carbide cup and disc. Roughly 5 wt% CeO<sub>2</sub> was added to the powder as an internal standard and milled together with the glass for additional 30 seconds. The powdered glass samples were loaded into XRD sample holders and scanned at a 0.015° 2θ step size, 1.5-second dwell time, from 5° to 75° 2θ scan range. XRD spectra were analyzed with DIFFRAC.EVA software (Bruker AXS GmbH, Karlsruhe, Germany) for phase identification. Full-pattern Rietveld refinement using TOPAS 4.2 (Bruker AXS GmbH, Karlsruhe, Germany) was performed to quantify the amounts of crystal phases on samples with crystalline content. These results are discussed in Section 3.2.

#### 2.5 Crystal Fraction as a Function of Temperature

Isothermal CF as a function of temperature was measured in Pt-alloy boats (~2 g of glass per boat) with tight-fitting lids to minimize volatility according to the standard ASTM International procedure *Standard Test Method for Determining Liquidus Temperature of Immobilized Waste Glasses and Simulated Waste Glasses* (ASTM C1720). The heat treatments were performed at 950 °C for 24 hours. Prior to measuring the CF, the accuracy of the furnace temperature was verified using a glass (AmCm2-19) with liquidus temperature (T<sub>L</sub>) traceable to a round-robin study, prepared and verified by Gervasio et al. (2019). These results are discussed in Section 3.3.

### 2.6 Glass Density

The room-temperature density ( $\rho$ ) of each glass was measured using an AccuPyc II 1340 gas pycnometer (MicroMeritics, Norcross, Georgia) with approximately 1 g of glass pieces. The glass was loaded into a vial and placed within the instrument. The instrument then determined the density by the difference in amount of helium gas needed to fill the vial with glass vs. the amount needed without glass. The pycnometer was calibrated within 6 months of the testing and the calibration was checked before and after measurements for that day using a National Institute of Standards and Technology traceable standard tungsten carbide ball. These results are discussed in Section 3.4.

### 2.7 Glass Viscosity

The viscosities ( $\eta$ ) of the glass melts were measured as functions of temperature with a fully automated Anton Paar FRS 1600 Furnace Rheometer System. Approximately 25 to 30 mL or ~70 g of glass was placed into a Pt-alloy cylindrical cup. It was then heated to ~1150 °C and maintained at that temperature until thermal equilibrium was reached. A Pt-alloy spindle then was lowered into the cup of molten glass. An initial torque reading (at a constant spindle speed) was taken at ~1150 °C, with subsequent measurements at target temperatures of 1050 °C, 950 °C, 1150 °C, 1250 °C, and then 1150 °C using a hysteresis approach. The hysteresis approach allows for the potential impacts of crystallization (at lower temperatures) to be assessed via reproducibility with replicate measurements being taken at approximately the melting temperature. Volatilization (at higher temperatures) is minimized by measuring viscosity at temperature above the melting temperature as nearly the final viscosity measurement. A 15-minute temperature equilibration time was used. Prior to glass viscosity measurements, halfway through the sample measurements and after sample measurements, the test instrumentation was checked for accuracy using a standard glass (Defense Waste Processing Facility [DWPF] Startup Frit) as discussed in the literature (Crum et al. 2012). These results are discussed in Section 3.5.

#### 2.8 Electrical Conductivity

The EC ( $\varepsilon$ ) of glass melts was determined with an Anton Paar FRS 1600 Furnace System using a Solartron impedance analyzer. Platinum plates (1.3 inches long by 0.28 inches wide) were placed parallel to each other with a separation of 0.367 inches. About 30 mL of glass sample was used for EC measurements in a Pt-alloy crucible. Before measuring EC of the test-matrix glasses, calibration was conducted at room temperature with reference solutions of KCl (0.1 M and 1 M) by measuring the resistance values at frequencies ranging from 10<sup>-1</sup> to 10<sup>6</sup> Hz. Six frequency scans were made for each KCl concentration. The average values of the six readings were then used to calculate the cell constant. The high-temperature EC was validated using DWPF Startup Frit. For glass measurement, the probe was lowered into the molten glass to a depth of 12.7 mm and the sample was first heated at the target temperature of 1200 °C for 30 minutes. After the temperature was used to calculate  $\varepsilon$  for each temperature. The  $\varepsilon$  was measured at four different target temperatures in a range around the melting temperature of the glass (after 25-minute equilibration time): 1200 °C, 1150 °C, 950 °C, and 1150 °C. These results are discussed in Section 3.6.

#### 2.9 Product Consistency Test

PCT responses were measured in triplicate for quenched and CCC samples of each glass using Method A of the standard ASTM International procedure *Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT)* (ASTM C1285). The PCT test matrix also included a reference glass traceable to a round robin study and blanks. Glass samples were ground, sieved to -100+200 mesh, washed, and prepared according to the standard ASTM C1285 procedure, Method A. The prepared glass was added to deionized (DI) water in a 1.5 g:15 mL ratio. The vessels used were desensitized Type 304L stainless steel. The vessels were closed, sealed, and placed into an oven at 90 °C ± 2 °C for 7 days ± 3 hours. After 7 days at 90 °C, the vessels were removed from the oven and allowed to cool to room temperature. The final mass of the vessel and the solution pH were recorded on a data sheet. Each test solution was then passed through a 0.45-µm filter and acidified with HNO<sub>3</sub> to maintain the cations in solution. The resulting solutions were analyzed by ICP-OES for Si, Na, and B. Samples of multi-element, standard solutions were also analyzed as a check on the accuracy of the ICP-OES. Normalized concentrations (NC, g L<sup>-1</sup>) were calculated with the following formula:

$$NC_i = \frac{C_i}{f_i} \tag{2.1}$$

where:

NC<sub>i</sub> = the normalized concentration of element *I* in solution (g L<sup>-1</sup>)  $C_i$  = the concentration of element *I* in solution (g<sub>i</sub>·L<sup>1</sup>)  $f_i$  = mass fraction of element *I* in the glass (g<sub>i</sub>·g<sub>elass</sub><sup>-1</sup>)

Subsequently, the normalized losses (NL, g m<sup>-2</sup>):

$$NL_i = \frac{NC_i}{S/V}$$
(2.2)

where: S = glass surface area (m<sup>2</sup>) V = volume of solution (m<sup>3</sup>)

Assuming a spherical particle geometry and a density of 2.65 g·cm<sup>-3</sup>, this results in a glass surface area:solution volume ratio of approximately 2000 m<sup>-1</sup>. The ratio was not adjusted to account for measured glass density.

The calculations of  $NC_i$  and  $NL_i$  were based on target and measured glass compositions. The target composition was used for data evaluation and analysis. Results are included in Section 3.7.

### 2.10 Vapor Hydration Test

In the VHT, monolithic glass samples were exposed to water vapor at 200 °C in sealed stainless-steel vessels according to the ASTM International standard procedure *Standard Test Method for Measuring Waste Glass or Glass Ceramic Durability by Vapor Hydration Test* (ASTM C1663). Roughly 1.5-mm × 10-mm samples were cut from annealed or CCC-treated LAW glass bars using a diamond-impregnated saw. All sides of the cut sample were polished to 600-grit surface finishes with silicon carbide paper.

Polished samples were hung from stainless-steel supports with Pt wire within a stainless-steel container. DI water was added to the bottom of the vessel so that enough water was present to react with the specimen, but without enough water to reflux during testing (~0.20 g). The samples were heated and held at 200 °C in a convection oven for either 24 or 7 days. All samples were initially tested for 24 days. Samples found to have fully reacted in 24 days were then tested for shorter times to enable estimation of a numerical alteration rate (as opposed to "greater-than" values).

After removal from the oven, vessels were weighed and then quenched in cold water. The specimens were removed from the vessels and cross-sectioned with or without epoxy (depending on the stability of each sample) for analysis by optical microscopy-image analysis to determine the amount of glass altered during the test. The solution in the vessel was tested for pH to ensure reflux did not occur. Any test with a pH > 10 was not used due to reflux.

The remaining glass thickness of the VHT specimen was determined by performing at least 10 measurements distributed (roughly equally) across the crack-free cross section of the sample. Then, the average and standard deviations of the 10 thickness measurements of the remaining glass were calculated. The amount of glass altered per unit surface area of specimen was determined from the average thickness of unaltered glass according to Eq. (2.3):

$$m = \frac{1}{2}\rho(d_i - d_r) \tag{2.3}$$

where:

 $d_{i}$ , = initial thickness of the specimen (m)

 $d_r$  = average thickness of remaining glass layer (m)

m = mass of glass converted to alteration products per unit surface area (g m<sup>-2</sup>)

 $\rho$  = glass density (g m<sup>-3</sup>), assumed to be 2,650,000

The average rate of corrosion was calculated as  $r_a = m/t$ , where *t* is the corrosion time. Vienna et al. (2001) showed that if the average rate of corrosion at 200 °C is

$$r_a = m / t < 50 g m^{-2} d^{-1}$$
(2.4)

then the final rate of corrosion,  $r_a < 50 \text{ g m}^{-2} \text{ d}^{-1}$ , meets the current ORP requirement for LAW glass performance. Although the contract limit for VHT response is stated in rates (50 g m<sup>-2</sup> d<sup>-1</sup>), the test directly measures alteration depth (D) in µm at different times. In previous studies (Piepel et al. 2007; Muller et al. 2014), the directly measured parameter of D in µm after 24 days was modeled. This value can be converted to a rate by D (µm) ×10<sup>-6</sup> (m/µm) ×density (g/cm<sup>3</sup>) ×10<sup>6</sup> (cm<sup>3</sup>/m<sup>3</sup>) /t(d). Assuming a density of 2.65 g·cm<sup>-3</sup>, the limit of 50 g·m<sup>-2</sup>·d<sup>-1</sup> is equivalent to a D of 453 µm for a 24-day test duration. In the present study, the density was assumed to be 2.65 g·cm<sup>-3</sup>. The results are discussed in Section 3.8.

#### 2.11 Sulfur Solubility Procedure

Sulfur solubility was measured on the quenched glass samples. The procedure was developed by PNNL and is described in Jin et al. (2019). There are three primary steps of testing with each glass: 1) saturation with sodium sulfate, 2) washing with DI water, and 3) analysis of SO<sub>3</sub> in saturated glass. Each step is described below.

#### 2.11.1 Step 1: Saturation

Saturation with sodium sulfate was performed by taking 50 g of each glass, grinding it, and then sieving through a #120 sieve (125  $\mu$ m). Then, 7.64 g of Na<sub>2</sub>SO<sub>4</sub> per 100 g of glass was added to the sieved powdered glass to maintain 4 mass% SO<sub>3</sub> added to the glass/salt system, and the combination was mixed to achieve homogeneity. The mixture of baseline glass and Na<sub>2</sub>SO<sub>4</sub> was melted at 1150 °C for 1 hour in a Pt-10%Rh crucible with a tight-fitting lid. After melting, the mixture was poured onto a steel plate to quench. The mixture was again mixed by crushing and sieving through a #120 sieve (125  $\mu$ m) and placed back into the Pt-10%Rh crucible to melt at 1150 °C for 1 hour the second time. After the second melting, the mixture was quenched by pouring onto a steel plate, mixed by crushing and sieving, and melted under the same conditions for the third time. After three melting cycles, the glass was crushed and sieved through the #120 sieve (125  $\mu$ m).

#### 2.11.2 Step 2: Washing

After the third melt, a sample of the sieved glass was washed with DI water to remove excess salt prior to further analysis. This was done by adding 2 g of glass/salt mixture to a centrifuge filter in a centrifuge tube and adding 20 g of DI water to the tube. The tube was capped and shaken by hand for 2 minutes. Samples were placed in a balanced centrifuge that was set to 3175 rpm for 5 minutes. The solution was decanted into a bottle through a low-density polyethylene filter.

The filter was removed and then reinserted into the centrifuge tube. A second wash was performed following the same steps, and then the glass was weighed and dried at 80 °C overnight. To assure there was enough sample for analysis, a fresh 2 g of the same glass was obtained, and the procedure described above was repeated. The resulting solutions were combined as well as the dried powders after being homogenized together using a mortar and pestle.

#### 2.11.3 Step 3: Analysis

The washed and filtered glasses and the wash solutions recovered from filtering were then analyzed by ICP-OES and IC by Hsieh (2021b, 2022b). Blanks and standards were used intermittently to assess the performance of each of the instruments and procedures. Methods of measurement are listed in Table 2.6. The results are discussed in Section 3.9.

| Analyte | Measurement<br>Method | Preparation<br>Method | Analyte | Measurement Method | Preparation<br>Method |
|---------|-----------------------|-----------------------|---------|--------------------|-----------------------|
| Al      | ICP-OES               | LM                    | Na      | ICP-OES            | LM                    |
| В       | ICP-OES               | PF                    | Р       | ICP-OES            | LM                    |
| Ca      | ICP-OES               | LM                    | S       | ICP-OES            | LM                    |
| Cl      | IC                    | KH                    | Si      | ICP-OES            | PF                    |
| Cr      | ICP-OES               | LM                    | Sn      | ICP-OES            | LM                    |
| F       | IC                    | KH                    | Ti      | ICP-OES            | LM                    |
| Fe      | ICP-OES               | LM                    | V       | ICP-OES            | LM                    |
| K       | ICP-OES               | LM                    | Zn      | ICP-OES            | LM                    |
| Li      | ICP-OES               | PF                    | Zr      | ICP-OES            | LM                    |
| Mg      | ICP-OES               | LM                    |         |                    |                       |

Table 2.6. Measurement Methods Used in Reporting Glass and Wash Solutions Analytes Concentrations (Hsieh 2021b, 2022b)

### 3.0 Results and Discussion

This section describes the results for the chemical composition, CCC, CF,  $\rho$ ,  $\eta$ , EC, PCT, VHT, and sulfur solubility.

#### 3.1 Chemical Analysis of Glass Composition

The targeted and average of duplicate measured components in weight percent in the quenched glasses are presented in Appendix E along with the percent differences of components with targeted concentrations of 1 wt% or more. The composition analyses of the glass samples were performed as described in Section 2.3. All the measurements for each oxide in each glass were averaged to determine a representative chemical composition for each glass. Overall, the measured sums of oxides for all glasses fell within the interval of 95 to 102 wt%, indicating acceptable recovery of the glass components. The main observations based on chemical analyses are summarized below. For more details, see Hsieh (2021a, 2022a).

Differences in target vs. measured content close to the 10% threshold were attributed to experimental error. Glass samples LP5-12-1, LP5-15, LP5-17, and LP5-24 were rerun to confirm initial measurements. There were no significant changes in the measurements to indicate errors in preparation or analysis of the samples. Rerun measurements were not used in the averaging of oxides. The measured concentrations of SO<sub>3</sub> were below the targeted values, likely because of volatility during melting. At this point, the source of the Cl differences in samples LP5-15, LP5-17, and LP5-24 was not sought.

The following was observed in the LAW Phase 6 samples:

- Cl relative differences were above 10% for all study glasses except LAW-HPVR-04-1. The Cl relative differences for these glasses ranged from 62% to 3956%. The difference between measured and targeted composition values ranged from 0.03 to 1.42 wt%.
- K<sub>2</sub>O relative differences were 10% or greater for LAW-HPVR-03-1, LAW-HPVR-07, LAW-HPVR-11, LAW-HPVR-13, LAW-HPVR-15, LAW-HPVR-21, LAW-HPVR-22, and LAW-HPVR-25.
- Na2O relative differences were 10% or greater for LAW-HPVR-07, LAW-HPVR-25, and LAW-HPVR-26.
- ZrO<sub>2</sub> relative differences were 10% or greater for LAW-HPVR-02-1, LAW-HPVR-05, LAW-HPVR-09, LAW-HPVR-10, LAW-HPVR-11, LAW-HPVR-12, LAW-HPVR-13, LAW-HPVR-14, LAW-HPVR-15, LAW-HPVR-17, LAW-HPVR-18, LAW-HPVR-19, LAW-HPVR-21, and LAW-HPVR-23.

As for the LAW Phase 5 matrix, differences in target vs. measured content close to the 10% threshold were attributed to experimental error and the measured concentrations of SO<sub>3</sub> below target were attributed to volatility during melting. An investigation of the cause of the high Cl measured concentration in the LAW Phase 6 glasses revealed that the Zr source used for batching had up to 19.27 wt% of unexpected Cl. New target compositions were re-calculated by determining the correction factors for ZrO<sub>2</sub> and Cl based on the chemical composition of pure (desired) ZrO(NO<sub>3</sub>)<sub>2</sub>-2H<sub>2</sub>O and the real composition of the chemical used (analyzed by scanning electron microscopy / energy dispersive X-ray spectroscopy). Then the mass fractions ZrO<sub>2</sub> and Cl in the HPVR glass compositions on the affected glasses (i.e., all except for LAW-HPVR-3 and LAW-HPVR-4) were corrected and renormalized to 1 and are reported in Appendix B. Although there were high levels of Cl in the batched glasses, the results of the matrix were considered still useful as major component distributions still obtained target concentration ranges, including high predicted PCT and VHT responses, and only 25% of the Cl concentrations are above the current model

data set. The three LAW Phase 5 glasses with Cl in excess of target were also batched using the same vendor Zr source, but different lot number. This strongly suggest the same chemical problem with both lots of  $ZrO(NO_3)_2$ -2H<sub>2</sub>O used in this work.

#### 3.2 Crystal Identification in Container Centerline Cooling Glasses

The formation of crystals during the slow cooling of the molten LAW glass in the final containers might adversely affect glass durability by sequestering durability-enhancing chemicals (Kim et al. 1995). Property-composition models were developed by using quenched glass data; therefore, any differences in PCT and VHT responses upon slow cooling need to be evaluated.

Not all crystals affect glass durability the same way; the identification of crystalline phases that form during the CCC process is the first step in predicting glass durability. This section presents and discusses the CF results from the CCC glasses obtained using the methods discussed in Section 2.4. The effects of CCC on PCT and VHT are reported in Sections 3.7 and 3.8, respectively.

Of the 51 total LAW glasses, 10 LAW Phase 5 and 2 LAW Phase 6 HPVR glasses formed some crystals, with content ranging from traces (i.e., crystals were observed by optical microscope, but the quantity was not enough to be detectable by XRD) to ~ 62 wt%. The glasses that had traces of crystals were LP5-03, LP5-06-MOD1, LP5-11, LP5-14, and LAW-HPVR-14. The crystal content and weight percent of crystallinity from XRD scans of CCC glass samples that formed measurable crystals are summarized in Table 3.1.

The main crystalline phases observed were aluminum sodium silicates (Na<sub>8</sub>Al<sub>4</sub>Si<sub>4</sub>O<sub>18</sub>, Na<sub>1.55</sub>(Al<sub>1.55</sub>Si<sub>0.45</sub>O<sub>4</sub>), and Na<sub>1.52</sub>(Al<sub>1.45</sub>Si<sub>0.55</sub>O<sub>4</sub>),), combeite (Na<sub>2</sub>Ca<sub>2</sub>Si<sub>3</sub>O<sub>9</sub>), zirsinalite (Na<sub>6</sub>(Ca,Mn<sup>2+</sup>,Fe<sup>2+</sup>)Zr(Si<sub>6</sub>O<sub>18</sub>)), potassium magnesium silicate (K<sub>2</sub>Mg(SiO<sub>4</sub>), Fe<sub>2</sub>(B<sub>2</sub>O<sub>5</sub>), Na<sub>2</sub>(S<sub>2</sub>O<sub>5</sub>), KB<sub>3</sub>O<sub>5</sub>, zeolite rho ((Na,Cs)<sub>12</sub> (H<sub>2</sub>O)<sub>44</sub>| [Al<sub>12</sub>Si<sub>36</sub>O<sub>96</sub>]-RHO), SiO<sub>2</sub>. Minor phases were detected in quantities too small to be correctly identified by the XRD software. Appendix F provides photographs of each glass after CCC and XRD scans of the CCC glasses that had crystals after the cooling process.

Crystals that sequester GFCs, like Na-Ca-silicates and Na-Al-silicates, have the potential to affect glass durability as the precipitation of components improve chemical durability (e.g., SnO<sub>2</sub> and ZrO<sub>2</sub>) (Kim et al. 1995; Lonergan et al. 2021; Riley et al. 2001). The impacts of the other phases are less understood.

| Glass ID | LP5-02                                                          | LP5-04                 | LP5-09           | LP5-10                                                                     | LP5-12-1               | LP5-16-mod1                          | LAW-HPVR-25 |
|----------|-----------------------------------------------------------------|------------------------|------------------|----------------------------------------------------------------------------|------------------------|--------------------------------------|-------------|
| Phase 1  | Combeite                                                        | Combeite               | Na8Al4Si4O18     | Na8Al4Si4O18                                                               | Na1.55(Al1.55Si0.45O4) | Na1.75(Al1.75Si0.25O4)               | Combeite    |
| wt%      | 35.7                                                            | 39.4                   | 46.6             | 45.1                                                                       | 61.8                   | 32.6                                 | 19.4        |
| Phase 2  | Na <sub>8</sub> Al <sub>4</sub> Si <sub>4</sub> O <sub>18</sub> | $Na_8Al_4Si_4O_{18}\\$ | SiO <sub>2</sub> | K <sub>2</sub> Mg(SiO <sub>4</sub> )                                       | Lazurite               | Na1.52(Al1.45Si0.55O4)               |             |
| wt%      | 29.7                                                            | 20                     | 2.3              | 11                                                                         | 1                      | 18.8                                 |             |
| Phase 3  | SiO <sub>2</sub>                                                | $Na_2(S_2O_5)$         |                  | $Fe_2(B_2O_5)$                                                             |                        | Zirsinalite                          |             |
| wt%      | 1                                                               | 4.1                    |                  | 9.9                                                                        |                        | 18.7                                 |             |
| Phase 4  |                                                                 | SiO <sub>2</sub>       |                  | Zn1.9(Ti0.167Zr0.833)0.9<br>FeO <sub>0.2</sub> O <sub>4</sub>              |                        | K <sub>2</sub> Mg(SiO <sub>4</sub> ) |             |
| wt%      |                                                                 | 1.5                    |                  | 4.9                                                                        |                        | 4.4                                  |             |
| Phase 5  |                                                                 | $Si(P_2O_7)$           |                  | KB <sub>3</sub> O <sub>5</sub>                                             |                        |                                      |             |
| wt%      |                                                                 | 0.2                    |                  | 4.2                                                                        |                        |                                      |             |
| Phase 6  |                                                                 |                        |                  | zeolite rho                                                                |                        |                                      |             |
| wt%      |                                                                 |                        |                  | 3                                                                          |                        |                                      |             |
| Phase 7  |                                                                 |                        |                  | (Cs <sub>0.37</sub> K <sub>0.63</sub> )(B Si <sub>2</sub> O <sub>6</sub> ) |                        |                                      |             |
| wt%      |                                                                 |                        |                  | 2.5                                                                        |                        |                                      |             |
| Phase 8  |                                                                 |                        |                  | SiO <sub>2</sub>                                                           |                        |                                      |             |
| wt%      |                                                                 |                        |                  | 1.6                                                                        |                        |                                      |             |

Table 3.1. Primary and Secondary Crystalline Phases in LAW Phase 5 and LAW Phase 6 Glasses

#### 3.3 Crystal Fraction in Isothermal Heat Treatment

The study of crystalline phases and quantities in isothermal heat treatments was investigated in the LAW Phase 5 matrix only. Long idling of glass in the melter at low temperatures might promote crystal formation, impacting glass processability by settling in the melter clogging the pour sprout (Vienna et al. 2001). Also, if components added to glass to improve chemical durability (e.g., SnO<sub>2</sub> and ZrO<sub>2</sub>) precipitate from the glass, the durability is likely to be lower than predicted.

CF as a function of temperature was measured as described in Section 2.5 at 950 °C. The following main crystalline phases were identified by XRD analysis:  $Na_{1.55}$  ( $Al_{1.55}Si_{0.45}O_4$ ),  $Na_{0.558}Ti_2O_4$ ; and akermanite ( $Ca_2MgSi_2O_7$ ) (Table 3.2). Minor phases were detected and identified as cassiterite ( $SnO_2$ ), ( $Cs_{0.37}K_{0.63}$ ) ( $BSi_2O_6$ ),  $Zn_{1.9}(Ti_{0.167}Zr_{0.833})_{0.9}FeO_{0.2}O_4$ , and lazurite ( $Na_*Ca_{8}[(S,Cl_*SO_4,OH)_2|(Al_6Si_6O_{24})]$ ) (Table 3.2). However, the concentration was too small to allow an indisputable identification. Photographs of each glass after the 24 hours of heat treatment at 950 °C are provided in Appendix G.

Table 3.2. Crystalline Phases Recognized by XRD in LAW Phase 5 Glasses Heat Treated at 950 °C. Phases with wt% < 0.1 are not reported.

| Glass ID | LP5-10                                                                                                        | LP5-12-1                                                                   | LP5-16-MOD1 |
|----------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------|
| Phase 1  | $Na_{0.558}Ti_2O_4$                                                                                           | Na <sub>1.55</sub> (Al <sub>1.55</sub> Si <sub>0.45</sub> O <sub>4</sub> ) | Cassiterite |
| wt%      | 2.7                                                                                                           | 18.6                                                                       | 0.8         |
| Phase 2  | Akermanite                                                                                                    | Lazurite                                                                   |             |
| Wt%      | 1.2                                                                                                           | 0.1                                                                        |             |
| Phase 3  | $(Cs_{0.37}K_{0.63})(Bsi_2O_6)$                                                                               |                                                                            |             |
| wt%      | 0.6                                                                                                           |                                                                            |             |
| Phase 4  | Zn <sub>1.9</sub> (Ti <sub>0.167</sub> Zr <sub>0.833</sub> ) <sub>0.9</sub> FeO <sub>0.2</sub> O <sub>4</sub> |                                                                            |             |
| wt%      | 0.4                                                                                                           |                                                                            |             |

#### 3.4 Density

This section discusses the results of the LAW Phase 5 glass density measurements obtained using the methods discussed in Section 2.6. The results of the glass density measurements ranged from 2.53 to

2.74 g/cm<sup>3</sup> with an average of 2.62 g/cm<sup>3</sup> (Table 3.3). All density values are well below the contractual limit of  $3.7 \text{ g/cm}^3$ .

| Glass ID    | Measured Density (g/cm <sup>3</sup> ) | Glass ID    | Measured Density (g/cm <sup>3</sup> ) |
|-------------|---------------------------------------|-------------|---------------------------------------|
| LP5-01      | 2.64                                  | LP5-14      | 2.70                                  |
| LP5-02      | 2.71                                  | LP5-15      | 2.58                                  |
| LP5-03      | 2.67                                  | LP5-16-MOD1 | 2.75                                  |
| LP5-04      | 2.70                                  | LP5-17      | 2.79                                  |
| LP5-05-1    | 1.68                                  | LP5-18      | 2.62                                  |
| LP5-06-MOD1 | 2.64                                  | LP5-19      | 2.69                                  |
| LP5-07      | 2.53                                  | LP5-20      | 2.63                                  |
| LP5-08      | 2.62                                  | LP5-21      | 2.60                                  |
| LP5-09      | 2.69                                  | LP5-22      | 2.57                                  |
| LP5-10      | 2.74                                  | LP5-23      | 2.60                                  |
| LP5-11      | 2.67                                  | LP5-24      | 2.65                                  |
| LP5-12-1    | 2.64                                  | LP5-25      | 2.68                                  |
| LP5-13      | 2.62                                  |             |                                       |

Table 3.3. Measured Densities in the LAW Phase 5 Glasses

#### 3.5 Viscosity

This section presents and discusses the viscosity results obtained using the methods discussed in Section 2.7 on the LAW Phase 5 glasses. The results of the viscosity measurements are summarized in Table 3.4. The measured temperatures of LP5-01 to LP5-11 were slightly different from LP5-12 to LP5-25 due to an offset in the furnace set point. However, the range of temperatures from both sets of tests is adequate for viscosity model assessment. Appendix H shows results and plots for the viscosity vs. temperature data obtained.

| Target Temperature (°C)    | 1150   | 1050              | 950   | 1150   | 1250 <sup>(b)</sup> | 1150   |  |  |
|----------------------------|--------|-------------------|-------|--------|---------------------|--------|--|--|
| Glass ID                   |        | $\ln \eta$ (Pa·s) |       |        |                     |        |  |  |
| LP5-01 <sup>(a)</sup>      | -0.658 | 0.065             | 1.041 | -0.610 | -0.999              | -0.599 |  |  |
| LP5-02 <sup>(a)</sup>      | -0.575 | 0.193             | 1.175 | -0.552 | -0.946              | -0.567 |  |  |
| LP5-03 <sup>(a)</sup>      | -0.128 | 0.708             | 1.755 | -0.145 | -0.608              | -0.161 |  |  |
| LP5-04 <sup>(a)</sup>      | -0.621 | 0.079             | 0.983 | -0.662 | -1.085              | -0.667 |  |  |
| LP5-05 <sup>(a)</sup>      | -0.292 | 0.490             | 1.488 | -0.286 | -0.703              | -0.303 |  |  |
| LP5-06-MOD1 <sup>(a)</sup> | 1.133  | 2.040             | 3.190 | 1.164  | 0.662               | 1.162  |  |  |
| LP5-07 <sup>(a)</sup>      | 1.502  | 2.318             | 3.305 | 1.503  | 0.995               | 1.498  |  |  |
| LP5-08 <sup>(a)</sup>      | 1.193  | 1.994             | 3.039 | 1.207  | 0.773               | 1.211  |  |  |
| LP5-09 <sup>(a)</sup>      | 0.634  | 1.471             | 2.401 | 0.596  | 0.118               | 0.574  |  |  |
| LP5-10 <sup>(a)</sup>      | 0.443  | 1.323             | 2.281 | 0.401  | -0.112              | 0.372  |  |  |
| LP5-11 <sup>(a,)</sup>     | 0.450  | 1.195             | 2.126 | 0.485  | 0.030               | 0.502  |  |  |
| LP5-12-1                   | 1.954  | 3.063             | 4.521 | 1.980  | 1.327               | 1.940  |  |  |
| LP5-13                     | 0.020  | 0.808             | 1.711 | 0.004  | -0.467              | 0.031  |  |  |
| LP5-14                     | 0.873  | 1.884             | 3.170 | 0.885  | 0.288               | 0.879  |  |  |
| LP5-15                     | 1.620  | 2.611             | 3.850 | 1.626  | 0.988               | 1.649  |  |  |
| LP5-16-MOD1                | 0.535  | 1.565             | 2.913 | 0.559  | -0.087              | 0.537  |  |  |
| LP5-17                     | 0.404  | 1.445             | 2.783 | 0.403  | -0.151              | 0.378  |  |  |
| LP5-18                     | 0.757  | 1.563             | 2.688 | 0.738  | 0.308               | 0.745  |  |  |
| LP5-19                     | -0.209 | 0.639             | 1.736 | -0.188 | -0.697              | -0.205 |  |  |
| LP5-20                     | 0.304  | 1.196             | 2.353 | 0.326  | -0.184              | 0.323  |  |  |
| LP5-21                     | 0.017  | 0.806             | 1.839 | 0.025  | -0.441              | 0.010  |  |  |
| LP5-22                     | 1.263  | 2.146             | 3.326 | 1.270  | 0.805               | 1.258  |  |  |
| LP5-23                     | 1.526  | 2.423             | 3.554 | 1.495  | 1.022               | 1.486  |  |  |
| LP5-24                     | 1.660  | 2.818             | 3.995 | 1.620  | 1.076               | 1.617  |  |  |
| LP5-25                     | 1.493  | 2.450             | 3.708 | 1.512  | 1.061               | 1.478  |  |  |

| Table 3.4. | Measured $\eta$ (Pa·s) Values vs. Target Temperature (in the sequence of measurement) for the |
|------------|-----------------------------------------------------------------------------------------------|
|            | LAW Phase 5 Glasses                                                                           |

(a) Viscosity measurements were taken at the following temperatures: 1169 °C, 1074 °C, 979 °C, 1169 °C, 1226<sup>b</sup> °C, 1169 °C.

(b) The furnace set point was set at 1250 °C, however the furnace never reached the set point. Measured values range from 1203 °C to 1235 °C, see 5.0Appendix H.

Two model forms are used here to interpolate viscosity-temperature data for each waste glass. The first model form is the Arrhenius equation:

$$\ln(\eta) = A + \frac{B}{T_K} \tag{3.1}$$

where A and B are coefficients independent of temperature expressed in Kelvin ( $T_K = T(^{\circ}C) + 273.15$ ). The values for the A and B coefficients are reported in Table 3.5 for each glass.

The second model is the Vogel-Fulcher-Tammann (VFT) model:

$$\ln(\eta) = E + \frac{F}{T_k - T_0}$$
(3.2)

where E, F, and T<sub>0</sub> are temperature-independent coefficients and T<sub>K</sub> is the temperature in Kelvin (T(°C) + 273.15). This model can be used to estimate the effect of temperature on viscosity over a wide range of temperatures for silicate-based glasses. Therefore, this model also was applied to the data for each glass; the E, F, and T<sub>0</sub> coefficients for each glass are shown in Table 3.5. Furthermore, Table 3.5 summarizes the viscosity results at 1150 °C ( $\eta_{1150}$ ) calculated using both the Arrhenius and the VFT equations for these glasses.

At the melting temperature of 1150 °C, the optimal viscosity of LAW glass melts should be maintained between 2 and 8 Pa-s to avoid processing issues (Vienna et al. 2022). Thirteen out of 25 glasses had measured viscosity at 1150 °C below the optimum viscosity range (see Table 3.5).

|             | Arrhenius ( | Coefficients | ts VFT Coefficients |             |                    | Calculate η | 1150 (Pa-s) |
|-------------|-------------|--------------|---------------------|-------------|--------------------|-------------|-------------|
| -           | А           | В            | Е                   | F           |                    |             |             |
| Glass ID    | (ln Pa·s)   | (ln Pa-s·K)  | (ln Pa-s)           | (ln Pa-s K) | T <sub>0</sub> (K) | Arrhenius   | VFT         |
| LP5-01      | -11.34      | 15456        | -5.6202             | 3771.5      | 685.57             | 0.618       | 0.602       |
| LP5-02      | -11.80      | 16203        | -6.5623             | 5057.6      | 598.38             | 0.664       | 0.650       |
| LP5-03      | -12.35      | 17623        | -6.9147             | 5881.2      | 573.97             | 1.035       | 1.011       |
| LP5-04      | -11.25      | 15296        | -7.5686             | 6870.7      | 448.6              | 0.603       | 0.595       |
| LP5-05      | -11.87      | 16694        | -7.3493             | 6629.4      | 501.79             | 0.871       | 0.857       |
| LP5-06-MOD1 | -11.94      | 18893        | -5.6586             | 5612.8      | 617.76             | 3.811       | 3.708       |
| LP5-07      | -10.31      | 17038        | -7.9156             | 11104       | 262.37             | 5.248       | 5.209       |
| LP5-08      | -10.72      | 17190        | -5.7208             | 6245        | 538.88             | 3.896       | 3.825       |
| LP5-09      | -11.29      | 17153        | -12.83              | 21626       | -167.27            | 2.147       | 2.155       |
| LP5-10      | -12.04      | 17957        | -23.358             | 62846       | -1200.9            | 1.775       | 1.808       |
| LP5-11      | -10.22      | 15430        | -6.2211             | 6419.5      | 482.75             | 1.861       | 1.832       |
| LP5-12-1    | -13.29      | 21726        | -6.157              | 6759.4      | 590.13             | 7.210       | 7.080       |
| LP5-13      | -10.15      | 14501        | -7.4503             | 8121.1      | 337.19             | 1.035       | 1.028       |
| LP5-14      | -12.86      | 19562        | -7.5797             | 7933.5      | 485.09             | 2.433       | 2.405       |
| LP5-15      | -11.63      | 18893        | -6.6194             | 7788.6      | 479.26             | 5.189       | 5.115       |
| LP5-16-MOD1 | -13.40      | 19888        | -6.3413             | 5387.5      | 641.07             | 1.770       | 1.729       |
| LP5-17      | -14.00      | 20495        | -8.9233             | 9125.6      | 443.52             | 1.493       | 1.480       |
| LP5-18      | -10.89      | 16561        | -5.4568             | 5180.6      | 586.8              | 2.112       | 2.091       |
| LP5-19      | -11.79      | 16502        | -7.0046             | 6135        | 521.12             | 0.825       | 0.816       |
| LP5-20      | -11.79      | 17253        | -6.1808             | 5449.7      | 584.51             | 1.393       | 1.374       |
| LP5-21      | -10.85      | 15484        | -6.0932             | 5318.2      | 552.6              | 1.027       | 1.016       |
| LP5-22      | -10.85      | 17282        | -4.1461             | 3932.9      | 697.01             | 3.628       | 3.561       |
| LP5-23      | -10.77      | 17491        | -5.9945             | 7000.3      | 490.25             | 4.569       | 4.524       |
| LP5-24      | -12.87      | 20660        | -19.44              | 42064       | -570.76            | 5.206       | 5.240       |
| LP5-25      | -11.80      | 18927        | -5.9132             | 6430.2      | 554.73             | 4.481       | 4.443       |

Table 3.5. Fitted Coefficients of Arrhenius and VFT Models for Viscosity of the LAW Phase 5 Glasses

#### 3.6 Electrical Conductivity

This section presents and discusses the EC results obtained using the methods discussed in Section 2.8. Table 3.6 lists the  $\varepsilon$  vs. temperature data for each glass, and Appendix I shows plots for the  $\varepsilon$  vs. temperature data obtained from the EC testing. EC of some of the glasses (from LP5-01 to LP5-11, marked with asterisks in Table 3.6) was measured at slightly different temperatures from the target due to an offset in the furnace set point.

The Arrhenius model (Eq (3.2)) was used to describe temperature effects on  $\varepsilon$ . The values for the A and B coefficients obtained by fitting the equation to the  $\varepsilon$ -temperature data for each glass (using least squares regression) are shown in Table 3.7 along with the calculated  $\varepsilon$  at 1150 °C ( $\varepsilon_{1150}$ ). At the melting temperature of 1150 °C, the optimal  $\varepsilon$  should be between 0.1 and 0.7 S/cm to make sure that energy is

supplied by the power source without exceeding the current density limits of the power system at nominal throughput (Vienna et al. 2022). Average measured  $\varepsilon_{1150}$  was in the optimum range for 10 glasses, and above it for the reminder, with the maximum value being 1.53 S/cm (Table 3.6).

| Target T, °C               | 950  | 950  | 1050  | 1050          | 1150              | 1150  | 1200 <sup>(b)</sup> | 1200  |
|----------------------------|------|------|-------|---------------|-------------------|-------|---------------------|-------|
| Glass ID                   |      |      |       | Electrical Co | onductivity (S/m) | )     |                     |       |
| LP5-01 <sup>(a)</sup>      | 35.9 | 43.2 | 96.9  | 84.1          | N/A               | 98.3  | 135.8               | 135.7 |
| LP5-02 <sup>a)</sup>       | 86.2 | 86.0 | 119.8 | 119.6         | 152.7             | 152.6 | N/A                 | 166.7 |
| LP5-03 <sup>(a)</sup>      | 52.7 | 52.6 | 72.7  | 72.6          | 93.6              | 93.2  | N/A                 | 103.5 |
| LP5-04 <sup>(a)</sup>      | 63.2 | 63.0 | 89.4  | 89.6          | 118.7             | 118.6 | 133.3               | 133.7 |
| LP5-05 <sup>(a)</sup>      | 40.2 | 32.9 | 39.9  | 42.6          | 50.0              | 80.2  | N/A                 | 85.1  |
| LP5-06-MOD1 <sup>(a)</sup> | 59.3 | 59.2 | 83.7  | 83.4          | N/A               | 109.3 | N/A                 | 122.0 |
| LP5-07 <sup>(a)</sup>      | 59.3 | 59.0 | 79.0  | 78.9          | 97.7              | 97.7  | N/A                 | 106.3 |
| LP5-08 <sup>(a)</sup>      | 77.7 | 77.5 | 104.9 | 104.8         | 132.6             | 132.5 | 141.2               | 146.9 |
| LP5-09 <sup>(a)</sup>      | 66.5 | 66.4 | 89.3  | 89.2          | 111.1             | 111.2 | 121.3               | 109.3 |
| LP5-10 <sup>(a)</sup>      | 83.9 | 82.5 | 115.6 | 114.5         | 146.5             | 146.9 | 161.9               | 139.9 |
| LP5-11 <sup>(a)</sup>      | 49.4 | 66.2 | 83.8  | 83.2          | 120.4             | 108.2 | 129.2               | 127.0 |
| LP5-12-1                   | 22.8 | 23.0 | 31.1  | 30.9          | 46.5              | 66.6  | 80.2                | 74.9  |
| LP5-13                     | 47.1 | 42.5 | 91.0  | 53.8          | 115.6             | 111.8 | 127.2               | 142.9 |
| LP5-14                     | 30.3 | 29.7 | 35.4  | 42.5          | 43.2              | 72.1  | 96.2                | 96.8  |
| LP5-15                     | 29.4 | 29.7 | 40.9  | 40.8          | 62.2              | 59.0  | N/A                 | 110.5 |
| LP5-16-MOD1                | 44.6 | 44.3 | 37.2  | 43.4          | 48.6              | 73.3  | 82.5                | 88.8  |
| LP5-17                     | 38.0 | 37.6 | 62.8  | 62.4          | 87.5              | 87.7  | 100.8               | 101.1 |
| LP5-18                     | 54.6 | 61.9 | 72.5  | 72.8          | 105.5             | 105.0 | 115.1               | 115.4 |
| LP5-19                     | 51.6 | 39.6 | 77.7  | 75.7          | 105.8             | 103.3 | 120.2               | 119.2 |
| LP5-20                     | 46.2 | 40.6 | 53.2  | 62.4          | 49.5              | 75.0  | 91.2                | 90.9  |
| LP5-21                     | 51.3 | 53.5 | 79.0  | 78.7          | 102.7             | 103.5 | 104.2               | 103.3 |
| LP5-22                     | 53.5 | 53.2 | 56.5  | 54.8          | 90.8              | 89.5  | 114.6               | 101.6 |
| LP5-23                     | 44.7 | 44.4 | 47.8  | 60.9          | 85.1              | 85.2  | 94.1                | 94.1  |
| LP5-24                     | 22.9 | 20.6 | 64.5  | 32.8          | 82.0              | 86.1  | 97.9                | 87.9  |
| LP5-25                     | 12.1 | 12.0 | 18.8  | 21.1          | 25.7              | 28.4  | N/A                 | 48.3  |

Table 3.6. Measured Electrical Conductivity (S/m) Values vs. Target Temperatures for the LAW Phase 5 Glasses

(a) The temperatures at which EC was measured for this glass were 979 °C, 979 °C, 1074 °C, 1074 °C, 1169 °C, 1169 °C, 1216 °C, 1216 °C. See Appendix I for more details.

(b) Some oscillations were observed around the 1200 °C setpoint. For detailed values at which the EC measurement was taken, see Appendix I.

|             | Ambaning      | Calculated       |                            |
|-------------|---------------|------------------|----------------------------|
|             | Armenius      |                  | Calculated                 |
| Glass ID    | A, $\ln[S/m]$ | B, $\ln[S/m]$ -K | $\varepsilon_{1150}$ (S/m) |
| LP5-01      | 11.09         | -9156.2          | 105.24                     |
| LP5-02      | 8.70          | -5300            | 144.89                     |
| LP5-03      | 8.26          | -5369.7          | 88.81                      |
| LP5-04      | 8.87          | -5908.1          | 112.00                     |
| LP5-05      | 8.45          | -6181.7          | 60.67                      |
| LP5-06-MOD1 | 8.67          | -5733.7          | 103.52                     |
| LP5-07      | 7.82          | -4670.2          | 93.49                      |
| LP5-08      | 8.28          | -4901.2          | 125.50                     |
| LP5-09      | 7.77          | -4444.5          | 103.77                     |
| LP5-10      | 8.30          | -4822.5          | 135.29                     |
| LP5-11      | 9.16          | -6395.6          | 106.46                     |
| LP5-12-1    | 10.21         | -8772.1          | 57.35                      |
| LP5-13      | 10.39         | -8083.2          | 111.30                     |
| LP5-14      | 9.62          | -7719.6          | 66.10                      |
| LP5-15      | 9.82          | -7965.4          | 68.52                      |
| LP5-16-MOD1 | 7.35          | -4529.7          | 64.70                      |
| LP5-17      | 9.44          | -7071.3          | 87.25                      |
| LP5-18      | 8.23          | -5134.2          | 101.81                     |
| LP5-19      | 9.55          | -6979.1          | 104.38                     |
| LP5-20      | 7.48          | -4562            | 71.89                      |
| LP5-21      | 8.19          | -5124.7          | 98.04                      |
| LP5-22      | 8.21          | -5296            | 88.73                      |
| LP5-23      | 8.40          | -5689.4          | 81.32                      |
| LP5-24      | 11.93         | -10784           | 77.90                      |
| LP5-25      | 9.41          | -8494.4          | 31.18                      |

Table 3.7. Fitted Coefficients of Arrhenius Model for  $\varepsilon_{1150}$  of the LAW Phase 5 Glasses

#### 3.7 Product Consistency Test

Both LAW Phase 5 and LAW Phase 6 PCTs were performed at PNNL; LAW Phase 5 PCT leachates were analyzed at SRNL (Hsieh 2021c) or at PNNL, whereas LAW Phase 6 leachates were analyzed only at SRNL (Hsieh 2021d).

The average normalized PCT loss (NLs) for B, Na, and Si for Q and CCC glass of the two matrices are reported in Table 3.8 to Table 3.11. Values marked with asterisks were corrected to take into account the Na and/or Si concentration in the blanks. Per the WTP contract (DOE 2000), these values must be below  $2.0 \text{ g/m}^2$ . Most of the glasses, both CCC and Q versions, from both matrices exceeded the WTP 2 g/m<sup>2</sup> constraints. Only 7 of the 23 LAW Phase 5 quenched glasses passed the NL<sub>B</sub> and NL<sub>Na</sub> constraints and only two of the CCC glasses passed the NL<sub>B</sub> constraints and five passed the NL<sub>Na</sub> constraint. Fifteen LAW Phase 5 glasses, both Q and CCC, passed the NL<sub>Si</sub> constraint. Similarly, 10 Q and 14 CCC LAW Phase 6 glasses passed the NL<sub>B</sub> constraint. Finally, most Q and CCC LAW Phase 6 passed the NL<sub>Si</sub> constraint.

| Glass ID               | $NL_B \left(g/m^2\right)$ | $NL_{Na} \left(g/m^2\right)$ | $NL_{Si}$ (g/m <sup>2</sup> ) |
|------------------------|---------------------------|------------------------------|-------------------------------|
| LP5-01-Q               | 46.0                      | 35.3 <sup>(a)</sup>          | 8.19 <sup>(a)</sup>           |
| LP5-02-Q               | 0.939                     | 1.92 <sup>(a)</sup>          | 0.32 <sup>(a)</sup>           |
| LP5-03-Q               | 10.6                      | 8.83 <sup>(a)</sup>          | 1.05 <sup>(a)</sup>           |
| LP5-04-Q               | 0.126                     | 1.23 <sup>(a)</sup>          | 0.11 <sup>(a)</sup>           |
| LP5-05-Q               | 8.96                      | 7.38 <sup>(a)</sup>          | 1.46 <sup>(a)</sup>           |
| LP5-06-mod1-Q          | 0.862                     | 0.87                         | 0.2 <sup>(a)</sup>            |
| LP5-07-Q               | 1.96                      | 1.62 <sup>(a)</sup>          | 0.32 <sup>(a)</sup>           |
| LP5-08-Q               | 2.34                      | 2.06 <sup>(a)</sup>          | 0.37 <sup>(a)</sup>           |
| LP5-09-Q               | 1.01                      | 1.66 <sup>(a)</sup>          | 0.45 <sup>(a)</sup>           |
| LP5-10-Q               | 13.6                      | 9.94 <sup>(a)</sup>          | 2.01 <sup>(a)</sup>           |
| LP5-11-Q               | 15.1                      | 11.18 <sup>(a)</sup>         | 2.17 <sup>(a)</sup>           |
| LP5-12-1-Q             | 0.586                     | 0.69 <sup>(a)</sup>          | 0.19 <sup>(a)</sup>           |
| LP5-13-Q               | 43.8                      | 33.5                         | 4.78                          |
| LP5-14-Q               | 8.08                      | 5.69 <sup>(a)</sup>          | 1.37 <sup>(a)</sup>           |
| LP5-15-Q               | 2.83                      | 2.08                         | 0.28                          |
| LP5-16-mod1-Q          | 3.92                      | 3.54                         | 0.6 <sup>(a)</sup>            |
| LP5-17-Q               | 7.70                      | 6.10                         | 1.02                          |
| LP5-18-Q               | 16.7                      | 12.6                         | 2.30                          |
| LP5-19-Q               | 13.2                      | 11.4                         | 2.15                          |
| LP5-20-Q               | 27.9                      | 20.7                         | 3.96                          |
| LP5-21-Q               | 10.5                      | 8.6 <sup>(a)</sup>           | 1.29 <sup>(a)</sup>           |
| LP5-22-Q               | 25.2                      | 19.9 <sup>(a)</sup>          | 5.37 <sup>(a)</sup>           |
| LP5-23-Q               | 0.538                     | 1.41 <sup>(a)</sup>          | 0.37 <sup>(a)</sup>           |
| LP5-24-Q               | 0.51                      | 0.53 <sup>(a)</sup>          | 0.15 <sup>(a)</sup>           |
| LP5-25-Q               | 0.38                      | 0.44 <sup>(a)</sup>          | 0.16 <sup>(a)</sup>           |
| (a) NL after blank con | rection                   |                              |                               |

 Table 3.8.
 Average Normalized PCT Loss (NLs) for the LAW Phase 5 Glasses. Missing values were below the analytical laboratory detection limit.

| Glass ID        | $NL_B (g/m^2)$ | $NL_{Na} \left(g/m^2\right)$ | $NL_{Si}$ (g/m <sup>2</sup> ) |
|-----------------|----------------|------------------------------|-------------------------------|
| LP5-01-CCC      | 42.8           | 32.2                         | 7.44                          |
| LP5-02-CCC      | 27.9           | 17.9                         | 0.99                          |
| LP5-03-CCC      | 10.1           | 8.73                         | 1.11                          |
| LP5-04-CCC      | 3.12           | 6.16                         | 0.96                          |
| LP5-05-CCC      | 9.67           | 8.03                         | 1.58                          |
| LP5-06-mod1-CCC | 1.11           | 1.05                         | 0.257                         |
| LP5-07-CCC      | 2.46           | 1.74                         | 0.383                         |
| LP5-08-CCC      | 2.16           | 1.98                         | 0.412                         |
| LP5-09-CCC      | 39.5           | 22.4                         | 4.16                          |
| LP5-10-CCC      | 47.0           | 24.5                         | 6.56                          |
| LP5-11-CCC      | 15.4           | 11.2                         | 2.35                          |
| LP5-12-1-CCC    | 4.02           | 2.12                         | 0.293                         |
| LP5-13-CCC      | 46.1           | 33.6                         | 4.83                          |
| LP5-14-CCC      | 4.56           | 3.63                         | 1.01                          |
| LP5-15-CCC      | 2.24           | 1.76                         | 0.251                         |
| LP5-16-mod1-CCC | 19.0           | 10.50                        | 0.561                         |
| LP5-17-CCC      | 6.49           | 5.46                         | 0.933                         |
| LP5-18-CCC      | 15.9           | 11.6                         | 2.28                          |
| LP5-19-CCC      | 12.6           | 10.9                         | 1.87                          |
| LP5-20-CCC      | 29.1           | 20.4                         | 3.97                          |
| LP5-21-CCC      | 11.6           | 9.82                         | 1.47                          |
| LP5-22-CCC      | 23.9           | 18.4                         | 5.26                          |
| LP5-23-CCC      | 0.511          | 1.37                         | 0.387                         |

Table 3.9. Average Normalized PCT Loss (NLs) for CCC LAW Phase 5 Glasses

Table 3.10. Average Normalized PCT Loss (NLs) for Q LAW Phase 6 Glasses

| Glass ID                      | $NL_B (g/m^2)$ | $NL_{Na} \left(g/m^2\right)$ | $NL_{Si} \left(g/m^2\right)$ |  |
|-------------------------------|----------------|------------------------------|------------------------------|--|
| LAW-HPVR-01-1-Q               | 7.60           | 6.15                         | 1.33                         |  |
| LAW-HPVR-02-1-Q               | 3.95           | 3.72                         | 0.75                         |  |
| LAW-HPVR-03-1-Q               | 0.61           | 0.73                         | 0.17                         |  |
| LAW-HPVR-04-1-Q               | 6.90           | 5.50                         | 1.96                         |  |
| LAW-HPVR-05-Q                 | 6.80           | 5.05                         | 1.62                         |  |
| LAW-HPVR-06-Q                 | 1.79           | 2.08 <sup>(a)</sup>          | 0.55 <sup>(a)</sup>          |  |
| LAW-HPVR-07-Q                 | 2.24           | 2.60 <sup>(a)</sup>          | 0.65 <sup>(a)</sup>          |  |
| LAW-HPVR-08-Q                 | 1.02           | 1.00 <sup>(a)</sup>          | 0.19 <sup>(a)</sup>          |  |
| LAW-HPVR-09-Q                 | 12.85          | 10.69 <sup>(a)</sup>         | 2.38 <sup>(a)</sup>          |  |
| LAW-HPVR-10-Q                 | 9.10           | 8.76 <sup>(a)</sup>          | 2.10 <sup>(a)</sup>          |  |
| LAW-HPVR-11-Q                 | 7.20           | 5.60                         | 1.07                         |  |
| LAW-HPVR-12-Q                 | 1.06           | 1.51                         | 0.56                         |  |
| LAW-HPVR-13-Q                 | 2.34           | 2.10                         | 0.77                         |  |
| LAW-HPVR-14-Q                 | 2.11           | 2.11                         | 0.52                         |  |
| LAW-HPVR-15-Q                 | 3.25           | 2.87                         | 1.01                         |  |
| LAW-HPVR-16-Q                 | 1.75           | 3.01 <sup>(a)</sup>          | 0.31                         |  |
| LAW-HPVR-17-Q                 | 0.72           | 1.74 <sup>(a)</sup>          | 0.20                         |  |
| LAW-HPVR-18-Q                 | 4.62           | 9.02 <sup>(a)</sup>          | 0.89                         |  |
| LAW-HPVR-19-Q                 | 0.85           | 2.46 <sup>(a)</sup>          | 0.43                         |  |
| LAW-HPVR-20-Q                 | 26.40          | 46.38 <sup>(a)</sup>         | 5.15                         |  |
| LAW-HPVR-21-Q                 | 2.02           | 1.85                         | 0.25                         |  |
| LAW-HPVR-22-Q                 | 0.88           | 1.10                         | 0.30                         |  |
| LAW-HPVR-23-Q                 | 1.68           | 1.79                         | 0.55                         |  |
| LAW-HPVR-24-Q                 | 6.65           | 5.85                         | 1.63                         |  |
| LAW-HPVR-25-Q                 | 2.75           | 2.87                         | 0.91                         |  |
| LAW-HPVR-26-Q                 | 1.06           | 1.02                         | 0.20                         |  |
| (a) NL after blank correction |                |                              |                              |  |
| Glass ID                      | $NL_B \left(g/m^2\right)$ | $NL_{Na}\left(g/m^2 ight)$ | $NL_{Si}$ (g/m <sup>2</sup> ) |
|-------------------------------|---------------------------|----------------------------|-------------------------------|
| LAW-HPVR-01-1-CCC             | 7.15                      | 6.04 <sup>(a)</sup>        | 1.29                          |
| LAW-HPVR-02-1-CCC             | 4.55                      | 4.39 <sup>(a)</sup>        | 0.81                          |
| LAW-HPVR-03-1-CCC             | 0.57                      | 0.71 <sup>(a)</sup>        | 0.17                          |
| LAW-HPVR-04-1-CCC             | 5.05                      | 4.59 <sup>(a)</sup>        | 1.57                          |
| LAW-HPVR-05-CCC               | 4.54                      | 3.54 <sup>(a)</sup>        | 1.23                          |
| LAW-HPVR-06-CCC               | 1.29                      | 1.45                       | 0.43                          |
| LAW-HPVR-07-CCC               | 1.58                      | 1.68                       | 0.51                          |
| LAW-HPVR-08-CCC               | 0.86                      | 0.80                       | 0.16                          |
| LAW-HPVR-09-CCC               | 10.95                     | 8.60                       | 2.27                          |
| LAW-HPVR-10-CCC               | 6.45                      | 5.80                       | 1.71                          |
| LAW-HPVR-11-CCC               | 5.80                      | 4.69                       | 0.95                          |
| LAW-HPVR-12-CCC               | 0.94                      | 1.38                       | 0.51                          |
| LAW-HPVR-13-CCC               | 1.85                      | 1.75                       | 0.66                          |
| LAW-HPVR-14-CCC               | 1.85                      | 2.03                       | 0.48                          |
| LAW-HPVR-15-CCC               | 2.55                      | 2.33                       | 0.85                          |
| LAW-HPVR-16-CCC               | 1.19                      | 1.10                       | 0.23                          |
| LAW-HPVR-17-CCC               | 0.68                      | 0.80                       | 0.18                          |
| LAW-HPVR-18-CCC               | 3.53                      | 3.39                       | 0.73                          |
| LAW-HPVR-19-CCC               | 0.77                      | 1.12                       | 0.39                          |
| LAW-HPVR-20-CCC               | 18.20                     | 14.83 <sup>(a)</sup>       | 3.86                          |
| LAW-HPVR-21-CCC               | 1.66                      | 3.05 <sup>(a)</sup>        | 0.23                          |
| LAW-HPVR-22-CCC               | 0.86                      | 2.10 <sup>(a)</sup>        | 0.30                          |
| LAW-HPVR-23-CCC               | 1.24                      | 1.39                       | 0.44                          |
| LAW-HPVR-24-CCC               | 4.37                      | 8.07 <sup>(a)</sup>        | 1.29                          |
| LAW-HPVR-25-CCC               | 6.10                      | 18.31 <sup>(a)</sup>       | 0.76                          |
| LAW-HPVR-26-CCC               | 1.32                      | 1.11 <sup>(a)</sup>        | 0.25                          |
| (a) NL after blank correction |                           |                            |                               |

Table 3.11. Average Normalized PCT Loss (NLs) for CCC LAW Phase 6 Glasses

To determine if the difference between quenched and CCC heat treated glasses was within experimental error, the following hypothesis was tested (Rieck 2018):

$$p_Q - p_C = 0 \tag{3.3}$$

where  $p_Q$  and  $p_C$  are the true but unknown values of quenched and the CCC lnNR<sub>B</sub> or lnNR<sub>Na</sub>.

To test this hypothesis, we considered  $p_c^{\hat{}} - p_Q^{\hat{}} \pm k \cdot SD(p_c^{\hat{}} - p_Q^{\hat{}})$  to see if:

$$0 \epsilon \left( p_c^{\hat{}} - p_Q^{\hat{}} - k \cdot SD(p_c^{\hat{}} - p_Q^{\hat{}}), p_c^{\hat{}} - p_Q^{\hat{}} + k \cdot SD(p_c^{\hat{}} - p_Q^{\hat{}}) \right)$$
(3.4)

where  $p_Q^{\uparrow}$  and  $p_c^{\uparrow}$  are the measured values of the quenched and the CCC lnNR<sub>B</sub> or lnNR<sub>Na</sub>, k is a multiplying factor based on the assumed normal distribution of  $p_C^{\uparrow} - p_Q^{\uparrow}$  and intended confidence level for the test (in the present study set at 95%), and  $SD(p_C^{\uparrow} - p_Q^{\uparrow})$  is the estimated standard deviation of  $p_c^{\uparrow} - p_Q^{\uparrow}$ . Assuming  $SD(p_C^{\uparrow}) = SD(p_Q^{\uparrow}) = SD$ , then:

$$p_{c}^{\hat{}} - p_{0}^{\hat{}} \pm kSD(p_{c}^{\hat{}} - p_{0}^{\hat{}}) = p_{c}^{\hat{}} - p_{0}^{\hat{}} \pm k\sqrt{2}SD$$
(3.5)

That is, the measured property of CCC glass is considered the same as that of quenched glass within the experimental error if the following condition is satisfied:

$$p_{Q}^{\hat{}}\epsilon\left(p_{c}^{\hat{}}-k\sqrt{2}\ SD,p_{c}^{\hat{}}+k\sqrt{2}\ SD\right)$$

$$(3.6)$$

Most of the LAW Phase 5 glasses satisfied the above condition for NL<sub>B</sub> except for six, LP5-02, LP5-04, LP5-09, LP5-10, LP5-12-1, LP5-16mod1, and seven for NL<sub>Na</sub> (Figure 3.1).

All of the LAW Phase 6 glasses satisfied the above condition for  $NL_B$  except for one, LAW-HPVR-25, and the impact of CCC heat treatment appeared to be within the experimental uncertainty in normalized concentration values as shown in Figure 3.2. Seven glasses were significantly impacted in the  $NL_{Na}$  after CCC: LAW-HPVR-16, LAW-HPVR-17, LAW-HPVR-18, LAW-HPVR-19, LAW-HPVR-20, LAW-HPVR-22, and LAW-HPVR-25 (Figure 3.2). Glass LAW-HPVR-25 had measurable (by XRD) CF after CCC, represented as a colored rhombus (the color follows the plot legend, blue for  $NL_{Na}$  and red for  $NL_B$ ) in Figure 3.2; the rest of the glasses that resulted in  $NL_{Na}$  significantly affected by CCC are represented in blue triangle.

The deterioration of the PCT response in LAW-HPVR-25 is expected since after CCC this glass formed  $\sim$ 19 wt% of combeite (Na<sub>2</sub>Ca<sub>2</sub>Si<sub>3</sub>O<sub>9</sub>), a crystal that tends to remove glass-forming constituents from the glass matrix, thus increasing PCT response (Kim et al. 1995; Lonergan et al. 2021; Riley et al. 2001).



Figure 3.1. Normalized NL<sub>B</sub> and NL<sub>Na</sub> Release in Natural Logarithm Scale of Quenched vs. CCC LAW Phase 5 Glasses



Figure 3.2. Normalized NL<sub>B</sub> and NL<sub>Na</sub> Release in Natural Logarithm Scale of Quenched vs. CCC LAW Phase 6 Glasses. Blue and orange rhombus represent glass LAW-HPVR-25, the only glass with measurable (by XRD) crystal fraction after CCC, NL<sub>B</sub> and NL<sub>Na</sub>. The triangle represents the NL<sub>Na</sub> significantly affected by CCC.

### 3.8 Vapor Hydration Test

LAW Phase 5 VHT results reported pH above 10, suggesting that reflux occurred during the test. VHT are currently being rerun and will be presented in future revision of the current report.

VHT alteration rates for the 26 LAW Phase 6 glasses varied from 0.98 to 244.67 g·m<sup>-2</sup>·d<sup>-1</sup> for the quenched glasses and from 0.83 to 262.2 g·m<sup>-2</sup>·d<sup>-1</sup> for the CCC glasses. Only two quenched glasses (LAWHPVR-11 and -19) and six CCC glasses (LAW-HPVR-06, -10,-12, -17-19, and -20) exceeded the WTP contract limit (Table 3.12). In accordance with the WTP contract, the alteration rates ( $r_a$ ) of LAW glasses subjected to  $\geq$ 7-day VHT shall be less than 50 g/m<sup>2</sup>/d (DOE 2000).

|                         |                             | Quenche                                                         | d                   |                             | CCC                                                    |                        |
|-------------------------|-----------------------------|-----------------------------------------------------------------|---------------------|-----------------------------|--------------------------------------------------------|------------------------|
| Glass ID                | Alteration<br>depth<br>(µm) | Alteration<br>rate ( $r_a$ ,<br>$g \cdot m^{-2} \cdot d^{-1}$ ) | Passed/Failed (0/1) | Alteration<br>depth<br>(µm) | Alteration<br>rate $(g \cdot m^{-1})^{2} \cdot d^{-1}$ | Passed/Failed<br>(0/1) |
| LAW-HPVR-01-1           | 91.35                       | 10.09                                                           | 0                   | 70.33                       | 7.77                                                   | 0                      |
| LAW-HPVR-02-1           | 147.20                      | 16.25                                                           | 0                   | 92.83                       | 10.25                                                  | 0                      |
| LAW-HPVR-03-1           | 133.75                      | 14.77                                                           | 0                   | 107.35                      | 11.85                                                  | 0                      |
| LAW-HPVR-04-1           | 366.79                      | 40.50                                                           | 0                   | 296.39                      | 32.73                                                  | 0                      |
| LAW-HPVR-05             | 120.90                      | 13.35                                                           | 0                   | 131.35                      | 14.50                                                  | 0                      |
| LAW-HPVR-06             | 414.20                      | 45.73                                                           | 0                   | 471.07                      | 52.01                                                  | 1                      |
| LAW-HPVR-07             | 363.00                      | 40.08                                                           | 0                   | 7.50                        | 0.83                                                   | 0                      |
| LAW-HPVR-08             | 113.95                      | 12.58                                                           | 0                   | 142.21                      | 15.70                                                  | 0                      |
| LAW-HPVR-09             | 373.15                      | 41.20                                                           | 0                   | 301.46                      | 33.29                                                  | 0                      |
| LAW-HPVR-10             | 450.20                      | 49.71                                                           | 0                   | 463.75 <sup>(a)</sup>       | 175.56                                                 | 1                      |
| LAW-HPVR-11             | 697.75                      | 77.04                                                           | 1                   | 30.71                       | 3.39                                                   | 0                      |
| LAW-HPVR-12             | N/A                         | N/A                                                             | N/A                 | 684.17                      | 75.54                                                  | 1                      |
| LAW-HPVR-13             | 290.15                      | 32.04                                                           | 0                   | 217.83                      | 24.05                                                  | 0                      |
| LAW-HPVR-14             | 42.50                       | 4.69                                                            | 0                   | 151.04                      | 16.68                                                  | 0                      |
| LAW-HPVR-15             | 312.80                      | 34.54                                                           | 0                   | 187.20                      | 20.67                                                  | 0                      |
| LAW-HPVR-16             | 8.85                        | 0.98                                                            | 0                   | 8.08                        | 0.89                                                   | 0                      |
| LAW-HPVR-17             | 115.60 <sup>(a)</sup>       | 43.76 <sup>(a)</sup>                                            | 0                   | 532.00                      | 58.74                                                  | 1                      |
| LAW-HPVR-18             | 33.35                       | 3.68                                                            | 0                   | 136.13                      | 15.03                                                  | 0                      |
| LAW-HPVR-19             | 646.30 <sup>(a)</sup>       | 244.67 <sup>(a)</sup>                                           | 1                   | 503.35 <sup>(a)</sup>       | 190.55                                                 | 1                      |
| LAW-HPVR-20             | 419.15                      | 46.28                                                           | 0                   | 692.61 <sup>(a)</sup>       | 262.20                                                 | 1                      |
| LAW-HPVR-21             | 341.08                      | 37.66                                                           | 0                   | 276.70                      | 30.55                                                  | 0                      |
| LAW-HPVR-22             | 105.65                      | 11.67                                                           | 0                   | 122.75                      | 13.55                                                  | 0                      |
| LAW-HPVR-23             | 192.75                      | 21.28                                                           | 0                   | 398.75                      | 44.03                                                  | 0                      |
| LAW-HPVR-24             | 413.65                      | 45.67                                                           | 0                   | 68.80 <sup>(a)</sup>        | 26.05                                                  | 0                      |
| LAW-HPVR-25             | 18.00 <sup>(a)</sup>        | 6.81 <sup>(a)</sup>                                             | 0                   | 85.57                       | 9.45                                                   | 0                      |
| LAW-HPVR-26             | 317.35                      | 35.04                                                           | 0                   | 270.60                      | 29.88                                                  | 0                      |
| (a) Values of the 24 da | vs test extrap              | olated by th                                                    | e post 7 davs m     | easurements                 | 5.                                                     |                        |

Table 3.12.Alteration Depth and Rate for Quenched and CCC of the LAW Phase 6 Q and CCC Glasses<br/>after 24 Day VHT

### 3.9 Sulfur Solubility

Melter SO<sub>3</sub> tolerance is the feed SO<sub>3</sub> concentration above which a salt phase accumulates in the melter. The melter SO<sub>3</sub> tolerance at the processing temperature of 1150 °C must exceed the weight percent of SO<sub>3</sub> in the feed to avoid risk of excessive corrosion of melter construction materials and increased radionuclide volatility (Vienna et al. 2014; Muller et al. 2015).

There is a good correlation between the melter SO<sub>3</sub> tolerance and SO<sub>3</sub> solubility (i.e., the saturated SO<sub>3</sub> concentrations) at 1150 °C (Jin et al. 2019; Skidmore et al. 2019). Hence, SO<sub>3</sub> solubility data developed primarily from crucible scale tests can be used to predict the melter SO<sub>3</sub> tolerance that can only be obtained from costly melter tests.

Sulfur solubility of each glass was determined experimentally by measuring SO<sub>3</sub> retention after  $3 \times$  saturation (see Section 2.11 for procedure). Results are reported in Table 3.13. For more details, see Hsieh (2021b, 2022b). The 3TS values range from 0.862 to 3.13 wt% SO<sub>3</sub>.

| Glass ID    | SO <sub>3</sub> (wt%) | Glass ID      | SO <sub>3</sub> (wt%) |
|-------------|-----------------------|---------------|-----------------------|
| LP5-01      | 3.13                  | LAW-HPVR-01-1 | 1.9                   |
| LP5-02      | 1.69                  | LAW-HPVR-02-1 | 1.9                   |
| LP5-03      | 1.82                  | LAW-HPVR-03-1 | 1.58                  |
| LP5-04      | 2.01                  | LAW-HPVR-04-1 | 2.4                   |
| LP5-05      | 1.99                  | LAW-HPVR-05   | 1.9                   |
| LP5-06-MOD1 | 1.24                  | LAW-HPVR-06   | 1.93                  |
| LP5-07      | 1.29                  | LAW-HPVR-07   | 1.87                  |
| LP5-08      | 1.54                  | LAW-HPVR-08   | 1.45                  |
| LP5-09      | 1.48                  | LAW-HPVR-09   | 2.53                  |
| LP5-10      | 1.58                  | LAW-HPVR-10   | 2.51                  |
| LP5-11      | 1.73                  | LAW-HPVR-11   | 1.69                  |
| LP5-12-1    | 0.862                 | LAW-HPVR-12   | 2.26                  |
| LP5-13      | 2.73                  | LAW-HPVR-13   | 1.47                  |
| LP5-14      | 1.56                  | LAW-HPVR-14   | 1.77                  |
| LP5-15      | 1.02                  | LAW-HPVR-15   | 1.66                  |
| LP5-16-MOD1 | 1.25                  | LAW-HPVR-16   | 1.5                   |
| LP5-17      | 1.38                  | LAW-HPVR-17   | 1.73                  |
| LP5-18      | 1.52                  | LAW-HPVR-18   | 2.18                  |
| LP5-19      | 1.52                  | LAW-HPVR-19   | 2.97                  |
| LP5-20      | 1.79                  | LAW-HPVR-20   | 2.37                  |
| LP5-21      | 1.96                  | LAW-HPVR-21   | 1.67                  |
| LP5-22      | 1.6                   | LAW-HPVR-22   | 1.78                  |
| LP5-23      | 2.19                  | LAW-HPVR-23   | 1.6                   |
| LP5-24      | 1.03                  | LAW-HPVR-24   | 2.02                  |
| LP5-25      | 1.27                  | LAW-HPVR-25   | 1.9                   |
|             |                       | LAW-HPVR-26   | 1.64                  |

Table 3.13. SO<sub>3</sub> Concentrations in the Sulfur-Saturated Samples of the LAW Phase 5 and LAW Phase 6 Glasses

## 4.0 Conclusions

This report summarizes the data collected and analyzed on 51 LAW glasses, 25 belonging to the *LAW Phase 5: Expansion of LAW Glass Composition Boundaries* and 26 to the *LAW Phase 6: High PCT and VHT Response Glass.* Both matrices were generated using a space-filling experimental design to both fill and expand the existing LAW composition data to higher waste loading and cross glass property constraint boundaries. The conclusions are described below.

Most LAW Phase 5 glasses measured compositions were within experimental error from target compositions. Few glasses reported relative difference above 10% between measured and target compositions for one or more components (Section 3.1). Similarly, most LAW Phase 6 glasses measured composition were within the experimental error except for Cl and ZrO<sub>2</sub> All the LAW Phase 6 glasses except one, LAW-HPVR-04-1, had Cl content above target with the Cl relative differences ranging from 62% to 3956%. Although the high levels of Cl in the batched glasses, the results of the LAW Phase 6 matrix were considered useful as they allow for an expansion of the Cl content in the qualified database to 1.46 wt% compared to the previous range of 1.17 wt%.

After CCC, six LAW Phase 5 and one LAW Phase 6 glass formed some crystals with content ranging from traces (i.e., crystals were observed by optical microscope, but the quantity was not enough to be detectable by XRD) to 61.8 wt% (Table 3.1).

After isothermal heat treatment, several crystalline phases were identified by XRD analysis in LAW Phase 5 glasses, as summarized in Table 3.2.

Measured density of LAW Phase 5 glasses ranged from approximately 1.68 to 2.79 g/cm<sup>3</sup> well below the contractual limit of  $3.7 \text{ g/cm}^3$ . (Section 3.4).

Calculated viscosity at 1150 °C using the Arrhenius model of LAW Phase 5 glasses ranged from 0.62 to 7.2 Pa·s within thirteen glasses below the optimum range of 2 to 8 Pa·s (Section 3.5).

Calculated  $\varepsilon_{1150}$  using the Arrhenius model of LAW Phase 5 glasses were between 31.18 and 144.89 S/m with most of the glasses  $\varepsilon_{1150}$  above the optimum range of 0.1 and 0.7 S/cm (Section 3.6).

PCT NL<sub>B</sub> and NL<sub>Na</sub> are described in Section 3.7. Most of the glasses, both CCC and Q versions, from both matrices exceeded the WTP 2 g/m<sup>2</sup> constraints. Only seven of the 23 LAW Phase 5 quenched glasses passed the NL<sub>B</sub> and NL<sub>Na</sub> constraints and only two of the CCC glasses passed the NL<sub>B</sub> constraints and 5 the NL<sub>Na</sub> constraint. Fifteen LAW Phase 5 glasses, both Q and CCC, passed the NL<sub>Si</sub> constraint. Similarly, only four Q and six CCC LAW Phase 6 glasses passed the NL<sub>B</sub> constraint, two Q and four CCC glasses passed the NL<sub>Na</sub> constraints, and seventeen glasses, both Q and CCC, passed the NL<sub>Si</sub> constraint. CCC heat treatment did not appear to significantly increase PCT NL<sub>B</sub> responses except when crystals were present and only slightly effected NL<sub>Na</sub> responses of a few glasses (Figure 3.2).

LAW Phase 6 glasses VHT alteration rates ( $r_a$ ) varied from ~1 to > 200 g m<sup>-2</sup> d<sup>-1</sup> for both the quenched glasses and the CCC (Section 3.8). Only two quenched glasses (LAWHPVR-11 and -19) and six CCC glasses (LAW-HPVR-06, -10, -12, -17-19, and -20) exceeded the WTP contract limit (Table 3.12).

Sulfur solubility (i.e., the saturated SO<sub>3</sub> concentrations) in LAW Phase 5 glasses ranged from ~1 wt% to 3.1 wt% (Section 3.9). In LAW Phase 6 glasses, sulfur solubility ranged from 1.6 wt% to 2.5 wt% (Table 3.13).

Combined, these data have added significantly to the database of LAW glasses available for glass property model development and validation. In particular, they have added valuable data for glasses with properties that exceed processing and product quality constraints. Previously, there has been little of data available to refine models at the property constraint values due to a general lack of data at and above property constraint values. These data are useful to reducing prediction uncertainties where they matter the most.

## 5.0 Bibliography

10 CFR 830, Nuclear Safety Management. Code of Federal Regulations.

ASTM C1285, Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT). ASTM International, West Conshohocken, Pennsylvania.

ASTM C1663, Standard Test Method for Measuring Waste Glass or Glass Ceramic Durability by Vapor Hydration Test. ASTM International, West Conshohocken, Pennsylvania.

ASTM C1720. Standard Test Method for Determining Liquidus Temperature of Immobilized Waste Glasses and Simulated Waste Glasses. ASTM International, West Conshohocken, Pennsylvania.

Bernards GA, GA Hersi, TM Hohl, RT Jasper, PD Mahoney, NK Pak, SD Reaksecker, AJ Schubick, and EB West. 2020. *River Protection Project System Plan*. ORP-11242, Rev. 9, U.S. Department of Energy, Office of River Protection, Richland, Washington.

Crum JV, TB Edwards, RL Russell, PJ Workman, MJ Schweiger, RF Schumacher, DE Smith, DK Peeler, and JD Vienna. 2012. "DWPF Startup Frit Viscosity Measurement Round Robin Results." *Journal of the American Ceramic Society* 95(7):2196-2205.

DOE Order 414.1D, Quality Assurance. U.S. Department of Energy, Washington, D.C.

DOE. 2000. Design, Construction, and Commissioning of the Hanford Tank Waste Treatment and Immobilization Plant. Contract DE-AC27-01RV14136, as amended, U.S. Department of Energy, Office of River Protection, Richland, Washington.

Ebert WL and SF Wolfe. 1999. *Round-Robin Testing of a Reference Glass for Low-Activity Waste Forms*. ANL-99/22, Argonne National Laboratory, Argonne, Illinois.

Gervasio V, JV Crum, BJ Riley, JD Vienna, JL George, BA Stanfill, and AA Kruger. 2019. *Liquidus Temperature: Assessing Standard Glasses for Furnace Calibration*. PNNL-29312, Pacific Northwest National Laboratory, Richland, Washington.

Hsieh MC. 2021a. *Composition Measurements of the LAW Phases 5 Glasses*. SRNL-STI-2021-00409, Rev. 0, Savannah River National Laboratory, Aiken, South Carolina.

Hsieh MC. 2021b. *Characterization of the Sulfur-Saturated Melt Versions of the LAW Phase 5 Glasses*. SRNL-STI-2021-00492, Rev. 0, Savannah River National Laboratory, Aiken, South Carolina.

Hsieh MC. 2021c. *Product Consistency Test Results for the LAW Phase 5 Glasses*. SRNL-STI-2021-00446, Rev. 0, Savannah River National Laboratory, Aiken, South Carolina.

Hsieh MC. 2021d. *Product Consistency Test Results for the LAW HPVR Glasses*. SRNL-STI-2021-00658, Rev. 0, Savannah River National Laboratory, Aiken, South Carolina.

Hsieh MC. 2022a. *Composition Measurements of the LAW HPVR Glasses*. SRNL-STI-2021-00265, Rev. 0, Savannah River National Laboratory, Aiken, South Carolina.

Hsieh MC. 2022b. *Characterization of the Sulfur-Saturated Melt Versions of the LAW HPVR Glasses*. SRNL-STI-2022-00553, Rev. 0, Savannah River National Laboratory, Aiken, South Carolina.

Jin T, D Kim, LP Darnell, BL Weese, NL Canfield, M Bliss, MJ Schweiger, JD Vienna, and AA Kruger. 2019. "A crucible salt saturation method for determining sulfur solubility in glass melt." *International Journal of Applied Glass Science* 10(1):92-102.

Joseph R, E Gui, and S Ba. 2015. "Maximum Projection Designs for Computer Experiments." *Biometrika* 102(2):371-380

Kim DS, D Peeler, and P Hrma. 1995. "Effect of Crystallization on the Chemical Durability of Simulated Nuclear Waste Glasses." *Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries* 177-186.

Kim DS and JD Vienna. 2012. *Preliminary ILAW Formulation Algorithm Description*. 24590 LAW-RPT-RT-04-0003, Rev. 1, River Protection Project, Hanford Waste Treatment and Immobilization Plant, Richland, Washington.

Lonergan CE, E Rivers, D Bellofatto, DS Kim, and JD Vienna. 2021. *Crystallization Constraints for WTP LAW Operations: Assessment of CCC Impacts on VHT and PCT*. PNNL-31138, Rev. 0, EWG-RPT-032, Pacific Northwest National Laboratory, Richland, Washington.

Lonergan CE, JL George, D Cutforth, T Jin, P Cholsaipant, SE Sannoh, CH Skidmore, BA Stanfill, SK Cooley, GF Piepel, R Russel, and JD Vienna. 2020. *Enhanced Hanford Low-Activity Waste Glass Property Data Development: Phase 3*. PNNL-29847, Rev. 0, EWG-RPT-026, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta NA, DS Kim, and JD Vienna. 2022. *Preliminary Enhanced LAW Glass Formulation Algorithm*. EWG-RPT-027, PNNL-29475, Rev. 1, Pacific Northwest National Laboratory, Richland, Washington.

Muller IS, G Diener, I Joseph, and IL Pegg. 2004. *Proposed Approach for Development of LAW Glass Formulation Correlation*. VSL-04L4460-1, Rev. 2, ORP-56326, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller, IS, K Gilbo, I Joseph, and IL Pegg. 2014. Enhanced LAW Glass Property-Composition Models—Phase 1. VSL-13R2940-1, Vitreous State Laboratory, The Catholic University of America, Washington, DC.

Muller, I S, E Rielley, IL Pegg, M Chaudhuri, ST Lai, C Mooers, G Bazemore, K Hight, and R Cecil. 2003. *Final Report: LAW Glass Formulation to Support Melter Runs with Simulants*, VSL-03R3460-2, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

NQAP-2012. Nuclear Quality Assurance Program (NQAP) Manual. PNNL-SA-115260, Pacific Northwest National Laboratory, Richland, Washington.

Piepel GF, SK Cooley, IS Muller, H Gan, I Joseph, and IL Pegg. 2007. *ILAW PCT, VHT, Viscosity, and Electrical Conductivity Model Development*. VSL-07R1230-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Rieck BT. 2018. *ILAW Product Qualification Report – Waste Forming Testing*. 24590-LAW-RPT-PENG-17-008-05, Rev. 1, River Protection Project, Hanford Waste Treatment and Immobilization Plant, Richland, Washington.

Riley BJ, JA Rosaria, and P Hrma. 2001. *Impact of HLW Glass Crystallinity on PCT Response*. PNNL-13491, Pacific Northwest National Laboratory, Richland, WA.

Russell RL, RL, BP McCarthy, SK Cooley, EA Cordova, SE Sannoh, V Gervasio, MJ Schweiger, JB Lang, CH Skidmore, CE Lonergan, BA Stanfill, JM Meline, and JD Vienna. 2021. *Enhanced Hanford Low-Activity Waste Glass Property Data Development: Phase 2*. PNNL-28838, Rev. 2, Pacific Northwest Laboratory, Richland, Washington.

Skidmore CH, JD Vienna, T Jin, D Kim, BA Stanfill, KM Fox, and AA Kruger. 2019. "Sulfur solubility in low activity waste glass and its correlation to melter tolerance." *International Journal of Applied Glass Science* (10):558-68.

Vienna JD, A Heredia-Langner, SK Cooley, AE Holmes, DS Kim, and NA Lumetta. 2020. *Glass Property-Composition Models for Support of Hanford WTP LAW Facility Operation*. PNNL-30932, Rev. 0, Pacific Northwest National Laboratory, Richland, Washington.

Vienna JD, A Heredia-Langner, SK Cooley, AE Holmes, DS Kim, and NA Lumetta. 2022. *Glass Property-Composition Models for Support of Hanford WTP LAW Facility Operation*. PNNL-30932, Rev. 2, Pacific Northwest National Laboratory, Richland, Washington.

Vienna JD, DS Kim, IS Muller, GF Piepel, and AA Kruger. 2014. "Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility." *Journal of the American Ceramic Society* 97(10):3135-3142.

Vienna JD, P Hrma, A Jiricka, DE Smith, TH Lorier, IA Reamer, and RL Schultz. 2001. *Hanford Immobilized LAW Product Acceptance Testing: Tanks Focus Area Results*. PNNL-13744, Pacific Northwest National Laboratory, Richland, Washington.

## Appendix A – LAW Phase 5: Expansion of LAW Glass Composition Boundaries Glass Matrix Target Glass Compositions

The table in this appendix reports the glass target chemical composition in mass fraction. Numbers 1 to 25 correspond to the experimental IDs of the 25 LAW Phase 5 glasses.

| Component                      | LP5-01   | LP5-02   | LP5-03   | LP5-04   | LP5-05   | LP5-06   | LP5-07   | LP5-08   | LP5-09   | LP5-10   |
|--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Al <sub>2</sub> O <sub>3</sub> | 0.03745  | 0.035472 | 0.048702 | 0.047982 | 0.041033 | 0.118763 | 0.14538  | 0.134071 | 0.093909 | 0.046306 |
| B <sub>2</sub> O <sub>3</sub>  | 0.108172 | 0.067127 | 0.103485 | 0.100414 | 0.089634 | 0.069805 | 0.104233 | 0.094767 | 0.067566 | 0.061491 |
| CaO                            | 0.056662 | 0.116122 | 0.06494  | 0.114542 | 0.071199 | 0.037091 | 0.013509 | 0.007094 | 0.043265 | 0.017111 |
| Fe <sub>2</sub> O <sub>3</sub> | 0.009029 | 0.008892 | 0.003199 | 0.001289 | 0.009575 | 0.001711 | 0.000535 | 0.005149 | 0.007432 | 0.004522 |
| K <sub>2</sub> O               | 0.048387 | 0.012705 | 0.001159 | 0.036393 | 0.025353 | 0.033173 | 0.021197 | 0.046155 | 0.030688 | 0.032451 |
| MgO                            | 0.00476  | 0.047681 | 0.038721 | 0.00114  | 0.049547 | 0.026444 | 0.039253 | 0.000643 | 0.007588 | 0.043588 |
| Na <sub>2</sub> O              | 0.262921 | 0.259217 | 0.24384  | 0.250201 | 0.238092 | 0.220283 | 0.265044 | 0.268917 | 0.265139 | 0.269339 |
| SiO <sub>2</sub>               | 0.335846 | 0.345855 | 0.339661 | 0.342999 | 0.344113 | 0.336142 | 0.380499 | 0.345345 | 0.34338  | 0.360817 |
| SnO <sub>2</sub>               | 0.043516 | 0.005261 | 0.005921 | 0.010995 | 0.036116 | 0.02983  | 0.00206  | 0.038001 | 0.024538 | 0.036847 |
| V <sub>2</sub> O <sub>5</sub>  | 0.033414 | 0.029249 | 0.048447 | 0.0013   | 0.054883 | 0.05491  | 0.007305 | 0.003141 | 0.010315 | 0.013599 |
| ZnO                            | 0.011564 | 0.03546  | 0.001802 | 0.057124 | 0.012916 | 0.003576 | 0.002271 | 0.018173 | 0.055891 | 0.055544 |
| ZrO <sub>2</sub>               | 0.000617 | 0.003066 | 0.053283 | 0.005299 | 0.005583 | 0.019041 | 0.006191 | 0.015286 | 0.007733 | 0.041161 |
| Others                         | 0.047663 | 0.033895 | 0.046841 | 0.030323 | 0.021956 | 0.049231 | 0.012524 | 0.023257 | 0.042554 | 0.017224 |
| Sum                            | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   |
| Others Composit                | ion:     |          |          |          |          |          |          |          |          |          |
| Cl                             | 0.006535 | 0.004647 | 0.006422 | 0.004157 | 0.00301  | 0.00675  | 0.001717 | 0.003189 | 0.005834 | 0.002361 |
| Cr <sub>2</sub> O <sub>3</sub> | 0.003951 | 0.00281  | 0.003883 | 0.002514 | 0.00182  | 0.004081 | 0.001038 | 0.001928 | 0.003528 | 0.001428 |
| F                              | 0.002607 | 0.001854 | 0.002562 | 0.001659 | 0.001201 | 0.002693 | 0.000685 | 0.001272 | 0.002328 | 0.000942 |
| P <sub>2</sub> O <sub>5</sub>  | 0.006268 | 0.004457 | 0.00616  | 0.003988 | 0.002887 | 0.006474 | 0.001647 | 0.003058 | 0.005596 | 0.002265 |
| SO <sub>3</sub>                | 0.010729 | 0.00763  | 0.010544 | 0.006826 | 0.004942 | 0.011082 | 0.002819 | 0.005235 | 0.009579 | 0.003877 |
| TiO <sub>2</sub>               | 0.015552 | 0.01106  | 0.015284 | 0.009894 | 0.007164 | 0.016064 | 0.004087 | 0.007589 | 0.013885 | 0.00562  |
| PbO                            | 0.000505 | 0.000359 | 0.000497 | 0.000321 | 0.000233 | 0.000522 | 0.000133 | 0.000247 | 0.000451 | 0.000183 |
| NiO                            | 0.000505 | 0.000359 | 0.000497 | 0.000321 | 0.000233 | 0.000522 | 0.000133 | 0.000247 | 0.000451 | 0.000183 |
| Cs <sub>2</sub> O              | 0.000505 | 0.000359 | 0.000497 | 0.000321 | 0.000233 | 0.000522 | 0.000133 | 0.000247 | 0.000451 | 0.000183 |
| Re <sub>2</sub> O <sub>7</sub> | 0.000505 | 0.000359 | 0.000497 | 0.000321 | 0.000233 | 0.000522 | 0.000133 | 0.000247 | 0.000451 | 0.000183 |

| Component                      | LP5-11   | LP5-12   | LP5-13   | LP5-14   | LP5-15   | LP5-16   | LP5-17   | LP5-18   | LP5-19   | LP5-20   |
|--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Al <sub>2</sub> O <sub>3</sub> | 0.054993 | 0.135886 | 0.044904 | 0.045144 | 0.133031 | 0.079348 | 0.035601 | 0.057583 | 0.038147 | 0.038772 |
| $B_2O_3$                       | 0.071367 | 0.060445 | 0.128887 | 0.06675  | 0.090601 | 0.062233 | 0.077387 | 0.094102 | 0.104406 | 0.135126 |
| CaO                            | 0.022851 | 0.011678 | 0.000593 | 0.004388 | 0.003369 | 0.087609 | 0.048121 | 0.004194 | 0.064444 | 0.013672 |
| Fe <sub>2</sub> O <sub>3</sub> | 0.006939 | 0.005735 | 0.008518 | 0.001216 | 0.009464 | 0.006312 | 0.007086 | 0.005202 | 0.00042  | 0.006571 |
| K <sub>2</sub> O               | 0.004091 | 0.022484 | 0.041909 | 0.040934 | 0.048234 | 0.006391 | 0.039847 | 0.018925 | 0.055781 | 0.026392 |
| MgO                            | 0.036256 | 0.049602 | 0.025996 | 0.015462 | 0.019577 | 0.044639 | 0.015235 | 0.050124 | 0.046216 | 0.028992 |
| Na <sub>2</sub> O              | 0.264513 | 0.229201 | 0.264962 | 0.23661  | 0.259836 | 0.251542 | 0.220208 | 0.244734 | 0.22309  | 0.25484  |
| SiO <sub>2</sub>               | 0.363057 | 0.34009  | 0.340903 | 0.385743 | 0.337014 | 0.335351 | 0.337497 | 0.390803 | 0.345709 | 0.388061 |
| $SnO_2$                        | 0.015936 | 0.01393  | 0.007847 | 0.034321 | 0.003974 | 0.041945 | 0.04211  | 0.001886 | 0.015348 | 0.037299 |
| V <sub>2</sub> O <sub>5</sub>  | 0.056681 | 0.031534 | 0.045642 | 0.042491 | 0.02568  | 0.007977 | 0.051505 | 0.036178 | 0.013108 | 0.002114 |
| ZnO                            | 0.042626 | 0.023055 | 0.016486 | 0.044021 | 0.000171 | 0.00345  | 0.056849 | 0.056825 | 0.053772 | 0.004715 |
| ZrO <sub>2</sub>               | 0.0126   | 0.027687 | 0.041798 | 0.034239 | 0.055104 | 0.031763 | 0.050155 | 0.001611 | 0.015482 | 0.015627 |
| Others                         | 0.048089 | 0.048673 | 0.031555 | 0.048681 | 0.013945 | 0.04144  | 0.0184   | 0.037832 | 0.024076 | 0.047818 |
| Sum                            | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   |
| Others Compositi               | on:      |          |          |          |          |          |          |          |          |          |
| Cl                             | 0.006593 | 0.006673 | 0.004326 | 0.006674 | 0.001912 | 0.005681 | 0.002523 | 0.005187 | 0.003301 | 0.006556 |
| Cr <sub>2</sub> O <sub>3</sub> | 0.003987 | 0.004035 | 0.002616 | 0.004036 | 0.001156 | 0.003435 | 0.001525 | 0.003136 | 0.001996 | 0.003964 |
| F                              | 0.00263  | 0.002662 | 0.001726 | 0.002663 | 0.000763 | 0.002267 | 0.001006 | 0.002069 | 0.001317 | 0.002616 |
| P <sub>2</sub> O <sub>5</sub>  | 0.006324 | 0.006401 | 0.00415  | 0.006402 | 0.001834 | 0.005449 | 0.00242  | 0.004975 | 0.003166 | 0.006288 |
| SO <sub>3</sub>                | 0.010825 | 0.010956 | 0.007103 | 0.010958 | 0.003139 | 0.009328 | 0.004142 | 0.008516 | 0.00542  | 0.010764 |
| TiO <sub>2</sub>               | 0.015691 | 0.015882 | 0.010296 | 0.015885 | 0.00455  | 0.013522 | 0.006004 | 0.012344 | 0.007856 | 0.015603 |
| PbO                            | 0.00051  | 0.000516 | 0.000334 | 0.000516 | 0.000148 | 0.000439 | 0.000195 | 0.000401 | 0.000255 | 0.000507 |
| NiO                            | 0.00051  | 0.000516 | 0.000334 | 0.000516 | 0.000148 | 0.000439 | 0.000195 | 0.000401 | 0.000255 | 0.000507 |
| Cs <sub>2</sub> O              | 0.00051  | 0.000516 | 0.000334 | 0.000516 | 0.000148 | 0.000439 | 0.000195 | 0.000401 | 0.000255 | 0.000507 |
| Re <sub>2</sub> O <sub>7</sub> | 0.00051  | 0.000516 | 0.000334 | 0.000516 | 0.000148 | 0.000439 | 0.000195 | 0.000401 | 0.000255 | 0.000507 |

| Component                      | LP5-21              | LP5-22             | LP5-23                | LP5-24               | LP5-25               |
|--------------------------------|---------------------|--------------------|-----------------------|----------------------|----------------------|
| Al <sub>2</sub> O <sub>3</sub> | 0.058621            | 0.03706            | 0.038424              | 0.10000              | 0.06072              |
| $B_2O_3$                       | 0.131683            | 0.126041           | 0.063678              | 0.09500              | 0.1005               |
| CaO                            | 0.047275            | 0.00314            | 0.062957              | 0.05000              | 0.05107              |
| Fe <sub>2</sub> O <sub>3</sub> | 0.001066            | 0.007427           | 0.001562              | 0.00600              | 0.05423              |
| K <sub>2</sub> O               | 0.046163            | 0.00325            | 0.017407              | 0.01000              | 0.00083              |
| Li <sub>2</sub> O              | -                   | -                  | -                     | -                    | 0.0251               |
| MgO                            | 0.029667            | 0.046616           | 0.023504              | 0.00650              | 0.01513              |
| Na <sub>2</sub> O              | 0.221365            | 0.24653            | 0.2377                | 0.23000              | 0.1440               |
| SiO <sub>2</sub>               | 0.350241            | 0.479942           | 0.489759              | 0.38800              | 0.46615              |
| SnO <sub>2</sub>               | 0.012283            | 0.010561           | 0.013775              | 0.01500              | -                    |
| V <sub>2</sub> O <sub>5</sub>  | 0.034014            | 0.006253           | 0.027188              | 0.01000              | -                    |
| ZnO                            | 0.015128            | 0.000641           | 0.004368              | 0.02800              | 0.03069              |
| ZrO <sub>2</sub>               | 0.007656            | 0.017821           | 0.003918              | 0.04000              | 0.03026              |
| Others                         | 0.044837            | 0.014719           | 0.01576               | 0.02150              | 0.03026 <sup>a</sup> |
| Sum                            | 1.0000              | 1.0000             | 1.0000                | 1.0000               | 0.99999              |
| Others Composition:            |                     |                    |                       |                      |                      |
| Cl                             | 0.006147            | 0.002018           | 0.002161              | 0.00208              | 0.00048              |
| Cr <sub>2</sub> O <sub>3</sub> | 0.003717            | 0.00122            | 0.001306              | 0.00450              | 0.00012              |
| F                              | 0.002453            | 0.000805           | 0.000862              | 0.00316              | 0.00336              |
| $P_2O_5$                       | 0.005896            | 0.001936           | 0.002072              | 0.00676              | 0.00067              |
| SO <sub>3</sub>                | 0.010093            | 0.003313           | 0.003548              | 0.00500              | 0.00321              |
| TiO <sub>2</sub>               | 0.01463             | 0.004803           | 0.005142              | 0.00000              | 0.01143              |
| PbO                            | 0.000475            | 0.000156           | 0.000167              | 0.00000              | 0.00000              |
| NiO                            | 0.000475            | 0.000156           | 0.000167              | 0.00000              | 0.00026              |
| Cs <sub>2</sub> O              | 0.000475            | 0.000156           | 0.000167              | 0.00000              | 0.00000              |
| $Re_2O_7$                      | 0.000475            | 0.000156           | 0.000167              | 0.00000              | 0.00100              |
| (a) Others also include        | (mass fraction): Bi | r = 0.00048, CdO = | $0.00003, MoO_3 = 0.$ | $00002, WO_3 = 0.00$ | 009                  |

## Appendix B – LAW Phase 6: High PCT and VHT Response Glass Matrix Target Glass Compositions

The tables in this appendix reports the glass target chemical composition in mass fraction. Numbers 1 to 26 correspond to the experimental IDs of the 26 LAW Phase 6 glasses.

Table B1. Targe glass composition (uncorrected). Note that the compositions in this table are from the original design matrix; however due to the impurities of the Zr source in experiment (details see Section 3.1), correction was made and the re-calculated (corrected) target compositions in Table B2 should be used in future molding work.

|                                | LAW-HPVR- |
|--------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Task ID (Matrix ID)            | 01 (18)   | 02 (10)   | 03 (5)    | 04(1)     | 05 (13)   | 06 (8)    | 07 (21)   | 08 (12)   | 09 (9)    | 10 (23)   |
| Component                      |           |           |           |           |           |           |           |           |           |           |
| Al <sub>2</sub> O <sub>3</sub> | 0.03786   | 0.03857   | 0.0759    | 0.03713   | 0.03845   | 0.03723   | 0.04263   | 0.09303   | 0.04881   | 0.03549   |
| B <sub>2</sub> O <sub>3</sub>  | 0.12503   | 0.13623   | 0.09159   | 0.08556   | 0.10714   | 0.13795   | 0.07071   | 0.13114   | 0.13601   | 0.1228    |
| CaO                            | 0.065     | 0.07597   | 0.06296   | 0.06691   | 0.06198   | 0.12582   | 0.09877   | 0.06848   | 0.06122   | 0.08878   |
| K <sub>2</sub> O               | 0.0256    | 0.04015   | 0.05627   | 0.01609   | 0.00818   | 0.05868   | 0.04307   | 0.03656   | 0.01771   | 0.02272   |
| Li <sub>2</sub> O              | 0.02616   | 0.00167   | 0.0286    | 0.0336    | 0.0414    | 0.01273   | 0.01002   | 0.03502   | 0.02826   | 0.00338   |
| Na <sub>2</sub> O              | 0.18216   | 0.17687   | 0.16109   | 0.17173   | 0.17734   | 0.15865   | 0.21043   | 0.16351   | 0.19105   | 0.22842   |
| SiO <sub>2</sub>               | 0.4007    | 0.41494   | 0.36152   | 0.45901   | 0.439     | 0.41012   | 0.37853   | 0.35175   | 0.43473   | 0.40832   |
| SnO <sub>2</sub>               | 0.02015   | 0.02826   | 0.04004   | 0.01077   | 0.00842   | 0.00149   | 0.01825   | 0.01486   | 0.00352   | 0.03003   |
| TiO <sub>2</sub>               | 0.01725   | 0.01155   | 0.01085   | 0.02696   | 0.00452   | 0.01002   | 0.00247   | 0.02574   | 0.02919   | 0.00049   |
| $V_2O_5$                       | 0.03258   | 0.03567   | 0.03311   | 0.03766   | 0.01822   | 0.00421   | 0.03969   | 0.00731   | 0.0113    | 0.0178    |
| ZrO <sub>2</sub>               | 0.0564    | 0.02116   | 0.06291   | 0.02162   | 0.06414   | 0.02927   | 0.06593   | 0.05413   | 0.02266   | 0.027     |
| Others                         | 0.01111   | 0.01896   | 0.01516   | 0.03296   | 0.03121   | 0.01383   | 0.0195    | 0.01847   | 0.01554   | 0.01477   |
| Sum                            | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   |
| Others Composition:            |           |           |           |           |           |           |           |           |           |           |
| Cl                             | 0.00035   | 0.0006    | 0.00048   | 0.00104   | 0.00098   | 0.00044   | 0.00061   | 0.00058   | 0.00049   | 0.00047   |
| Cr <sub>2</sub> O <sub>3</sub> | 0.0006    | 0.00102   | 0.00082   | 0.00178   | 0.00169   | 0.00075   | 0.00105   | 0.001     | 0.00084   | 0.0008    |
| F                              | 0.0007    | 0.0012    | 0.00096   | 0.00208   | 0.00197   | 0.00087   | 0.00123   | 0.00116   | 0.00098   | 0.00093   |
| Fe <sub>2</sub> O <sub>3</sub> | 0.0008    | 0.00137   | 0.00109   | 0.00238   | 0.00225   | 0.001     | 0.00141   | 0.00133   | 0.00112   | 0.00106   |
| MgO                            | 0.0001    | 0.00017   | 0.00014   | 0.0003    | 0.00028   | 0.00012   | 0.00018   | 0.00017   | 0.00014   | 0.00013   |
| P <sub>2</sub> O <sub>5</sub>  | 0.0026    | 0.00444   | 0.00355   | 0.00772   | 0.00731   | 0.00324   | 0.00457   | 0.00433   | 0.00364   | 0.00346   |
| SO <sub>3</sub>                | 0.00346   | 0.00589   | 0.00471   | 0.01024   | 0.0097    | 0.0043    | 0.00606   | 0.00574   | 0.00483   | 0.00459   |
| ZnO                            | 0.0025    | 0.00427   | 0.00341   | 0.00742   | 0.00703   | 0.00311   | 0.00439   | 0.00416   | 0.0035    | 0.00333   |

|                                | LAW-HPVR- |
|--------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Task ID                        | 11(11)    | 12(/)     | 13 (6)    | 14 (16)   | 15 (3)    | 16 (22)   | 17(14)    | 18 (4)    | 19 (24)   | 20(17)    |
| Component                      |           |           |           |           |           |           |           |           |           |           |
| Al <sub>2</sub> O <sub>3</sub> | 0.04017   | 0.04442   | 0.03568   | 0.05769   | 0.04436   | 0.06535   | 0.08223   | 0.04278   | 0.05187   | 0.03507   |
| B <sub>2</sub> O <sub>3</sub>  | 0.11038   | 0.06157   | 0.06829   | 0.10965   | 0.10649   | 0.12155   | 0.13566   | 0.12966   | 0.09611   | 0.11885   |
| CaO                            | 0.06063   | 0.07413   | 0.06595   | 0.09116   | 0.06055   | 0.06169   | 0.08737   | 0.08401   | 0.08699   | 0.06246   |
| K <sub>2</sub> O               | 0.04225   | 0.0009    | 0.03908   | 0.00138   | 0.05057   | 0.02766   | 0.0509    | 0.01146   | 0.00382   | 0.00006   |
| Li <sub>2</sub> O              | 0.00506   | 0.01811   | 0.01934   | 0.0023    | 0.03107   | 0.01221   | 0.01587   | 0.02799   | 0.01948   | 0.00245   |
| Na <sub>2</sub> O              | 0.2232    | 0.23069   | 0.16905   | 0.26281   | 0.15796   | 0.19938   | 0.17713   | 0.1625    | 0.21445   | 0.25378   |
| SiO <sub>2</sub>               | 0.35424   | 0.48005   | 0.49033   | 0.35103   | 0.45956   | 0.38232   | 0.37825   | 0.39475   | 0.44127   | 0.43403   |
| SnO <sub>2</sub>               | 0.03385   | 0.02053   | 0.00591   | 0.04209   | 0.0364    | 0.03935   | 0.00797   | 0.04284   | 0.00392   | 0.00307   |
| TiO <sub>2</sub>               | 0.02818   | 0.01068   | 0.00085   | 0.0147    | 0.00096   | 0.00945   | 0.00204   | 0.00533   | 0.00888   | 0.01626   |
| $V_2O_5$                       | 0.02529   | 0.01858   | 0.02228   | 0.00064   | 0.0056    | 0.00925   | 0.00693   | 0.03734   | 0.03999   | 0.01528   |
| ZrO <sub>2</sub>               | 0.06548   | 0.02882   | 0.06148   | 0.05159   | 0.03377   | 0.04937   | 0.02636   | 0.0308    | 0.02064   | 0.03098   |
| Others                         | 0.01127   | 0.01152   | 0.02176   | 0.01496   | 0.01271   | 0.02242   | 0.02929   | 0.03054   | 0.01258   | 0.02771   |
| Sum                            | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   | 1.00000   |
| Others Composition:            |           |           |           |           |           |           |           |           |           |           |
| Cl                             | 0.00036   | 0.00036   | 0.00069   | 0.00047   | 0.0004    | 0.00071   | 0.00092   | 0.00096   | 0.0004    | 0.00087   |
| Cr <sub>2</sub> O <sub>3</sub> | 0.00061   | 0.00062   | 0.00118   | 0.00081   | 0.00069   | 0.00121   | 0.00158   | 0.00165   | 0.00068   | 0.0015    |
| F                              | 0.00071   | 0.00073   | 0.00137   | 0.00094   | 0.0008    | 0.00141   | 0.00185   | 0.00193   | 0.00079   | 0.00175   |
| Fe <sub>2</sub> O <sub>3</sub> | 0.00081   | 0.00083   | 0.00157   | 0.00108   | 0.00092   | 0.00162   | 0.00211   | 0.0022    | 0.00091   | 0.002     |
| MgO                            | 0.0001    | 0.0001    | 0.0002    | 0.00013   | 0.00011   | 0.0002    | 0.00026   | 0.00028   | 0.00011   | 0.00025   |
| P <sub>2</sub> O <sub>5</sub>  | 0.00264   | 0.0027    | 0.00509   | 0.00351   | 0.00298   | 0.00525   | 0.00686   | 0.00715   | 0.00295   | 0.00649   |
| SO <sub>3</sub>                | 0.0035    | 0.00358   | 0.00676   | 0.00465   | 0.00395   | 0.00697   | 0.00911   | 0.00949   | 0.00391   | 0.00861   |
| ZnO                            | 0.00254   | 0.0026    | 0.0049    | 0.00337   | 0.00286   | 0.00505   | 0.0066    | 0.00688   | 0.00283   | 0.00624   |

|                                | LAW-HPVR-21 | LAW-HPVR-22 | LAW-HPVR-23 |                 | LAW-HPVR-25 | LAW-HPVR-26 |
|--------------------------------|-------------|-------------|-------------|-----------------|-------------|-------------|
| Task ID (Matrix ID)            | (15)        | (19)        | (25)        | LAW-HPVR-24 (2) | (20)        | (26)        |
| Component                      |             |             |             |                 |             |             |
| Al <sub>2</sub> O <sub>3</sub> | 0.0906      | 0.05805     | 0.05394     | 0.03825         | 0.0358      | 0.11447     |
| B <sub>2</sub> O <sub>3</sub>  | 0.12932     | 0.07737     | 0.0714      | 0.07042         | 0.06677     | 0.13656     |
| CaO                            | 0.06033     | 0.06952     | 0.07138     | 0.08081         | 0.11388     | 0.06253     |
| K <sub>2</sub> O               | 0.05828     | 0.03578     | 0.01484     | 0.05774         | 0.0201      | 0.03095     |
| Li <sub>2</sub> O              | 0.00086     | 0.01598     | 0.00959     | 0.02919         | 0.00437     | 0.03552     |
| Na <sub>2</sub> O              | 0.19759     | 0.203       | 0.23339     | 0.15914         | 0.24689     | 0.1756      |
| SiO <sub>2</sub>               | 0.34677     | 0.35613     | 0.41049     | 0.42645         | 0.39349     | 0.35542     |
| SnO <sub>2</sub>               | 0.00166     | 0.04454     | 0.03247     | 0.02404         | 0.01729     | 0.01698     |
| TiO <sub>2</sub>               | 0.02744     | 0.02987     | 0.01451     | 0.02961         | 0.01897     | 0.00884     |
| V <sub>2</sub> O <sub>5</sub>  | 0.0342      | 0.03831     | 0.01367     | 0.03064         | 0.00224     | 0.0029      |
| ZrO <sub>2</sub>               | 0.02641     | 0.04446     | 0.05374     | 0.0268          | 0.04694     | 0.03572     |
| Others                         | 0.02654     | 0.02699     | 0.02058     | 0.02691         | 0.03326     | 0.02451     |
| Sum                            | 1.00000     | 1.00000     | 1.00000     | 1.00000         | 1.00000     | 1.00000     |
| Others Composition:            |             |             |             |                 |             |             |
| Cl                             | 0.00084     | 0.00085     | 0.00065     | 0.00085         | 0.00105     | 0.00077     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.00143     | 0.00146     | 0.00111     | 0.00145         | 0.0018      | 0.00132     |
| F                              | 0.00167     | 0.0017      | 0.0013      | 0.0017          | 0.0021      | 0.00155     |
| Fe <sub>2</sub> O <sub>3</sub> | 0.00191     | 0.00195     | 0.00148     | 0.00194         | 0.0024      | 0.00177     |
| MgO                            | 0.00024     | 0.00024     | 0.00019     | 0.00024         | 0.0003      | 0.00022     |
| P2O5                           | 0.00622     | 0.00632     | 0.00482     | 0.0063          | 0.00779     | 0.00574     |
| SO <sub>3</sub>                | 0.00825     | 0.00839     | 0.0064      | 0.00837         | 0.01033     | 0.00762     |
| ZnO                            | 0.00598     | 0.00608     | 0.00463     | 0.00606         | 0.00749     | 0.00552     |

| Task ID                        | LAW-HPVR-01 | LAW-HPVR-02 | LAW-HPVR-05 | LAW-HPVR-06 | LAW-HPVR-07 | LAW-HPVR-08 | LAW-HPVR-09 |
|--------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Component                      |             |             |             |             |             |             |             |
| SiO <sub>2</sub>               | 0.38788     | 0.40986     | 0.42310     | 0.40320     | 0.36445     | 0.34093     | 0.42903     |
| Al <sub>2</sub> O <sub>3</sub> | 0.03665     | 0.03810     | 0.03706     | 0.03660     | 0.04104     | 0.09017     | 0.04817     |
| $B_2O_3$                       | 0.12103     | 0.13456     | 0.10326     | 0.13562     | 0.06808     | 0.12711     | 0.13423     |
| CaO                            | 0.06292     | 0.07504     | 0.05973     | 0.12370     | 0.09510     | 0.06637     | 0.06042     |
| Cl                             | 0.02044     | 0.00829     | 0.02371     | 0.01103     | 0.02396     | 0.01988     | 0.00872     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.00058     | 0.00101     | 0.00163     | 0.00074     | 0.00101     | 0.00097     | 0.00083     |
| F                              | 0.00068     | 0.00119     | 0.00190     | 0.00086     | 0.00118     | 0.00112     | 0.00097     |
| Fe <sub>2</sub> O <sub>3</sub> | 0.00077     | 0.00135     | 0.00217     | 0.00098     | 0.00136     | 0.00129     | 0.00111     |
| K <sub>2</sub> O               | 0.02478     | 0.03966     | 0.00788     | 0.05769     | 0.04147     | 0.03544     | 0.01748     |
| Li <sub>2</sub> O              | 0.02532     | 0.00165     | 0.03990     | 0.01252     | 0.00965     | 0.03394     | 0.02789     |
| MgO                            | 0.00010     | 0.00017     | 0.00027     | 0.00012     | 0.00017     | 0.00016     | 0.00014     |
| Na <sub>2</sub> O              | 0.17633     | 0.17470     | 0.17092     | 0.15597     | 0.20260     | 0.15848     | 0.18855     |
| $P_2O_5$                       | 0.00252     | 0.00439     | 0.00705     | 0.00319     | 0.00440     | 0.00420     | 0.00359     |
| SnO <sub>2</sub>               | 0.01951     | 0.02791     | 0.00811     | 0.00146     | 0.01757     | 0.01440     | 0.00347     |
| $SO_3$                         | 0.00335     | 0.00582     | 0.00935     | 0.00423     | 0.00583     | 0.00556     | 0.00477     |
| TiO <sub>2</sub>               | 0.01670     | 0.01141     | 0.00436     | 0.00985     | 0.00238     | 0.02495     | 0.02881     |
| $V_2O_5$                       | 0.03154     | 0.03523     | 0.01756     | 0.00414     | 0.03821     | 0.00709     | 0.01115     |
| ZnO                            | 0.00242     | 0.00422     | 0.00678     | 0.00306     | 0.00423     | 0.00403     | 0.00345     |
| ZrO <sub>2</sub>               | 0.06649     | 0.02545     | 0.07528     | 0.03505     | 0.07731     | 0.06389     | 0.02723     |
| SUM                            | 1.00000     | 1.00000     | 1.00000     | 1.00000     | 1.00000     | 1.00000     | 1.00000     |

Table B2. The re-calculated target chemical composition (in mass fraction) of the LAW Phase 6 glasses that used the Zr source chemical with excess Cl.

| Task ID                        | LAW-HPVR-10 | LAW-HPVR-11 | LAW-HPVR-12 | LAW-HPVR-13 | LAW-HPVR-14 | LAW-HPVR-15 | LAW-HPVR-16 |
|--------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Component                      |             |             |             |             |             |             |             |
| SiO <sub>2</sub>               | 0.40196     | 0.34115     | 0.47208     | 0.47328     | 0.34073     | 0.45064     | 0.37157     |
| $Al_2O_3$                      | 0.03494     | 0.03869     | 0.04368     | 0.03444     | 0.05600     | 0.04350     | 0.06351     |
| $B_2O_3$                       | 0.12089     | 0.10630     | 0.06055     | 0.06591     | 0.10643     | 0.10442     | 0.11813     |
| CaO                            | 0.08740     | 0.05839     | 0.07290     | 0.06366     | 0.08848     | 0.05937     | 0.05996     |
| Cl                             | 0.01025     | 0.02357     | 0.01079     | 0.02252     | 0.01890     | 0.01259     | 0.01836     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.00079     | 0.00059     | 0.00061     | 0.00114     | 0.00079     | 0.00068     | 0.00118     |
| F                              | 0.00092     | 0.00068     | 0.00072     | 0.00132     | 0.00091     | 0.00078     | 0.00137     |
| Fe <sub>2</sub> O <sub>3</sub> | 0.00104     | 0.00078     | 0.00082     | 0.00152     | 0.00105     | 0.00090     | 0.00157     |
| K <sub>2</sub> O               | 0.02237     | 0.04069     | 0.00089     | 0.03772     | 0.00134     | 0.04959     | 0.02688     |
| Li <sub>2</sub> O              | 0.00333     | 0.00487     | 0.01781     | 0.01867     | 0.00223     | 0.03047     | 0.01187     |
| MgO                            | 0.00013     | 0.00010     | 0.00010     | 0.00019     | 0.00013     | 0.00011     | 0.00019     |
| Na <sub>2</sub> O              | 0.22486     | 0.21495     | 0.22686     | 0.16317     | 0.25510     | 0.15489     | 0.19377     |
| $P_2O_5$                       | 0.00341     | 0.00254     | 0.00266     | 0.00491     | 0.00341     | 0.00292     | 0.00510     |
| SnO <sub>2</sub>               | 0.02956     | 0.03260     | 0.02019     | 0.00570     | 0.04085     | 0.03569     | 0.03824     |
| $SO_3$                         | 0.00452     | 0.00337     | 0.00352     | 0.00652     | 0.00451     | 0.00387     | 0.00677     |
| TiO <sub>2</sub>               | 0.00048     | 0.02714     | 0.01050     | 0.00082     | 0.01427     | 0.00094     | 0.00918     |
| $V_2O_5$                       | 0.01752     | 0.02436     | 0.01827     | 0.02151     | 0.00062     | 0.00549     | 0.00899     |
| ZnO                            | 0.00328     | 0.00245     | 0.00256     | 0.00473     | 0.00327     | 0.00280     | 0.00491     |
| ZrO <sub>2</sub>               | 0.03237     | 0.07680     | 0.03452     | 0.07227     | 0.06098     | 0.04033     | 0.05843     |
| SUM                            | 1.00000     | 1.00000     | 1.00000     | 1.00000     | 1.00000     | 1.00000     | 1.00000     |

| Task ID                        | LAW-HPVR-17 | LAW-HPVR-18 | LAW-HPVR-19 | LAW-HPVR-20 | LAW-HPVR-21 | LAW-HPVR-22 | LAW-HPVR-23 |
|--------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Component                      |             |             |             |             |             |             |             |
| SiO <sub>2</sub>               | 0.37250     | 0.38775     | 0.43600     | 0.42629     | 0.34148     | 0.34709     | 0.39796     |
| Al <sub>2</sub> O <sub>3</sub> | 0.08098     | 0.04202     | 0.05125     | 0.03444     | 0.08922     | 0.05658     | 0.05229     |
| $B_2O_3$                       | 0.13360     | 0.12736     | 0.09496     | 0.11673     | 0.12735     | 0.07541     | 0.06922     |
| CaO                            | 0.08604     | 0.08252     | 0.08595     | 0.06135     | 0.05941     | 0.06775     | 0.06920     |
| Cl                             | 0.01046     | 0.01208     | 0.00790     | 0.01206     | 0.01040     | 0.01678     | 0.01981     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.00156     | 0.00162     | 0.00067     | 0.00147     | 0.00141     | 0.00142     | 0.00108     |
| F                              | 0.00182     | 0.00190     | 0.00078     | 0.00172     | 0.00164     | 0.00166     | 0.00126     |
| Fe <sub>2</sub> O <sub>3</sub> | 0.00208     | 0.00216     | 0.00090     | 0.00196     | 0.00188     | 0.00190     | 0.00143     |
| K <sub>2</sub> O               | 0.05013     | 0.01126     | 0.00377     | 0.00006     | 0.05739     | 0.03487     | 0.01439     |
| Li <sub>2</sub> O              | 0.01563     | 0.02749     | 0.01925     | 0.00241     | 0.00085     | 0.01557     | 0.00930     |
| MgO                            | 0.00026     | 0.00028     | 0.00011     | 0.00025     | 0.00024     | 0.00023     | 0.00018     |
| Na <sub>2</sub> O              | 0.17444     | 0.15962     | 0.21189     | 0.24925     | 0.19458     | 0.19784     | 0.22626     |
| $P_2O_5$                       | 0.00676     | 0.00702     | 0.00291     | 0.00637     | 0.00613     | 0.00616     | 0.00467     |
| SnO <sub>2</sub>               | 0.00785     | 0.04208     | 0.00387     | 0.00302     | 0.00163     | 0.04341     | 0.03148     |
| $SO_3$                         | 0.00897     | 0.00932     | 0.00386     | 0.00846     | 0.00812     | 0.00818     | 0.00620     |
| TiO <sub>2</sub>               | 0.00201     | 0.00524     | 0.00877     | 0.01597     | 0.02702     | 0.02911     | 0.01407     |
| $V_2O_5$                       | 0.00682     | 0.03668     | 0.03951     | 0.01501     | 0.03368     | 0.03734     | 0.01325     |
| ZnO                            | 0.00650     | 0.00676     | 0.00280     | 0.00613     | 0.00589     | 0.00593     | 0.00449     |
| $ZrO_2$                        | 0.03161     | 0.03684     | 0.02484     | 0.03706     | 0.03167     | 0.05277     | 0.06345     |
| SUM                            | 1.000001.   | 1.00000     | 1.00000     | 1.00000     | 1.00000     | 1.00000     | 1.00000     |

| Task ID                        | LAW-HPVR-24 | LAW-HPVR-25 | LAW-HPVR-26 |
|--------------------------------|-------------|-------------|-------------|
| Component                      |             |             |             |
| SiO <sub>2</sub>               | 0.41986     | 0.38295     | 0.34813     |
| Al <sub>2</sub> O <sub>3</sub> | 0.03766     | 0.03484     | 0.11212     |
| $B_2O_3$                       | 0.06933     | 0.06498     | 0.13376     |
| CaO                            | 0.07956     | 0.11083     | 0.06125     |
| Cl                             | 0.01055     | 0.01784     | 0.01364     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.00143     | 0.00175     | 0.00129     |
| F                              | 0.00167     | 0.00204     | 0.00152     |
| Fe <sub>2</sub> O <sub>3</sub> | 0.00191     | 0.00234     | 0.00173     |
| K <sub>2</sub> O               | 0.05685     | 0.01956     | 0.03032     |
| Li <sub>2</sub> O              | 0.02874     | 0.00425     | 0.03479     |
| MgO                            | 0.00024     | 0.00029     | 0.00022     |
| Na <sub>2</sub> O              | 0.15668     | 0.24028     | 0.17200     |
| $P_2O_5$                       | 0.00620     | 0.00758     | 0.00562     |
| SnO <sub>2</sub>               | 0.02367     | 0.01683     | 0.01663     |
| $SO_3$                         | 0.00824     | 0.01005     | 0.00746     |
| TiO <sub>2</sub>               | 0.02915     | 0.01846     | 0.00866     |
| $V_2O_5$                       | 0.03017     | 0.00218     | 0.00284     |
| ZnO                            | 0.00597     | 0.00729     | 0.00541     |
| $ZrO_2$                        | 0.03213     | 0.05564     | 0.04261     |
| SUM                            | 1.00000     | 1.00000     | 1.00000     |

## Appendix C – LAW Phase 5: Expansion of LAW Glass Composition Boundaries Glass Matrix Target Modified Glass Compositions

The table in this appendix reports the glass target chemical composition of glasses LP5-06 and LP5-16 before and after composition modification. The modified samples are identified by the suffix -mod1 added to the original sample ID.

| Component                      | LP5-06   | LP5-06-mod1 | LP5-16   | LP5-16-mod1 |
|--------------------------------|----------|-------------|----------|-------------|
| Al <sub>2</sub> O <sub>3</sub> | 0.118763 | 0.118763    | 0.079348 | 0.0791348   |
| $B_2O_3$                       | 0.069805 | 0.079805    | 0.062233 | 0.072233    |
| CaO                            | 0.037091 | 0.037091    | 0.087609 | 0.087609    |
| Fe <sub>2</sub> O <sub>3</sub> | 0.001711 | 0.001711    | 0.006312 | 0.006312    |
| K <sub>2</sub> O               | 0.033173 | 0.033173    | 0.006391 | 0.006391    |
| MgO                            | 0.026444 | 0.026444    | 0.044639 | 0.044639    |
| Na <sub>2</sub> O              | 0.220283 | 0.220283    | 0.251542 | 0.251542    |
| SiO <sub>2</sub>               | 0.336142 | 0.336142    | 0.335351 | 0.335351    |
| SnO <sub>2</sub>               | 0.02983  | 0.029830    | 0.041945 | 0.041945    |
| $V_2O_5$                       | 0.05491  | 0.054910    | 0.007977 | 0.007977    |
| ZnO                            | 0.003576 | 0.003576    | 0.00345  | 0.003450    |
| ZrO <sub>2</sub>               | 0.019041 | 0.019041    | 0.031763 | 0.031763    |
| Others                         | 0.049231 | 0.118711    | 0.04144  | 0.031438    |
| Sum                            | 1.0000   | 1.097948    | 1.0000   | 0.9998      |
| Others Composition:            |          |             |          |             |
| Cl                             | 0.00675  | 0.005379    | 0.005681 | 0.004310    |
| Cr <sub>2</sub> O <sub>3</sub> | 0.004081 | 0.003252    | 0.003435 | 0.002606    |
| F                              | 0.002693 | 0.002146    | 0.002267 | 0.001720    |
| $P_2O_5$                       | 0.006474 | 0.005159    | 0.005449 | 0.004134    |
| SO <sub>3</sub>                | 0.011082 | 0.08831     | 0.009328 | 0.007077    |
| TiO <sub>2</sub>               | 0.016064 | 0.012801    | 0.013522 | 0.010259    |
| РЬО                            | 0.000522 | 0.000416    | 0.000439 | 0.0000333   |
| NiO                            | 0.000522 | 0.000416    | 0.000439 | 0.0000333   |
| Cs <sub>2</sub> O              | 0.000522 | 0.000416    | 0.000439 | 0.0000333   |
| Re <sub>2</sub> O <sub>7</sub> | 0.000522 | 0.000416    |          | 0.0000333   |

## Appendix D – Morphology/Color of Each Quenched Glass

The photographs in this appendix show each glass after melting in a platinum/rhodium crucible at the melt temperatures and times specified in Section 2.2 of the main report. The LAW Phase 5 glasses are identified as LP5-# and the LAW Phase 6 glasses as LAW-HPVR-#.

# D.1 LAW Phase 5: Expansion of LAW Glass Composition Boundaries Glasses



Figure D.1. Glass LP5-01 Morphology after the Second Melt



Figure D.2. Glass LP5-02 Morphology after the Second Melt



Figure D.3. Glass LP5-03 Morphology after the Second Melt



Figure D.4. Glass LP5-04 Morphology after the Second Melt



Figure D.5. Glass LP5-05 Morphology after the Second Melt



Figure D.6. Glass LP5-06-mod1 Morphology after the Third Melt



Figure D.7. Photo of Glass LP5-07 Morphology of the Third Melt



Figure D.8. Photo of Glass LP5-08 Morphology of the Second Melt



Figure D.9. Photo of Glass LP5-09 Morphology of the Second Melt



Figure D.10. Photo of Glass LP5-10 Morphology of the Second Melt



Figure D.11. Photo of Glass LP5-11 Morphology of the Third Melt



Figure D.12. Photo of Glass LP5-12-1 Morphology of the Fifth Melt



Figure D.13. Photo of Glass LP5-13 Morphology after the Second Melt



Figure D.14. Photo of Glass LP5-14 Morphology after the Third Melt



Figure D.15. Photo of Glass LP5-15 Morphology after the Forth Melt



Figure D.16. Photo of Glass LP5-16-mod1 Morphology after the Third Melt



Figure D.17. Photo of Glass LP5-17 Morphology after the Forth Melt



Figure D.18. Photo of Glass LP5-18 Morphology after the Third Melt



Figure D.19. Photo of Glass LP5-19 Morphology after the Second Melt



Figure D.20. Photo of Glass LP5-20 Morphology after the Second Melt



Figure D.21. Photo of Glass LP5-21 Morphology after the Second Melt



Figure D.22. Photo of Glass LP5-22 Morphology after the Second Melt



Figure D.23. Photo of Glass LP5-23 Morphology after the Second Melt



Figure D.24. Photo of Glass LP5-24 Morphology after the Third Melt



Figure D.25. Photo of Glass LP5-25 Morphology after the Third Melt

# D.2 LAW Phase 6: High PCT and VHT Response Glass Matrix Glasses



Figure D.26. Photo of Glass LAW-HPVR-01-1 Morphology after the Second Melt



Figure D.27. Photo of Glass LAW-HPVR-02-1 Morphology after the Second Melt



Figure D.28. Photo of Glass LAW-HPVR-03-1 Morphology after the Third Melt



Figure D.29. Photo of Glass LAW-HPVR-04-1 Morphology after the Second Melt



Figure D.30. Photo of Glass LAW-HPVR-05 Morphology after the Second Melt



Figure D.31. Photo of Glass LAW-HPVR-06 Morphology after the Second Melt



Figure D.32. Photo of Glass LAW-HPVR-07 Morphology after the Third Melt



Figure D.33. Photo of Glass LAW-HPVR-08 Morphology after the Second Melt



Figure D.34. Photo of Glass LAW-HPVR-09 Morphology after the Second Melt



Figure D.35. Photo of Glass LAW-HPVR-10 Morphology after the Second Melt



Figure D.36. Photo of Glass LAW-HPVR-11 Morphology after the Second Melt



Figure D.37. Photo of Glass LAW-HPVR-12 Morphology after the Second Melt



Figure D.38. Photo of Glass LAW-HPVR-13 Morphology after the Third Melt



Figure D.39. Photo of Glass LAW-HPVR-14 Morphology after the Second Melt



Figure D.40. Photo of Glass LAW-HPVR-15 Morphology after the Second Melt



Figure D.41. Photo of Glass LAW-HPVR-16 Morphology after the Second Melt



Figure D.42. Photo of Glass LAW-HPVR-17 Morphology after the Second Melt



Figure D.43. Photo of Glass LAW-HPVR-18 Morphology after the Second Melt



Figure D.44. Photo of Glass LAW-HPVR-19 Morphology after the Second Melt



Figure D.45. Photo of Glass LAW-HPVR-20 Morphology after the Second Melt


Figure D.46. Photo of Glass LAW-HPVR-21 Morphology after the Second Melt



Figure D.47. Photo of Glass LAW-HPVR-22 Morphology after the Third Melt



Figure D.48. Photo of Glass LAW-HPVR-23 Morphology after the Second Melt



Figure D.49. Photo of Glass LAW-HPVR-24 Morphology after the Second Melt



Figure D.50. Photo of Glass LAW-HPVR-25 Morphology after the Third Melt



Figure D.51. Photo of Glass LAW-HPVR-26 Morphology after the Second Melt

# Appendix E – Comparison Measured and Target Chemical Compositions

This section compares the targeted glass compositions with the analyzed glass compositions and their percent differences. Table E.1 reports the data from the LAW Phase 5 (glasses identified as LP5-#) and

Table E.2 reports the data from the LAW Phase 6 (glasses identified as LAW-HPVR-#). The measured sums of oxides for all glasses fall within the interval of 95 to 102 wt %, indicating acceptable recovery of the glass components. Percent differences of components with targeted concentrations of 1 wt% or more are reported.

|                   |                | LP5-01       |              |                | LP5-02       |              |                | LP5-03       |              |
|-------------------|----------------|--------------|--------------|----------------|--------------|--------------|----------------|--------------|--------------|
|                   |                |              | % Difference |                |              | % Difference |                |              | % Difference |
|                   |                |              | Measured vs. |                |              | Measured vs. |                |              | Measured vs. |
| Oxide             | Measured (wt%) | Target (wt%) | Target       | Measured (wt%) | Target (wt%) | Target       | Measured (wt%) | Target (wt%) | Target       |
| $Al_2O_3$         | 3.81           | 3.74         | 2%           | 3.45           | 3.55         | -3%          | 4.78           | 4.87         | -2%          |
| $B_2O_3$          | 11.3           | 10.8         | 4%           | 6.76           | 6.71         | 1%           | 10.4           | 10.4         | 1%           |
| CaO               | 5.92           | 5.67         | 4%           | 11.7           | 11.6         | 1%           | 6.59           | 6.49         | 2%           |
| Cl                | 0.555          | 0.65         |              | 0.356          | 0.46         |              | 0.519          | 0.64         |              |
| $Cr_2O_3$         | 0.362          | 0.4          |              | 0.253          | 0.28         |              | 0.363          | 0.39         |              |
| F                 | 0.223          | 0.26         |              | 0.148          | 0.19         |              | 0.224          | 0.26         |              |
| $Fe_2O_3$         | 0.832          | 0.9          |              | 0.815          | 0.89         |              | 0.345          | 0.32         |              |
| K <sub>2</sub> O  | 4.9            | 4.84         | 1%           | 1.29           | 1.27         | 1%           | 0.141          | 0.12         |              |
| Li <sub>2</sub> O | < 0.215        | 0            |              | < 0.215        | 0            |              | < 0.215        | 0            |              |
| MgO               | 0.493          | 0.48         |              | 4.8            | 4.77         | 1%           | 3.83           | 3.87         | -1%          |
| Na <sub>2</sub> O | 25.5           | 26.3         | -3%          | 25             | 25.9         | -3%          | 24.7           | 24.4         | 1%           |
| NiO               | < 0.127        | 0.05         |              | < 0.127        | 0.04         |              | < 0.127        | 0.05         |              |
| $P_2O_5$          | 0.58           | 0.63         |              | 0.4            | 0.45         |              | 0.537          | 0.62         |              |
| PbO               | < 0.108        | 0.05         |              | < 0.108        | 0.04         |              | < 0.108        | 0.05         |              |
| $Re_2O_7$         | < 0.0325       | 0.05         |              | < 0.0325       | 0.04         |              | < 0.0325       | 0.05         |              |
| SiO2              | 34.5           | 33.6         | 3%           | 35.1           | 34.6         | 1%           | 34.1           | 34           | 0%           |
| $SnO_2$           | 4.25           | 4.35         | -2%          | 0.475          | 0.53         |              | 0.62           | 0.59         |              |
| $SO_3$            | 1.04           | 1.07         | -3%          | 0.774          | 0.76         |              | 1.05           | 1.05         | 0%           |
| TiO <sub>2</sub>  | 1.48           | 1.56         | -5%          | 1.05           | 1.11         | -5%          | 1.49           | 1.53         | -2%          |
| $V_2O_5$          | 3.36           | 3.34         | 1%           | 2.94           | 2.92         | 1%           | 4.78           | 4.84         | -1%          |
| ZnO               | 1.17           | 1.16         | 0%           | 3.5            | 3.55         | -1%          | 0.196          | 0.18         |              |
| $ZrO_2$           | < 0.135        | 0.06         |              | 0.296          | 0.31         |              | 5.12           | 5.33         | -4%          |
| Sum of<br>Oxides  | 101            | 100          | 1%           | 99.6           | 100          | 0%           | 100            | 100          | 0%           |

Table E.1. Targeted vs. Measured Composition (mass fraction) for the LAW Phase 5 Glasses. Only the relative differences between the measured and targeted values for the analytes with measured and targeted values above 1 wt% are reported in the table.

|                                |          | LP5-04       |              |                | LP5-05       |              |                | LP5-06-MOD1  |              |
|--------------------------------|----------|--------------|--------------|----------------|--------------|--------------|----------------|--------------|--------------|
|                                |          |              | % Difference |                |              | % Difference |                |              | % Difference |
|                                | Measured |              | Measured vs. |                |              | Measured vs. |                |              | Measured vs. |
| Oxide                          | (wt%)    | Target (wt%) | Target       | Measured (wt%) | Target (wt%) | Target       | Measured (wt%) | Target (wt%) | Target       |
| $Al_2O_3$                      | 4.65     | 4.8          | -3%          | 4.01           | 4.1          | -2%          | 11.8           | 11.9         | -1%          |
| $B_2O_3$                       | 10.3     | 10           | 2%           | 8.99           | 8.96         | 0%           | 8.36           | 7.98         | 5%           |
| CaO                            | 11.4     | 11.5         | -1%          | 7.1            | 7.12         | 0%           | 3.82           | 3.71         | 3%           |
| Cl                             | 0.319    | 0.42         |              | 0.25           | 0.3          |              | 0.285          | 0.538        |              |
| $Cr_2O_3$                      | 0.233    | 0.25         |              | 0.17           | 0.18         |              | 0.3            | 0.325        |              |
| F                              | 0.132    | 0.17         |              | 0.101          | 0.12         |              | 0.176          | 0.215        |              |
| Fe <sub>2</sub> O <sub>3</sub> | < 0.147  | 0.13         |              | 0.903          | 0.96         |              | 0.181          | 0.17         |              |
| K <sub>2</sub> O               | 3.54     | 3.64         | -3%          | 2.47           | 2.54         | -3%          | 3.29           | 3.32         | -1%          |
| Li <sub>2</sub> O              | < 0.215  | 0            |              | < 0.215        | 0            |              | < 0.251        | 0            |              |
| MgO                            | 0.21     | 0.11         |              | 4.93           | 4.95         | 0%           | 2.66           | 2.64         | 1%           |
| Na <sub>2</sub> O              | 24.6     | 25           | -1%          | 23.1           | 23.8         | -3%          | 22.2           | 22           | 1%           |
| NiO                            | < 0.127  | 0.03         |              | < 0.127        | 0.02         |              | < 0.127        | 0.0416       |              |
| $P_2O_5$                       | 0.357    | 0.4          |              | 0.265          | 0.29         |              | 0.415          | 0.516        |              |
| PbO                            | < 0.108  | 0.03         |              | < 0.108        | 0.02         |              | < 0.108        | 0.0416       |              |
| $Re_2O_7$                      | < 0.0325 | 0.03         |              | < 0.0325       | 0.02         |              | < 0.0325       | 0.0416       |              |
| SiO2                           | 35.5     | 34.3         | 4%           | 34.6           | 34.4         | 1%           | 35.4           | 33.6         | 5%           |
| SnO <sub>2</sub>               | 1.05     | 1.1          | -5%          | 3.54           | 3.61         | -2%          | 2.89           | 2.98         | -3%          |
| $SO_3$                         | 0.669    | 0.68         |              | 0.534          | 0.49         |              | 0.811          | 0.883        |              |
| TiO <sub>2</sub>               | 0.972    | 0.99         |              | 0.703          | 0.72         |              | 1.24           | 1.28         | -3%          |
| $V_2O_5$                       | < 0.179  | 0.13         |              | 5.44           | 5.49         | -1%          | 5.5            | 5.49         | 0%           |
| ZnO                            | 5.92     | 5.71         | 4%           | 1.27           | 1.29         | -2%          | 0.367          | 0.36         |              |
| ZrO <sub>2</sub>               | 0.5      | 0.53         |              | 0.507          | 0.56         |              | 1.78           | 1.9          | -6%          |
| Sum of Oxides                  | 101      | 99.9         | 1%           | 99.4           | 99.9         | -1%          | 102            | 99.9         | 2%           |

Table E.1. (continued)

| Table E.1. | (continued) |
|------------|-------------|
|------------|-------------|

| Oxide | LP5-07 | LP5-08 | LP5-09 |
|-------|--------|--------|--------|
|       |        |        |        |

|                                | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%)  | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target |
|--------------------------------|----------------|--------------|----------------------------------------|----------------|---------------|----------------------------------------|----------------|--------------|----------------------------------------|
| Al <sub>2</sub> O <sub>3</sub> | 13.9           | 14.5         | -4%                                    | 13.5           | 13.4          | 1%                                     | 9.11           | 9.39         | -3%                                    |
| $B_2O_3$                       | 10.4           | 10.4         | 0%                                     | 9.84           | 9.48          | 4%                                     | 6.79           | 6.76         | 0%                                     |
| CaO                            | 1.32           | 1.35         | -2%                                    | 0.745          | 0.71          |                                        | 4.44           | 4.33         | 2%                                     |
| Cl                             | 0.153          | 0.17         |                                        | 0.282          | 0.32          |                                        | 0.476          | 0.58         |                                        |
| Cr <sub>2</sub> O <sub>3</sub> | 0.159          | 0.1          |                                        | 0.179          | 0.19          |                                        | 0.323          | 0.35         |                                        |
| F                              | 0.0565         | 0.07         |                                        | 0.116          | 0.13          |                                        | 0.206          | 0.23         |                                        |
| Fe <sub>2</sub> O <sub>3</sub> | < 0.143        | 0.05         |                                        | 0.508          | 0.51          |                                        | 0.689          | 0.74         |                                        |
| K <sub>2</sub> O               | 2.07           | 2.12         | -2%                                    | 4.84           | 4.62          | 5%                                     | 3.1            | 3.07         | 1%                                     |
| Li <sub>2</sub> O              | < 0.215        | 0            |                                        | < 0.215        | 0             |                                        | < 0.215        | 0            |                                        |
| MgO                            | 4.16           | 3.93         | 6%                                     | < 0.166        | 0.06          |                                        | 0.749          | 0.76         |                                        |
| Na <sub>2</sub> O              | 25.1           | 26.5         | -5%                                    | 27.1           | 26.9          | 1%                                     | 25.8           | 26.5         | -2%                                    |
| NiO                            | < 0.265        | 0.01         |                                        | < 0.127        | 0.02          |                                        | < 0.127        | 0.05         |                                        |
| $P_2O_5$                       | < 0.229        | 0.16         |                                        | 0.268          | 0.31          |                                        | 0.485          | 0.56         |                                        |
| PbO                            | < 0.108        | 0.01         |                                        | < 0.108        | 0.02          |                                        | < 0.108        | 0.05         |                                        |
| $Re_2O_7$                      | < 0.0325       | 0.01         |                                        | < 0.0325       | 0.02          |                                        | < 0.0325       | 0.05         |                                        |
| SiO2                           | 38.6           | 38.1         | 1%                                     | 35.6           | 34.5          | 3%                                     | 35             | 34.3         | 2%                                     |
| $SnO_2$                        | 0.206          | 0.21         |                                        | 3.85           | 3.8           | 1%                                     | 2.39           | 2.45         | -2%                                    |
| $SO_3$                         | 0.333          | 0.28         |                                        | 0.512          | 0.52          |                                        | 0.93           | 0.96         |                                        |
| TiO <sub>2</sub>               | 0.445          | 0.41         |                                        | 0.769          | 0.76          |                                        | 1.34           | 1.39         | -3%                                    |
| $V_2O_5$                       | 0.744          | 0.73         |                                        | 0.319          | 0.31          |                                        | 0.993          | 1.03         | -4%                                    |
| ZnO                            | 0.222          | 0.23         |                                        | 1.83           | 1.82          | 1%                                     | 5.53           | 5.59         | -1%                                    |
| $ZrO_2$                        | 0.574          | 0.62         |                                        | 1.47           | 1.53          | -4%                                    | 0.736          | 0.77         |                                        |
| Sum of<br>Oxides               | 99.4           | 100          | -1%                                    | 102            | 99.9          | 2%                                     | 99.6           | 99.9         | 0%                                     |
|                                |                |              |                                        | Table E.1      | . (continued) |                                        |                |              |                                        |
|                                |                | LP5-10       |                                        |                | LP5-11        |                                        |                | LP5-12-1     |                                        |
| Oxide                          | Measured (wt%) | Target (wt%) | % Difference                           | Measured (wt%) |               | % Difference                           | Measured (wt%) |              | % Difference                           |

|                                |          |      | Measured vs.<br>Target |          | Target (wt%) | Measured vs.<br>Target |          | Target (wt%) | Measured vs.<br>Target |
|--------------------------------|----------|------|------------------------|----------|--------------|------------------------|----------|--------------|------------------------|
| Al <sub>2</sub> O <sub>3</sub> | 4.64     | 4.63 | 0%                     | 5.42     | 5.5          | -1%                    | 13.4     | 13.6         | -2%                    |
| $B_2O_3$                       | 6.29     | 6.15 | 2%                     | 7.13     | 7.14         | 0%                     | 5.88     | 6.04         | -3%                    |
| CaO                            | 1.87     | 1.71 | 10%                    | 2.39     | 2.29         | 4%                     | 1.34     | 1.17         | 15%                    |
| Cl                             | 0.176    | 0.24 |                        | 0.508    | 0.66         |                        | 0.125    | 0.67         |                        |
| Cr <sub>2</sub> O <sub>3</sub> | 0.135    | 0.14 |                        | 0.387    | 0.4          |                        | 0.377    | 0.4          |                        |
| F                              | 0.0848   | 0.09 |                        | 0.225    | 0.26         |                        | 0.211    | 0.27         |                        |
| $Fe_2O_3$                      | 0.453    | 0.45 |                        | 0.669    | 0.69         |                        | 0.582    | 0.57         |                        |
| K <sub>2</sub> O               | 3.1      | 3.25 | -5%                    | 0.445    | 0.41         |                        | 2        | 2.25         | -11%                   |
| Li <sub>2</sub> O              | < 0.215  | 0    |                        | < 0.215  | 0            |                        | < 0.215  | 0            |                        |
| MgO                            | 4.52     | 4.36 | 4%                     | 3.66     | 3.63         | 1%                     | 5.24     | 4.96         | 6%                     |
| Na <sub>2</sub> O              | 26.4     | 26.9 | -2%                    | 25.8     | 26.5         | -3%                    | 23.1     | 22.9         | 1%                     |
| NiO                            | < 0.127  | 0.02 |                        | < 0.127  | 0.05         |                        | < 0.127  | 0.05         |                        |
| $P_2O_5$                       | < 0.229  | 0.23 |                        | 0.525    | 0.63         |                        | 0.579    | 0.64         |                        |
| PbO                            | < 0.108  | 0.02 |                        | < 0.108  | 0.05         |                        | < 0.108  | 0.05         |                        |
| $Re_2O_7$                      | < 0.0325 | 0.02 |                        | < 0.0325 | 0.05         |                        | < 0.0325 | 0.05         |                        |
| SiO2                           | 36.4     | 36.1 | 1%                     | 36.8     | 36.3         | 1%                     | 35.1     | 34           | 3%                     |
| $SnO_2$                        | 3.77     | 3.68 | 3%                     | 1.58     | 1.59         | -1%                    | 1.49     | 1.39         | 7%                     |
| $SO_3$                         | 0.443    | 0.39 |                        | 1.07     | 1.08         | -1%                    | 0.664    | 1.1          | -40%                   |
| TiO <sub>2</sub>               | 0.581    | 0.56 |                        | 1.52     | 1.57         | -3%                    | 1.67     | 1.59         | 5%                     |
| $V_2O_5$                       | 1.37     | 1.36 | 1%                     | 5.69     | 5.67         | 0%                     | 3.28     | 3.15         | 4%                     |
| ZnO                            | 5.5      | 5.55 | -1%                    | 4.19     | 4.26         | -2%                    | 2.29     | 2.31         | -1%                    |
| ZrO <sub>2</sub>               | 3.71     | 4.12 | -10%                   | 1.18     | 1.26         | -7%                    | 2.63     | 2.77         | -5%                    |
| Sum of<br>Oxides               | 100      | 100  | 0%                     | 99.7     | 100          | 0%                     | 100      | 99.9         | 1%                     |

Table E.1. (continued)

|       |                | LP5-13       |              |                | LP5-14       |              |                | LP5-15       |              |
|-------|----------------|--------------|--------------|----------------|--------------|--------------|----------------|--------------|--------------|
|       |                |              | % Difference |                |              | % Difference |                |              | % Difference |
|       |                |              | Measured vs. |                |              | Measured vs. |                |              | Measured vs. |
| Oxide | Measured (wt%) | Target (wt%) | Target       | Measured (wt%) | Target (wt%) | Target       | Measured (wt%) | Target (wt%) | Target       |

| Al <sub>2</sub> O <sub>3</sub> | 4.54     | 4.49 | 1%  | 4.45     | 4.51 | -1% | 12.9     | 13.3 | -3%  |
|--------------------------------|----------|------|-----|----------|------|-----|----------|------|------|
| $B_2O_3$                       | 13.1     | 12.9 | 1%  | 6.62     | 6.68 | -1% | 9.49     | 9.06 | 5%   |
| CaO                            | 0.259    | 0.06 |     | 0.591    | 0.44 |     | 0.357    | 0.34 |      |
| Cl                             | 0.343    | 0.43 |     | 0.483    | 0.67 |     | 1.11     | 0.19 | 482% |
| $Cr_2O_3$                      | 0.252    | 0.26 |     | 0.389    | 0.4  |     | 0.074    | 0.12 |      |
| F                              | 0.144    | 0.17 |     | 0.223    | 0.27 |     | 0.0649   | 0.08 |      |
| Fe <sub>2</sub> O <sub>3</sub> | 0.83     | 0.85 |     | < 0.143  | 0.12 |     | 0.879    | 0.95 |      |
| K <sub>2</sub> O               | 3.94     | 4.19 | -6% | 3.75     | 4.09 | -8% | 4.4      | 4.82 | -9%  |
| Li <sub>2</sub> O              | < 0.215  | 0    |     | < 0.215  | 0    |     | < 0.215  | 0    |      |
| MgO                            | 2.69     | 2.6  | 3%  | 1.63     | 1.55 | 5%  | 1.99     | 1.96 | 2%   |
| Na <sub>2</sub> O              | 26       | 26.5 | -2% | 23.4     | 23.7 | -1% | 25.2     | 26   | -3%  |
| NiO                            | < 0.127  | 0.03 |     | < 0.127  | 0.05 |     | < 0.127  | 0.01 |      |
| $P_2O_5$                       | 0.385    | 0.41 |     | 0.581    | 0.64 |     | < 0.229  | 0.18 |      |
| PbO                            | < 0.108  | 0.03 |     | < 0.108  | 0.05 |     | < 0.108  | 0.01 |      |
| $Re_2O_7$                      | < 0.0325 | 0.03 |     | < 0.0325 | 0.05 |     | < 0.0325 | 0.01 |      |
| SiO2                           | 34.2     | 34.1 | 0%  | 38.9     | 38.6 | 1%  | 35.8     | 33.7 | 6%   |
| $SnO_2$                        | 0.767    | 0.78 |     | 3.54     | 3.43 | 3%  | 0.377    | 0.4  |      |
| $SO_3$                         | 0.744    | 0.71 |     | 1.12     | 1.1  | 2%  | 0.24     | 0.31 |      |
| TiO <sub>2</sub>               | 1.04     | 1.03 | 1%  | 1.57     | 1.59 | -1% | 0.461    | 0.46 |      |
| $V_2O_5$                       | 4.62     | 4.56 | 1%  | 4.33     | 4.25 | 2%  | 2.56     | 2.57 | 0%   |
| ZnO                            | 1.63     | 1.65 | -1% | 4.31     | 4.4  | -2% | < 0.124  | 0.02 |      |
| ZrO <sub>2</sub>               | 3.86     | 4.18 | -8% | 3.19     | 3.42 | -7% | 5.18     | 5.51 | -6%  |
| Sum of<br>Oxides               | 99.8     | 100  | 0%  | 99.7     | 100  | 0%  | 102      | 100  | 2%   |

|                   |                | LP5-16-MOD1  |              |                | LP5-17       |              |                | LP5-18       |              |
|-------------------|----------------|--------------|--------------|----------------|--------------|--------------|----------------|--------------|--------------|
|                   |                |              | % Difference |                |              | % Difference |                |              | % Difference |
|                   |                |              | Measured vs. |                |              | Measured vs. |                |              | Measured vs. |
| Oxide             | Measured (wt%) | Target (wt%) | Target       | Measured (wt%) | Target (wt%) | Target       | Measured (wt%) | Target (wt%) | Target       |
| $Al_2O_3$         | 8.09           | 7.93         | 2%           | 3.55           | 3.56         | 0%           | 5.74           | 5.76         | 0%           |
| $B_2O_3$          | 7.43           | 7.22         | 3%           | 7.74           | 7.74         | 0%           | 9.57           | 9.41         | 2%           |
| CaO               | 8.56           | 8.76         | -2%          | 4.97           | 4.81         | 3%           | 0.487          | 0.42         |              |
| Cl                | 0.369          | 0.431        |              | 0.825          | 0.25         | 230%         | 0.395          | 0.52         |              |
| $Cr_2O_3$         | 0.275          | 0.261        |              | 0.142          | 0.15         |              | 0.316          | 0.31         |              |
| F                 | 0.129          | 0.172        |              | 0.0845         | 0.1          |              | 0.174          | 0.21         |              |
| $Fe_2O_3$         | 0.637          | 0.63         |              | 0.692          | 0.71         |              | 0.592          | 0.52         |              |
| K <sub>2</sub> O  | 0.552          | 0.64         |              | 3.44           | 3.98         | -14%         | 1.8            | 1.89         | -5%          |
| Li <sub>2</sub> O | < 0.215        | 0            |              | < 0.215        | 0            |              | < 0.215        | 0            |              |
| MgO               | 4.71           | 4.46         | 6%           | 1.53           | 1.52         | 1%           | 5.2            | 5.01         | 4%           |
| Na <sub>2</sub> O | 24.1           | 25.2         | -5%          | 20.9           | 22           | -5%          | 23.9           | 24.5         | -2%          |
| NiO               | 0.179          | 0.0333       |              | < 0.127        | 0.02         |              | < 0.127        | 0.04         |              |
| $P_2O_5$          | 0.373          | 0.413        |              | < 0.231        | 0.24         |              | 0.483          | 0.5          |              |
| PbO               | < 0.108        | 0.0333       |              | < 0.108        | 0.02         |              | < 0.108        | 0.04         |              |
| $Re_2O_7$         | < 0.0325       | 0.0333       |              | < 0.0325       | 0.02         |              | < 0.0325       | 0.04         |              |
| SiO2              | 34.7           | 33.5         | 4%           | 35             | 33.8         | 4%           | 39.5           | 39.1         | 1%           |
| $SnO_2$           | 4.27           | 4.19         | 2%           | 4.27           | 4.21         | 1%           | 0.256          | 0.19         |              |
| $SO_3$            | 0.616          | 0.708        |              | 0.404          | 0.41         |              | 0.903          | 0.85         |              |
| TiO <sub>2</sub>  | 1.04           | 1.03         | 1%           | 0.595          | 0.6          |              | 1.25           | 1.23         | 1%           |
| $V_2O_5$          | 0.806          | 0.8          |              | 5.25           | 5.15         | 2%           | 3.69           | 3.62         | 2%           |
| ZnO               | 0.35           | 0.35         |              | 5.72           | 5.68         | 1%           | 5.79           | 5.68         | 2%           |
| $ZrO_2$           | 3.01           | 3.18         | -5%          | 4.73           | 5.02         | -6%          | 0.167          | 0.16         |              |
| Sum of<br>Oxides  | 101            | 100          | 1%           | 101            | 100          | 1%           | 101            | 100          | 1%           |

Table E.1. (continued)

|                   |                | LP5-19       |              |                | LP5-20       |              |                | LP5-21       |              |
|-------------------|----------------|--------------|--------------|----------------|--------------|--------------|----------------|--------------|--------------|
|                   |                |              | % Difference |                |              | % Difference |                |              | % Difference |
|                   |                |              | Measured vs. |                | _ / //       | Measured vs. |                |              | Measured vs. |
| Oxide             | Measured (wt%) | Target (wt%) | Target       | Measured (wt%) | Target (wt%) | Target       | Measured (wt%) | Target (wt%) | Target       |
| $Al_2O_3$         | 3.75           | 3.81         | -2%          | 4.06           | 3.88         | 5%           | 5.92           | 5.86         | 1%           |
| $B_2O_3$          | 10.5           | 10.4         | 0%           | 14.2           | 13.5         | 5%           | 13.6           | 13.2         | 3%           |
| CaO               | 6.71           | 6.44         | 4%           | 1.43           | 1.37         | 4%           | 4.87           | 4.73         | 3%           |
| Cl                | 0.246          | 0.33         |              | 0.6            | 0.66         |              | 0.491          | 0.61         |              |
| $Cr_2O_3$         | 0.179          | 0.2          |              | 0.389          | 0.4          |              | 0.352          | 0.37         |              |
| F                 | 0.11           | 0.13         |              | 0.227          | 0.26         |              | 0.2            | 0.25         |              |
| $Fe_2O_3$         | < 0.143        | 0.04         |              | 0.657          | 0.66         |              | < 0.143        | 0.11         |              |
| K <sub>2</sub> O  | 5.65           | 5.58         | 1%           | 2.5            | 2.64         | -5%          | 4.44           | 4.62         | -4%          |
| Li <sub>2</sub> O | < 0.215        | 0            |              | < 0.215        | 0            |              | < 0.215        | 0            |              |
| MgO               | 4.6            | 4.62         | 0%           | 3.03           | 2.9          | 5%           | 2.97           | 2.97         | 0%           |
| Na <sub>2</sub> O | 22.2           | 22.3         | 0%           | 24.9           | 25.5         | -2%          | 21.8           | 22.1         | -1%          |
| NiO               | < 0.127        | 0.03         |              | < 0.127        | 0.05         |              | < 0.127        | 0.05         |              |
| $P_2O_5$          | 0.272          | 0.32         |              | 0.572          | 0.63         |              | 0.53           | 0.59         |              |
| PbO               | < 0.108        | 0.03         |              | < 0.108        | 0.05         |              | < 0.108        | 0.05         |              |
| $Re_2O_7$         | < 0.0325       | 0.03         |              | < 0.0325       | 0.05         |              | < 0.0325       | 0.05         |              |
| SiO2              | 35.2           | 34.6         | 2%           | 39.8           | 38.8         | 3%           | 35.6           | 35           | 2%           |
| $SnO_2$           | 1.49           | 1.53         | -2%          | 3.82           | 3.73         | 2%           | 1.17           | 1.23         | -5%          |
| $SO_3$            | 0.578          | 0.54         |              | 1.12           | 1.08         | 4%           | 0.998          | 1.01         | -1%          |
| TiO <sub>2</sub>  | 0.753          | 0.79         |              | 1.56           | 1.56         | 0%           | 1.43           | 1.46         | -2%          |
| $V_2O_5$          | 1.25           | 1.31         | -4%          | 0.221          | 0.21         |              | 3.39           | 3.4          | 0%           |
| ZnO               | 5.3            | 5.38         | -1%          | 0.478          | 0.47         |              | 1.52           | 1.51         | 1%           |
| ZrO <sub>2</sub>  | 1.46           | 1.55         | -6%          | 1.51           | 1.56         | -3%          | 0.736          | 0.77         |              |
| Sum of<br>Oxides  | 101            | 100          | 1%           | 102            | 100          | 2%           | 101            | 99.9         | 1%           |

Table E.1. (continued)

|                                |                | LP5-22       |                        |                | LP5-23       |                        |                | LP5-24       |                        |
|--------------------------------|----------------|--------------|------------------------|----------------|--------------|------------------------|----------------|--------------|------------------------|
|                                |                |              | % Difference           |                |              | % Difference           |                |              | % Difference           |
| Oxide                          | Measured (wt%) | Target (wt%) | Measured vs.<br>Target | Measured (wt%) | Target (wt%) | Measured vs.<br>Target | Measured (wt%) | Target (wt%) | Measured vs.<br>Target |
| $Al_2O_3$                      | 3.66           | 3.71         | -1%                    | 3.71           | 3.84         | -3%                    | 9.71           | 10           | -3%                    |
| $B_2O_3$                       | 12.7           | 12.6         | 1%                     | 6.41           | 6.37         | 1%                     | 9.53           | 9.5          | 0%                     |
| CaO                            | 0.414          | 0.31         |                        | 6.37           | 6.3          | 1%                     | 5.14           | 5            | 3%                     |
| Cl                             | 0.169          | 0.2          |                        | 0.19           | 0.22         |                        | 1.06           | 0.21         | 406%                   |
| $Cr_2O_3$                      | 0.109          | 0.12         |                        | 0.119          | 0.13         |                        | 0.378          | 0.45         |                        |
| F                              | 0.0646         | 0.08         |                        | 0.0703         | 0.09         |                        | 0.27           | 0.32         |                        |
| Fe <sub>2</sub> O <sub>3</sub> | 0.687          | 0.74         |                        | 0.174          | 0.16         |                        | 0.575          | 0.6          |                        |
| K <sub>2</sub> O               | 0.401          | 0.32         |                        | 1.79           | 1.74         | 3%                     | 1.03           | 1            | 3%                     |
| Li <sub>2</sub> O              | < 0.215        | 0            |                        | < 0.215        | 0            |                        | < 0.215        | 0            |                        |
| MgO                            | 4.53           | 4.66         | -3%                    | 2.36           | 2.35         | 1%                     | 0.664          | 0.65         |                        |
| Na <sub>2</sub> O              | 24.5           | 24.7         | -1%                    | 24.1           | 23.8         | 1%                     | 22.4           | 23           | -3%                    |
| NiO                            | < 0.127        | 0.02         |                        | < 0.127        | 0.02         |                        | < 0.127        | 0            |                        |
| $P_2O_5$                       | < 0.229        | 0.19         |                        | < 0.229        | 0.21         |                        | 0.569          | 0.68         |                        |
| PbO                            | < 0.108        | 0.02         |                        | < 0.108        | 0.02         |                        | < 0.108        | 0            |                        |
| $Re_2O_7$                      | < 0.0325       | 0.02         |                        | < 0.0325       | 0.02         |                        | < 0.0325       | 0            |                        |
| SiO <sub>2</sub>               | 48.7           | 48           | 2%                     | 49.1           | 49           | 0%                     | 39.3           | 38.8         | 1%                     |
| $SnO_2$                        | 0.973          | 1.06         | -8%                    | 1.36           | 1.38         | -2%                    | 1.48           | 1.5          | -1%                    |
| $SO_3$                         | 0.365          | 0.33         |                        | 0.371          | 0.35         |                        | 0.396          | 0.5          |                        |
| TiO <sub>2</sub>               | 0.466          | 0.48         |                        | 0.505          | 0.51         |                        | < 0.167        | 0            |                        |
| $V_2O_5$                       | 0.608          | 0.63         |                        | 2.7            | 2.72         | -1%                    | 0.977          | 1            | -2%                    |
| ZnO                            | < 0.124        | 0.06         |                        | 0.453          | 0.44         |                        | 2.82           | 2.8          | 1%                     |
| $ZrO_2$                        | 1.65           | 1.78         | -7%                    | 0.37           | 0.39         |                        | 3.7            | 4            | -8%                    |
| Sum of<br>Oxides               | 101            | 100          | 1%                     | 101            | 100          | 1%                     | 101            | 100          | 1%                     |

Table E.1. (continued)

|                                |                | 1. (continued) |                     |
|--------------------------------|----------------|----------------|---------------------|
|                                |                | LP5-25         |                     |
| -                              |                |                | % Difference        |
| Oxide                          | Measured (wt%) | Target (wt%)   | Measured vs. Target |
| Al <sub>2</sub> O <sub>3</sub> | 6.11           | 6.07           | 1%                  |
| $B_2O_3$                       | 10.4           | 10.1           | 3%                  |
| CaO                            | 5.25           | 5.11           | 3%                  |
| Cl                             | 0.0307         | 0.05           |                     |
| $Cr_2O_3$                      | < 0.0365       | 0.01           |                     |
| F                              | 0.241          | 0.34           |                     |
| Fe <sub>2</sub> O <sub>3</sub> | 5.13           | 5.42           | -5%                 |
| K <sub>2</sub> O               | < 0.122        | 0.08           |                     |
| Li <sub>2</sub> O              | 2.06           | 2.51           | -18%                |
| MgO                            | 1.45           | 1.51           | -4%                 |
| Na <sub>2</sub> O              | 14.4           | 14.4           | 0%                  |
| NiO                            | < 0.127        | 0.026          |                     |
| $P_2O_5$                       | < 0.229        | 0.07           |                     |
| PbO                            | < 0.108        | 0.01           |                     |
| $Re_2O_7$                      | < 0.0325       | 0.1            |                     |
| SiO <sub>2</sub>               | 47.8           | 46.6           | 2%                  |
| $SnO_2$                        | < 0.127        | 0              |                     |
| $SO_3$                         | 0.182          | 0.32           |                     |
| TiO <sub>2</sub>               | 1.09           | 1.14           | -4%                 |
| $V_2O_5$                       | < 0.179        | 0              |                     |
| ZnO                            | 3.06           | 3.07           | 0%                  |
| ZrO <sub>2</sub>               | 2.86           | 3.03           | -6%                 |
| Sum of Oxides                  | 101            | 99.9           | 1%                  |

Table E.1. (continued)

Table E.2. Targeted vs. Measured Composition (mass fraction) for the LAW Phase 6 Glasses. Only the relative differences between the measured and targeted values for the analytes with measured and targeted values above 1 wt% are reported in the table. Note that the corrected target wt% of Cl may still have large errors due to relatively low Cl as impurity in the Zr source. Therefore, the target vs. measured Cl wt% should not be used in the future calculation of volatile loss of C.

|                   |                | LAW-HPVR-01-1 |              |                | LAW-HPVR-02-1 |              |                | LAW-HPVR-03-1 |              |  |
|-------------------|----------------|---------------|--------------|----------------|---------------|--------------|----------------|---------------|--------------|--|
|                   |                |               | % Difference |                |               | % Difference |                |               | % Difference |  |
|                   |                |               | Measured vs. |                |               | Measured vs. |                |               | Measured vs. |  |
| Oxide             | Measured (wt%) | Target (wt%)  | Target       | Measured (wt%) | Target (wt%)  | Target       | Measured (wt%) | Target (wt%)  | Target       |  |
| $Al_2O_3$         | 3.68           | 3.66          | 0%           | 3.69           | 3.81          | -3%          | 7.09           | 7.59          | -7%          |  |
| $B_2O_3$          | 12.3           | 12.10         | 2%           | 13             | 13.46         | -3%          | 8.58           | 9.16          | -6%          |  |
| CaO               | 6.66           | 6.29          | 6%           | 7.43           | 7.50          | -1%          | 6.58           | 6.3           | 4%           |  |
| Cl                | 1.41           | 2.04          | -31%         | 0.659          | 0.83          |              | 0.0779         | 0.048         |              |  |
| $Cr_2O_3$         | 0.055          | 0.0581        |              | 0.101          | 0.1008        |              | 0.0742         | 0.082         |              |  |
| F                 | 0.0502         | 0.0678        |              | 0.0851         | 0.1185        |              | 0.0821         | 0.096         |              |  |
| $Fe_2O_3$         | 0.133          | 0.0774        |              | 0.154          | 0.1353        |              | 0.115          | 0.109         |              |  |
| K <sub>2</sub> O  | 2.52           | 2.48          | 2%           | 3.78           | 3.97          | -5%          | 5.07           | 5.63          | -10%         |  |
| Li <sub>2</sub> O | 2.63           | 2.53          |              | 0.154          | 0.165         |              | 2.62           | 2.86          | -8%          |  |
| MgO               | 0.0632         | 0.010         |              | 0.0789         | 0.017         |              | 0.0646         | 0.014         |              |  |
| Na <sub>2</sub> O | 17.4           | 17.63         | -1%          | 16.4           | 17.47         | -6%          | 16             | 16.1          | -1%          |  |
| $P_2O_5$          | < 0.247        | 0.252         |              | 0.385          | 0.439         |              | 0.304          | 0.355         |              |  |
| $SiO_2$           | 39.5           | 38.79         | 2%           | 39.6           | 40.99         | -3%          | 34.3           | 36.2          | -5%          |  |
| $SnO_2$           | 2.15           | 1.95          | 10%          | 2.95           | 2.79          | 6%           | 4.27           | 4             | 7%           |  |
| $SO_3$            | 0.312          | 0.335         |              | 0.504          | 0.582         |              | 0.421          | 0.471         |              |  |
| TiO <sub>2</sub>  | 1.71           | 1.67          | 2%           | 1.12           | 1.14          | -2%          | 1              | 1.09          | -8%          |  |
| $V_2O_5$          | 3.28           | 3.15          | 4%           | 3.49           | 3.52          | -1%          | 3.35           | 3.31          | 1%           |  |
| ZnO               | 0.257          | 0.242         |              | 0.423          | 0.422         |              | 0.314          | 0.341         |              |  |
| $ZrO_2$           | 5.21           | 6.65          | -22%         | 1.86           | 2.55          | -27%         | 6.08           | 6.29          | -3%          |  |
| Sum of<br>Oxides  | 99.6           | 100           | 0%           | 95.8           | 100           | -4%          | 96.4           | 100           | -4%          |  |

|                                |                | LAW-HPVR-04-1 |                                        |                | LAW-HPVR-05  |                                        |                | LAW-HPVR-06  |                                        |
|--------------------------------|----------------|---------------|----------------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|
| Oxide                          | Measured (wt%) | Target (wt%)  | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target |
| Al <sub>2</sub> O <sub>3</sub> | 3.58           | 3.71          | -4%                                    | 3.64           | 3.71         | -2%                                    | 3.65           | 3.66         | 0%                                     |
| $B_2O_3$                       | 8.4            | 8.56          | -2%                                    | 10.2           | 10.33        | -1%                                    | 13.8           | 13.56        | 2%                                     |
| CaO                            | 6.54           | 6.69          | -2%                                    | 6.55           | 5.97         | 10%                                    | 11.9           | 12.37        | -4%                                    |
| Cl                             | 0.101          | 0.104         |                                        | 1.35           | 2.37         | -43%                                   | 0.778          | 1.10         | -29%                                   |
| $Cr_2O_3$                      | 0.175          | 0.178         |                                        | 0.151          | 0.1629       |                                        | 0.068          | 0.0737       |                                        |
| F                              | 0.165          | 0.208         |                                        | 0.158          | 0.1899       |                                        | 0.0608         | 0.0855       |                                        |
| $Fe_2O_3$                      | 0.249          | 0.238         |                                        | 0.225          | 0.2168       |                                        | 0.109          | 0.0983       |                                        |
| K <sub>2</sub> O               | 1.67           | 1.61          | 4%                                     | 0.795          | 0.79         |                                        | 5.54           | 5.77         | -4%                                    |
| Li <sub>2</sub> O              | 3.35           | 3.36          | 0%                                     | 3.76           | 3.99         | -6%                                    | 1.28           | 1.25         | 2%                                     |
| MgO                            | 0.0873         | 0.03          |                                        | 0.0789         | 0.027        |                                        | 0.101          | 0.012        |                                        |
| Na <sub>2</sub> O              | 16.1           | 17.2          | -6%                                    | 16.9           | 17.09        | -1%                                    | 15.8           | 15.60        | 1%                                     |
| $P_2O_5$                       | 0.79           | 0.772         |                                        | 0.681          | 0.705        |                                        | 0.296          | 0.319        |                                        |
| SiO <sub>2</sub>               | 44.9           | 45.9          | -2%                                    | 42             | 42.31        | -1%                                    | 41             | 40.32        | 2%                                     |
| $SnO_2$                        | 1.11           | 1.08          | 3%                                     | 0.877          | 0.811        |                                        | 0.169          | 0.146        |                                        |
| $SO_3$                         | 0.954          | 1.02          | -6%                                    | 0.696          | 0.935        |                                        | 0.394          | 0.423        |                                        |
| TiO <sub>2</sub>               | 2.64           | 2.7           | -2%                                    | 0.432          | 0.436        |                                        | 0.944          | 0.985        |                                        |
| $V_2O_5$                       | 3.66           | 3.77          | -3%                                    | 1.84           | 1.76         | 5%                                     | 0.402          | 0.414        |                                        |
| ZnO                            | 0.731          | 0.742         |                                        | 0.664          | 0.678        |                                        | 0.3            | 0.306        |                                        |
| $ZrO_2$                        | 2.21           | 2.16          | 2%                                     | 5.58           | 7.53         | -26%                                   | 2.66           | 3.50         | -24%                                   |
| Sum of<br>Oxides               | 97.4           | 100           | -3%                                    | 96.6           | 100          | -3%                                    | 99.2           | 100          | -1%                                    |

Table E.2 (continued)

|                                |                | LAW-HPVR-07  |                                        |                | LAW-HPVR-08  |                                        |                | LAW-HPVR-09  |                                        |
|--------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|
| Oxide                          | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target |
| Al <sub>2</sub> O <sub>3</sub> | 4.35           | 4.10         | 6%                                     | 9.07           | 9.02         | 1%                                     | 4.84           | 4.823        | 0%                                     |
| $B_2O_3$                       | 6.95           | 6.81         | 2%                                     | 13.3           | 12.71        | 5%                                     | 13.4           | 13.42        | 0%                                     |
| CaO                            | 9.39           | 9.51         | -1%                                    | 6.79           | 6.64         | 2%                                     | 6.09           | 6.04         | 1%                                     |
| Cl                             | 0.753          | 2.40         | -69%                                   | 1.27           | 1.99         | -36%                                   | 0.701          | 0.872        |                                        |
| $Cr_2O_3$                      | 0.103          | 0.1011       |                                        | 0.09           | 0.0969       |                                        | 0.0793         | 0.083        |                                        |
| F                              | 0.0989         | 0.1184       |                                        | 0.091          | 0.1124       |                                        | 0.0794         | 0.097        |                                        |
| Fe <sub>2</sub> O <sub>3</sub> | 0.16           | 0.1358       |                                        | 0.137          | 0.1289       |                                        | 0.12           | 0.111        |                                        |
| K <sub>2</sub> O               | 3.58           | 4.15         | -14%                                   | 3.42           | 3.54         | -3%                                    | 1.79           | 1.75         | 2%                                     |
| Li <sub>2</sub> O              | 1.05           | 0.9647       |                                        | 3.51           | 3.39         | 3%                                     | 2.81           | 2.79         | 1%                                     |
| MgO                            | 0.0988         | 0.017        |                                        | 0.0684         | 0.016        |                                        | 0.0624         | 0.014        |                                        |
| Na <sub>2</sub> O              | 18.6           | 20.26        | -8%                                    | 15.5           | 15.85        | -2%                                    | 18.4           | 18.85        | -2%                                    |
| $P_2O_5$                       | 0.419          | 0.440        |                                        | 0.396          | 0.420        |                                        | 0.338          | 0.359        |                                        |
| SiO <sub>2</sub>               | 38             | 36.44        | 4%                                     | 35.9           | 34.09        | 5%                                     | 42.9           | 42.90        | 0%                                     |
| $SnO_2$                        | 1.92           | 1.76         | 9%                                     | 1.56           | 1.44         | 8%                                     | 0.375          | 0.347        |                                        |
| $SO_3$                         | 0.524          | 0.583        |                                        | 0.465          | 0.556        |                                        | 0.442          | 0.477        |                                        |
| TiO <sub>2</sub>               | 0.257          | 0.238        |                                        | 2.52           | 2.49         | 1%                                     | 2.81           | 2.88         | -2%                                    |
| $V_2O_5$                       | 3.87           | 3.82         | 1%                                     | 0.699          | 0.709        |                                        | 1.08           | 1.12         | -3%                                    |
| ZnO                            | 0.458          | 0.423        |                                        | 0.396          | 0.403        |                                        | 0.331          | 0.345        |                                        |
| $ZrO_2$                        | 6.25           | 7.73         | -19%                                   | 4.94           | 6.39         | -23%                                   | 2.05           | 2.72         | -25%                                   |
| Sum of<br>Oxides               | 96.8           | 100          | -3%                                    | 100            | 100          | 0%                                     | 98.8           | 100          | -1%                                    |

Table E.2 (continued)

|                                |                | LAW-HPVR-10  |                                        |                | LAW-HPVR-11  |                                        |                | LAW-HPVR-12  |                                        |
|--------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|
| Oxide                          | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target |
| Al <sub>2</sub> O <sub>3</sub> | 3.56           | 3.49         | 2%                                     | 3.82           | 3.87         | -1%                                    | 4.22           | 4.37         | -3%                                    |
| $B_2O_3$                       | 12.3           | 12.09        | 2%                                     | 10.5           | 10.63        | -1%                                    | 6.07           | 6.05         | 0%                                     |
| CaO                            | 8.62           | 8.74         | -1%                                    | 6.37           | 5.84         | 9%                                     | 7.66           | 7.29         | 5%                                     |
| Cl                             | 0.805          | 1.02         | -21%                                   | 1.46           | 2.36         | -38%                                   | 0.84           | 1.08         | -22%                                   |
| $Cr_2O_3$                      | 0.0767         | 0.0788       |                                        | 0.0569         | 0.0587       |                                        | 0.0601         | 0.0610       |                                        |
| F                              | 0.0712         | 0.0916       |                                        | 0.0569         | 0.0684       |                                        | 0.0566         | 0.0718       |                                        |
| Fe <sub>2</sub> O <sub>3</sub> | 0.118          | 0.1043       |                                        | 0.0885         | 0.0780       |                                        | 0.112          | 0.0816       |                                        |
| K <sub>2</sub> O               | 2.29           | 2.24         | 2%                                     | 3.59           | 4.07         | -12%                                   | 0.266          | 0.09         |                                        |
| Li <sub>2</sub> O              | 0.349          | 0.333        |                                        | 0.474          | 0.487        |                                        | 1.79           | 1.78         | 1%                                     |
| MgO                            | 0.0785         | 0.013        |                                        | 0.058          | 0.010        |                                        | 0.0682         | 0.010        |                                        |
| Na <sub>2</sub> O              | 22.5           | 22.49        | 0%                                     | 21.7           | 21.50        | 1%                                     | 22.5           | 22.69        | -1%                                    |
| $P_2O_5$                       | 0.324          | 0.341        |                                        | < 0.233        | 0.254        |                                        | < 0.258        | 0.266        |                                        |
| SiO <sub>2</sub>               | 40.6           | 40.20        | 1%                                     | 34             | 34.11        | 0%                                     | 47             | 47.21        | 0%                                     |
| $SnO_2$                        | 3.12           | 2.96         | 6%                                     | 3.69           | 3.26         | 13%                                    | 2.16           | 2.02         | 7%                                     |
| $SO_3$                         | 0.398          | 0.452        |                                        | 0.345          | 0.337        |                                        | 0.324          | 0.352        |                                        |
| TiO <sub>2</sub>               | 0.0834         | 0.0482       |                                        | 2.89           | 2.71         | 6%                                     | 0.989          | 1.05         | -6%                                    |
| $V_2O_5$                       | 1.69           | 1.75         | -4%                                    | 2.6            | 2.44         | 7%                                     | 1.87           | 1.83         | 2%                                     |
| ZnO                            | 0.315          | 0.328        |                                        | 0.239          | 0.245        |                                        | 0.245          | 0.256        |                                        |
| $ZrO_2$                        | 2.44           | 3.24         | -25%                                   | 5.76           | 7.68         | -25%                                   | 2.57           | 3.45         | -26%                                   |
| Sum of<br>Oxides               | 99.8           | 100          | 0%                                     | 97.9           | 100          | -2%                                    | 99.1           | 100          | -1%                                    |

Table E.2 (continued)

|                                |                | LAW-HPVR-13  |                                        |                | LAW-HPVR-14  |                                        |                | LAW-HPVR-15  |                                        |
|--------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|
| Oxide                          | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target |
| Al <sub>2</sub> O <sub>3</sub> | 3.61           | 3.57         | 1%                                     | 5.46           | 5.77         | -5%                                    | 4.16           | 4.44         | -6%                                    |
| $B_2O_3$                       | 6.83           | 6.83         | 0%                                     | 10.9           | 11           | -1%                                    | 10.1           | 10.6         | -5%                                    |
| CaO                            | 6.91           | 6.6          | 5%                                     | 9.26           | 9.12         | 1%                                     | 5.89           | 6.06         | -3%                                    |
| Cl                             | 1.12           | 0.069        | 1527%                                  | 1.42           | 0.047        | 2911%                                  | 0.98           | 0.04         | 2350%                                  |
| Cr <sub>2</sub> O <sub>3</sub> | 0.116          | 0.118        |                                        | 0.074          | 0.081        |                                        | 0.07           | 0.069        |                                        |
| F                              | 0.107          | 0.137        |                                        | 0.0704         | 0.094        |                                        | 0.0638         | 0.08         |                                        |
| $Fe_2O_3$                      | 0.169          | 0.157        |                                        | 0.117          | 0.108        |                                        | 0.11           | 0.092        |                                        |
| K <sub>2</sub> O               | 3.49           | 3.91         | -11%                                   | 0.303          | 0.138        |                                        | 4.57           | 5.06         | -10%                                   |
| Li <sub>2</sub> O              | 1.93           | 1.93         | 0%                                     | 0.236          | 0.23         |                                        | 2.9            | 3.11         | -7%                                    |
| MgO                            | 0.0732         | 0.02         |                                        | 0.079          | 0.013        |                                        | 0.062          | 0.011        |                                        |
| Na <sub>2</sub> O              | 16.4           | 16.9         | -3%                                    | 25.3           | 26.3         | -4%                                    | 14.6           | 15.8         | -8%                                    |
| $P_2O_5$                       | 0.485          | 0.509        |                                        | 0.307          | 0.351        |                                        | 0.268          | 0.298        |                                        |
| SiO <sub>2</sub>               | 48.9           | 49           | 0%                                     | 34.9           | 35.1         | -1%                                    | 43.6           | 46           | -5%                                    |
| $SnO_2$                        | 0.638          | 0.591        |                                        | 4.43           | 4.21         | 5%                                     | 3.74           | 3.64         | 3%                                     |
| $SO_3$                         | 0.435          | 0.676        |                                        | 0.414          | 0.465        |                                        | 0.378          | 0.395        |                                        |
| TiO <sub>2</sub>               | 0.0945         | 0.085        |                                        | 1.34           | 1.47         | -9%                                    | 0.108          | 0.096        |                                        |
| $V_2O_5$                       | 2.28           | 2.23         | 2%                                     | < 0.0893       | 0.064        |                                        | 0.548          | 0.56         |                                        |
| ZnO                            | 0.471          | 0.49         |                                        | 0.316          | 0.337        |                                        | 0.289          | 0.286        |                                        |
| $ZrO_2$                        | 5.54           | 6.15         | -10%                                   | 4.53           | 5.16         | -12%                                   | 2.95           | 3.38         | -13%                                   |
| Sum of<br>Oxides               | 99.6           | 100          | 0%                                     | 99.5           | 100          | -1%                                    | 95.4           | 100          | -5%                                    |

Table E.2 (continued)

|                                |                | LAW-HPVR-16  |                                        |                | LAW-HPVR-17  |                                        |                | LAW-HPVR-18  |                                        |
|--------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|
| Oxide                          | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target |
| Al <sub>2</sub> O <sub>3</sub> | 6.44           | 6.35         | 1%                                     | 7.7            | 8.10         | -5%                                    | 4.03           | 4.20         | -4%                                    |
| $B_2O_3$                       | 12             | 11.81        | 2%                                     | 12.9           | 13.36        | -3%                                    | 12.3           | 12.74        | -3%                                    |
| CaO                            | 6.06           | 6.00         | 1%                                     | 8.24           | 8.60         | -4%                                    | 7.84           | 8.25         | -5%                                    |
| Cl                             | 1.16           | 1.84         | -37%                                   | 0.784          | 1.05         | -25%                                   | 0.906          | 1.21         | -25%                                   |
| $Cr_2O_3$                      | 0.116          | 0.1176       |                                        | 0.16           | 0.1556       |                                        | 0.153          | 0.1621       |                                        |
| F                              | 0.112          | 0.1370       |                                        | 0.145          | 0.1822       |                                        | 0.142          | 0.1896       |                                        |
| Fe <sub>2</sub> O <sub>3</sub> | 0.182          | 0.1574       |                                        | 0.222          | 0.2078       |                                        | 0.215          | 0.2161       |                                        |
| K <sub>2</sub> O               | 2.55           | 2.69         | -5%                                    | 4.65           | 5.01         | -7%                                    | 1.17           | 1.13         | 4%                                     |
| Li <sub>2</sub> O              | 1.25           | 1.19         | 5%                                     | 1.48           | 1.56         | -5%                                    | 2.6            | 2.75         | -5%                                    |
| MgO                            | 0.0724         | 0.019        |                                        | 0.0945         | 0.026        |                                        | 0.0876         | 0.028        |                                        |
| Na <sub>2</sub> O              | 18.4           | 19.38        | -5%                                    | 16.2           | 17.44        | -7%                                    | 15.3           | 15.96        | -4%                                    |
| $P_2O_5$                       | 0.532          | 0.510        |                                        | 0.597          | 0.676        |                                        | 0.638          | 0.702        |                                        |
| SiO <sub>2</sub>               | 38.3           | 37.16        | 3%                                     | 36.2           | 37.25        | -3%                                    | 37.5           | 38.78        | -3%                                    |
| $SnO_2$                        | 4.11           | 3.82         | 7%                                     | 0.848          | 0.785        |                                        | 4.22           | 4.21         | 0%                                     |
| $SO_3$                         | 0.557          | 0.677        |                                        | 0.861          | 0.897        |                                        | 0.741          | 0.932        |                                        |
| TiO <sub>2</sub>               | 0.919          | 0.918        |                                        | 0.218          | 0.201        |                                        | 0.495          | 0.524        |                                        |
| $V_2O_5$                       | 0.902          | 0.899        |                                        | 0.684          | 0.682        |                                        | 3.48           | 3.67         | -5%                                    |
| ZnO                            | 0.516          | 0.491        |                                        | 0.661          | 0.650        |                                        | 0.628          | 0.676        |                                        |
| $ZrO_2$                        | 4.58           | 5.84         | -22%                                   | 2.3            | 3.16         | -27%                                   | 2.68           | 3.68         | -27%                                   |
| Sum of<br>Oxides               | 98.7           | 100          | -1%                                    | 95             | 100          | -5%                                    | 95.1           | 100          | -5%                                    |

Table E.2 (continued)

|                                |                | LAW-HPVR-19  |                                        |                | LAW-HPVR-20  |                                        |                | LAW-HPVR-21  |                                        |
|--------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|
| Oxide                          | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target |
| Al <sub>2</sub> O <sub>3</sub> | 5.07           | 5.13         | -1%                                    | 3.43           | 3.44         | 0%                                     | 8.4            | 8.92         | -6%                                    |
| $B_2O_3$                       | 9.47           | 9.50         | 0%                                     | 11.8           | 11.67        | 1%                                     | 12.1           | 12.73        | -5%                                    |
| CaO                            | 8.43           | 8.60         | -2%                                    | 6.12           | 6.13         | 0%                                     | 5.99           | 5.94         | 1%                                     |
| Cl                             | 0.662          | 0.79         | -16%                                   | 1.02           | 1.21         | -15%                                   | 0.815          | 1.04         | -22%                                   |
| $Cr_2O_3$                      | 0.0623         | 0.0672       |                                        | 0.14           | 0.1473       |                                        | 0.143          | 0.1408       |                                        |
| F                              | 0.0573         | 0.0781       |                                        | 0.136          | 0.1719       |                                        | 0.14           | 0.1645       |                                        |
| $Fe_2O_3$                      | 0.1            | 0.0899       |                                        | 0.202          | 0.1964       |                                        | 0.211          | 0.1881       |                                        |
| K <sub>2</sub> O               | 0.557          | 0.38         |                                        | 0.151          | 0.01         |                                        | 5.27           | 5.74         | -8%                                    |
| Li <sub>2</sub> O              | 1.93           | 1.92         | 0%                                     | 0.249          | 0.241        |                                        | 0.108          | 0.085        |                                        |
| MgO                            | 0.0762         | 0.011        |                                        | 0.075          | 0.025        |                                        | 0.0721         | 0.024        |                                        |
| Na <sub>2</sub> O              | 21.2           | 21.19        | 0%                                     | 24.3           | 24.93        | -3%                                    | 19.3           | 19.46        | -1%                                    |
| $P_2O_5$                       | 0.269          | 0.291        |                                        | 0.606          | 0.637        |                                        | 0.537          | 0.613        |                                        |
| SiO <sub>2</sub>               | 43.2           | 43.60        | -1%                                    | 43.1           | 42.63        | 1%                                     | 32.9           | 34.15        | -4%                                    |
| $SnO_2$                        | 0.417          | 0.387        |                                        | 0.325          | 0.302        |                                        | 0.189          | 0.163        |                                        |
| $SO_3$                         | 0.351          | 0.386        |                                        | 0.797          | 0.846        |                                        | 0.753          | 0.812        |                                        |
| TiO <sub>2</sub>               | 0.823          | 0.877        |                                        | 1.54           | 1.60         | -4%                                    | 2.67           | 2.70         | -1%                                    |
| $V_2O_5$                       | 3.9            | 3.95         | -1%                                    | 1.45           | 1.50         | -3%                                    | 3.33           | 3.37         | -1%                                    |
| ZnO                            | 0.268          | 0.280        |                                        | 0.59           | 0.613        |                                        | 0.565          | 0.589        |                                        |
| $ZrO_2$                        | 1.82           | 2.48         | -27%                                   | 2.81           | 3.71         | -24%                                   | 2.27           | 3.17         | -28%                                   |
| Sum of<br>Oxides               | 98.6           | 100          | -1%                                    | 98.8           | 100          | -1%                                    | 95.9           | 100          | -4%                                    |

Table E.2 (continued)

|                                |                | LAW-HPVR-22  |                                        |                | LAW-HPVR-23  |                                        |                | LAW-HPVR-24  |                                        |
|--------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|
| Oxide                          | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target |
| Al <sub>2</sub> O <sub>3</sub> | 5.65           | 5.66         | 0%                                     | 5.13           | 5.23         | -2%                                    | 3.78           | 3.77         | 0%                                     |
| $B_2O_3$                       | 7.49           | 7.54         | -1%                                    | 6.85           | 6.92         | -1%                                    | 6.78           | 6.93         | -2%                                    |
| CaO                            | 7.32           | 6.78         | 8%                                     | 7.35           | 6.92         | 6%                                     | 7.77           | 7.96         | -2%                                    |
| Cl                             | 0.801          | 1.68         | -52%                                   | 1.26           | 1.98         | -36%                                   | 0.788          | 1.06         | -25%                                   |
| $Cr_2O_3$                      | 0.148          | 0.1423       |                                        | 0.104          | 0.1076       |                                        | 0.136          | 0.1428       |                                        |
| F                              | 0.134          | 0.1657       |                                        | 0.107          | 0.1260       |                                        | 0.131          | 0.1674       |                                        |
| Fe <sub>2</sub> O <sub>3</sub> | 0.199          | 0.1900       |                                        | 0.154          | 0.1435       |                                        | 0.199          | 0.1910       |                                        |
| K <sub>2</sub> O               | 3.2            | 3.49         | -8%                                    | 1.36           | 1.44         | -5%                                    | 5.59           | 5.68         | -2%                                    |
| Li <sub>2</sub> O              | 1.61           | 1.56         | 3%                                     | 0.908          | 0.930        |                                        | 2.87           | 2.87         | 0%                                     |
| MgO                            | 0.0783         | 0.023        |                                        | 0.0763         | 0.018        |                                        | 0.0849         | 0.024        |                                        |
| Na <sub>2</sub> O              | 20.1           | 19.78        | 2%                                     | 22.1           | 22.63        | -2%                                    | 15.4           | 15.67        | -2%                                    |
| $P_2O_5$                       | 0.596          | 0.616        |                                        | 0.442          | 0.467        |                                        | 0.608          | 0.620        |                                        |
| SiO <sub>2</sub>               | 35.1           | 34.71        | 1%                                     | 39.7           | 39.80        | 0%                                     | 41.9           | 41.99        | 0%                                     |
| $SnO_2$                        | 4.83           | 4.34         | 11%                                    | 3.48           | 3.15         | 11%                                    | 2.48           | 2.37         | 5%                                     |
| $SO_3$                         | 0.695          | 0.818        |                                        | 0.571          | 0.620        |                                        | 0.748          | 0.824        |                                        |
| TiO <sub>2</sub>               | 3.1            | 2.91         | 6%                                     | 1.36           | 1.41         | -3%                                    | 2.84           | 2.92         | -3%                                    |
| $V_2O_5$                       | 3.99           | 3.73         | 7%                                     | 1.29           | 1.33         | -3%                                    | 2.95           | 3.02         | -2%                                    |
| ZnO                            | 0.572          | 0.593        |                                        | 0.441          | 0.449        |                                        | 0.571          | 0.597        |                                        |
| $ZrO_2$                        | 4.08           | 5.28         | -23%                                   | 4.71           | 6.34         | -26%                                   | 2.46           | 3.21         | -23%                                   |
| Sum of<br>Oxides               | 99.7           | 100          | 0%                                     | 97.5           | 100          | -3%                                    | 98.1           | 100          | -2%                                    |

Table E.2 (continued)

|                                |                | LAW-HPVR-25  |                                        | _              | LAW-HPVR-26  |                                        |
|--------------------------------|----------------|--------------|----------------------------------------|----------------|--------------|----------------------------------------|
| Oxide                          | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target | Measured (wt%) | Target (wt%) | % Difference<br>Measured vs.<br>Target |
| Al <sub>2</sub> O <sub>3</sub> | 3.6            | 3.48         | 3%                                     | 11.7           | 11.21        | 4%                                     |
| B <sub>2</sub> O <sub>3</sub>  | 6.47           | 6.50         | 0%                                     | 13.5           | 13.38        | 1%                                     |
| CaO                            | 10.7           | 11.08        | -3%                                    | 6.06           | 6.12         | -1%                                    |
| Cl                             | 0.708          | 1.78         | -60%                                   | 0.983          | 1.36         | -28%                                   |
| Cr <sub>2</sub> O <sub>3</sub> | 0.175          | 0.1752       |                                        | 0.129          | 0.1293       |                                        |
| F                              | 0.168          | 0.2044       |                                        | 0.118          | 0.1518       |                                        |
| Fe <sub>2</sub> O <sub>3</sub> | 0.262          | 0.2336       |                                        | 0.195          | 0.1734       |                                        |
| K <sub>2</sub> O               | 1.76           | 1.96         | -10%                                   | 3.09           | 3.03         | 2%                                     |
| Li <sub>2</sub> O              | 0.458          | 0.425        |                                        | 3.59           | 3.48         | 3%                                     |
| MgO                            | 0.119          | 0.029        |                                        | 0.0747         | 0.022        |                                        |
| Na <sub>2</sub> O              | 21.9           | 24.03        | -9%                                    | 15.9           | 17.20        | -8%                                    |
| $P_2O_5$                       | 0.764          | 0.758        |                                        | 0.591          | 0.562        |                                        |
| $SiO_2$                        | 39.6           | 38.30        | 3%                                     | 35.9           | 34.81        | 3%                                     |
| $SnO_2$                        | 1.78           | 1.68         | 6%                                     | 1.7            | 1.66         | 2%                                     |
| $SO_3$                         | 0.947          | 1.01         | -6%                                    | 0.725          | 0.746        |                                        |
| TiO <sub>2</sub>               | 1.86           | 1.85         | 1%                                     | 0.867          | 0.866        |                                        |
| $V_2O_5$                       | 0.229          | 0.218        |                                        | 0.291          | 0.284        |                                        |
| ZnO                            | 0.764          | 0.729        |                                        | 0.558          | 0.541        |                                        |
| $ZrO_2$                        | 4.42           | 5.56         | -21%                                   | 3.29           | 4.26         | -23%                                   |
| Sum of<br>Oxides               | 96.8           | 100          | -3%                                    | 99.2           | 100          | -1%                                    |

Table E.2 (continued)

# Appendix F – Morphology/Color of Each CCC Glass and XRD Patterns

The photographs in this appendix show the morphology of the LAW Phase 5 and the LAW Phase 6 glasses after container centerline cooling (CCC) as described in Section 2.4 of the main report. X-ray diffraction (XRD) patterns are reported for the CCC glasses that crystallized. The LAW Phase 5 glasses are identified as LP5-# and the LAW Phase 6 glasses are identified as LAW-HPVR-#.



Figure F.1. Glass LP5-01 Morphology after CCC



Figure F.2. Glass LP5-02 Morphology after CCC



Figure F.3. XRD Pattern for Glass LP5-02 after CCC



Figure F.4. Glass LP5-03 Morphology after CCC. The quantity of the crystals was too low to be identified by XRD.



Figure F.5. Glass LP5-04 Morphology after CCC



Figure F.6. XRD Pattern for Glass LP5-04 after CCC



Figure F.7. Glass LP5-05 Morphology after CCC



Figure F.8. Glass LP5-06-MOD1 Morphology after CCC. The quantity of the crystals was too low to be identified by XRD.



Figure F.9. Glass LP5-07 Morphology after CCC



Figure F.10. Glass LP5-08 Morphology after CCC



Figure F.11. Glass LP5-09 Morphology after CCC



Figure F.12. XRD Pattern for Glass LP5-09 after CCC



Figure F.13. Glass LP5-10 Morphology after CCC



Figure F.14. XRD Pattern for Glass LP5-10 after CCC



Figure F.15. Glass LP5-11 Morphology after CCC. The quantity of the crystals was too low to be identified by XRD.



Figure F.16. Glass LP5-12-1 Morphology after CCC







Figure F.18. Glass LP5-13 Morphology after CCC



Figure F.19. Glass LP5-14 Morphology after CCC. The quantity of the crystals was too low to be identified by XRD.



Figure F.20. Glass LP5-15 Morphology after CCC



Figure F.21. Glass LP5-16-MOD1 Morphology after CCC



Figure F.22. XRD Pattern for Glass LP5-16-MOD1 after CCC


Figure F.23. Glass LP5-17 Morphology after CCC



Figure F.24. Glass LP5-18 Morphology after CCC



Figure F.25. Glass LP5-19 Morphology after CCC



Figure F.26. Glass LP5-20 Morphology after CCC



Figure F.27. Glass LP5-21 Morphology after CCC



Figure F.28. Glass LP5-22 Morphology after CCC



Figure F.29. Glass LP5-23 Morphology after CCC



Figure F.30. Glass LP5-24 Morphology after CCC



Figure F.31. Glass LP5-25 Morphology after CCC



Figure F.32. Glass LAW-HPVR-01-1 Morphology after CCC



Figure F.33. Glass LAW-HPVR-02-1 Morphology after CCC



Figure F.34. Glass LAW-HPVR-03-1 Morphology after CCC



Figure F.35. Glass LAW-HPVR-04-1 Morphology after CCC



Figure F.36. Glass LAW-HPVR-05 Morphology after CCC



Figure F.37. Glass LAW-HPVR-06 Morphology after CCC



Figure F.38. Glass LAW-HPVR-07 Morphology after CCC



Figure F.39. Glass LAW-HPVR-08 Morphology after CCC



Figure F.40. Glass LAW-HPVR-09 Morphology after CCC



Figure F.41. Glass LAW-HPVR-10 Morphology after CCC



Figure F.42. Glass LAW-HPVR-11 Morphology after CCC



Figure F.43. Glass LAW-HPVR-12 Morphology after CCC



Figure F.44. Glass LAW-HPVR-13 Morphology after CCC



Figure F.45. Glass LAW-HPVR-14 Morphology after CCC. The quantity of the crystals was too low to be identified by XRD.



Figure F.46. Glass LAW-HPVR-15 Morphology after CCC



Figure F.47. Glass LAW-HPVR-16 Morphology after CCC



Figure F.48. Glass LAW-HPVR-17 Morphology after CCC



Figure F.49. Glass LAW-HPVR-18 Morphology after CCC



Figure F.50. Glass LAW-HPVR-19 Morphology after CCC



Figure F.51. Glass LAW-HPVR-20 Morphology after CCC



Figure F.52. Glass LAW-HPVR-21 Morphology after CCC



Figure F.53. Glass LAW-HPVR-22 Morphology after CCC



Figure F.54. Glass LAW-HPVR-23 Morphology after CCC



Figure F.55. Glass LAW-HPVR-24 Morphology after CCC



Figure F.56. Glass LAW-HPVR-25 Morphology after CCC



Figure F.57. XRD Pattern for Glass LAW-HPVR-25 after CCC



Figure F.58. Glass LAW-HPVR-26 Morphology after CCC

### Appendix G – Crystal Fraction of Heat-Treated Glasses Photographs

This appendix contains photographs of the LAW Phase 5 glasses after they were heat treated at 950 °C for 24 hours (crystal fraction [CF] heat treatment). As indicated by these photographs, each glass showed a different response to heat treatment.



Figure G.1. Glass LP5-01 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.2. Glass LP5-02 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.3. Glass LP5-03 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.4. Glass LP5-04 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.5. Glass LP5-05 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.6. Glass LP5-06-MOD1 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.7. Glass LP5-07 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.8. Glass LP5-08 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.9. Glass LP5-09 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.10. Glass LP5-10 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.11. XRD Pattern for Glass LP5-10 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.12. Glass LP5-11 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.13. Glass LP5-12-1 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.14. XRD Pattern for Glass LP5-12-1 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.15. Glass LP5-13 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.16. Glass LP5-14 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.17. Glass LP5-15 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.18. Glass LP5-16-MOD1 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.19. XRD Pattern for Glass LP5-16-MOD1 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.20. Glass LP5-17 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.21. Glass LP5-18 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.22. Glass LP5-19 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.23. Glass LP5-20 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.24. Glass LP5-21 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.25. Glass LP5-22 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.26. Glass LP5-23 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.27. Glass LP5-24 after CF Heat Treatment at 950 °C for 24 Hours



Figure G.28. Glass LP5-25 after CF Heat Treatment at 950 °C for 24 Hours

#### Appendix H – Viscosity Data

This appendix contains the measured viscosity data for each of the LAW Phase 5 glasses. The plots shown in this appendix are fitted to the Arrhenius equation:

$$\ln(\eta) = A + \frac{B}{T_K} \tag{H.1}$$

where A and B are independent of temperature and temperature  $(T_K)$  is in K  $(T(^{\circ}C) + 273.15)$ .

If the plots showed curvature, they would be better fit to the Vogel- Fulcher-Tamman (VFT) model:

$$\ln(\eta) = E + \frac{F}{T_k - T_0} \tag{H.2}$$

where E, F, and  $T_0$  are temperature independent and composition dependent coefficients and  $T_K$  is the temperature in Kelvin (T(°C) + 273.15). The main intent of the figures and Arrhenius equation fits shown is to assess trends in the data and provide observations about whether there may be sufficient curvature in the data to consider VFT fits in the subsequent work that will decide between fitting the viscosity-temperature data to the Arrhenius or VFT equations. All the glasses in the LAW Phase 5 matrix appear to have very good fits to the Arrhenius equation and do not show a need for fitting to the VFT model.

# H.1 Glass LP5G-01 Viscosity Data

| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |  |
|--------------------|-------------------------------|-----------------|------------|--|
| 1169               | 6.94E-04                      | 0.52            | -0.66      |  |
| 1074               | 7.42E-04                      | 1.07            | 0.06       |  |
| 979                | 7.99E-04                      | 2.83            | 1.04       |  |
| 1169               | 6.94E-04                      | 0.54            | -0.61      |  |
| 1226               | 6.67E-04                      | 0.37            | -1.00      |  |
| 1169               | 6.94E-04                      | 0.55            | -0.60      |  |

Table H.1. Viscosity Data for Glass LP5-01



Figure H.1. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-01

### H.2 Glass LP5-02 Viscosity Data

| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
|--------------------|-------------------------------|-----------------|------------|
| 1169               | 6.94E-04                      | 0.56            | -0.58      |
| 1074               | 7.42E-04                      | 1.21            | 0.19       |
| 979                | 7.99E-04                      | 3.24            | 1.17       |
| 1169               | 6.94E-04                      | 0.58            | -0.55      |
| 1226               | 6.67E-04                      | 0.39            | -0.95      |
| 1169               | 6.94E-04                      | 0.57            | -0.57      |

Table H.2. Viscosity Data for Glass LP5-02



Figure H.2. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-02

### H.3 Glass LP5-03 Viscosity Data

| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |  |
|--------------------|-------------------------------|-----------------|------------|--|
| 1169               | 6.94E-04                      | 0.88            | -0.13      |  |
| 1074               | 7.42E-04                      | 2.03            | 0.71       |  |
| 979                | 7.99E-04                      | 5.78            | 1.75       |  |
| 1169               | 6.94E-04                      | 0.86            | -0.15      |  |
| 1235               | 6.63E-04                      | 0.54            | -0.61      |  |
| 1169               | 6.94E-04                      | 0.85            | -0.16      |  |

Table H.3. Viscosity Data for Glass LP5-03



Figure H.3. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-03

### H.4 Glass LP5-04 Viscosity Data

|                    | 5                             |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1169               | 6.94E-04                      | 0.54            | -0.62      |
| 1074               | 7.42E-04                      | 1.08            | 0.08       |
| 979                | 7.99E-04                      | 2.67            | 0.98       |
| 1169               | 6.94E-04                      | 0.52            | -0.66      |
| 1235               | 6.63E-04                      | 0.34            | -1.08      |
| 1169               | 6.94E-04                      | 0.51            | -0.67      |

Table H.4. Viscosity Data for Glass LP5-04



Figure H.4. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-04

### H.5 Glass LP5-05 Viscosity Data

|                    | 5                             |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1169               | 6.94E-04                      | 0.75            | -0.29      |
| 1074               | 7.42E-04                      | 1.63            | 0.49       |
| 979                | 7.99E-04                      | 4.43            | 1.49       |
| 1169               | 6.94E-04                      | 0.75            | -0.29      |
| 1226               | 6.67E-04                      | 0.49            | -0.70      |
| 1169               | 6.94E-04                      | 0.74            | -0.30      |

Table H.5. Viscosity Data for Glass LP5-05



Figure H.5. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-05

# H.6 Glass LP5-06-MOD1 Viscosity Data

| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |  |
|--------------------|-------------------------------|-----------------|------------|--|
| 1169               | 6.94E-04                      | 3.10            | 1.13       |  |
| 1074               | 7.42E-04                      | 7.69            | 2.04       |  |
| 979                | 7.99E-04                      | 24.28           | 3.19       |  |
| 1169               | 6.94E-04                      | 3.20            | 1.16       |  |
| 1233               | 6.64E-04                      | 1.94            | 0.66       |  |
| 1169               | 6.94E-04                      | 3.19            | 1.16       |  |

Table H.6. Viscosity Data for Glass LP5-06-MOD1



Figure H.6. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-06-MOD1

### H.7 Glass LP5-07 Viscosity Data

| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
|--------------------|-------------------------------|-----------------|------------|
| 1169               | 6.94E-04                      | 4.49            | 1.50       |
| 1074               | 7.42E-04                      | 10.16           | 2.32       |
| 979                | 7.99E-04                      | 27.24           | 3.30       |
| 1169               | 6.94E-04                      | 4.50            | 1.50       |
| 1235               | 6.63E-04                      | 2.70            | 0.99       |
| 1169               | 6.94E-04                      | 4.47            | 1.50       |

Table H.7. Viscosity Data for Glass LP5-07



Figure H.7. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-07

### H.8 Glass LP5-08 Viscosity Data

|                    | 5                             |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1169               | 6.94E-04                      | 3.30            | 1.19       |
| 1074               | 7.42E-04                      | 7.34            | 1.99       |
| 979                | 7.99E-04                      | 20.88           | 3.04       |
| 1169               | 6.94E-04                      | 3.34            | 1.21       |
| 1226               | 6.67E-04                      | 2.17            | 0.77       |
| 1169               | 6.94E-04                      | 3.36            | 1.21       |

Table H.8. Viscosity Data for Glass LP5-08



Figure H.8. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-08

### H.9 Glass LP5-09 Viscosity Data

|                    | - J                           |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1169               | 6.94E-04                      | 1.88            | 0.63       |
| 1074               | 7.42E-04                      | 4.35            | 1.47       |
| 979                | 7.99E-04                      | 11.04           | 2.40       |
| 1169               | 6.94E-04                      | 1.82            | 0.60       |
| 1231               | 6.65E-04                      | 1.13            | 0.12       |
| 1169               | 6.94E-04                      | 1.78            | 0.57       |

Table H.9. Viscosity Data for Glass LP5-09



Figure H.9. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-09
#### H.10 Glass LP5-10 Viscosity Data

|                    | •                             |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1169               | 6.94E-04                      | 1.56            | 0.44       |
| 1074               | 7.42E-04                      | 3.75            | 1.32       |
| 979                | 7.99E-04                      | 9.79            | 2.28       |
| 1169               | 6.94E-04                      | 1.49            | 0.40       |
| 1232               | 6.65E-04                      | 0.89            | -0.11      |
| 1169               | 6.94E-04                      | 1.45            | 0.37       |

Table H.10. Viscosity Data for Glass LP5-10



Figure H.10. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-10

#### H.11 Glass LP5-11 Viscosity Data

|                    | 5                             |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1169               | 6.94E-04                      | 1.57            | 0.45       |
| 1074               | 7.42E-04                      | 3.30            | 1.19       |
| 979                | 7.99E-04                      | 8.38            | 2.13       |
| 1169               | 6.94E-04                      | 1.62            | 0.49       |
| 1235               | 6.63E-04                      | 1.03            | 0.03       |
| 1169               | 6.94E-04                      | 1.65            | 0.50       |

Table H.11. Viscosity Data for Glass LP5-11



Figure H.11. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-11

#### H.12 Glass LP5-12 Viscosity Data

|                    | 2                             |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1150               | 7.03E-04                      | 7.06            | 1.95       |
| 1050               | 7.56E-04                      | 21.40           | 3.06       |
| 950                | 8.18E-04                      | 91.95           | 4.52       |
| 1150               | 7.03E-04                      | 7.24            | 1.98       |
| 1220               | 6.70E-04                      | 3.77            | 1.33       |
| 1150               | 7.03E-04                      | 6.96            | 1.94       |

Table H.12. Viscosity Data for Glass LP5-12-1



Figure H.12. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-12-1

#### H.13 Glass LP5-13 Viscosity Data

|                    | 2                             |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1150               | 7.03E-04                      | 1.02            | 0.02       |
| 1050               | 7.56E-04                      | 2.24            | 0.81       |
| 950                | 8.18E-04                      | 5.53            | 1.71       |
| 1150               | 7.03E-04                      | 1.00            | 0.00       |
| 1229               | 6.66E-04                      | 0.63            | -0.47      |
| 1150               | 7.03E-04                      | 1.03            | 0.03       |

Table H.13. Viscosity Data for Glass LP5-13



Figure H.13. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-13

#### H.14 Glass LP5-14 Viscosity Data

|              |                   | 2                                 |                 |
|--------------|-------------------|-----------------------------------|-----------------|
| Measured Tem | p., °C 1/(T+273.1 | 15), K <sup>-1</sup> Viscosity, 1 | Pa-s ln η, Pa-s |
| 1150         | 7.03E-            | -04 2.39                          | 0.87            |
| 1050         | 7.56E-            | -04 6.58                          | 1.88            |
| 950          | 8.18E             | -04 23.81                         | 3.17            |
| 1150         | 7.03E-            | -04 2.42                          | 0.89            |
| 1220         | 6.70E-            | -04 1.33                          | 0.29            |
| 1150         | 7.03E-            | -04 2.41                          | 0.88            |

Table H.14. Viscosity Data for Glass LP5-14



Figure H.14. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-14

#### H.15 Glass LP5-15 Viscosity Data

|                    | 5                             |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1150               | 7.03E-04                      | 5.05            | 1.62       |
| 1050               | 7.56E-04                      | 13.62           | 2.61       |
| 950                | 8.18E-04                      | 47.01           | 3.85       |
| 1150               | 7.03E-04                      | 5.08            | 1.63       |
| 1230               | 6.65E-04                      | 2.69            | 0.99       |
| 1150               | 7.03E-04                      | 5.20            | 1.65       |

Table H.15. Viscosity Data for Glass LP5-15



Figure H.15. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-15

## H.16 Glass LP5-16-MOD1 Viscosity Data

| Table H.16.Viscosity Data for Glass LP5-16-MOD1 |                               |                 |            |
|-------------------------------------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C                              | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1150                                            | 7.03E-04                      | 1.71            | 0.54       |
| 1050                                            | 7.56E-04                      | 4.78            | 1.56       |
| 950                                             | 8.18E-04                      | 18.41           | 2.91       |
| 1150                                            | 7.03E-04                      | 1.75            | 0.56       |
| 1230                                            | 6.65E-04                      | 0.92            | -0.09      |
| 1150                                            | 7.03E-04                      | 1.71            | 0.54       |

3 5.3 In(η) [Pa·s] = (19888 / Τ [K]) - 13.4036  $R^2 = 0.99704$ 2.5 4.8 2 4.3  $\ln(\eta)$  [Pa·s] 3.8 🔁 1.5 3.3 (<sup>1</sup>) Ц 1 0.5 2.8 0 2.3 C 0 Measured Data Arrhenius Fit -1.8 8.2 -0.5 6.8 7 7.2 7.4 7.6 7.8 8 1/T [K<sup>-1</sup>] ×10<sup>-4</sup>

Figure H.16. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-16-MOD1

#### H.17 Glass LP5-17 Viscosity Data

|                    | <i>y</i>                      |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1150               | 7.03E-04                      | 1.50            | 0.40       |
| 1050               | 7.56E-04                      | 4.24            | 1.45       |
| 950                | 8.18E-04                      | 16.17           | 2.78       |
| 1150               | 7.03E-04                      | 1.50            | 0.40       |
| 1210               | 6.74E-04                      | 0.86            | -0.15      |
| 1150               | 7.03E-04                      | 1.46            | 0.38       |

Table H.17.Viscosity Data for Glass LP5-17



Figure H.17. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-17

#### H.18 Glass LP5-18 Viscosity Data

|                    | - 5                           |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1150               | 7.03E-04                      | 2.13            | 0.76       |
| 1050               | 7.56E-04                      | 4.77            | 1.56       |
| 950                | 8.18E-04                      | 14.70           | 2.69       |
| 1150               | 7.03E-04                      | 2.09            | 0.74       |
| 1210               | 6.74E-04                      | 1.36            | 0.31       |
| 1150               | 7.03E-04                      | 2.11            | 0.75       |

Table H.18.Viscosity Data for Glass LP5-18



Figure H.18. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-18

#### H.19 Glass LP5-19 Viscosity Data

|                    | - J                           |                 |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1150               | 7.03E-04                      | 0.81            | -0.21      |
| 1050               | 7.56E-04                      | 1.90            | 0.64       |
| 950                | 8.18E-04                      | 5.67            | 1.74       |
| 1150               | 7.03E-04                      | 0.83            | -0.19      |
| 1220               | 6.70E-04                      | 0.50            | -0.70      |
| 1150               | 7.03E-04                      | 0.81            | -0.20      |

Table H.19.Viscosity Data for Glass LP5-19



Figure H.19. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-19

#### H.20 Glass LP5-20 Viscosity Data

| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
|--------------------|-------------------------------|-----------------|------------|
| 1150               | 7.03E-04                      | 1.36            | 0.30       |
| 1050               | 7.56E-04                      | 3.31            | 1.20       |
| 950                | 8.18E-04                      | 10.51           | 2.35       |
| 1150               | 7.03E-04                      | 1.39            | 0.33       |
| 1220               | 6.70E-04                      | 0.83            | -0.18      |
| 1150               | 7.03E-04                      | 1.38            | 0.32       |

Table H.20.Viscosity Data for Glass LP5-20



Figure H.20. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-20

#### H.21 Glass LP5-21 Viscosity Data

| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
|--------------------|-------------------------------|-----------------|------------|
| 1150               | 7.03E-04                      | 1.02            | 0.02       |
| 1050               | 7.56E-04                      | 2.24            | 0.81       |
| 950                | 8.18E-04                      | 6.29            | 1.84       |
| 1150               | 7.03E-04                      | 1.03            | 0.03       |
| 1220               | 6.70E-04                      | 0.64            | -0.44      |
| 1150               | 7.03E-04                      | 1.01            | 0.01       |

 Table H.21.
 Viscosity Data for Glass LP5-21



Figure H.21. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-21

#### H.22 Glass LP5-22 Viscosity Data

|                    | 5                             | -               |            |
|--------------------|-------------------------------|-----------------|------------|
| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
| 1150               | 7.03E-04                      | 3.54            | 1.26       |
| 1050               | 7.56E-04                      | 8.55            | 2.15       |
| 950                | 8.18E-04                      | 27.83           | 3.33       |
| 1150               | 7.03E-04                      | 3.56            | 1.27       |
| 1220               | 6.70E-04                      | 2.24            | 0.80       |
| 1150               | 7.03E-04                      | 3.52            | 1.26       |

Table H.22.Viscosity Data for Glass LP5-22



Figure H.22. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-22

#### H.23 Glass LP5-23 Viscosity Data

| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
|--------------------|-------------------------------|-----------------|------------|
| 1150               | 7.03E-04                      | 4.60            | 1.53       |
| 1050               | 7.56E-04                      | 11.28           | 2.42       |
| 950                | 8.18E-04                      | 34.94           | 3.55       |
| 1150               | 7.03E-04                      | 4.46            | 1.50       |
| 1216               | 6.71E-04                      | 2.78            | 1.02       |
| 1150               | 7.03E-04                      | 4.42            | 1.49       |

Table H.23.Viscosity Data for Glass LP5-23



Figure H.23. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-23

#### H.24 Glass LP5-24 Viscosity Data

| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
|--------------------|-------------------------------|-----------------|------------|
| 1150               | 7.03E-04                      | 5.26            | 1.66       |
| 1050               | 7.56E-04                      | 16.74           | 2.82       |
| 950                | 8.18E-04                      | 54.31           | 3.99       |
| 1150               | 7.03E-04                      | 5.05            | 1.62       |
| 1210               | 6.74E-04                      | 2.93            | 1.08       |
| 1150               | 7.03E-04                      | 5.04            | 1.62       |

Table H.24.Viscosity Data for Glass LP5-24



Figure H.24. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-24

#### H.25 Glass LP5-25 Viscosity Data

| Measured Temp., °C | 1/(T+273.15), K <sup>-1</sup> | Viscosity, Pa-s | ln η, Pa-s |
|--------------------|-------------------------------|-----------------|------------|
| 1150               | 7.03E-04                      | 4.45            | 1.49       |
| 1050               | 7.56E-04                      | 11.59           | 2.45       |
| 950                | 8.18E-04                      | 40.78           | 3.71       |
| 1150               | 7.03E-04                      | 4.54            | 1.51       |
| 1203               | 6.78E-04                      | 2.89            | 1.06       |
| 1150               | 7.03E-04                      | 4.39            | 1.48       |

Table H.25.Viscosity Data for Glass LP5-25



Figure H.25. Viscosity-Temperature Data and Arrhenius Equation Fit for Glass LP5-25

## **Appendix I – Electrical Conductivity Data**

This appendix contains the measured electrical conductivity data for each of the glasses in the LAW Phase 5 matrix.

The plots shown in this appendix are fitted to the Arrhenius equation, which is shown below:

$$\ln(\varepsilon) = A + B/T_K \tag{I.1}$$

where A and B are independent of temperature and temperature ( $T_K$ ) is in K (T(°C) + 273.15).

However, some of the plots showed curvature and would be better fit to the Vogel-Fulcher-Tamman (VFT) model.

The main intent of the figures and Arrhenius equation fits shown in this appendix is to assess trends in the data and provide observations about whether there may be sufficient curvature in the data to consider VFT fits in the subsequent work that will decide between fitting the data to the Arrhenius or VFT equations for the electrical conductivity-temperature data for each glass that is being made.

## I.1 Glass LP5-01 Electrical Conductivity Data

|                 |                   | 5                             |                      |
|-----------------|-------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln \epsilon (S/m)$ |
| 979             | 35.86             | 7.99E-04                      | 3.58                 |
| 979             | 43.21             | 7.99E-04                      | 3.77                 |
| 1074            | 96.88             | 7.42E-04                      | 4.57                 |
| 1074            | 84.15             | 7.42E-04                      | 4.43                 |
|                 |                   |                               |                      |
| 1169            | 98.27             | 6.94E-04                      | 4.59                 |
| 1216            | 135.81            | 6.72E-04                      | 4.91                 |
| 1216            | 135.73            | 6.72E-04                      | 4.91                 |

Table I.1. Electrical Conductivity Data for Glass LP5-01



Figure I.1. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-01

#### I.2 Glass LP5-02 Electrical Conductivity Data

| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
|-----------------|-------------------|-------------------------------|----------------------|
| 979             | 86.15             | 7.99E-04                      | 4.46                 |
| 979             | 86.01             | 7.99E-04                      | 4.45                 |
| 1074            | 119.80            | 7.42E-04                      | 4.79                 |
| 1074            | 119.64            | 7.42E-04                      | 4.78                 |
| 1169            | 152.71            | 6.94E-04                      | 5.03                 |
| 1169            | 152.65            | 6.94E-04                      | 5.03                 |
|                 |                   |                               |                      |
| 1216            | 166.73            | 6.72E-04                      | 5.12                 |

Table I.2. Electrical Conductivity Data for Glass LP5-02



Figure I.2. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-02

#### I.3 Glass LP5-03 Electrical Conductivity Data

|                 |                   | •                             |                      |
|-----------------|-------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
| 979             | 52.71             | 7.99E-04                      | 3.96                 |
| 979             | 52.58             | 7.99E-04                      | 3.96                 |
| 1074            | 72.71             | 7.42E-04                      | 4.29                 |
| 1074            | 72.59             | 7.42E-04                      | 4.28                 |
| 1169            | 93.55             | 6.94E-04                      | 4.54                 |
| 1169            | 93.23             | 6.94E-04                      | 4.54                 |
|                 |                   |                               |                      |
| 1216            | 103.54            | 6.72E-04                      | 4.64                 |

Table I.3. Electrical Conductivity Data for Glass LP5-03



Figure I.3. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-03

## I.4 Glass LP5-04 Electrical Conductivity Data

|                 | -                 |                               |                      |
|-----------------|-------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
| 979             | 63.16             | 7.99E-04                      | 4.15                 |
| 979             | 63.00             | 7.99E-04                      | 4.14                 |
| 1074            | 89.43             | 7.42E-04                      | 4.49                 |
| 1074            | 89.60             | 7.42E-04                      | 4.50                 |
| 1169            | 118.66            | 6.94E-04                      | 4.78                 |
| 1169            | 118.64            | 6.94E-04                      | 4.78                 |
| 1216            | 133.30            | 6.72E-04                      | 4.89                 |
| 1216            | 133.74            | 6.72E-04                      | 4.90                 |

Table I.4. Electrical Conductivity Data for Glass LP5-04



Figure I.4. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-04

#### I.5 Glass LP5-05 Electrical Conductivity Data

|                 |                   | 5                             |                      |
|-----------------|-------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
| 979             | 40.15             | 7.99E-04                      | 3.69                 |
| 979             | 32.87             | 7.99E-04                      | 3.49                 |
| 1074            | 39.91             | 7.42E-04                      | 3.69                 |
| 1074            | 42.60             | 7.42E-04                      | 3.75                 |
| 1169            | 50.01             | 6.94E-04                      | 3.91                 |
| 1169            | 80.16             | 6.94E-04                      | 4.38                 |
|                 |                   |                               |                      |
| 1216            | 85.14             | 6.72E-04                      | 4.44                 |

Table I.5. Electrical Conductivity Data for Glass LP5-05



Figure I.5. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-05

#### I.6 Glass LP5-06-MOD1 Electrical Conductivity Data

| 10010 1.0.      | Electrical Conductivity | Dutu for Gluss Er 5 00 1      |                     |
|-----------------|-------------------------|-------------------------------|---------------------|
| Temperature, °C | Conductivity, S/m       | 1/(T+273.15), K <sup>-1</sup> | $ln(\epsilon, S/m)$ |
| 979             | 59.30                   | 7.99E-04                      | 4.08                |
| 979             | 59.17                   | 7.99E-04                      | 4.08                |
| 1074            | 83.66                   | 7.42E-04                      | 4.43                |
| 1074            | 83.42                   | 7.42E-04                      | 4.42                |
|                 |                         |                               |                     |
| 1169            | 109.33                  | 6.94E-04                      | 4.69                |
|                 |                         |                               |                     |
| 1216            | 122.02                  | 6.72E-04                      | 4.80                |

 Table I.6.
 Electrical Conductivity Data for Glass LP5-06-MOD1



Figure I.6. Electrical Conductivity -Temperature Data and Arrhenius Equation Fit for Glass LP5-06-MOD1

#### I.7 Glass LP5-07 Electrical Conductivity Data

| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
|-----------------|-------------------|-------------------------------|----------------------|
| 979             | 59.29             | 7.99E-04                      | 4.08                 |
| 979             | 59.03             | 7.99E-04                      | 4.08                 |
| 1074            | 78.97             | 7.42E-04                      | 4.37                 |
| 1074            | 78.88             | 7.42E-04                      | 4.37                 |
| 1169            | 97.75             | 6.94E-04                      | 4.58                 |
| 1169            | 97.74             | 6.94E-04                      | 4.58                 |
|                 |                   |                               |                      |
| 1216            | 106.26            | 6.72E-04                      | 4.67                 |

Table I.7. Electrical Conductivity Data for Glass LP5-07



Figure I.7. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-07

# I.8 Glass LP5-08 Electrical Conductivity Data

| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $ln(\varepsilon, S/m)$ |
|-----------------|-------------------|-------------------------------|------------------------|
| 979             | 77.66             | 7.99E-04                      | 4.35                   |
| 979             | 77.53             | 7.99E-04                      | 4.35                   |
| 1074            | 104.95            | 7.42E-04                      | 4.65                   |
| 1074            | 104.80            | 7.42E-04                      | 4.65                   |
| 1169            | 132.56            | 6.94E-04                      | 4.89                   |
| 1169            | 132.46            | 6.94E-04                      | 4.89                   |
| 1216            | 141.23            | 6.72E-04                      | 4.95                   |
| 1216            | 146.89            | 6.72E-04                      | 4.99                   |

Table I.8. Electrical Conductivity Data for Glass LP5-08



Figure I.8. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-08

## I.9 Glass LP5-09 Electrical Conductivity Data

| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
|-----------------|-------------------|-------------------------------|----------------------|
| 979             | 66.50             | 7.99E-04                      | 4.20                 |
| 979             | 66.39             | 7.99E-04                      | 4.20                 |
| 1074            | 89.26             | 7.42E-04                      | 4.49                 |
| 1074            | 89.17             | 7.42E-04                      | 4.49                 |
| 1169            | 111.12            | 6.94E-04                      | 4.71                 |
| 1169            | 111.18            | 6.94E-04                      | 4.71                 |
| 1216            | 121.30            | 6.72E-04                      | 4.80                 |
| 1216            | 109.26            | 6.72E-04                      | 4.69                 |

 Table I.9.
 Electrical Conductivity Data for Glass LP5-09



Figure I.9. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-09

#### I.10 Glass LP5-10 Electrical Conductivity Data

|                 |                   | -                             |                     |   |
|-----------------|-------------------|-------------------------------|---------------------|---|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $ln(\epsilon, S/m)$ | _ |
| 979             | 83.92             | 7.99E-04                      | 4.43                |   |
| 979             | 82.52             | 7.99E-04                      | 4.41                |   |
| 1074            | 115.55            | 7.42E-04                      | 4.75                |   |
| 1074            | 114.54            | 7.42E-04                      | 4.74                |   |
| 1169            | 146.50            | 6.94E-04                      | 4.99                |   |
| 1169            | 146.88            | 6.94E-04                      | 4.99                |   |
| 1216            | 161.89            | 6.72E-04                      | 5.09                |   |
| 1216            | 139.88            | 6.72E-04                      | 4.94                |   |





Figure I.10. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit or Glass LP5-10

#### I.11 Glass LP5-11 Electrical Conductivity Data

|                 |                   | 5                             | -                    |
|-----------------|-------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
| 979             | 49.36             | 7.99E-04                      | 3.90                 |
| 979             | 66.15             | 7.99E-04                      | 4.19                 |
| 1074            | 83.80             | 7.42E-04                      | 4.43                 |
| 1074            | 83.15             | 7.42E-04                      | 4.42                 |
| 1169            | 120.36            | 6.94E-04                      | 4.79                 |
| 1169            | 108.17            | 6.94E-04                      | 4.68                 |
| 1216            | 129.17            | 6.72E-04                      | 4.86                 |
| 1216            | 127.01            | 6.72E-04                      | 4.84                 |

 Table I.11.
 Electrical Conductivity Data for Glass LP5-11



Figure I.11. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-11

#### I.12 Glass LP5-12-1 Electrical Conductivity Data

|                 |                   | 5                             |                      |
|-----------------|-------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
| 950             | 22.78             | 8.18E-04                      | 3.13                 |
| 950             | 22.96             | 8.18E-04                      | 3.13                 |
| 1050            | 31.11             | 7.56E-04                      | 3.44                 |
| 1050            | 30.91             | 7.56E-04                      | 3.43                 |
| 1150            | 46.50             | 7.03E-04                      | 3.84                 |
| 1150            | 66.64             | 7.03E-04                      | 4.20                 |
| 1200            | 80.16             | 6.79E-04                      | 4.38                 |
| 1200            | 74.93             | 6.79E-04                      | 4.32                 |

 Table I.12.
 Electrical Conductivity Data for Glass LP5-12-1



Figure I.12. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-12-1

#### I.13 Glass LP5-13 Electrical Conductivity Data

|                 |                   | -                             |                      |
|-----------------|-------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
| 950             | 47.06             | 8.18E-04                      | 3.85                 |
| 950             | 42.46             | 8.18E-04                      | 3.75                 |
| 1050            | 91.04             | 7.56E-04                      | 4.51                 |
| 1050            | 53.75             | 7.56E-04                      | 3.98                 |
| 1150            | 115.58            | 7.03E-04                      | 4.75                 |
| 1150            | 111.76            | 7.03E-04                      | 4.72                 |
| 1200            | 127.17            | 6.79E-04                      | 4.85                 |
| 1200            | 142.95            | 6.79E-04                      | 4.96                 |

 Table I.13.
 Electrical Conductivity Data for Glass LP5-13



Figure I.13. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-13

## I.14 Glass LP5-14 Electrical Conductivity Data

| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
|-----------------|-------------------|-------------------------------|----------------------|
| 950             | 30.31             | 8.18E-04                      | 3.41                 |
| 950             | 29.71             | 8.18E-04                      | 3.39                 |
| 1050            | 35.38             | 7.56E-04                      | 3.57                 |
| 1050            | 42.49             | 7.56E-04                      | 3.75                 |
| 1150            | 43.21             | 7.03E-04                      | 3.77                 |
| 1150            | 72.14             | 7.03E-04                      | 4.28                 |
| 1200            | 96.22             | 6.79E-04                      | 4.57                 |
| 1200            | 96.83             | 6.79E-04                      | 4.57                 |

 Table I.14.
 Electrical Conductivity Data for Glass LP5-14



Figure I.14. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-14

#### I.15 Glass LP5-15 Electrical Conductivity Data

|                 |                   | -                             |                      |
|-----------------|-------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
| 950             | 29.35             | 8.18E-04                      | 3.38                 |
| 950             | 29.71             | 8.18E-04                      | 3.39                 |
| 1050            | 40.88             | 7.56E-04                      | 3.71                 |
| 1050            | 40.81             | 7.56E-04                      | 3.71                 |
| 1150            | 62.24             | 7.03E-04                      | 4.13                 |
| 1150            | 58.97             | 7.03E-04                      | 4.08                 |
|                 |                   |                               |                      |
| 1200            | 110.51            | 6.79E-04                      | 4.71                 |

 Table I.15.
 Electrical Conductivity Data for Glass LP5-15



Figure I.15. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-15

## I.16 Glass LP5-16-MOD1 Electrical Conductivity Data

| Table I.16.     | Electrical Conductivity Data for Glass LP5-16-MOD1 |                               |                      |
|-----------------|----------------------------------------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m                                  | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
| 950             | 44.56                                              | 8.18E-04                      | 3.80                 |
| 950             | 44.27                                              | 8.18E-04                      | 3.79                 |
| 1050            | 37.24                                              | 7.56E-04                      | 3.62                 |
| 1050            | 43.42                                              | 7.56E-04                      | 3.77                 |
| 1150            | 48.58                                              | 7.03E-04                      | 3.88                 |
| 1150            | 73.29                                              | 7.03E-04                      | 4.29                 |
| 1200            | 82.49                                              | 6.79E-04                      | 4.41                 |
| 1200            | 88.80                                              | 6.79E-04                      | 4.49                 |



Figure I.16. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-16-MOD1

#### I.17 Glass LP5-17 Electrical Conductivity Data

| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
|-----------------|-------------------|-------------------------------|----------------------|
| 950             | 37.97             | 8.18E-04                      | 3.64                 |
| 950             | 37.58             | 8.18E-04                      | 3.63                 |
| 1050            | 62.79             | 7.56E-04                      | 4.14                 |
| 1050            | 62.35             | 7.56E-04                      | 4.13                 |
| 1150            | 87.47             | 7.03E-04                      | 4.47                 |
| 1150            | 87.71             | 7.03E-04                      | 4.47                 |
| 1200            | 100.81            | 6.79E-04                      | 4.61                 |
| 1200            | 101.14            | 6.79E-04                      | 4.62                 |

 Table I.17.
 Electrical Conductivity Data for Glass LP5-17



Figure I.17. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-17

#### I.18 Glass LP5-18 Electrical Conductivity Data

|                 |                   | •                             |                      |
|-----------------|-------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
| 950             | 54.63             | 8.18E-04                      | 4.00                 |
| 950             | 61.92             | 8.18E-04                      | 4.13                 |
| 1050            | 72.53             | 7.56E-04                      | 4.28                 |
| 1050            | 72.82             | 7.56E-04                      | 4.29                 |
| 1150            | 105.47            | 7.03E-04                      | 4.66                 |
| 1150            | 104.96            | 7.03E-04                      | 4.65                 |
| 1200            | 115.07            | 6.79E-04                      | 4.75                 |
| 1200            | 115.38            | 6.79E-04                      | 4.75                 |

 Table I.18.
 Electrical Conductivity Data for Glass LP5-18



Figure I.18. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-18

#### I.19 Glass LP5-19 Electrical Conductivity Data

|                 |                   | -                             |                      |
|-----------------|-------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
| 950             | 51.63             | 8.18E-04                      | 3.94                 |
| 950             | 39.58             | 8.18E-04                      | 3.68                 |
| 1050            | 77.67             | 7.56E-04                      | 4.35                 |
| 1050            | 75.74             | 7.56E-04                      | 4.33                 |
| 1150            | 105.85            | 7.03E-04                      | 4.66                 |
| 1150            | 103.35            | 7.03E-04                      | 4.64                 |
| 1200            | 120.16            | 6.79E-04                      | 4.79                 |
| 1200            | 119.23            | 6.79E-04                      | 4.78                 |

 Table I.19.
 Electrical Conductivity Data for Glass LP5-19



Figure I.19. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-19
# I.20 Glass LP5-20 Electrical Conductivity Data

| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
|-----------------|-------------------|-------------------------------|----------------------|
| 950             | 46.18             | 8.18E-04                      | 3.83                 |
| 950             | 40.60             | 8.18E-04                      | 3.70                 |
| 1050            | 53.16             | 7.56E-04                      | 3.97                 |
| 1050            | 62.36             | 7.56E-04                      | 4.13                 |
| 1150            | 49.54             | 7.03E-04                      | 3.90                 |
| 1150            | 75.01             | 7.03E-04                      | 4.32                 |
| 1200            | 91.22             | 6.79E-04                      | 4.51                 |
| 1200            | 90.90             | 6.79E-04                      | 4.51                 |

 Table I.20.
 Electrical Conductivity Data for Glass LP5-20



Figure I.20. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-20

## I.21 Glass LP5-21 Electrical Conductivity Data

| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
|-----------------|-------------------|-------------------------------|----------------------|
| 950             | 51.26             | 8.18E-04                      | 3.94                 |
| 950             | 53.45             | 8.18E-04                      | 3.98                 |
| 1050            | 78.99             | 7.56E-04                      | 4.37                 |
| 1050            | 78.73             | 7.56E-04                      | 4.37                 |
| 1150            | 102.73            | 7.03E-04                      | 4.63                 |
| 1150            | 103.46            | 7.03E-04                      | 4.64                 |
| 1200            | 104.17            | 6.79E-04                      | 4.65                 |
| 1200            | 103.30            | 6.79E-04                      | 4.64                 |

 Table I.21.
 Electrical Conductivity Data for Glass LP5-21



Figure I.21. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-21

## I.22 Glass LP5-22 Electrical Conductivity Data

|                 |                   | -                             |                      |
|-----------------|-------------------|-------------------------------|----------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
| 950             | 53.52             | 8.18E-04                      | 3.98                 |
| 950             | 53.21             | 8.18E-04                      | 3.97                 |
| 1050            | 56.46             | 7.56E-04                      | 4.03                 |
| 1050            | 54.82             | 7.56E-04                      | 4.00                 |
| 1150            | 90.84             | 7.03E-04                      | 4.51                 |
| 1150            | 89.52             | 7.03E-04                      | 4.49                 |
| 1200            | 114.55            | 6.79E-04                      | 4.74                 |
| 1200            | 101.60            | 6.79E-04                      | 4.62                 |

 Table I.22.
 Electrical Conductivity Data for Glass LP5-22



Figure I.22. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-22

## I.23 Glass LP5-23 Electrical Conductivity Data

|                 |                   | -                             |                     |
|-----------------|-------------------|-------------------------------|---------------------|
| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $ln(\epsilon, S/m)$ |
| 950             | 44.71             | 8.18E-04                      | 3.80                |
| 950             | 44.44             | 8.18E-04                      | 3.79                |
| 1050            | 47.76             | 7.56E-04                      | 3.87                |
| 1050            | 60.90             | 7.56E-04                      | 4.11                |
| 1150            | 85.09             | 7.03E-04                      | 4.44                |
| 1150            | 85.21             | 7.03E-04                      | 4.45                |
| 1200            | 94.09             | 6.79E-04                      | 4.54                |
| 1200            | 94.13             | 6.79E-04                      | 4.54                |

 Table I.23.
 Electrical Conductivity Data for Glass LP5-23



Figure I.23. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-23

## I.24 Glass LP5-24 Electrical Conductivity Data

| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |
|-----------------|-------------------|-------------------------------|----------------------|
| 950             | 22.89             | 8.18E-04                      | 3.13                 |
| 950             | 20.62             | 8.18E-04                      | 3.03                 |
| 1050            | 64.48             | 7.56E-04                      | 4.17                 |
| 1050            | 32.77             | 7.56E-04                      | 3.49                 |
| 1150            | 81.95             | 7.03E-04                      | 4.41                 |
| 1150            | 86.07             | 7.03E-04                      | 4.46                 |
| 1200            | 97.94             | 6.79E-04                      | 4.58                 |
| 1200            | 87.92             | 6.79E-04                      | 4.48                 |

 Table I.24.
 Electrical Conductivity Data for Glass LP5-24



Figure I.24. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-24

# I.25 Glass LP5-25 Electrical Conductivity Data

| Temperature, °C | Conductivity, S/m | 1/(T+273.15), K <sup>-1</sup> | $\ln(\epsilon, S/m)$ |  |
|-----------------|-------------------|-------------------------------|----------------------|--|
| 950             | 12.10             | 8.18E-04                      | 2.49                 |  |
| 950             | 11.96             | 8.18E-04                      | 2.48                 |  |
| 1050            | 18.78             | 7.56E-04                      | 2.93                 |  |
| 1050            | 21.14             | 7.56E-04                      | 3.05                 |  |
| 1150            | 25.71             | 7.03E-04                      | 3.25                 |  |
| 1150            | 28.44             | 7.03E-04                      | 3.35                 |  |
|                 |                   |                               |                      |  |
| 1200            | 48.27             | 6.79E-04                      | 3.88                 |  |

Table I.25. Electrical Conductivity Data for Glass LP5-25



Figure I.25. Electrical Conductivity-Temperature Data and Arrhenius Equation Fit for Glass LP5-25

# Pacific Northwest National Laboratory

902 Battelle Boulevard P.O. Box 999 Richland, WA 99354 1-888-375-PNNL (7665)

www.pnnl.gov