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Abstract 
With support from the Department of Energy’s Water Power Technologies Office, Pacific 
Northwest National Laboratory (PNNL) has developed new tools that incorporate cutting-edge 
climate and hydrological science capabilities to assess the potential long-term impacts of future 
climate conditions on unregulated streamflow and water temperature within watershed-river-
reservoir systems. The objectives of this project were achieved by enhancing key hydrologic 
and hydrodynamic models and transferring them to a high-performance computing environment 
to provide a high-spatiotemporal resolution, multi-scale modeling framework. The new modeling 
framework has the potential to quantify risks related to climate change impacts on runoff, 
unregulated streamflow, and water temperature. Initial development and demonstration of the 
modeling framework was conducted under historical and future climate conditions in the 
Columbia River Basin in the Pacific Northwest and the Connecticut River Basin in New England. 
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Executive Summary 
With support from the Department of Energy’s Water Power Technologies Office, Pacific 
Northwest National Laboratory (PNNL) has developed new tools that incorporate cutting-edge 
climate and hydrological science capabilities and tested them in two basins (i.e., the Columbia 
River Basin and the Connecticut River Basin) as a first step in modeling climate change impacts 
on runoff, unregulated streamflow, and water temperature at large, basin scales. 

The research outlined in this report aims to advance climate science and numerical modeling 
methods and demonstrate new capabilities to assess the potential impacts of future climate 
conditions on streamflow and water temperature within watershed-river-reservoir systems. The 
objectives of this project were achieved by: 

1. Modelling historical and future climate conditions to better understand the occurrence of 
extreme precipitation, including atmospheric rivers (ARs) in the Pacific Northwest, and 
integrating this into watershed-river models. 

2. Advancing fine resolution, physics-based hydrologic models to allow detailed 
representation of small-scale hydrologic processes over large basins using decades 
long simulations.   

3. Improving simulation of flow routing and stream temperature by integrating hydrologic 
and hydrodynamic models into a high-spatiotemporal resolution, multi-scale modeling 
framework.  

4. Applying the above framework of future climate conditions and extreme precipitation to 
high-resolution hydrologic models and stream temperature models in the Columbia 
River Basin in the Pacific Northwest. 

5. Applying a similar framework to evaluate the impacts of climate change on streamflow 
and water temperature in the Connecticut River Basin in New England. 

Developing and leveraging the tools, like those developed in this report, in partnership with 
water managers, regulators, hydropower operators, and other stakeholders is key to 
understanding how ecological stressors across river basins may change over time and to 
ensuring that decisions around future water resource management are made with the best 
available information. High-performance computing environments, state of the art global climate 
simulations, and cutting-edge models developed for this project provide an example of 
capabilities and outline areas of future collaboration with potential end-users. These end-users 
are essential in providing local perspectives of unique river systems that support the application, 
refinement, and specification of these tools. 

In this report, Section 2 examines future precipitation extremes driven by atmospheric rivers, a 
climatic phenomenon not considered in many studies. Understanding how precipitation and 
temperature changes impact river systems requires fine-scale hydrologic models, so Section 3 
describes advancements made to the Distributed Hydrology Soil Vegetation Model, a PNNL-
developed hydrologic model, that enables simulation of changing streamflow at small spatial 
scales across large river basins. A description of how this hydrologic model is linked to high-
resolution hydrodynamic models that simulate water quality parameters like temperature is 
described in Section 4. The full framework was then tested in the Columbia River Basin (Section 
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5) where ARs are becoming increasingly common and in the Connecticut River Basin (Section 
6). A summary of the report findings is provided below. 

Impacts of Atmospheric Rivers on the Columbia River Basin 

Heavy precipitation, intense snow melting, and flooding are among the most significant 
hydrological extremes in the western United States, and they cause huge societal and economic 
losses every year. Many of these extreme events are caused by or related to atmospheric rivers 
(ARs), which have rarely been included in studies of future climate impacts on hydrology. We 
used the Weather Research Forecasting (WRF) model to examine the physical mechanism 
responsible for these extreme events and their hydrologic impacts in the western United States. 
The WRF model is used to dynamically downscale scenarios from five global climate models 
(GCMs) for the present (1981–2015) and future (2041–2070) at 6 km grid spacing across the 
western United States.  

In the first application, ARs were identified by the Atmospheric River Tracking Method 
Intercomparison Project (O’Brien, 2021) and precipitation was taken from a high‐resolution 
regional climate simulation. We found the following: 

• Extreme precipitation amount in West Coast watersheds is closely related to AR 
intensity and the relationship between ARs and precipitation is most significant in the 
Pacific Northwest and California.  

• ARs explain 30% to 60% of the variability of annual total runoff and sharpen the 
seasonality of water resource availability in West Coast mountain watersheds. They can 
significantly control surface hydrological processes through the extreme precipitation 
they produce.  

In the second application, the WRF model output for historical and future climate was bias-
corrected and then used to evaluate changes in unregulated streamflow and water temperature 
in the Columbia River Basin.  

• We found that the WRF future precipitation generally exceeds historical levels with more 
variation in December and January, while future air temperature exceeds historical 
levels in all months, by 3–5 degrees depending on the season and GCM.  

Enhancing the Modeling Framework for the Columbia River Basin 

The Distributed Hydrology Soil Vegetation Model (DHSVM) and the Modular Aquatic Simulation 
System 1D (MASS1) hydrodynamic model are key components of the modeling framework and 
provide information at much finer spatial scales (i.e., 90 m and channel reach) than the larger 
scale WRF analysis, but they are computationally intensive to run over large river basins. To 
allow for ultra-high-resolution simulation of watershed processes in large basins like that of the 
Columbia River, the DHSVM code was parallelized for distributed memory computers. Parallel 
code speedup was significant and run times for 1-year simulations were reduced by up to two 
orders of magnitude (102). This version of DHSVM is currently being used by several major 
universities and a National Laboratory.  

MASS1 was also added to DHSVM, bringing full hydrodynamic routing and stream temperature 
simulation to the integrated model. In smaller tributaries, near stream vegetation strongly 
influences stream temperature by shading the channel, but most hydrodynamic river models 
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ignore this effect on small streams. This effort linking MASS1 to DHSVM represents a significant 
advancement in modeling flow and vegetation effects on stream temperature and provides a 
seamless capability for analysis over a range of spatial scales.  

Impacts of Climate Change in the Columbia River Basin 

The full modeling framework described above was tested in the Columbia River Basin at 90 m 
spatial resolution to examine the impacts of climate change on unregulated flows. In the 
Columbia River Basin, projected future climate scenarios (2041-2070) included the effects of 
atmospheric rivers and resulted in the following observations: 

• Earlier snowmelt resulting in higher unregulated winter and early spring flows and 
reduced summer flows. Higher January through April flows could generate more 
hydropower and produce more spill but production during the summer could decline at 
the same time increased temperatures drive greater summer power use. 

• A one month earlier shift in the timing of the peak inflow was observed in some 
subbasins. This increase in cool-season system inflow to reservoirs will likely lead to an 
increase in typical cool-season water storage. However, reduced inflow during the warm 
season may lead to a greater reliance on stored water resulting in a decline in end-of-
month water storage volumes by the end of the summer.  

• Water temperature in the Columbia River Basin is generally increased under the future 
climate conditions throughout the year at most locations. The greatest increase typically 
occurs in August and ranges between 1 and 3ºC depending on location.  

Impacts of Climate Change in the Connecticut River Basin 

In the Connecticut River Basin, the downscaled projections of climate for the 2040–2070 period 
shows generally higher precipitation across the basin, while air temperature increases by 2–5oC 
depending on location and GCMs. This resulted in the following impacts on unregulated flow 
and water resources: 

• Unregulated winter flows in the Connecticut River Basin were generally increased under 
future climate conditions, while the flow is reduced in the spring.  

• The seasonal peak flow occurs earlier and is reduced in the future.  

• Water temperature is increased under the future climate conditions throughout the year 
at most locations. The greatest increase occurs in August and typically ranges between 
3 and 5oC depending on location but increases up to 6 degrees were simulated. 
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1.0 Introduction 
Understanding the effects of future climates on water availability and quality, and how those 
variables could inform activities like water resource management, long-term hydropower 
planning, new infrastructure investment and upgrades, and the management of environmental 
resources is essential to ensuring the continued viability of our power and water systems and 
the sustainability of our riverine environments. Where studies like the U.S. Department of 
Energy’s (DOE’s) Secure Water Act 9505 (DOE 2013, 2017) and the Bureau of Reclamation’s 
(Reclamation) 9503 (Reclamation 2011) focused on water availability, this Pacific Northwest 
National Laboratory (PNNL) project examines water temperature, which is a key indicator of 
water quality. Implementing a watershed scale approach, as done in this study, rather than site-
specific stream temperature assessments recognizes ecology as an interconnected system 
through the river network and aims to promote an integrated water-river-reservoir assessment 
and management of resources.  

1.1 Objectives 

The goal of this research is to model the impacts of climate change on streamflow and water 
temperature across two large basins to test a tool for better understanding future water 
reliability. This goal was achieved by enhancing key existing fine resolution hydrology and 
stream temperature models and transferring them to a high-performance computing 
environment to provide a high-spatiotemporal resolution, multi-scale modeling framework. This 
was accomplished through five main objectives: 

1. Model historical and future climate conditions using the Weather Research and 
Forecasting (WRF) model for dynamical downscaling applied to a multi-model general 
circulation model (GCM) ensemble to: 1) better understand and help predict the 
occurrence of extreme precipitation and hydrologic impacts associated with Atmospheric 
Rivers (ARs) in the western United States; and 2) drive the integrated watershed-river 
model in the Columbia River Basin (Section 2.0). 

2. Advance the use of physics-based, fine resolution hydrologic models through the 
parallelization of the Distributed Hydrology Soil Vegetation Model (DHSVM) allowing 
detailed representation of critical small scale hydrologic processes over relatively large 
basins using decades long simulations (Section 3.0).  

3. Improve high-resolution simulation of channel routing and stream temperature through 
the integration of DHSVM and the Modular Aquatic Simulation System 1D (MASS1) 
hydrodynamic model to complete a high-spatiotemporal resolution, multi-scale modeling 
framework (Section 4.0).  

4. Apply the analysis framework that includes extreme events, fine resolution hydrologic 
models, and high-resolution routing of stream temperature to evaluate the impacts of 
climate change on unregulated streamflow and water temperature in the Columbia River 
Basin in the Pacific Northwest (Section 5.0). 

5. Apply a similar analysis framework to evaluate the impacts of climate change on 
unregulated streamflow and water temperature in the Connecticut River Basin in New 
England (Section 6.0). 
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The resulting modeling and analysis framework is a first step in developing tools that quantify 
the impacts of altered climate on runoff, streamflow, and water temperature. Future studies 
should apply these findings to explicitly enhance our understanding of climate-induced risks to 
integrated water and power systems.  

1.1.1 Synergistic Activities 

The objectives of this project support two ongoing initiatives at DOE’s Water Power 
Technologies Office (WPTO). The first initiative focuses on WPTO’s ecological aims as reflected 
in the Environmental R&D and Hydrologic Systems Science strategic objectives:   

• Develop technologies and strategies that avoid, minimize, or mitigate ecological impacts.  

• Assess the potential impacts of long-term hydrologic variations on hydropower generation 
and flexibility.  

• Better identify opportunities and weigh potential tradeoffs across multiple objectives at basin 
scales.  

Second, the objectives of this project are reflected in WPTO’s HydroWIRES initiative, 
particularly Area 3 to “develop operational strategies and associated tools that enable 
hydropower to better optimize its operations to support evolving grid needs” and “quantify 
hydropower plant- and fleet-level contributions to system-level water availability, environmental 
flows, and other non-power but system-level goals.” This project addresses several 
HydroWIRES roadmap Domains including:  

• Domain 2: Capabilities and Constraints  
– 2.3: Advance hydrologic forecasting (water as fuel) at intervals and horizons that 

facilitate planning and dispatch through high-spatiotemporal hydrologic modeling. 
Computational advances made under this project provide a computational platform for 
high spatial (30–90 m) and temporal (hourly or sub-hourly) hydrologic forecasting. Of 
particular importance is the ability for data assimilation of evolving remotely sensed 
products, such as (30 m) Light Detection and Ranging (LIDAR) estimates of snow depth, 
at their native scale without having to aggregate and lose important spatial information.  

• Domain 3: Operations and Planning 
– 3.3: Advance hydropower optimization across fleet and plant operations and planning 

practices by considering multiple objects (power, flow, and water temperature) at the plant 
and system scales.  

1.2 Background 

The Columbia River and Connecticut River Basins are two of the most hydrodynamically 
controlled river basins in the United States. Both contain a series of hydroelectric and non-
powered dams that control and affect water volume and water quality characteristics throughout 
their watersheds. Consequently, the water, electricity, and ecosystem services that these river 
networks provide will be challenged as climate change is predicted to cause large changes in 
the timing and volume of water availability over the next hundred years resulting in a need to 
understand the flow dynamics more precisely within these basins. 

In the Columbia River Basin of the Pacific Northwest, about 40% of the nation’s total 
hydropower generation is already facing water quality adaptation issues due to changing 
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climate. The summer of 2015 in the Columbia River Basin may serve as a preview of the 
impacts these changes could have on critical ecosystems.1 In the summer of 2015, water 
temperatures in many locations throughout the mainstem and major tributaries were 
physiologically unsustainable for salmon, resulting in the death of a quarter million sockeye 
salmon.2 Annual direct and indirect spending on salmon recovery in the Columbia Basin is at 
least $1.25 Billion per year (Rice 2019) and future investments are expected based on the 
ongoing need to manage ecosystem services in coordination with water users and the 
hydropower system under the Federal Power Act (U.S. Congress 1940). These investments in 
ecosystem service management may see their expected benefits at stake under current climate 
projections of the Pacific Northwest. Increases in average annual temperature of 0.1oC to 0.6oC 
per decade (Mote and Salathe 2010) coupled with reductions in snowpack (up to −65%; Elsner 
et al. 2010) and glacial volume are expected over the next 50 to 70 years. 

Changes in the seasonality of precipitation as well as the form in which it falls (rain or snow) 
may also significantly affect human infrastructure in the Columbia Basin. Tohver et al. (2014) 
predict that the size of the 100-year floodplain will increase by 10 to 70% in many portions of the 
river by the year 2080, which would pose problems for metropolitan areas within the floodplain 
including the Tri-Cities (Richland, Kennewick, and Pasco) of Washington State as well as Hood 
River and Portland, Oregon metro areas. Understanding the impact of the potential increase in 
flooding events on our human-ecosystem infrastructure, and how water storage and 
hydroelectric power in the Columbia Basin can be managed to withstand these future flooding 
events, is one important benefit of higher quality water modeling tools. 

In the Connecticut River Basin of the northeast United States, the projected future climate 
includes a shift to more rainfall during winter, earlier snowmelt, increased precipitation intensity 
with more flooding potential and earlier dates of peak discharges (Parr et al. 2015). Similar to 
the Columbia River, these changes in the timing, quantity, and quality (e.g., temperature) of the 
Connecticut River and its tributaries will result in changes in the timing of aquatic species life 
cycles. Consequently, water resources in the basin will need to be adaptively managed to meet 
ecosystem and other water needs in the basin (Kennedy et al. 2018). Several ongoing efforts in 
the Connecticut River Basin are focusing on developing more flexible hydropower operating 
regimes so that the basin can adapt to a changing climate (Julian et al. 2015; Kennedy et al. 
2018). 

One potential response to the reduction in natural, cold water availability in the Columbia, 
Connecticut, and other basins in the United States is to manage the existing river-reservoir 
system in a manner in which control of temperature is a higher management objective. Two 
options are possible: (1) the existing system configuration can be managed for this objective 
and (2) structural modifications to the existing dams could be made to allow for controlled 
releases of cooler water from lower elevations within each reservoir. In addition, the potential 
new development of small/modular hydropower systems is likely to occur in small or upper 
watershed tributaries that could be disproportionally affected by changes in streamflow and 
water temperature due to climate change. New hydropower developments could enable 
alternative temperature management strategies, such as providing coordinated hypolimnetic 
releases in basin headwaters. Reservoirs created by new hydropower development could be 
used to mitigate climate change-induced stream warming by releasing cold water throughout the 
summer, while also providing a source of renewable energy. 

 
1  http://www.seattletimes.com/seattle-news/environment/last-years-heat-wave-doomed-nearly-all-okanogan-
sockeye-salmon/ 
2  http://www.nwcouncil.org/news/blog/drought-and-streamflow-research-may-2016/ 

http://www.seattletimes.com/seattle-news/environment/last-years-heat-wave-doomed-nearly-all-okanogan-sockeye-salmon/
http://www.seattletimes.com/seattle-news/environment/last-years-heat-wave-doomed-nearly-all-okanogan-sockeye-salmon/
http://www.nwcouncil.org/news/blog/drought-and-streamflow-research-may-2016
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The operational strategies described above require the ability to predict (under current and 
future climate) streamflow characteristics and water temperature from headwater tributaries 
through the mainstem. Informal interviews with end users (e.g., Seattle City Light, United States 
Bureau of Reclamation Central California Region) confirmed this, emphasizing that evaluation of 
water temperature at plant scale or within headwater tributaries requires finer spatial scale 
analysis than the 12–6 km typically used by semi-distributed hydrologic models (e.g., Variable 
Infiltration Capacity model; even larger for the Soil & Water Assessment Tool). The simple 
reality is that models and approaches developed for national-scale analysis are insufficient for 
decision-making at the plant scale in many locations.  

The coarse modeling scale currently employed for national-scale assessments is inconsistent 
with current national data products such as 30 m digital elevation model (DEM), soils, and 
vegetation data required to represent key hydrologic processes at scales appropriate for this 
project. The structure and process representation in these models precludes the appropriate 
use of these current data products anywhere near their native scale; significant data 
aggregation is required for use by these models along with associated smoothing and loss of 
fidelity. This data/model discrepancy will increase dramatically as next-generation data come 
online. For example, some utilities in California are currently using ultra-high-resolution National 
Aeronautics and Space Administration Jet Propulsion Laboratory airborne snow data (3–50 m) 
to estimate snowpack water storage. In addition, current national-scale approaches to routing 
flow and computing water temperatures are insufficient for evaluating plant-scale operational 
and structural modifications at scales relevant for water quality analyses (e.g., 401 certification) 
and fish habitat at biologically relevant scales. 
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2.0 Impacts of Atmospheric Rivers in the Western United 
States 

Before discussing the projected climate change impacts to runoff and streamflow in the 
Columbia River Basin, it is important to understand the physical-dynamical mechanisms 
responsible for these changes. Unique to this research effort, the regional dynamical WRF 
simulations provided the opportunity to illustrate and analyze the physical mechanisms 
responsible for extreme events at fine spatial resolution – a significant improvement on 
statistically downscaled GCM data which only provides information on a limited set of climate 
variables. Here we focused on investigating the impacts of ARs on extreme events because 
extreme precipitation is often associated with ARs in the western United States. Additional detail 
is provided in Chen et al. (2018, 2019).  

2.1 Methods 

2.1.1 Climate Modeling 

Global climate models (GCMs) are the primary tools for understanding and projecting future 
climate under different greenhouse gas (GHG) emissions at the global scale, with their spatial 
resolutions constrained by computational resources. Hence, even for the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) (Taylor et al. 2012) that provided climate change 
scenarios for the most recent Intergovernmental Panel on Climate Change (IPCC) Sixth 
Assessment Report (AR6), most GCMs were applied at a resolution between 1° to 2° latitude-
longitude (~110-220km), which is not sufficient for resolving mesoscale features key to the 
generation of extreme precipitation. Two downscaling approaches were used here to develop 
regional climate change scenarios for assessing climate change impacts: statistical downscaling 
and dynamical downscaling. Because of the low computational cost, statistical downscaling 
approaches can be applied to a large ensemble of GCM projections to estimate uncertainty. 
However, they suffer from the inherent assumption of stationarity as statistical relationships 
developed from historical data are applied to future climates. In contrast, dynamical downscaling 
based on regional climate models (RCMs) is physically based but computationally demanding. 
Past efforts have mostly used a single RCM driven by a single GCM scenario, thereby limiting 
the evaluation of uncertainty. In this project, we took advantage of both approaches to project 
future climate change.  

2.1.2 WRF Dynamical Downscaling 

We used an RCM based on the WRF model (Chen et al. 2018) to dynamically downscale 
scenarios from North American Regional Reanalysis (NARR; Mesinger et al., 2006) for the 
present (1981–2015), and five GCMs selected from CMIP5 for the present (1981–2015) and 
future (2041–2070) across the western United States (Figure 2.1). Following the North 
American Regional Climate Change Assessment Program (Mearns et al. 2013), we included 
five GCMs in this project:  

• the second-generation Canadian Earth System Model (CanESM2),  

• the Community Earth System Model version 1 that includes the Community Atmospheric 
Model version 5 (CESM1_CAM5),  

• the Geophysical Fluid Dynamics Laboratory Earth System Model Version 2M 
(GFDL_ESM2M),  
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• the Hadley Global Environment Model 2-Earth System (HadGEM2_ES), and 

• the Max Planck Institute for Meteorology Earth System Model MR (MPI_ESM_MR).  

The five GCMs selected represented a good diversity of models because their Earth system 
components generally followed different developmental paths and approaches. They were 
chosen based on the extensive evaluation of CMIP5 model performance for the historical 
simulations over the Pacific Northwest region (Rupp et al. 2013; Gao et al. 2015).  For the mid-
century time frame, uncertainty in climate projections due to emission scenarios is less 
important than uncertainty related to the use of different GCMs (Hawkins and Sutton 2009), so 
only the Representative Concentration Pathway mitigation scenario 8.5 (RCP8.5) was used in 
our modeling and analysis. The WRF simulations covered the western United States at about 6 
km grid resolution to adequately resolve key regional forcing such as orography. 

 
Figure 2.1. WRF simulation domain. The colored regions are the 2-digit Hydrological Unit 

(HUC2) watersheds. “SRR”: Souris-Red-Rainy region; “AWR”: Arkansas-White-Red 
region; “RG”: Rio Grande region; “UCol”: Upper Colorado region; “LCol”: Lower 
Colorado region; “PNW”: Pacific Northwest region. 

2.1.2.1 Atmospheric Rivers 

Heavy precipitation, intense snow melting, and flooding are among the most significant 
hydrological extremes in the western United States, and they cause huge societal and economic 
losses every year. Many of these extreme events are caused by or related to atmospheric rivers 
(ARs), which feature bands of high precipitable water in the atmosphere spanning thousands of 
kilometers long and are responsible for over 90% of poleward moisture transport. 

In this study, we conduct and evaluate a 35‐year regional climate simulation at 6‐km grid 
spacing of the hydroclimate in the western United States during 1981–2015. Winds, 
temperature, water vapor, pressure, and surface variables from the NARR (Mesinger et al., 
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2006) at 32‐km horizontal resolution and 3‐hourly time intervals were used and interpolated to 
provide initial and boundary conditions for the WRF simulations. 

This high‐resolution simulation was analyzed to understand the atmospheric conditions 
associated with ARs and how they influence surface hydrological processes. More specifically, 
we address the following questions (Chen et al., 2018, 2019): 

• How are ARs related to extreme precipitation both in occurrence and magnitude?  

• How do landfalling ARs from the Northeast Pacific Ocean modify the surface 
meteorological conditions and their spatial distribution in the western United States? 

• What are the impacts of landfalling ARs on the surface water budget components, and 
how are they related to the surface meteorological conditions associated with ARs? 

• What is the overall surface hydrological response to landfalling AR events compared to 
non‐AR events in the western United States? 

With improvements in forecasting ARs in global models, quantitatively relating the AR 
occurrence and intensity to extreme precipitation represents an important predictability that can 
be exploited for hydrologic forecasting and emergency preparedness. 

To characterize uncertainty in projecting precipitation extremes, the regional WRF simulations 
were also analyzed to identify the physical-dynamical mechanisms responsible for changes in 
extreme precipitation in different climate regimes. In California and the Pacific Northwest, 
extreme precipitation is often associated with atmospheric rivers (ARs) (Chen et al. 2019) that 
transport warm, moist air of tropical origin in narrow bands that produce heavy precipitation 
upon landfall over the coastal mountains. These are predominantly cold-season processes 
because frontogenesis plays an important role in the development of ARs. Because ARs can 
significantly modulate surface hydrological processes (e.g., snow) through the extreme 
precipitation they produce, we quantified the relationship between ARs and the magnitude of 
extreme precipitation, and their impacts on land-surface hydrologic process. 

One of the largest uncertainties in relating extreme precipitation to ARs is how ARs are defined 
and tracked. To quantify how differences in AR-tracking methods may influence the attribution 
of moisture transport, precipitation, and hydrologic extremes to ARs, the Atmospheric River 
Tracking Method Intercomparison Project (ARTMIP) has been initiated (Shields et al., 2018). As 
part of this effort, participants applied their AR- tracking methods to the Modern-Era 
Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis data 
(Gelaro et al., 2017) and identified all ARs between 1981 and 2016. We selected six methods 
that produced relatively higher and lower numbers of AR events along the U.S. west coast, with 
the total numbers of detected AR events varying by one order of magnitude, (as summarized in 
supporting information Table S1; Chen et al., 2018). Overall, the Rutz, Gershunov, and Guan 
algorithms identified the largest number of ARs, while the other three (Goldenson, PNNL1 
(Pacific Northwest National Laboratory method 1), and PNNL2 (Pacific Northwest National 
Laboratory method 2) identified the lowest number of ARs, so our selection of these six 
methods represents the full range of AR-tracking results from ARTMIP. All the AR events are 
classified as north or south depending on their landfalling locations along the west coast 
between 40°N and 60°N (Pacific Northwest [PNW]) and 25°N and 40°N (California), 
respectively, to better present their localized effect. 
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Precipitation data is from the WRF simulations over the western United States during 1981–
2015. Analysis of precipitation in watersheds at the Hydrological Units level provides a 
connection to the surface hydrological processes because watersheds are closed systems (i.e., 
each watershed has only one outlet for runoff) for soil hydrology. The raw hourly precipitation 
output at a 6-km grid spacing is then aggregated to 1,080 eight-digit Hydrological Unit (HUC8) 
watersheds at a daily scale. The WRF simulations captured the spatial variability of daily mean 
and 95% extreme precipitation realistically compared to the PRISM (Parameter-elevation 
Relationships on Independent Slopes Model) observations (Daly et al., 2008). 

Predictability of extreme precipitation is considered for both occurrence and magnitude. Here 
extreme precipitation events are defined as 95% percentile daily precipitation events (i.e., days 
with precipitation amount higher than 95% of the daily records during 1981–2015) at each 
HUC8 watershed. From the occurrence perspective, we used the occurrence of ARs to predict 
the occurrence of extreme precipitation events. The skill is quantified using Gilbert Skill Score 
(GSS). GSS evaluates how well the predicted events (hit or miss) correspond to the 
observations, with an adjustment for the correct forecast due to random chance (e.g., more ARs 
identified increase the chance of overlapping with extreme P days), making it more appropriate 
for our analysis than other measures of skill score. 

On the correlation between ARs and precipitation magnitude, we developed a higher-level 
metric, hereafter referred to as Intensity-Duration-Area (IDA), to characterize the overall 
intensity of landfalling ARs at the event scale. This metric is based on integrated vapor transport 
(IVT) and each landfalling AR event is characterized by one IDA value that defines its intensity, 
duration, and area of influence over land. We investigate the relationship between IDA and 
extreme precipitation at a monthly scale because at daily and weekly scales, the relationship 
between extreme precipitation events and IDA would be dominated by the concurrence of non-
AR days/weeks and nonextreme precipitation days/weeks. At each HUC8 watershed, we 
identified the extreme daily precipitation events and summed up the total for each month. We 
also summed up the IDAs of all the landfalling ARs in each month. Then the correlation between 
the monthly IDA and the monthly total extreme precipitation was computed to reveal their 
relationship. 

To better understand the relationship between ARs and extreme precipitation, we used the K-
means clustering method to classify the AR events into different categories that can be 
characterized as weak ARs (short duration and low intensity), flash ARs (short duration but high 
intensity), and prolonged ARs (long duration). 

ARs can significantly modulate surface hydrological processes through the extreme precipitation 
they produce as well as important changes to the surface energy balance. ARs consistently lead 
to heavier precipitation compared to non‐AR events but the impact of ARs on temperature 
depends on the season. There are also important differences depending on the absence or 
presence of snow. To better understand the complex impacts of ARs on surface hydrologic 
processes, precipitation events without an AR are identified as “non‐AR” events. Further, 
precipitation events are classified into three types: 

• summer events (denoted as “summer”) that happen between 1 April and 30 September; 

• winter snow condition events (“winter (snow)”) that happen between 1 October and 31 
March, with snowpack existing before the events; 
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• winter dry condition events (“winter (dry)”) that happen between 1 October and 31 
March, without snowpack existing before the events. 

2.2 Results 

2.2.1 Predictability of Extreme Precipitation in Western U.S. Watersheds Based 
on Atmospheric River Occurrence, Intensity, and Duration 

The correlation between AR intensity-duration-area (AR-IDA) and the extreme precipitation 
amount at the monthly scale is illustrated in Figure 2.2. The performance of different AR-
tracking algorithms varied widely, but in general, the Goldenson and two PNNL methods 
performed better because fewer ARs identified were generally associated with more intense or 
prolonged ARs and they were more likely to be related to heavy precipitation. We also used 
other metrics such as Gilbert Skill Scores (GSSs) to compare the different AR-tracking 
algorithms (Figure 2.3). Based on both GSSs and correlations, we concluded that the 
Goldenson and PNNL models performed better than the others. 

In Figure 2.2, higher correlations (~0.5) were observed between ARs and extreme precipitation 
events across the western United States especially in the coastal regions, suggesting that ARs 
can provide useful predictability for extreme precipitation occurrence and magnitude in western 
United States watersheds. Due to the typical southwest-northeast orientation of ARs, 
watersheds in the north are more susceptible to AR-induced heavy precipitation. We found that, 
in general, weak ARs (short duration and low intensity) account for 50–60% of all AR events, 
but they are weakly correlated with extreme precipitation. This is more obvious for AR-tracking 
algorithms that identify more ARs.  
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Figure 2.2. Correlation coefficients between AR intensity-duration-area (IDA) and the monthly 

total of extreme daily precipitation amount. The first and second columns are for 
ARs in the north (making landfall between 40°N and 60°N) derived from six AR-
tracking algorithms. The third and fourth columns are for ARs in the south (making 
landfall between 25°N and 40°N) (see Chen et al. 2018). 
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Figure 2.3. Gilbert Skill Scores (GSSs) for predicting the number of extreme precipitation days 

using ARs. A GSS of zero equals no skill and a GSS of 1 indicates a perfect score 
(see Chen et al. 2018). 

2.2.2 Impact of Atmospheric Rivers on Surface Hydrological Processes in 
Western U.S. Watersheds 

In addition to extreme precipitation, we further investigated the impacts of ARs on watershed 
water budget using the WRF simulations in the western United States. Large seasonal 
differences emerged in water budget components in AR events compared to non-AR events. 
Figure 2.4 presents the overall differences in major water budget components, including 
precipitation, surface runoff, evapotranspiration (ET), and soil moisture between AR and non‐AR 
events. As expected, precipitation was significantly higher during AR events. Surface runoff 
resembled the difference in precipitation, where coastal watersheds such as the western 
Cascades and the Sierra Nevada experienced the largest increase in runoff during ARs. In 
winter, when not limited by soil moisture, the ET difference mainly reflected the difference in 
total radiation (Chen et al. 2019). In summer, the ET difference was controlled by radiation 
and/or soil moisture, depending on whether ET is energy‐ or moisture‐limited in specific areas. 
The soil moisture increased across all areas during AR events for both the summer and winter 
seasons, but more spatial heterogeneity was observed for snow water equivalent (SWE). In 
summer, all precipitation events caused the snow to melt, but ARs led to moderately more snow 
ablation in the Pacific Northwest, which could be attributed to warmer temperature or increased 
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longwave radiation. In winter, snow generally accumulated during winter non‐AR precipitation 
events, while ARs led to widespread snow ablation (i.e., the mechanisms for rain-on-snow 
[ROS] events).  
 



 

Impacts of Atmospheric Rivers in the Western United States 2.9 

 

 
Figure 2.4. The difference in HUC8surface water budget associated with AR and non‐AR 

precipitation events (AR minus non-AR). Top to bottom: precipitation, runoff, 
evapotranspiration (ET), soil moisture change (ΔSM), and SWE change (ΔSWE) 
(mm/day). Left to right: summer (1 April to 30 September), winter (dry - 1 October 
to 31 March, without snowpack existing before the events), winter (snow - 1 
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October to 31 March, with snowpack existing before the events) (see Chen et al. 
2019). 

Similar to the “water cycle” chart presented in hydrology textbooks, we developed a “water 
budget chart” here (Figure 2.5) to illustrate the AR impacts on surface hydrology averaged over 
the hydrologic unit code (HUC) 8 watersheds in the western United States. In Figure 2.5, it is 
observed that compared to non‐AR events, ARs produced much higher precipitation but slightly 
suppressed ET. This substantially increased the water input to the surface hydrological system. 
During ARs, strong radiation and warm temperature increased the likelihood and the magnitude 
of ROS events, which caused enhanced snow ablation. On average, ΔSWE was −0.1 mm/day 
(melt) during AR events, while it was 1.46 mm/day (accumulation) during non‐AR events. Our 
regression analyses attributed these differences in snow accumulation and ablation to the 
change in temperature/radiation during ARs. Specifically, warmer temperature caused snow 
ablation of 3.49 mm/day and increased net radiation triggered snow ablation of 0.97 mm/day 
during ARs.  

 
Figure 2.5. Illustration of the surface hydrological response to non-AR and AR precipitation 

events with and without pre-existing snowpack. Unit: mm/day. SMOIS = soil 
moisture (See Chen et al. 2019.) 

Our major findings include the following (Chen et al., 2019): 
 

• ARs are associated with surface meteorological conditions rather distinct from non‐AR 
events. ARs consistently lead to heavier precipitation compared to non‐AR events but 
the impact of ARs on temperature depends on the season. We found that ARs lead to 
warming in winter but cooling in summer. Depending on the relative decrease in 
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shortwave radiation and increase in longwave radiation due to cloud cover and 
increased water vapor, the total radiation at the surface is consistently decreased in 
summer, but a strong north‐south dipole pattern that features an increase in the north 
while a decrease in the south is found in winter. 

• The changes in surface meteorological conditions suppress evapotranspiration and 
induce stronger snow ablation and a larger increase in soil moisture. As a result, ARs 
tend to generate much higher runoff in both winter and summer, regardless of whether 
there is preexisting snowpack. 

• Rain‐on‐snow contributes to an amplification of the runoff (R) response (as represented 
by the R/P ratio) during ARs, making snow‐covered watersheds/periods more 
susceptible to floods. With preexisting snowpack, the R/P ratio is almost doubled from 
non‐AR to AR events in the western United States. Rain‐on‐snow is important for the 
runoff response during weak AR events (50–60% of all AR events), while the direct P‐
runoff response is dominant during extreme AR events. 

• Rain‐on‐snow during ARs can be well explained by the warmer air temperature and 
stronger longwave radiation during ARs, contributing to 3.49 and 0.97 mm/day of 
snow ablation individually. With preexisting snowpack, instead of snow accumulation 
of 1.46 mm/day under non‐AR events, AR conditions lead to snow ablation of 0.1 
mm/day. 

• At interannual scale, a large fraction of variability of water availability (as represented 
by total runoff) can be explained by the number of AR days at watershed scale along 
the U.S. West Coast. At intraannual scale, more ARs means less snowpack for 
summer runoff so ARs tend to sharpen the runoff seasonality. 

Thus, we identified two physical mechanisms through which ARs produced higher flooding 
events than non-AR events: (1) ARs produced higher P and modification of initial soil moisture, 
and (2) ARs enhanced ROS events that provided extra snowmelt water into soil.  

2.3 Discussion 

ARs provide useful predictability of extreme precipitation occurrence and magnitude in western 
U.S. watersheds. To improve prediction skill, those AR-tracking algorithms with higher IVT 
thresholds should be considered. Alternatively, AR classification can be used to effectively filter 
out the nonsignificant ARs. Due to the typical southwest-northeast orientation of ARs, 
watersheds in the north are more susceptible to AR-induced heavy precipitation. We found that, 
in general, weak ARs (short duration and low intensity) account for 50–60% of all AR events, 
but they are weakly correlated with extreme precipitation. This is more obvious for AR-tracking 
algorithms that identify more ARs. Future studies should prioritize the intense or prolonged AR 
events to improve the prediction skills of these events and investigate their meteorological, 
hydrological, and societal impacts. 

Consistent with previous studies, we found that the ROS process can heavily modulate the 
snowpack response. Here we present a comprehensive analysis of how the surface water 
balance responds to atmospheric forcing under AR and non‐AR conditions, whereas previous 
studies have focused on the response of individual hydrological processes. Our analysis 
indicates that the soil moisture response to precipitation events is similar between AR and non-
AR events, so the precipitation and snowpack changes are translated directly to changes in 
runoff. Overall, the runoff response is dominated by the precipitation difference between AR and 
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non-AR events, but the contribution from ROS is roughly 25% of the total runoff response, so it 
is not negligible. For weak ARs with lower P, the contribution from ROS may become even more 
significant. For extreme ARs, Establishing the relationship between P and runoff is more 
important, while for weaker AR events such as the “weak ARs” classified by Chen et al. 
(2018), focusing on the impact of ROS is more important for improving prediction of flood 
events. 

As discussed above, ROS can account for 25% of the total runoff and increase the R/P ratio 
during ARs to nearly double that of non‐AR events. Hence, AR frequency explains a large 
fraction of the interannual variance of annual runoff so management of water resources must 
consider the variability of ARs for long‐term planning. The relationship between the 1 April 
SWE/P ratio and AR days in winter also indicates that ARs could sharpen the seasonality of 
water resources in watersheds where snow- pack is important for summer water supply, 
therefore posing challenges to water resource management. 

The presented surface hydrological responses vary as a function of space and time with 
important ramifications on runoff production and water resource management. For example, 
snowpack cold content differs at different times of the winter season, which will affect the rain‐
on‐snow frequency and magnitude during different times of the snow season. Antecedent soil 
moisture is also considerably different between wet and dry years, and this will also affect the 
runoff response. These results were developed at the HUC8 spatial scale (1,080 in the western 
U.S.) and illustrate the importance of precipitation, air temperature, and surface energy balance 
components – all of which may show significant variation over relatively short distances (sub-
HUC8), particularly in mountainous terrain.  We examine these processes at an ultra-fine 90 m 
spatial resolution in Columbia River Basin (over 80 million DEM grid cells) in Section 5.0).  
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3.0 Parallelization and Testing of the Distributed Hydrology 
Soil Vegetation Model (DHSVM) 

The downscaled climate model data were used to drive DHSVM at a 90 m spatial resolution and 
a 3 hour time step. To model the entire Columbia and Connecticut Basin at 90 m, the DHSVM 
code was parallelized and the MASS1 hydrodynamic model was integrated with DHSVM. 
Additional detail about DHSVM, the approached used to parallelize the model, and its 
integration with MASS1 is given below. 

3.1 Distributed Hydrology Soil Vegetation Model 

The DHSVM (Wigmosta et al. 1994) is a spatially distributed, physics-based hydrology model 
that simulates the overland and subsurface hydrological processes influenced by climate, 
topography, soil, and vegetation. DHSVM comprises a two-layer canopy model, an energy-
balance two-layer snow model, a multi-layer soil model, and three-dimensional surface and 
subsurface flow routing models. These models allow for characterization of hydrological 
processes including canopy and topographic shading, canopy interception, evapotranspiration, 
snow accumulation and melt, and water movement overland and through the soil to streams 
and rivers. In an extensive review of 30 hydrological models (Beckers et al. 2009), DHSVM was 
identified to be best suited for modeling mountain hydrology in forested environments. 

Initially developed in the early 1990s (Wigmosta et al. 1994), DHSVM has been applied 
extensively, particularly in forested, mountainous, snowfall-dominated regions, to characterize 
the hydrologic regime and project potential changes with changing climate and landscape 
(Storck et al. 1998; Storck and Lettenmaier 1999; Leung and Wigmosta 1999; Thyer et al. 2004; 
Cuo et al. 2009; Cristea et al. 2014; Livneh et al. 2015; Cao et al. 2016; Sun et al. 2018). 
Subsequent adaptations have extended the capability of DHSVM to represent urban landscapes 
with impervious surfaces and runoff detention (Cuo et al. 2008), glacio-hydrological dynamics 
(Naz et al. 2014; Frans et al. 2015, 2018), river thermal dynamics (Sun et al. 2015; Cao et al. 
2016), urban water quality (Sun et al. 2016), and forest-snow interactions in canopy gaps (Sun 
et al. 2018). 

With the increasing availability of high-resolution satellite products, e.g., LIDAR and advances in 
high-performance computing systems and data storage, there is evolving interest in exploring 
hydrologic fluxes and state variables at progressively higher spatial resolutions for applications 
ranging from regional to global scales (Lettenmaier et al. 2015). High-resolution, spatially 
distributed modeling capabilities are particularly important for representing complex mountain 
hydrology that is highly affected by heterogeneous terrain and strong climate gradients with 
elevation. A spatially lumped modeling approach with sparsely distributed observation networks 
can limit our ability to understand and predict the implications of changing climate and 
landscape on available water for extreme runoff events, regional water supplies, and associated 
reservoir operations for hydropower and other water allocations (Bales et al. 2006). 

3.1.1 Grid Cell Energy/Water Balance 

A DHSVM model grid cell consists of a set of soil layers, a set of snowpack layers (when 
present), and a multi-level vegetation canopy (Figure 3.1). Meteorological forcing data are used 
to drive the energy balances in the snowpack, resulting in melt and/or accumulation, and in the 
vegetation canopy, resulting in evapotranspiration. 
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Figure 3.1. Schematic representation of water movement in the DHSVM domain. The DHSVM 

domain is divided into rectangular cells in which water and energy balance is 
maintained. Excess surface and subsurface water are routed cell-by-cell to the 
channel network. LAI is leaf area index, FC stands for fractional cover of forest 
canopy, and h is canopy height. 

Movement of water in the cell’s soil layers is simulated. This includes infiltration or exfiltration, 
evaporation from the soil surface, evapotranspiration from soil layers in which vegetation has 
roots, vertical saturated and unsaturated water movement between layers, and drainage to a 
subsurface soil layer.  

The DHSVM simulates snow processes on the grid scale with a two-layer canopy model, and a 
two-layer below-canopy energy and mass balance snow model. The canopy snow model 
explicitly represents the combined canopy processes that govern snow interception, 
sublimation, mass release, and melt (Wigmosta et al. 2002). In each model grid, the 
soil/vegetation class is prescribed through spatial input, and the attribute parameters for the 
soil/vegetation class are prescribed through the model configuration file. An independent one-
dimensional (vertical) coupled energy and water balance is calculated for each grid cell. The 
snowpack energy balance described in Equation (3.1) determines the net energy input to 
snowpack (∆Q):  

∆ = + + + +Q NSW NLW H LE M        (3.1) 
where 
 NSW = net shortwave radiation,  
 NLW = net longwave radiation,  
 H = the sensible heat flux,  
 LE = the latent heat flux from evaporation and sublimation/condensation, and  
 M = advected heat from rainfall to snowpack.  

Conductive heat at the snow-ground interface is neglected. Flow is routed vertically based using 
a one-dimensional multi-layer soil model, and laterally based on a quasi-three-dimensional 
saturated subsurface flow model. The core DHSVM model physics and structure in the original 
version are described in detail by Wigmosta et al. (1994), Storck et al. (1998), and Wigmosta et 
al. (2002). 
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3.1.2 Flow Routing 

The surface and subsurface volumes computed in the cell energy/water balance are routed to 
neighboring cells (Figure 3.1). The DHSVM routing schemes are documented by Wigmosta et al. 
(1994), Wigmosta and Lettenmaier (1999), and Wigmosta et al. (2002). Both surface and 
subsurface routing work with a similar algorithm. 

A gradient, based on the ground surface or water (table) surface, is used to determine the 
direction and magnitude of flow for each cell. In a cell, discharge to each neighboring cell is 
computed and stored. Surface water flux from active cell i j to its kth down slope neighbor is 
computed as 

qoi j = wi jk vi jk yi j (1)          (3.2) 

wi jk is the flow width in the k direction, vi jk is the overland flow velocity, and yi j is the overland 
flow depth. Subsurface flow from active cell i j to its kth downgradient neighbor is computed as 

qsi jk   = wi jk βi jk Ti j           (3.3) 

where βi jk   is the cell water table or land slope and Ti j is the soil transmissivity, assuming an 
exponential decrease in saturated hydraulic conductivity with depth. 

After surface and subsurface routing is complete, computed stream channel interception of 
surface and subsurface flow is accumulated for each cell in which a stream channel lies. The 
intercepted water volume is summed and used as lateral inflow for each stream segment in the 
channel network. The lateral inflow is then routed through the network that is represented by a 
cascade of linear reservoirs (Wigmosta et al. 2002) with a constant flow velocity calculated 
using Manning’s equation with the hydraulic radius in each reach corresponding to channel 
depth at 75% of the bank full height.  

3.2 Methods 

3.2.1 DHSVM Code Parallelization 

While DHSVM has been under constant development since its inception, it has always been a 
serial code, e.g. its computational performance has been tied to the performance of a single 
processor. Parallelization is a good strategy for helping meet current and future simulation 
needs. Several examples in the literature describe parallel hydrological models. The majority 
(e.g., Hwang et al. 2014; Liu et al. 2014, 2016; Adriance et al. 2019) seem to favor small shared 
memory platforms using OpenMP (Dagum and Menon 1998). A few (Vivoni et al. 2011; Kumar 
and Duffy 2016) target distributed memory systems using the Message Passing Interface (MPI; 
MPI Forum 2018). 

In this work, DHSVM was made into a parallel code while maintaining most of its existing 
capability. The parallel code development was aimed at large distributed memory clusters, but 
portability to smaller multiprocessor, shared memory systems, such as desktops and laptops, 
was maintained. An alternate interprocess communication programming model, Global Arrays 
(GA, Nieplocha et al. 2006; Manojkumar et al. 2012) was used. GA provides a partitioned global 
address space (PGAS) and implements one-sided communication protocols. Complete details 
are provided by Perkins et al. (2019); a brief description is provided below. 
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3.2.2 Code Parallelization 

The multiple instruction, multiple data (MIMD; Wilkinson and Allen 1998) parallel model was 
used. This approach targets large, distributed memory systems (i.e., clusters), but the approach 
should work fine for smaller, shared memory systems (multi- processor desktops and laptops) 
without modification. In the MIMD model, each processor is assigned its own data to work on 
independently and some communication layer is required to exchange data between 
processors when needed. In this case, each DHSVM process is assigned a non-overlapping 
rectangular subset of the active cells in the domain. 

The goal was to make DHSVM as fast as practical while retaining as much of its existing 
behavior as possible. DHSVM is a relatively large and complicated code. Resources were not 
available to design and code a parallel DHSVM from the ground up. This in some ways limited 
the parallelization approach and results. 

3.2.3 Interprocess Communication 

Interprocess communication in DHSVM was implemented using GA (Nieplocha et al. 2006; 
Manojkumar et al. 2012). GA is a “partitioned global address space library for distributed arrays.” 
GA provides a distributed, random access, multi-dimensional array data structure. Such an array 
is consistent with the internal DHSVM data structures, so most of the serial code structure could 
be retained. In addition, nearly all the required interprocess communication consists of floating 
point values, which simplifies coding. 

In general, DHSVM interprocess communication is all cell-based numeric values (i.e., 
rectangular arrays). In a typical communication scenario, a GA structure is created. Transfers of 
values are made from local memory to the GA (put) and from the GA to local memory (get). 
Other operations are available, like “accumulate” where values in local memory are summed 
into the GA. 

GA can use several underlying communication protocols, depending on the underlying 
hardware. The most commonly used are based on MPI and can be used on almost any platform 
that supports MPI. These range from large clusters to laptops—any shared or distributed memory 
system for which MPI is available (Dinan et al. 2012). DHSVM relies entirely on the GA 
application programming interface (API). There are no direct calls to any other parallel 
communication interface. 

3.2.4 Domain Decomposition 

The most straightforward approach to parallelization was to distribute cell-based calculations 
across processors. A divide and conquer strategy was implemented that has some similarity to 
the strategy used by Hwang et al. (2014). Each process was assigned a non-overlapping 
rectangular region of the original domain. As shown in Figure 3.2, the region assigned to a 
process may be a collection of rows (STRIPEY) or a collection of columns (STRIPEX). An 
algorithm similar to Simeone’s (1986) is used to evenly distribute the active cells among the 
processors. When splitting the domain by rows, for example, the number of active cells in each 
row are summed and summed again into a cumulative histogram. If the rows are to be divided 
into p groups, the cumulative histogram is searched for the splits closest to 1/p, 2/p, . . . , p 1/p. 
A similar search of the columns’ active cell cumulative histogram is done to split the columns. 
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The decomposition described is used only for the cell-based calculations. The channel network is 
not divided among processes. Each process is assigned complete representation of the 
domain’s entire channel network. 
 

  
Figure 3.2. DHSVM domain decomposition methods applied to a sample basin for 12 

processors: splitting the domain into (left) groups of rows (STRIPEY) or (right) 
columns (STRIPEX). The default method is chosen depending on which global 
dimension is larger. 

3.2.5 Input/Output 

A distributed hydrology model like DHSVM requires considerable input data and can produce 
simulation results of considerable size. The choice of how the data are input and output can 
significantly affect parallel performance. The input/output (I/O) strategy used here was relatively 
simple and largely emphasized maintaining existing behavior, such that the serial code structure 
was mostly maintained. When I/O bottlenecks are identified in future applications, a more 
complex strategy may be deployed. 

All processes read the configuration file, so that, at startup, all processes have a complete 
description of the simulation without further communication. Other text files, like the stream 
network description, are also read by all processes. These files are typically small in size, and 
the time to read them is usually inconsequential. 

DHSVM requires several input data sets that vary cell by cell. These data sets are input in the 
form of a two-dimensional (2D) raster map. In the parallel DHSVM, 2D map data are input 
through the root process (serially) then distributed via a global array. At the time of this writing, 
parallel I/O was not used, but may be supported in the future. For this work, DHSVM required 
considerable reworking of 2D data I/O to be able to work efficiently over a wide range of 
computational resources. 

Two 2D map resolutions are necessary. The first is at the resolution of the DHSVM cell size and 
contains a single value for each cell. Data sets input at this resolution include the DEM, soil type, 
and vegetation type. Maps of this resolution are partitioned and distributed to processes 
according to the domain decomposition. The second map resolution is much coarser and not 
necessarily aligned with DHSVM cell boundaries. This was used for input of meteorological data 
fields. For data sets at this coarser resolution, the entire 2D map is mirrored on all processes, 
i.e., all processes receive an identical copy of the map. Mirroring the entire map in this way 
avoids a more complicated decomposition that would require overlapping sub-domains. 
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A global array is created with a size to store values for the entire domain. A single process 
opens and reads, serially, a 2D map for the entire domain into local memory. This process then 
puts those data in the global array. All processes, including the process reading the map data, 
then get the portion of the global array it has been assigned. In this work, meteorological data 
were supplied as a series of 2D maps of each required fields. At the beginning of each time step, 
the maps for that time step are read as described above. 

All output, both 2D map data and text files, is through the root process. Writing 2D map data is 
the reverse of reading. Each process puts its local values in the global array, the root process 
gets the entire set of values and writes them to a file. Output other than 2D maps, (e.g., mass 
balance summary) requires a more traditional MPI-like all-reduce operation (using the GA API 
though). 

3.2.6 Hydrologic Processes Adaptation 

Figure 3.3 shows a simplified depiction of the parallel algorithm for a single simulation time step. 
Each simulation time step starts with time-step initialization (TSI). Each process prepares the 
cells it owns for the next time step. The most important part of TSI is the assignment of 
meteorological data to individual cells. DHSVM has several available approaches to making this 
assignment, but each of eight meteorological data fields were read as mirrored 2D maps. This is 
a significant amount of data that needs to be read every time step. 

Once cells are initialized, energy/water balance (EWB) calculations proceed. Each process 
updates the hydrologic and thermal state of the snowpack, vegetation canopy, and soil layers 
within the active cells assigned to it. The computations for a single cell do not require any 
communication with its neighbors, so this part of the simulation is most amenable to 
parallelization. 

Unlike the EWB, subsurface and surface routing (SSR and SR) calculations require interaction 
with neighboring cells, and that interaction needed to extend between processors when 
neighboring cells were not owned by the same processor. SR and SSR routing have very 
similar algorithms, so the parallelization of those processes is handled in a similar manner. The 
key issue with these processes is that a cell assigned to one processor may drain to a cell on 
another processor. This is handled by extending the calculated local domain by one cell. A 
temporary array is created on a local processor to hold the results of SR or SSR routing. The 
array is sized to be one cell larger, in all (valid) directions, than the domain assigned to the 
processor. That extra cell captures SSR or SR flux to the off-processor cell(s). As routing 
calculations proceed, surface water is routed to a cell outside the processor’s domain, and the 
result is stored on the edge of the array. 

After all processes complete local SR and SSR calculations, a global array for the entire domain 
is initialized to zero. Each process then accumulates the local array of routing results into the 
global array. In this way, water routed outside of the processor’s local domain is correctly 
captured and delivered to the neighboring domain. A GA get operation returns complete SR or 
SSR routing results from the global array to each processor’s local memory. 

The SR and SSR algorithms compute the lateral inflow into each channel segment. However, 
each processor only computes lateral inflow contribution from the cells assigned to it and it’s 
necessary to add contributions from multiple cells (and processes). Consequently, lateral inflow 
for each channel segment is totaled from the contributions computed by all processes. An all-
reduce summation, typically an expensive operation, is used to sum lateral inflow over all 
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processors. After the all-reduce, all processes have an identical array of lateral inflow to all 
segments. 

  
Figure 3.3. Simplified activity diagram for a single time step in parallel DHSVM. The dashed 

boxes indicate specific tasks discussed in the text: time-step initialization (TSI), 
energy/water balance (EWB), subsurface routing (SSR), surface routing (SR), and 
channel routing (CR). 

The simulation time step ends with channel routing. The cascade routing approach requires that 
a segment can only be routed after all upstream segments have been routed. Consequently, it 
was decided to keep channel routing a serial algorithm and that all processes would carry out 
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identical computations. All processes then perform CR on the same network with the same 
inflow producing identical results. Only the root process outputs CR results. 

3.3 Testing DHSVM Parallelization in the Columbia River Basin  

The entire Columbia River Basin and the smaller Clearwater River Basin contained within it 
were chosen to measure parallel DHSVM performance. The Clearwater River is an upland 
tributary in the Columbia River Basin located in northern Idaho, USA (Figure 3.4). The basin 
area is 25,000 km2, about 4% of the Columbia River Basin, and it produces about 7.5% of the 
Columbia River Basin’s average annual discharge. The Clearwater River Basin DHSVM 
application was extracted as a subset of the Columbia River Basin, so it has the same 
computational resolution, 90 m, and uses the same source data. The Clearwater application 
consisted of about 3 million active cells and 2,600 stream segments. Complete details of the 
DHSVM application to the Columbia River Basin are provided in Section 5.1.2 

The Columbia River Basin was simulated in DHSVM in two ways: 1) in a complete simulation 
mode where runoff-related computations are made and 2) in a “snow-only” mode where 
computations are focused on snowpack accumulation and melt. This is useful in snow-
dominated applications because it allows for calibration and validation of the snowpack 
simulation at a significantly lower computational cost.  

 
Figure 3.4. Columbia River Basin stream network used in DHSVM, consisting of about 20,800 

stream segments. The Clearwater Basin used the 2,600 segments in the area 
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outlined in black. The network was generated using the DHSVM stream network 
preprocessing module. 

3.4 Results 

With the Clearwater simulation, a maximum speedup of about 32 times the serial version was 
attained using 128 processors (Figure 3.5), about 23,000 active cells per processor. One year’s 
simulation time was reduced from almost 4 hours using a single processor to 8 minutes using 
128 processors. Maximum speedup (using 480 processors) for the full Columbia simulation was 
about 105 times the serial version (Figure 3.5). The 1-year simulation time was reduced from 
about 19 days with one processor (estimated) to about 4 hours with 480 processors. With four 
processors, run time was dominated by computational tasks (90%), with the energy-water 
balance dominating that (67%). At maximum speedup (480 processors), the run time was split 
with about 60% for computational and 40% for I/O tasks. This is the reverse of the split for the 
Clearwater at maximum speedup. 

 
Figure 3.5. Measured DHSVM parallel speedup as a function of the number of processors for 

one year simulations of the Clearwater Basin, the Columbia Basin of only snow 
accumulation and melt, and the Columbia Basin with all hydrologic processes. 

3.5 Discussion 

In this work, we modified DHSVM to run in parallel using GA for interprocess communication 
targeting large, distributed memory systems. Simulation run times for our test cases were 
reduced enough to make long-term (decades), ultra-fine (90 m) spatial resolution simulations of 
significantly sized basins manageable. The second distinction is the straightforward domain 
decomposition technique. 

The parallel performance indicates that running DHSVM at the point of maximum speedup may 
not be ideal. Run time needs to be balanced with the availability and cost of computational 
resources. For example, the Columbia simulation had a maximum speedup with 480 processors 
with a simulation time of about 4 hours. If the same simulation is run with 120 processors, it 
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would take 8 hours. While the run time would be doubled, the computational cost would only be 
one quarter. Additionally, a set of 480 processors is most likely less available than 120, which 
may lead to longer job queue times. It may also be more efficient to simulate a case like the 
Columbia River basin in several large subbasins, particularly for calibration and validation. Once 
calibrated, the parameters could be used in a “production” simulation of the entire Columbia 
Basin. 

Additional analysis (not reported here) indicates that the way meteorological forcing was read 
and applied was the largest single obstacle to higher parallel performance. Reading the 
meteorological data in larger blocks, a day or month at a time, say, rather than one time step at 
a time, may reduce input time. Reading 2D map data in parallel, instead of through the root 
process, may also be a solution. 

Stream routing took a significant part of the total run time for the Columbia simulation. The 
choice to keep this a serial process, executed by all processes, may be acceptable for smaller 
basins, and was acceptable for the cases here, but may become a barrier with larger 
applications. Parallel methods to perform channel routing will be investigated in future work. 

We have used a straightforward and relatively simple domain decomposition scheme here. A 
more extensive investigation of domain decomposition would likely yield further performance 
improvements. We have assumed that the simulation of each “active” cell has an equivalent 
computational cost. This is not strictly true. Cells with snow definitely have a higher 
computational cost than cells without snow. Such an investigation would require some detailed 
analysis of run times and how snow increases the computational cost of an active cell. 
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4.0 DHSVM-MASS1 Integration 
In smaller tributaries, riparian vegetation may strongly influence stream temperature through its 
impact on the energy balance at the water surface.  This is especially true during periods of low 
flow when canopy shading extends over most, or all, of the channel.  Many (most) 
hydrodynamic river models are developed for larger channels and typically ignore the effect of 
riparian vegetation on stream temperature and linkage to a hydrologic model is generally 
through inflow to the channel network at a limited number of “nodes”, or subbasin outlets. We 
have addressed these two limitations through the integration of MASS1 into the parallel version 
of DHSVM as described below. 

DHSVM provides the rate and temperature of lateral inflow to the channel network that is 
represented as a series of stream segments.  The Modular Aquatic Simulation System in 1-
Dimension (MASS1; Richmond and Perkins 2002) simulates stream flow and water quality 
(including temperature) in branched stream networks composed of stream segments. 
Integration of the two models requires a common representation of the channel network. A 
DHSVM stream segment is specified by (1) a unique segment identifier, (2) a class identifier, (3) 
a segment length, (4) an average segment slope, and (5) a downstream segment identifier. The 
stream segments are grouped by “class,” which defines rectangular channel properties: (1) 
width, (2) bank full depth, and (3) Manning’s roughness coefficient. DHSVM stream networks 
are prepared from a stream network GIS layer using a set of stream preprocessing scripts 
distributed with the DHSVM source code. 

After surface and subsurface routing (Perkins et al. 2019) is complete, computed stream 
channel interception of surface and subsurface flow is accumulated for each cell in which a 
stream channel lies. The intercepted water volume is summed and used as lateral inflow for 
each stream segment. This inflow is routed through the stream network using a cascade of 
linear reservoirs. The outflow rate of segment i at time t + 1 is given by 

𝑂𝑂𝑖𝑖𝑡𝑡+1 = �𝐼𝐼𝑖𝑖𝑡𝑡+1 + 𝐿𝐿𝑖𝑖𝑡𝑡+1� − �𝑆𝑆𝑖𝑖𝑡𝑡+1 + 𝑆𝑆𝑖𝑖𝑡𝑡�
1
∆𝑡𝑡

          (4.1) 
 
where 
  𝐼𝐼𝑖𝑖𝑡𝑡 = the inflow rate at time t to segment i from upstream segment(s), 
 Lt  = the lateral inflow at time t into segment i,  
 ∆𝑡𝑡 = the time step between t and t + 1, and  

Si = the segment storage at time t, computed using 
 
     𝑆𝑆𝑖𝑖𝑡𝑡+1 = 1

𝐾𝐾𝑡𝑡
(𝐼𝐼𝑖𝑖𝑡𝑡+1 + 𝐿𝐿𝑖𝑖𝑡𝑡+1) + 𝑋𝑋𝑡𝑡 �𝑆𝑆𝑖𝑖𝑡𝑡 −

1
𝐾𝐾𝑡𝑡

(𝐼𝐼𝑖𝑖𝑡𝑡+1 + 𝐿𝐿𝑖𝑖𝑡𝑡+1)�)        (4.2) 

in which 

𝐾𝐾𝑡𝑡 =
�𝑆𝑆𝑜𝑜
𝑛𝑛𝑛𝑛

𝑅𝑅2 3�  

and 
𝑋𝑋𝑡𝑡 = 𝑒𝑒−𝐾𝐾𝑡𝑡∆𝑡𝑡 

where  
 So = the segment slope,  
 n = coefficient,  
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 l = the segment length, and  
 ∆t = the time step.  

R is the hydraulic radius, which is assumed constant corresponding to channel depth at 75% of 
the bank full height so that Kt is constant over time. 

Similar to lateral inflow, meteorologic variables used for the stream temperature heat budget are 
aggregated from those in the cells in which the segment lies. This includes the effects of 
topographic and riparian shading on short and longwave radiation (Sun et al. 2015). 

4.1 MASS1 

The Modular Aquatic Simulation System in 1-Dimension (MASS1; Richmond and Perkins 2002) 
simulates stream flow and water quality in branched stream networks. MASS1 has been applied 
to a variety of river regulation and water quality problems (e.g., Perkins and Richmond 2001; 
Richmond et al. 2002; Richmond and Perkins 2002; Tiffan et al. 2002; McMichael et al. 2008; 
Niehus et al. 2014; Bellgraph et al. 2016; Shuai et al. 2019). MASS1 is coded in object-oriented 
Fortran 2008. MASS1 code is distributed with DHSVM to ease compilation. 

The MASS1 stream network is, like DHSVM, composed of segments organized into a branched 
network. Points are defined along those segments. At each point, the bathymetry is defined 
using a cross section, which can be any of a number of prismatic shapes (rectangular, 
triangular, parabolic, etc.) or a list of station/elevation points. 

But, unlike DHSVM, each segment can have a type that determines how hydrodynamic and 
thermal transport physics are represented, namely “hydraulic,” or “hydrologic”. Both hydraulic 
and hydrologic segments represent energy exchange with the atmosphere using the same 
methods. 

4.1.1 Hydraulic Segments 

MASS1 hydraulic segments provide a detailed representation of the stream channel, both in 
terms of bathymetry or morphology and physics. Any number of points can be used along the 
segment and typically measured, general cross sections are used, but prismatic sections are 
also valid. 

MASS1 simulates steady and unsteady flow in hydraulic segments by solving the one-
dimensional, cross-section-averaged equations of mass conservation, 
 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0             (4.3) 

and momentum conservation, 

𝜎𝜎 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝛼𝛼 𝑄𝑄2

𝐴𝐴
�� + 𝑔𝑔𝑔𝑔 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑔𝑔𝑔𝑔𝑆𝑆𝑓𝑓 = 0            (4.4) 

where  
 A = the channel cross-sectional area,  
 Q = the channel discharge,  
 Y = the water surface elevation,  
 G = the gravitational acceleration,  



 

 

DHSVM-MASS1 Integration 4.12 
 

 S f = the friction slope,  
 α =  momentum correction factor,  
 t  = time, and  
 x  = distance along the channel.  

Equation (4.4) uses the local partial inertia technique (LPI; Fread et al. 1996), in which σ is used 
as a numerical filter reducing or eliminating the inertial terms depending on the local Froude 
number (Fr): 
 

𝜎𝜎 = �1−𝐹𝐹𝑟𝑟
𝑚𝑚   (𝐹𝐹𝑟𝑟≤1.0,𝑚𝑚≥1.0)
0.0   (𝐹𝐹𝑟𝑟>1.0)             (4.5) 

Together, Equations (4.3)) and (4.4 are often referred to as the St. Venant equations (Cunge et 
al. 1980). The friction slope is expressed in terms of the discharge and channel conveyance (K) 
as 

𝑆𝑆𝑓𝑓 = 𝑄𝑄|𝑄𝑄|
𝐾𝐾2

           (4.6) 

where K is computed using the Manning equation (Chow 1959) as 

 𝐾𝐾 = 𝐶𝐶𝑜𝑜
𝑛𝑛
𝐴𝐴𝑅𝑅2/3         (4.7) 

where C0 is 1.49 for English units or 1.0 for metric units; n is the Manning channel roughness 
coefficient; and R is the channel hydraulic radius, which is 
 

𝑅𝑅 =
𝐴𝐴
𝑃𝑃

 

where P is the channel wetted perimeter. Equations (4.6) and (4.7) represent the combined 
effects of variable channel geometry and resistance to flow (roughness). 

Hydraulic segments can be used to simulate a wide range of open channel flow regimes. 
Because the complete representation of momentum (Equation (4.4)) is used, hydraulic 
segments can simulate flow situations like reverse flow, wave travel, and back water. The use of 
the LPI technique (Equation (4.5)) allows reliable simulation of trans- and super-critical flow with 
some loss of accuracy. Hydraulic segments cannot be used if the discharge becomes very low 
or zero. 

Energy transport in hydraulic segments is represented using 

𝜕𝜕(𝐴𝐴𝐴𝐴)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝑄𝑄𝑄𝑄
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐾𝐾𝑇𝑇𝐴𝐴

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝐵𝐵∑𝐻𝐻

𝑐𝑐𝑝𝑝𝜌𝜌
        (4.8) 

where 
 ∑𝐻𝐻 = surface flux of thermal energy,  
 KT = the longitudinal dispersion coefficient,  
 ρ  = density of water, and  
 cp  = specific heat of water.  
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Temperature can be the transported quantity because cp is assumed constant. An explicit total 
variation diminishing (TVD) scheme based on that of Gupta et al. (1991) and a (non-iterative) 
split-operator method (Carrayrou et al. 2004 for example) is used to solve Equation (4.8) with 
finite volume discretization. 

4.1.2 Hydrologic Segments 

Hydrologic segments are limited to two points, upstream and downstream, and both points are 
required to have the same cross section. Rectangular cross sections were used in this work, but 
any type of cross section available in MASS1 can be used, including general cross sections 
described by station-elevation pairs. 

Streamflow routing in hydrologic segments is performed as described above for DHSVM, except 
that the conveyance, Kt (Equation (4.1), is computed using the current segment outflow, Ot. To 
obtain the necessary cross-section properties, normal flow is assumed and an iterative 
procedure (Shirley and Lopes 1991) is used to determine normal depth from discharge. In this 
procedure, discharge, Q, is 

 𝑄𝑄𝑜𝑜 = 𝐶𝐶𝑓𝑓𝐴𝐴𝛼𝛼𝑃𝑃−𝛽𝛽        (4.9) 

in which, when Manning’s equation is used, 

 𝐶𝐶𝑓𝑓 = 𝑆𝑆𝑜𝑜
1/2

𝑛𝑛
, 𝛼𝛼 = 5

3
, 𝛽𝛽 = 1

2
        (4.10) 

where So is the channel slope, and n is Manning’s coefficient. Under some specific conditions, f 
(y) is defined as 

 𝑓𝑓(𝑦𝑦) = 𝐴𝐴−1 ��𝑄𝑄𝑜𝑜
𝐶𝐶𝑓𝑓
�
1 𝛼𝛼�

𝑃𝑃(𝑦𝑦)
𝛽𝛽
𝛼𝛼� �      (4.11) 

where A−1[] is the inverse area function for the cross section (i.e., a function given a cross-
section area computes the corresponding stage), and Qo is the discharge. This can be used 
iteratively, such that for each iteration n, 

 𝑦𝑦𝑛𝑛+1 = 𝑓𝑓(𝑦𝑦𝑛𝑛)        (4.12) 

will be closer to the actual solution, yo, than yn. This approach can be used for any cross-section 
type, provided the inverse area function is available or can be approximated (as with general 
cross sections). Shirley and Lopes (1991) present simplifications of Equation (4.11) for several 
cross-section types. For rectangular cross sections, Equation (4.11) reduces to 

 𝑓𝑓(𝑦𝑦) = 𝑎𝑎2(𝑎𝑎1 + 𝑦𝑦)2 5�         (4.13) 

where 
 
𝑎𝑎1 = 𝑏𝑏

2
   

and 
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𝑎𝑎2 = �� 𝑛𝑛𝑛𝑛
2�𝑆𝑆𝑜𝑜

�
3
5�
�2
𝑏𝑏
��

1
3�

          

where b is the bottom width. 

In this way, the normal depth is estimated at both the inflow (with 𝐼𝐼𝑖𝑖𝑡𝑡) and outflow (with 𝑂𝑂𝑖𝑖𝑡𝑡) 
points. The normal depth is used to compute cross-section properties, most importantly 
hydraulic radius, R and the top width. 

Hydrologic segments use a simple compartment model for energy transport, which assumes the 
segment is a well-mixed volume in which the transported scalar mass is conserved. Mass 
conservation (ignoring diffusion and internal sources) for scalar T in segment i is 

𝐼𝐼𝑖𝑖𝑡𝑡+1𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡+1 + 𝐼𝐼𝑖𝑖𝑡𝑡+1𝑇𝑇𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑡𝑡+1 − 𝑄𝑄𝑖𝑖𝑡𝑡+1𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜
𝑡𝑡+1 = �𝑆𝑆𝑖𝑖𝑡𝑡+1𝑇𝑇𝑖𝑖𝑡𝑡+1 − 𝑆𝑆𝑖𝑖𝑡𝑡𝑇𝑇𝑖𝑖𝑡𝑡�

1
∆𝑡𝑡

 

where 𝑇𝑇𝑖𝑖𝑡𝑡 is the temperature at time t, and 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡  and 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜

𝑡𝑡  are the inflow and outflow temperatures 
at time t. If  

𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜
𝑡𝑡+1 = 𝑇𝑇𝑖𝑖𝑡𝑡+1 

is assumed (implicit upwind), then 

𝑇𝑇𝑖𝑖𝑡𝑡+1 = �∆𝑡𝑡𝐼𝐼𝑖𝑖𝑡𝑡+1𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡+1 + ∆𝑡𝑡𝐿𝐿𝑖𝑖𝑡𝑡+1𝐿𝐿𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑡𝑡+1 + 𝑆𝑆𝑖𝑖𝑡𝑡𝑇𝑇𝑖𝑖𝑡𝑡�
1

𝑆𝑆𝑖𝑖
𝑡𝑡+1+∆𝑡𝑡𝑂𝑂𝑖𝑖

𝑡𝑡+1      (4.14) 

This is very similar to the methods used by Cox and Bolte (2007) and Li et al. (2015).  

Consistent with split-operator usage in hydraulic segments, the atmospheric exchange source 
term is included after transport. The compartment temperature is updated as 

𝑇𝑇𝑖𝑖𝑡𝑡+1 = �𝑇𝑇𝑖𝑖𝑡𝑡+1�
∗ +

𝐵𝐵�𝐿𝐿∑𝐻𝐻
𝑐𝑐𝑝𝑝𝜌𝜌𝜌𝜌

∆𝑡𝑡 = �𝑇𝑇𝑖𝑖𝑡𝑡+1�
∗ +

∑𝐻𝐻
𝑐𝑐𝑝𝑝𝜌𝜌𝑑̅𝑑

∆𝑡𝑡 

where 
 �𝑇𝑇𝑖𝑖𝑡𝑡+1�

∗ = the result of Equation (4.14), 
  𝐵𝐵�  =  the average top width of the segment, 
  L = the segment length,  

 𝑑̅𝑑 = the average depth over the segment (i.e., average of up- and downstream 
depth), and 

 ∑𝐻𝐻 = the sum of atmospheric exchange fluxes. 

Hydrologic segments provide a robust, numerically stable representation of open channel flow 
that is very close to the original DHSVM representation. Zero discharge is robustly simulated. 
The compartment model is very diffusive, but this is less of an issue for temperature because it 
is source-term dominated. 

In both hydraulic and hydrologic segments, heat exchange at the water surface is computed as 
the net heat flux.  
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�𝐻𝐻 = 𝐻𝐻𝑠𝑠𝑠𝑠 +  𝐻𝐻𝑎𝑎𝑎𝑎 − (𝐻𝐻𝑏𝑏 + 𝐻𝐻𝑒𝑒 + 𝐻𝐻𝑐𝑐) 

where  
 H = net surface heat flux,  
 Hsn = net solar short wave radiation,  
 Han = net atmospheric long wave radiation, Hb long wave back radiation,  
 He = heat flux due to evaporation, and  
 Hc = heat flux due to conduction, all in W/m2.  

Individual fluxes are estimated as described by Edinger et al. (1974). 

4.2 Methods 

4.2.1 Flow Routing 

Figure 4.1 depicts the MASS1 solution algorithm as it fits into DHSVM. Within a MASS1 time 
step, streamflow routing is computed using an implicit scheme at the full specified time step. 

The MASS1 flow routing algorithm is based on a network composed entirely of hydraulic 
segments. Equations (4.3) and (4.4) are discretized for each segment using the well-known 
Priessman four-point implicit finite-difference scheme. The resulting nonlinear equations are 
solved using the double sweep method. This is a common approach to 1D hydrodynamic 
routing and described in detail by Cunge et al. (1980), Liggett and Cunge 1975, and others. 

This traditional algorithm was modified to include hydrologic segments. Where hydraulic 
segments connect in the network, conservation of mass is enforced. In addition, water surface 
elevation is forced to be the same at that point for all connected segments. When hydrologic 
segments exist in the network, conservation of mass is still enforced. But routing in hydrologic 
segments depends only upon its own state, the only communication with other segments is 
inflow from upstream. Conditions in downstream segments have no effect. Consequently, when 
two or more hydrologic segments connect or a hydrologic segment is upstream of a hydraulic 
segment, discontinuity in water surface elevation is allowed. If a hydrologic segment is 
downstream of a hydraulic segment, then equal water surface elevation is enforced. 

4.2.2 Temperature Simulation 

The network temperature simulation algorithm is also based on a network comprised entirely of 
hydraulic segments. Because temperature in hydraulic segments is solved using an explicit 
scheme, in which the time step is limiting and usually required to be much smaller than the 
streamflow routing time step, a time substepping scheme is used as shown in Figure 4.1. 
Individual segments are solved in an upstream to downstream order and the sub-time step is 
computed to satisfy stability criteria (Courant and diffusion numbers) for all segments. 

Hydrologic segments are incorporated into this algorithm. Hydrologic segments temperature 
simulation does not require substepping for stability. Because of the upstream to downstream 
march, the temperature time step in hydrologic segments downstream of hydraulic segments 
must be that of the hydraulic segments. However, if the hydrologic segments are upstream, they 
are solved at the full stream routing time step and their outflow to downstream hydraulic 
segments interpolated at each substep. 
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4.2.3 DHSVM/MASS1 Integration 

In general, DHSVM/MASS1 can be used by an experienced DHSVM user, with little knowledge 
of MASS1. MASS1 requires a separate configuration, some of which is overridden by the 
DHSVM configuration. The original DHSVM stream network input remains necessary. The 
MASS1 configuration duplicates a representation of the DHSVM network. Care must be taken to 
confirm the MASS1 network matches the DHSVM network in terms of segment identifiers and 
connectivity. A simple utility has been supplied that creates a MASS1 configuration from 
DHSVM stream network files. This utility creates a duplicate MASS1 network from the DHSVM 
network using hydrologic segments only (Figure 4.1). The MASS1 network can be created for 
use with DHSVM/MASS1, or with added boundary conditions and lateral inflows specified, it can 
be run by MASS1 alone.  

The integration of DHSVM and MASS1 was primarily done by a coding library with an API 
around the MASS1 code. For simplicity, MASS1 source code is distributed with DHSVM, but its 
use is completely optional. The use of MASS1 requires that it be compiled into DHSVM, but 
even then, the original DHSVM stream network can be used and MASS1 ignored. 

At simulation startup, DHSVM causes MASS1 to read its configuration and prepare a network. 
Figure 4.1 shows a schematic of the DHSVM/MASS1 stream routing process that occurs within 
a DHSVM time step. After watershed simulation, necessary stream segment inputs and 
conditions are prepared. Surface runoff and subsurface interception are summed into each 
segment’s lateral inflow. 

4.3 Results and Discussion 

This effort represents a significant advancement by allowing distributed inflows from the 
watershed to the channel network and an explicit representation of riparian vegetation of stream 
temperature. Each cell’s meteorological conditions are accumulated and averaged over the 
segment. This is the same internal facility that was introduced in when integrating the particle 
tracking stream temperature model River Basin Model (RBM) with DHSVM (Sun et al. 2015; 
Yearsley et al. 2019), but the accumulated values are not saved to files. Consequently, short 
and long wave radiation is adjusted for topographical and canopy shading and, if specified, 
riparian shading as described by Sun et al. (2015). Internally, MASS1 maintains tables of time-
varying lateral input (flow and temperature) and meteorological variables for each segment. 
Each segment is assigned a constant (in time) inflow temperature which can vary spatially. This 
approach can be improved through the approach of Yan et al. (2021) who assigned a segment 
inflow temperature of 0.1 degrees Celsius when DHSVM simulated local melt for a river 
segment exceeded a user-specified depth threshold; inflow temperature was based on air 
temperature during times without snowmelt.  
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Figure 4.1. Simplified activity diagram depicting streamflow and temperature simulation and the 

roles of DHSVM and MASS1 code in that simulation.
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5.0 Columbia River Unregulated Flow Application 
The Columbia River Basin covers 258,000 square miles and includes parts of seven states and 
one Canadian province. In its 1,200-mile course to the ocean, the river flows through four 
mountain ranges and drains more water to the Pacific Ocean than any other river in North or 
South America. The river also provides drinking water to numerous communities along its 
course and irrigates 600,000 acres of farmland. Between the United States and Canada, the 
river’s 19 hydroelectric dams provide about half the region’s supply of electricity, in addition to 
providing flood control benefits.  

In this section, we discuss application of the WRF model and the integrated DHSVM/MASS1 
model to the basin under current and future climate conditions. We examine the impacts of 
climate change on unregulated streamflow and water temperature. The insight is 
complementary to ongoing efforts on the impact of climate change on the basin’s hydropower as 
part of DOE led Secure Water Act focusing on federal hydropower and by the River 
Management Joint Operating Committee (RMJOC) efforts focusing exclusively on the region. 

5.1 Methods 

5.1.1 Climate 

5.1.1.1 Historical Climate 

Preliminary model testing with gridded WRF data indicates that although WRF could represent 
the basin-scale climate conditions reasonably well, its mesoscale nature limits its performance 
at the watershed scale where the hydrologic model is applied. To take advantage of the climate 
performance of the WRF simulation and high temporal resolution while making it suitable at the 
watershed scale, bias-correction is applied to adjust the WRF model output and make it more 
consistent with the ground measurements.  

Precipitation from WRF (𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊) was bias-corrected (𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵) using the Livneh et al. (2013) 
historical data set and the bias-correct spatial downscaling (BCSD) quantile mapping approach. 
At a given WRF grid in a given month, all the valid daily precipitation records based on a 
threshold (i.e., 𝑃𝑃 > 𝑃𝑃0) from WRF and Livneh are collected (resulting in two 33-month records 
during 1981–2013), and are used to construct two cumulative distribution functions (CDFs), 
namely 𝐹𝐹𝑊𝑊𝑊𝑊𝑊𝑊 and 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ, respectively. Then we used a quantile mapping approach to find the 
corresponding 𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵for each 𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊, to have the following relationship: 

𝐹𝐹𝑊𝑊𝑊𝑊𝑊𝑊(𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊) = 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵) 

We also applied a 𝑃𝑃0 = 0.01𝑚𝑚𝑚𝑚/𝑑𝑑𝑑𝑑𝑑𝑑 as a filter to remove unrealistic “numerical precipitation” 
(such as the daily precipitation of 10^(-7) mm/day) in the WRF data. Therefore, for any given 
day with P < 0.01 mm/day, we set all the hourly precipitation that day to zero. For the rest of 
days, we computed the corresponding𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵, then applied the ratio 𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵/𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊 to each 
hourly WRF precipitation record of that day.  

The adjustment of temperature (T) follows a procedure similar to that for precipitation. It is also 
on a grid basis. Because there is no need to filter temperature, the threshold is not used here. 
For temperature bias-correction, to keep the climate change signal from WRF and make the 
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method applicable to future simulation, we first detrend the time series of daily T at each grid 
(x,y). We computed the regression as  

𝑇𝑇(𝑥𝑥,𝑦𝑦) = 𝑘𝑘(𝑥𝑥,𝑦𝑦) ⋅ 𝑡𝑡 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦) 

And then derived the residual as 

𝑇𝑇′(𝑥𝑥,𝑦𝑦) = 𝑇𝑇(𝑥𝑥,𝑦𝑦) − 𝑘𝑘(𝑥𝑥,𝑦𝑦) ⋅ 𝑡𝑡 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦) 

At a given grid and a given month, all the residual records (T’) from WRF and Livneh are 
collected (so two 33-month records during 1981–2013), and are used to construct two CDFs, 
namely 𝐹𝐹𝑊𝑊𝑊𝑊𝑊𝑊 and 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ, respectively. Then we used quantile mapping to find the 
corresponding 𝑇𝑇′𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵  for each 𝑇𝑇′𝑊𝑊𝑊𝑊𝑊𝑊, to have the following relationship: 

𝐹𝐹𝑊𝑊𝑊𝑊𝑊𝑊(𝑇𝑇′𝑊𝑊𝑊𝑊𝑊𝑊) = 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑇𝑇′𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵) 

Adding the regression back, we have the following final adjusted T: 

𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵 = 𝑇𝑇′𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵 + 𝑘𝑘𝑊𝑊𝑊𝑊𝑊𝑊(𝑥𝑥,𝑦𝑦) ⋅ 𝑡𝑡 + 𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊−𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦) 

Based on our evaluation, WRF has some bias in the simulation of long-term climate 
(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦)). Thus we further improved the bias-corrected 𝑇𝑇′𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵 above by adjusting this 
long-term climatic bias (𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ−𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦) − 𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊−𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦)) as follows: 

𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵 = 𝑇𝑇′𝑊𝑊𝑊𝑊𝑊𝑊−𝐵𝐵𝐵𝐵 + 𝑘𝑘𝑊𝑊𝑊𝑊𝑊𝑊(𝑥𝑥,𝑦𝑦) ⋅ 𝑡𝑡 + 𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊−𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦) + (𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ−𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦)
− 𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊−𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦)) 

A comparison of the bias-corrected WRF precipitation and the Livneh data set (2013) indicates 
that the largest, mostly positive, percent differences occur for the winter months (Figure 5.1). 
The temperature bias-correction first detrends the data sets using a linear regression and then 
performs bias-correction on residuals of the data sets. The temperature difference between the 
bias-corrected WRF and Livneh data show much less seasonality, generally between plus or 
minus 1 degree Kelvin depending on location (Figure 5.2).  
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Figure 5.1. Effect of bias correction on WRF precipitation denoted by P. Dashed lines define longitudinal and latitudinal grids, solid 

lines are state boundaries.     
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Figure 5.2. Effect of bias correction on projected air temperature at 2m (T2). Dashed lines define longitudinal and latitudinal grids, 

solid lines are state boundaries. 
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5.1.1.2 Future Climate 

We applied the same percentile-based bias-correction to future climate precipitation and 
temperature using ratio/delta derived from historical data for all five CMIP5 GCMs: CanESM2, 
CESM1-CAM5, GFDL-ESM2M, HadGEM2-ES, MPI-ESM-MR (Table 5.1) for the time period of 
2040–2070. The assumption of bias-correcting future data is that WRF model biases (in 
precipitation and temperature) share a similar structure between historical and future periods, 
thus the ratios (for precipitation) and deltas (for temperature) are applicable to future simulation 
results. The procedure of adjusting the detrended temperature residuals while keeping the long-
term trends maintains the raw climate change signal as reflected in the WRF dynamic 
simulation, and thus the value of the dynamic simulation. 

Table 5.1. Descriptions of GCMs applied in the Columbia River Basin 

GCMs Description 
CanESM2 Canadian Earth System Model v2 
CESM1-CAM5 Community Atmospheric Model version 5 
GFDL-ESM2M Global Fluid Dynamical Lab Environmental System Model v2 
HadGEM2-ES Hadley Centre Global Environmental Model v2 – Earth Systems 
MPI-ESM-MR Max Planck Institute for Meteorology Earth System Model MR 

As shown in Figure 5.3 and Figure 5.4, future precipitation generally exceeds historical (Livneh 
2013 and North American Regional Analysis [NARR)] data) with more variation in December 
and January, while future temperature exceeds historical in all months, by 3–5 degrees 
depending on the season and GCM.  

 
Figure 5.3. Mean monthly precipitation and air temperature over the Columbia River Basin 
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Figure 5.4. Change of long-term mean monthly precipitation between 2041-2070 and 1981-2010, as simulated by the selected 

CMIP5 models (top row) and the corresponding bias corrected WRF downscaled changes (bottom row). 
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Figure 5.5. Change of long-term mean monthly near-surface temperature between 2041-2070 and 1981-2010, as simulated by the 

selected CMIP5 models (top row) and the corresponding bias corrected WRF downscaled changes (bottom row). 
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5.1.2 Watershed Modeling 

The integrated DHSVM/MASS1 was applied to the entire Columbia Basin at a 90 m spatial 
resolution (Figure 3.4) resulting in 83 million active model grid cells and more than 20,000 
channel reaches. The basin stream network was generated using the Python-based DHSVM 
preprocessing module, which calculates and extracts accumulated flow lines based on flow 
direction as derived from the DEM. Hydrologic segment cross-section sizes were estimated for 
each channel segment using upstream drainage area and relationships for bank full channel 
width and depth given by Castro and Jackson (2001). These were grouped into 22 classes. 
Hydraulic segments were used where river bathymetry, in the form of cross sections, was 
available to the authors from previous work. This included the Columbia River from the U.S.-
Canada border to the mouth, the Snake River from Anatone, Washington, to the mouth, and the 
Clearwater River from Orofino, Idaho, to the mouth (Richmond et al. 2000; Perkins and 
Richmond 2001; Perkins et al. 2002; Niehus et al. 2014; and others). The numbers of hydraulic 
segments and cross sections used for these rivers are shown in Table 5.2. Channel roughness 
was taken from previous MASS1 simulations.  

Table 5.2. Columbia Basin stream network summary based on segment type. 

Reach 
Number of 
Segments 

Length 
(km) 

Number of 
Cross 

Sections 
 Columbia River 230 1,199.5 1,836 
 Snake River 40 272.2 387 
 Clearwater River 11 65.6 78 
 Total 281 1,537.3 2,301 
 Remaining 18,543 127,500  
 Basin Total 20,844 129,800  

  

 

5.2 Results 

5.2.1 Streamflow 

5.2.1.1 Model Calibration 

The meteorological data set of Livneh et al. (2015) was used to drive the model calibration and 
validation. This data set contains precipitation, maximum and minimum temperature and wind 
speed; the remaining meteorology forcing needed by the model (longwave, shortwave, and 
relative humidity) were generated using the MTCLIM microclimate simulation model (Hungerford 
et al. 1989).  

The model was calibrated specifically at eight subbasins (Figure 5.7) to represent basin-specific 
hydrologic processes that resulted from spatially varied snow, soil, and vegetation parameters. 
The flows from the subbasins account for approximately 70% of the total flow in the Columbia 
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River Basin at The Dalles according to the No Regulation-No Irrigation (NRNI; BPA 2017) data 
set developed by the Bonneville Power Administration (BPA) to represent unregulated flow by 
removing impacts from irrigation and reservoir regulation. The model calibration period was from 
WY1983 to 1987 and validation period from WY1988 to 1992. The parameter values for the 
remainder of the basin were initialized with mean values based on the final parameters from the 
calibrated basins and were then further refined with additional basin wide model calibration. 

 
Figure 5.6. Columbia River Basin Model Domain and subbasins considered for calibration. 

The simulated daily and monthly hydrograph at The Dalles shows a good match with the 
reconstructed NRNI streamflow with Nash-Sutcliffe model Efficiency coefficient (NSE) for daily 
streamflow is 0.696 during calibration and 0.773 during validation. The NSE is commonly used 
in hydrology to evaluate the agreement between predicted streamflow and observed 
streamflow. The NSE can range between negative infinity and 1. An efficiency of 1 (NSE = 1) 
corresponds to a perfect match of modeled discharge to the observed data. An efficiency of 0 
(NSE = 0) indicates that the model predictions are as accurate as the mean of the observed 
data, whereas an efficiency less than zero (E < 0) occurs when the observed mean is a better 
predictor than the model. The NSE for daily mean and monthly averages simulation results over 
the period is 0.73 and 0.89 correspondingly (Figure 5.8). Calibrated hydrographs (Figure 5.9) 
and the of calibration statistics (Table 5.3) for subbasins also shows a good match with the 
reference NRNI data.  
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Figure 5.7. Simulated vs. NRNI hydrograph at The Dalles at daily and monthly resolution. 
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Figure 5.8. Hydrograph of simulated vs. NRNI streamflow at example calibrated watersheds 

at daily resolution.  
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Table 5.3. NSE for daily streamflow at sample calibration locations. 

Subbasins 

Calibration 
WY1983 – 
WY1987 

Validation 
WY1988 – 
WY1992 

Overall 
WY1983 – 
WY1992 

NSE NSE NSE 
The Dalles 0.70 0.77 0.73 
Lower Columbia 0.74 0.81 0.77 
Upper Snake 0.84 0.67 0.81 
Pend Oreille 0.80 0.84 0.82 
Clearwater 0.80 0.84 0.82 

5.2.1.2 Simulated Streamflow using WRF  

We then drive the DHSVM model with the bias-corrected WRF historical simulation at hourly 
time steps for the same 10 years (WY1983–1992) in the major subbasins of the Columbia River 
Basins (using the calibrated parameter sets based on the Livneh meteorological data). This 
allows for a more direct comparison between historical and future climate conditions because 
both are based on the WRF model output. As would be expected, there are some differences in 
streamflow when using the two different meteorological data sets. For example, the streamflow 
hydrograph at The Dalles shows a slightly earlier peak and recession with the WRF data (Figure 
5.10), which results in a lower NSE and an increased bias (Table 5.4). The performance of bias-
corrected WRF data in subbasins is also shown in Figure 5.11 and the NSEs are summarized in 
Table 5.5. 

 
Figure 5.9. Hydrograph for daily streamflow at The Dalles driven by Livneh and WRF. 
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Table 5.4. Statistics comparison for daily streamflow at The Dalles driven by Livenh and WRF. 

Forcing NSE Percent 
Bias 

Mean 
Absolute 

Error (m3/s) 
Livneh 0.73 -3.16% 1389 
WRF 0.70 -7.37% 1655 

 

 
Figure 5.10. Hydrograph for daily streamflow at subbasins driven by bias-corrected WRF data. 

Table 5.5. NSEs for daily streamflow at sample calibration locations with bias-corrected WRF 
forcing. 

 
Lower 

Columbia Kootenay Salmon Clearwater 
Upper 
Snake 

NSE 0.72 0.76 0.64 0.67 0.81 
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5.2.1.3 Historical and Future Unregulated Flow 

After model calibration and validation, both the historical and future bias-corrected WRF climate 
forcings were used to drive to the integrated DHSVM/MASS1 model to translate the climate 
signals to streamflow responses. At most locations, the Columbia River Basin responses to the 
projected future climate scenarios with shifts in timing, including higher winter flow and lower 
late spring/early summer flows, with some variation in detailed model response between the 
future climate ensemble members (Figure 5.12).  

The streamflow trends are consistent with the temperature and precipitation trends from the 
GCMs. For example, the CanESM2 scenario shows the highest flow increase from January 
through May in Figure 5.12, which is consistent with the precipitation change pattern shown in 
Figure 5.3. The GFDL-ESM2M scenario shows overall less increase in warming and 
precipitation, therefore the changes at The Dalles under this scenario also show less of an 
increase in flow and a minor shift in the timing of the flow peak.  

 
Figure 5.11. Monthly flow statistics at The Dalles for historical and future runs. 

The spatial map shows that both GFDL_ESM2M and MPI_ESM_MR yield lower overall 
precipitation increases, while the monthly precipitation pattern shows GFDL has more monthly 
variation than MPI (higher increase in winter/spring months while less increase or even 
decrease in summer months). 

The impacts of climate change on streamflow peaks varies by subbasin (Figure 5.13): The 
Dalles, Upper Snake, Kootenays all show earlier and higher spring peaks among all scenarios. 
The Clearwater, Pend Oreille, and Salmon show earlier or similar peaks, but of similar 
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magnitude compared to historical flow patterns, with variations of higher or lower by climate 
ensemble. In the north Cascade region, the Wenatchee shows lower spring peaks while the 
Entiat shows spring peaks of similar timing and magnitude, with shifts in the timing of the overall 
flow. The Willamette River Basin is historically rain dominant and peak flows occur in winter 
months. With changes in climate, the flow in the Willamette Basin shows higher winter flows and 
peaks, while spring flows show little change or even a slight decrease for late spring months 
compared with other subbasins. 

 
Figure 5.12. Monthly averaged streamflow (in cubic meter per second) for historical and five 

future GCMs. 

5.2.2 Water Temperature 

5.2.2.1 Model Calibration 

After calibrating and validating streamflow, the simulation of stream temperature was calibrated 
and validated in a similar manner. As with streamflow, several subbasins were simulated 
individually (Figure 5.14). In these subbasins, one or more U.S. Geological Survey (USGS) 
temperature gages on unregulated, or streams with minimal regulation that had at least a 3-year 
record were chosen. Daily average temperatures from these gages were compared to daily 
averages of simulated temperatures.  

Coefficient sets were established for each of the subbasins. The same coefficient set was 
assigned to all stream network segments within the corresponding subbasin. Simulations were 
performed and coefficients adjusted until the bias between observed and simulated daily 
average temperature was near zero. The subbasin coefficient sets were transferred to the larger 
stream network for full Columbia Basin simulations. The temperatures of lateral inflow from the 
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land surface were based on average annual air temperature in each subbasin computed from 
the meteorologic forcing. In most subbasins the inflow temperature was unchanged, however 
this was also used for calibration in some areas. 

After calibration, the entire Columbia Basin was simulated for the available historical period, 
using the calibrated coefficient sets, and comparison plots and statistics were prepared using 
the entire record of several temperature gages. 

  
Figure 5.13. Subbasins for which temperature coefficients were calibrated and validated: 

Upper Snake (1), Salmon (2), Clearwater (3), Pend Oreille (4), Kootenai (5), and 
Willamette (6).  

Temperature calibration and validation resulted in the meteorologic coefficient sets shown in 
Table 5.6. Figure 5.15 shows time series and scatter plots comparing simulated and observed 
daily average temperature in a few unregulated, or lightly regulated, streams from across the 
basin. In general, daily average temperatures in unregulated or lightly regulated streams were 
simulated with a mean absolute error of 1.5°C and NSEs greater than 0.7.  

Constant coefficient sets were applied over relatively large regions. A more extensive calibration 
would probably require coefficient sets on the order of HUC 8 to at least account for inflow 
temperature variation. As described above, the temperatures of lateral inflow from the land 
surface were based on average annual air temperature in each subbasin computed from the 
meteorologic forcing. This approach can be improved through the approach of Sun et al. (2021) 
who assigned a segment inflow temperature of 0.1 degrees Celsius when DHSVM simulated 
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local melt for a river segment exceeded a user-specified depth threshold; inflow temperature 
was based on air temperature during times without snowmelt. 
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Table 5.6. Calibrated meteorologic coefficients for stream temperature simulation in the 
Columbia Basin, including inflow temperature. Regions are shown in Figure 5.14.
 Subbasins for which temperature coefficients were calibrated and validated: 
Upper Snake (1), Salmon (2), Clearwater (3), Pend Oreille (4), Kootenai (5), and 
Willamette (6).. aW, bW, and Cc are wind function coefficients and the conduction 
coefficient, respectively. 

Region aW bW Cc Tl, °C 

1 Upper 
Snake 

0.40 7.8 0.47 10.0 

2 Salmon 0.17 3.5 0.47 5.0 
3 Clearwater 0.35 6.9 0.47 6.0 
4 Pend 

Oreille 
0.65 13.5 0.47 4.0 

5 Kootenai 0.24 4.6 0.47 3.0 
6 Willamette 0.65 13.5 0.47 8.0 
 Elsewhere 0.56 11.5 0.47 5.0 
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Figure 5.14. Comparison of simulated daily average stream temperature to observed in 

unregulated or lightly regulated streams. (N = number of observations, R2 = linear 
correlation coefficient, RMS = root mean square error, MAE = mean absolute 
error, NSE = Nash-Sutcliffe model Efficiency coefficient) 

5.2.2.2 Historical and Future Unregulated Flow 

Once calibrated and validated, DHSVM/MASS1 was used to simulate Columbia River Basin 
streamflow and temperature for WY1983–2013. This simulation had no representation of 
regulation, which is pervasive throughout the basin. Water temperature was simulated for the 
same future climate scenarios as those described above for streamflow. Figure 5.17 compares 
historical and future day of year median water temperature in several Columbia Basin 
tributaries. Figure 5.18 compares the same at locations along the major tributaries and 
mainstem of the Columbia River. Figure 5.19 shows the historical to future change in mean 
August water temperature for DHSVM/MASS1 output locations. Water temperature is generally 
increased under the future climate throughout the year at most locations. The greatest increase 
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at most, but not all, stations occurs in August and typically ranges between 1 and 3oC 
depending on location. Increases of up to 4 degrees occur at a limited number of locations. 
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Figure 5.15. Median of simulated daily average temperature for each day of the year from 

historical and future scenarios in several smaller tributaries in the Columbia Basin. 
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Figure 5.16. Median of simulated daily average temperature for each day of the year from 

historical and future scenarios at several locations on the Columbia River main 
stem and major tributaries. 
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Figure 5.17. Historical to future change in median August water temperature at the 

DHSVM/MASS1 output locations. The change was computed by averaging the 
August temperatures from all future scenarios. Each location is colored by the 
difference between the average and historical.  

5.3 Discussion 

Generally, the Columbia River Basin responds to the projected future climate scenarios with 
earlier snowmelt and higher winter/early spring flow between January and April in most 
mainstem locations, including The Dalles. Flow is generally reduced during the summer, 
particularly in June and July. Higher January through April flows would generate more 
hydropower and produce more spill at most dams. Hydropower production would decline at the 
same time increased temperatures drive greater summer power use. 

A shift in the timing of the peak inflow was also observed in some but not all subbasins. When 
present, that shift showed peak inflow occurring about one month earlier than historical timing. 
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The increase in cool-season system inflow to reservoirs will likely lead to an increase in typical 
cool-season water storage at the beginning of April. However, reduced inflow during the warm 
season may lead to a greater reliance on stored water resulting in a decline in end-of-month 
water storage volumes by the end of the summer.  

Flood risk management procedures will need to anticipate increased cool season runoff with an 
earlier peak in some locations. Earlier releases of water from reservoirs at the flood risk 
management projects may be needed to capture the early runoff. Impacts to the timing of 
federal hydro system operations could also impact other spring and summer objectives such as 
flows for fish. 

Unregulated water temperature in the Columbia River Basin is generally increased under the 
future climate conditions throughout the year at most locations. The greatest increase at most, 
but not all, stations occurs in August and typically ranges between 1 and 3oC depending on 
location. Increases up to 4 degrees occur at a limited number of locations. Ecological impacts 
from projected future increases in temperature could have profound effects on aquatic species 
and physiology.  
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6.0 Connecticut River Unregulated Flow Application 
The Connecticut River Basin, located in the northeastern United States, has a drainage area of 
11,100 square miles (28,748 sq km) that flows across Connecticut, Massachusetts, New 
Hampshire, and Vermont (Figure 6.1, left). It contains 14 HUC 8 level subbasins that range from 
1,990 sq mi to 391 sq mi. The river has more than 1,000 dams on its tributaries and 16 dams 
spanning its main stem, 12 of which are hydropower projects (CRC 2020). 

6.1 Methods 

6.1.1 Climate Simulations 

As with the Columbia River Basin, we use the Livneh et al. (2015) daily gridded meteorological 
data set to represent historical conditions (Figure 6.1, right).  

 
Figure 6.1. Connecticut River Basin (left); Livneh 2015 meteorology forcing grids in vicinity of 

the model domain. 

For future climate in the Connecticut Basin we used the MACA statistically downscaled products 
from the Climatology Lab at the University of Idaho (Abatzoglou and Brown 2012). MACA is a 
multi-step procedure that uses bias-correction procedures and a constructed analogs approach 
for developing the fine-scale spatial pattern using a library of observed patterns. MACA is 
similar in construction to other constructed analogs but uses an observational data set to 
remove historical bias and fit appropriate spatial patterns in the output. Based on the 6 km 
meteorological data of Livneh (2013), the Climatology Lab downscaled and archived 20 CMIP5 
GCMs under RCP4.5 and RCP8.5 for the conterminous United States (CONUS) and the 
Canadian portion of the Columbia River Basin for the period of 2006–2099. They also provided 
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the GCM downscaled data for the historical period 1950–2005. The MACAv2-LIVNEH data set 
includes downscaled data for maximum temperature, minimum temperature, maximum and 
minimum relative humidity, precipitation accumulation, downward surface shortwave radiation, 
wind velocity, and specific humidity. In this project, we selected the following five GCMs that 
were shown to represent divergence for future changes in temperature and precipitation for the 
RCP8.5 emission scenario for the CONUS (Naz et al. 2016):  

• the second-generation Canadian Earth System Model (CanESM2), 

• the fourth version of the Community Climate System Model (CCSM4), 

• the Geophysical Fluid Dynamics Laboratory Earth System Model Version 2M 
(GFDL_ESM2M), 

• the Hadley Global Environment Model 2-Earth System (HadGEM2_ES), and 

• the Meteorological Research Institute Coupled Global Climate Model Version Three 
(MRI-CGCM3). 

The downscaled projections of the climate of the 2040–2070 period show generally higher 
precipitation across the basin, while air temperature increases by 2–5oC depending on location 
and GCMs. 

6.1.2 Watershed Modeling 

The Connecticut River Basin was modeled at a 3 hour time step and a 90 m resolution following 
the Columbia River Basin modeling practices. This yielded a domain size of 1,432 columns and 
5,131 rows, and 3.59 million active grid cells (~4% the size of the Columbia River Basin).  

The spatial model input for DHSVM is shown in Figure 6.2. The DEM data were resampled from 
the 30 m National Elevation Dataset (USGS 2017). Soil types were generated using the Soil 
Survey Geographic Database (SSURGO; NRCS 2019a). Vegetation land cover was derived 
from the National Land Cover Data set (USGS2014). The stream network was generated using 
the Python-based DHSVM preprocessing module, which calculates and extracts accumulated 
flow lines based on flow direction as derived from the DEM. 
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Figure 6.2. Spatial model input of Connecticut River Basin. 

6.2 Results 

6.2.1 Streamflow 

6.2.1.1 Model Calibration and Validation 

The Connecticut River Basin is a heavily regulated river basin, therefore the selected USGS 
gages for calibration are mostly located near headwater locations to minimize the impacts of 
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hydrologic regulations/operations (Figure 6.3 and Table 6.1). Previous DHSVM model 
applications in the same domain were also used to reference the selection of such locations.  

 

Figure 6.3. Subbasins of Connecticut River Basin showing USGS gauges used for DHSVM 
streamflow calibration/validation (yellow) and additional validation by the 
Connecticut River UnImpacted Streamflow Estimator (CRUISE). 

 

Table 6.1. Summary of selected USGS stations for calibration. 

Station Basin River Town, State Latitude Longitude 
1130000 Upper Conn Upper Ammonoosuc 

River 
Groveton, NH 44.625 -71.4694 

1135300 Passumpsic Sleepers River St. Johnsbury, VT 44.43528 -72.0389 
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Station Basin River Town, State Latitude Longitude 
1139000 Waits Wells River Wells River, VT 44.15028 -72.0656 
1141500 Mascoma Ompompanoosuc River UNION VILLAGE, VT 43.79 -72.2553 
1152500 Black/Ottau Sugar River West Claremont, NH 43.38746 -72.3635 
1169000 Deerfield North River Montague City, MA 42.58022 -72.5745 
1177000 Chicopee Chicopee River INDIAN ORCHARD, 

MA 
42.16056 -72.5144 

1161000 Middle 
Conn 

Ashuelot River Hinsdale, NH 42.78583 -72.4867 

1185500 Farmington West Branch 
Farmington 

New Boston, MA 42.07433 -73.0666 

1193500 Lower Conn Salmon River East Hampton, CT 41.55222 -72.4497 

The model was driven with Livneh meteorological data for 5 years in each subbasin for 
calibration and 10 years for validation at 3 hour time steps. The time period for calibration and 
validation varies slightly based on available records for each station (Table 6.2). To represent 
the characteristics of each subbasin while enabling a basin-wide model run, the model was 
calibrated at the subbasin scale with a combination of fixed (base) basin-wide parameters and 
parameters calibrated to each subbasin. The base parameters were kept consistent among the 
subbasins while the calibration parameters differ by basin to represent spatial heterogeneity. 
Examples of calibration parameters are temperature lapse, snow/rain threshold, soil lateral 
conductivity, overstory fractional cover, and leaf area index. While having the same base 
parameters allows for basin-wide modeling, it also placed limitations on the performance of the 
model in each subbasin to some extent. The model generally performed well; the NSEs for the 
calibration and validation for each subbasins are listed in Table 6.2 and their hydrographs are 
shown in Figure 6.4. 

Table 6.2. Summary of hydrological statistics of model calibration and validation. 

Station Basin 

Calibration Validation 

Period (5 yr) NSE 
MAE 
(cms) Period (10 yr) NSE 

MAE 
(cms) 

1130000 Upper Conn 1998-2002 0.74 5.11 1994-2003 0.72 5.08 
1135300 Passumpsic 1998-2002 0.71 0.78 1993-2002 0.70 0.82 
1139000 Waits 1998-2002 0.66 1.52 1998-2008 0.66 1.70 
1141500 Mascoma 1985-1989 0.66 1.93 1980-1990 0.51 2.34 
1152500 Black/Ottau 1998-2002 0.72 3.86 1998-2008 0.74 4.68 
1169000 Deerfield 1981-1985 0.68 2.33 1981-1990 0.67 2.36 
1177000 Chicopee 1998-2002 0.73 5.85 1998-2007 0.66 7.69 
1161000 Middle Conn 1985-1989 0.70 6.75 1984-1994 0.72 6.85 
1185500 Farmington 1981-1985 0.71 2.57 1981-1990 0.70 2.57 
1193500 Lower Conn 1981-1985 0.72 2.26 1981-1990 0.72 2.06 
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Figure 6.4. Connecticut River Basin model calibration and validation at subbasins. 

The area of calibrated subbasins is limited to a portion of the basin. Therefore, to further 
validate our parameter sets, we used the Connecticut River UnImpacted Streamflow Estimator 
(CRUISE) tool and expanded the domain of model validation at additional ungaged locations in 
the basin, as shown in Figure 6.3 and Listed in Table 6.3.  

The CRUISE tool was developed by the USGS (Archfield et al. 2009, 2013) to estimate 
impaired flow duration curves and simulate daily incremental unregulated hydrographs at 
ungaged locations in the Connecticut River Basin. Given that the estimated hydrograph using 
CRUISE is derived data based on adjacent USGS stations and empirical equations instead of 
observation, we evaluate simulated flow against the CRUISE flow at a monthly resolution. The 
model generally performed well as demonstrated by the validation hydrograph and their 
statistics shown in Figure 6.5 

Table 6.3. Additional locations for model validation in the Connecticut River Basin (lat/lon 
indicates approximate watershed outlet location). 

RefID Basin Lat Long 
Drainage 

Area (sq km) 
1282 Upper Connecticut 44.75112 -71.6326 376 
2416 Upper Connecticut 44.59599 44.49043 350 
3884 Waits 44.23797 -71.8758 635 
4843 Upper Connecticut -Mascoma 43.99498 -72.1173 404 

01155000 West 43.13214 -72.3898 216 
11888 Millers 42.59691 -72.2397 190 
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RefID Basin Lat Long 
Drainage 

Area (sq km) 
01164000 Millers 42.61792 -72.1579 492 

12490 Deerfield 42.57203 -72.6026 232 
01181000 Westfield 42.23713 -72.8958 243 
01179500 Westfield 42.28587 -72.8668 420 
01171500 Middle Connecticut 42.32646 -72.6719 133 

13999 Middle Connecticut 42.32676 -72.5835 142 
14429 Middle Connecticut 42.27969 -72.6531 182 
16688 Farmington 41.83592 -72.9304 798 
16317 Lower Connecticut 41.881 -72.5803 262 
17501 Lower Connecticut 41.57309 -72.6525 282 
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Figure 6.5. The Connecticut River Basin subbasin hydrographs compared with simulated 

hydrographs using the CRUISE tool at monthly resolution. 
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6.2.1.2 Historical and Future Unregulated Flow 

The calibrated and validated model was first driven with historical climate data simulated from 
the CanESM2, CCSM4, and FDL_ESM2M GCMs to check for consistency with the historical 
Livneh data. The historical GCM driven simulations show slight differences, but generally similar 
flow patterns to those driven by the historical Livneh data (Figure 6.6). 



 

 

Connecticut River Unregulated Flow Application 6.29 
 

   
Figure 6.6. Simulated monthly flow of historical Livneh and historical MACA-Livneh GCMs.  

Future climate data from all five GCMs were then applied to the integrated DHSVM/MASS1 
model. The resulting winter flows in the Connecticut Basin are generally increased under future 
climate conditions, while the flow is reduced in the spring (Figure 6.7). At many locations, the 
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seasonal peak flow is earlier and reduced in the future.  Some spatial patterns are also present. 
The Upper Connecticut subbasin has similar peak flow magnitudes under future climate and the 
historical climate, while the timing of the flow has shifted with increases in the flow from 
November to March and decreased flow observed in May, September, and October; Similar 
timing shifts can be found in the Passumpsic, Waits, and Mascoma subbasin, while they also 
witnessed slight decrease in peak flow with future climate. For the middle and lower part of the 
watershed (Ottaquechee, Deerfield, Chicopee, Middle Connecticut, and Farmington), the peak 
flow has shifted to an earlier date, companied with higher winter flows and lower summer flows 
among most of the future climate GCMs. The Lower Connecticut subbasin has the earliest peak 
flow among all subbasins under historical climate, and it will also experience an increase in flow 
during the fall and a decrease in the summer.  
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Figure 6.7. Monthly averaged streamflow (in cubic meters per second) for historical and five 

future GCMs. 
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6.2.2 Water Temperature 

6.2.2.1 Model Calibration 

After calibrating and validating the streamflow, DHSVM/MASS1 was calibrated for stream 
temperature. Meteorologic coefficients were tuned for each HUC8 subbasin (Figure 6.8). 
Observed data were obtained from the USGS and the Spatial Hydro-Ecological Decision 
System (SHEDS) for the stations shown in Figure 6.9. In general, few continuous temperature 
records were available, and these were mostly in the state of Connecticut. Consequently, a 
classic calibration and validation could not be performed. Calibration coefficients were tuned 
using the entire simulation record. In general, the lateral inflow temperature was kept at the 
computed annual average air temperature (Figure 6.8), but in a few subbasins it was adjusted. 
Calibrated meteorologic coefficients are shown in Table 6.4. Figure 6.10 compares daily 
average water temperature for a few selected locations. The model generally performs well as 
illustrated in Table 6.5 which lists calibration statistics for all gages used for calibration. 

  
Figure 6.8. HUC 8 subbasin boundaries in the Connecticut River Basin and the average 

annual air temperature computed from Livneh meteorological forcing data within 
each HUC 8 boundary. 
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Figure 6.9. USGS and SHEDS stations used for Connecticut River Basin stream temperature 

calibration. 

Table 6.4. Calibrated water temperature coefficients for the Connecticut River Basin. HUC 8 
boundaries are shown in Figure 6.9. aW, bW, and Cc are wind function coefficients 
and the conduction coefficient, respectively. Tl is inflow temperature.  

HUC8 aW bW Cc Tl, °C 

 01080101 0.35 6.9 0.47 3.7 
01080102 0.06 1.2 0.47 4.3 
01080103 0.46 9.2 0.47 5.2 
01080104 0.46 9.2 0.47 5.6 
01080105 0.69 13.8 0.47 5.0 
01080106 0.23 4.6 0.47 5.9 
01080107 0.35 6.9 0.47 6.1 
01080201 0.35 6.9 0.47 6.6 
01080202 0.69 13.8 0.47 5.2 
01080203 0.46 9.2 0.47 6.0 
01080204 0.35 6.9 0.47 6.0 
01080205 0.35 6.9 0.47 9.8 
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HUC8 aW bW Cc Tl, °C 

01080206 0.69 13.8 0.47 6.3 
01080207 0.12 2.3 0.47 6.7 

 

  

  

  

  
Figure 6.10. Comparison of simulated daily average stream temperature to observed at 

several locations along the heavily regulated Connecticut River Basin. (N = 
number of observations, R2 = linear correlation coefficient, RMS = root mean 
square error, MAE = mean absolute error, NSC = Nash-Sutcliffe coefficient). 
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Table 6.5. Statistics from comparison of simulated and observed stream temperature in the 
Connecticut basin. (N = number of observations, R2 = linear correlation coefficient, 
RMS = root mean square error, MAE = mean absolute error, NSE = Nash-Sutcliffe 
model Efficiency coefficient. 

6.2.2.2 Historical and Future Stream Temperature 

Connecticut Basin water temperature was also simulated for the historical and future scenarios 
described above. Figure 6.11 compares the median water temperature for each day of the year 
simulated in the unregulated historical and future scenarios. Figure 6.12 depicts the change in 
August mean water temperature from historical to future scenarios. Unregulated water 
temperature is increased under the future climate throughout the year at most locations. The 
greatest increase at most, but not all, stations occurs in August and typically ranges between 3 
and 5oC depending on location. Increases up to 6 degrees occur at a limited number of 
locations. 

 

HUC8 Agency ID Description N 
Bias 
(ºC) 

RMS 
(ºC) 

AME 
(ºC) NSE 

01080101 USGS 01129500 Connecticut River at North Stratford 3934 -0.23 2.63 2.00 0.88 
01080102 VTFWD 9439 Sleepers River 1589 0.30 3.59 2.90 0.60 
 VTFWD 9336 Moose River 1762 -1.71 4.13 3.28 0.55 
 VTFWD 9399 Passumpsic River 1448 -0.46 4.03 3.22 0.58 
01080104 VTFWD 9473 Waits River at U36 259 -0.54 2.04 1.60 0.77 
 VTFWD 9469 Waits River at RT25B 266 -0.80 1.91 1.56 0.83 
 USGS 01139838 Pike Hill Brook at Pike Hill Rd 645 -0.28 3.19 2.69 0.69 
01080106 VTFWD 9213 Black River 232 -0.32 2.36 1.83 0.85 
 VTFWD 9510 Williams River 418 0.47 2.61 2.14 0.88 
01080107 VTFWD 9429 Rock River at Duke Rd 1166 0.12 2.17 1.72 0.91 
 VTFWD 9315 Marlboro Branch 237 0.15 2.42 1.91 0.67 
01080201 USGS 01160000 South Branch Ashuelot River at 

Webb 
1535 0.16 2.28 1.72 0.90 

01080202 MAFW 236 Gulf Brook 815 1.20 4.09 2.86 0.74 
 MAFW 248 Whetstone Brook 813 0.44 2.64 1.85 0.88 
01080204 MAFW 224 Maynard Brook 782 -0.26 2.55 2.18 0.83 
 MAFW 225 Parkers Brook 782 -0.70 1.99 1.52 0.91 
01080205 USGS 01193630 Salmon River at Leesville 3625 0.20 2.32 1.7 0.91 
 USGS 01193500 Salmon at East Hampton 4783 -0.19 1.98 1.54 0.93 
 CTDEEP 636 Hockanum River at Dart Hill 1708 -0.70 2.47 2.05 0.9 
 CTDEEP 797 Hockanum River at West Street 1368 0.20 2.89 2.36 0.86 
01080206 MAFW 227 Roaring Brook 990 1.78 4.16 2.57 0.77 
 MAFW 230 Stage Brook 991 2.35 5.36 3.25 0.70 
01080207 CTDEEP 679 Pequabuck River 2705 -0.16 3.65 2.90 0.78 
 CTDEEP 879 Cherry Brook at RT44 1110 -0.81 3.27 2.65 0.67 
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Figure 6.11. Comparison of median water temperature by day of year simulated in the 

historical and future climate scenarios for some locations in the Connecticut River 
Basin. 
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Figure 6.12. Historical to future change in median August water temperature at the 

DHSVM/MASS1 output locations. The change was computed by averaging the 
August temperatures from all historical and future changes. Each location is 
colored by the difference between averages. 

6.3 Discussion 

Unregulated winter flows in the Connecticut Basin are generally increased under future climate 
conditions, while the flow is reduced in the spring. At many locations, the seasonal peak flow is 
earlier and reduced in the future.  The Upper Connecticut subbasin has similar peak flow 
magnitudes under future climate and the historical climate, while the timing of the flow has 
shifted with increases in the flow from November to March and decreased flow observed in May, 
September, and October. For the middle and lower portion of the watershed, the peak flow has 
shifted to an earlier date, accompanied by higher winter flows and lower summer flows among 
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most of the future climate GCMs. The Lower Connecticut subbasin has the earliest peak flow 
among all subbasins under historical climate, and it will also experience an increase in flow 
during the fall and a decrease in the summer under future climate conditions.  
 
Unregulated water temperature is increased under the future climate throughout the year at 
most locations. The greatest increase at most, but not all, stations occurs in August and typically 
ranges between 3 and 5°C depending on location. Increases up to 6 degrees occur at a limited 
number of locations. 
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7.0 Summary 
7.1 Summary of Results 

The goal of this research is to test a new modeling framework for examining the impacts of 
climate change on streamflow and water temperature at large basin scales. This goal was 
achieved by enhancing key existing fine resolution hydrology and stream temperature models 
and transferring them to a high-performance computing environment to provide a high-
spatiotemporal resolution, multi-scale modeling framework. Consistent with the study objectives, 
the main conclusions of the project are provided in Table 7.1. 

Table 7.1. Research Objectives and Results. 

Objective Results 

1) Impacts of Atmospheric 
Rivers 

We found that the monthly extreme precipitation amount in 
West Coast watersheds is closely related to AR intensity with 
the strongest relationship in the Pacific Northwest and 
California. ARs can be classified into three categories: weak 
ARs, flash ARs, and prolonged ARs. Flash ARs and prolonged 
ARs, though accounting for less than 50% of total AR events, 
are more important in controlling extreme precipitation patterns 
and should be prioritized for future studies of hydrological 
extreme events. 

ARs can significantly modulate surface hydrological processes 
through the extreme precipitation they produce. ARs produce 
heavy precipitation but suppress evapotranspiration. Snowpack 
ablates more during ARs, and higher air temperature and 
increased longwave radiation play the primary and secondary 
roles, respectively. When the local air temperature is in the 0°C 
to 10°C range, ARs increase the probability of snow ablation 
from 0.33 to 0.57. The runoff‐to‐precipitation ratio during AR 
events is primarily controlled by antecedent soil moisture, but it 
almost doubles in the northwestern watersheds because of the 
intensification of snow ablation during AR events. Precipitation, 
temperature, and radiation are identified as the key drivers that 
distinguish the hydrologic responses between AR and non‐AR 
events. Lastly, analysis of ARs and total runoff at an annual 
scale and 1 April snowpack and winter precipitation shows that 
ARs explain 30% to 60% of the variability of annual total runoff 
and sharpen the seasonality of water resources availability in 
the West Coast mountain watersheds 

2) DHSVM parallelization The DHSVM code was successfully parallelized for distributed 
memory computers using the Global Arrays (GA) programming 
model. Parallel code speedup was significant at 90 m 
resolution in the Clearwater (a watershed within the Columbia 
River Basin; 25,000 km2) and the full Columbia (668,000 km2) 
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River basins. Run times for 1-year simulations were reduced 
by an order of magnitude for both test basins. A maximum 
parallel speedup of 105 times was attained with 480 
processors while simulating the Columbia River Basin. 
Simulation run times were reduced enough to make long-term 
(decades), ultra-fine (90 m) spatial resolution simulations of 
significantly sized basins such as the Columbia manageable. 
This allows the modeling framework to represent critical small-
scale biophysical processes that show significant spatial 
variation with local meteorology, vegetation, soils, and 
topography (elevation, slope, aspect, etc.).   

3) DHSVN/MASS1 
integration 

MASS1 was added to DHSVM, bringing full hydrodynamic 
routing and stream temperature simulation to the integrated 
model. This represents a significant advancement by allowing 
distributed inflows from the watershed to the channel network 
and an explicit representation of the impacts of riparian 
vegetation on stream temperature. This provides a seamless 
capability for analysis over a range of spatial scales. 

4) Framework Application to 
the Columbia River Basin 

In simulations of unregulated flows, the Columbia River Basin 
generally responds to the projected future climate scenarios 
with earlier snowmelt and higher winter/early spring flow 
between January and April in most mainstem locations, 
including The Dalles. Flow is generally reduced during the 
summer, particularly in June and July. A shift in the timing of 
the peak inflow was also observed in some but not all 
subbasins. When present, that shift showed peak inflow 
occurring about one month earlier than historical timing.  

Water temperature in the Columbia River Basin is generally 
increased under the future climate conditions throughout the 
year at most locations during simulations of unregulated flows. 
The greatest increase at most, but not all, stations occurs in 
August and typically ranges between 1 and 3°C depending on 
location. Increases up to 4 degrees occur at a limited number 
of locations. Ecological changes will vary based on the 
projected rate of temperature increase as well as site-specific 
increases in temperature.  

5) Framework Application to 
the Connecticut River Basin 

Unregulated winter flows in the Connecticut River Basin are 
generally increased under future climate conditions, while the 
flow is reduced in the spring. At many locations, the seasonal 
peak flow is earlier and reduced in the future. Water 
temperature is increased under the future climate conditions 
throughout the year at most locations. The greatest increase at 
most, but not all, stations occurs in August and typically ranges 
between 3 and 5°C depending on location. Increases up to 6 
degrees occur at a limited number of locations. 
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7.2 Future Work 

The coarse modeling scale currently employed for national-scale assessments is inconsistent 
with current national data products such as 30 m digital elevation model (DEM), soils, and 
vegetation data required to represent key hydrologic processes at scales appropriate for this 
project. The structure and process representation in these models precludes the appropriate 
use of these current data products anywhere near their native scale; significant data 
aggregation is required for use by these models along with associated smoothing and loss of 
fidelity. This data/model discrepancy will increase dramatically as next-generation data come 
online. In addition, current national-scale approaches to routing flow and computing water 
temperatures are insufficient for evaluating operational and structural modifications of water and 
power systems at scales relevant for water quality analyses (e.g., 401 certification). 

To address discrepancies between operational scales and streamflow assessment scales, we 
have ported the integrated DHSVM/MASS1 model to a high-performance computing 
environment and demonstrated the capability to model the entire Columbia River Basin at a 90 
m spatial resolution. However, there remains additional opportunities to improve 
DHSVM/MASS1 model performance to meet operational needs: 

• The parallel performance indicates that running DHSVM at the point of maximum 
speedup may not be ideal. Run time needs to be balanced with the availability and cost 
of computational resources. It may also be more efficient to simulate a case like the 
Columbia River basin in several large subbasins, particularly for calibration and 
validation. Once calibrated, the parameters could be used in a “production” simulation of 
the entire Columbia Basin.  

• The way meteorological forcing was read and applied was the largest single obstacle to 
higher parallel performance. Reading the meteorological data in larger blocks, a day or 
month at a time, say, rather than one time step at a time, may reduce input time. 
Reading 2D map data in parallel, instead of through the root process, may also be a 
solution. 

• Stream routing took a significant part of the total run time for the Columbia simulation. 
The choice to keep this a serial process, executed by all processes, may become a 
barrier with larger applications. Parallel methods to perform channel routing should be 
investigated in future work. 

• We have used a straightforward and relatively simple domain decomposition scheme 
assuming that the simulation of each “active” cell has an equivalent computational cost. 
However, cells with snow have a higher computational cost than cells without snow. 
Decomposition based on actual computational cost may significantly increase 
computational efficiency. 

Climate-induced hazards, such as wildfire, will also impact operations through significant 
changes in vegetation and soil properties that directly impact snowpack, runoff, streamflow, and 
the delivery of eroded sediment and debris to downstream reservoirs. Standard vegetation data 
sets are only updated every few years while modern remote-sensing platforms and 
methodologies may provide a high-spatiotemporal surface characterization of physical spatial 
and temporal hydrologic parameters.  In the near future, it should be possible to use a new 
generation of satellite sensors and machine learning methods to produce high-fidelity 
observational hydrologic parameters. Utilization of these evolving data production should be 
given a high priority to provide the most current updates to relevant biophysical models.   
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Model validation in this and most studies were limited to measurements of streamflow, water 
temperature, and SWE at an extremely limited number of locations. Of particular importance is 
the growing ability for data assimilation of evolving remotely sensed products, such as (30m) 
LIDAR estimates of snow depth, at their native scales without having to aggregate and lose 
important spatial information. For example, some utilities in California are currently using ultra-
high-resolution NASA/JPL airborne snow data (3–50m) to estimate snowpack water storage. 

Atmospheric Rivers (ARs) have a significant impact on hydrologic processes in many basins in 
the western U.S. through extreme precipitation and changes to the near-surface energy 
balance. We found ARs provide useful predictability of extreme precipitation occurrence and 
magnitude in western U.S. watersheds. To improve prediction skill, those AR-tracking 
algorithms with higher Integrated Vapor Transport (IVT) thresholds should be considered. We 
found that, in general, weak ARs (short duration and low intensity) account for 50–60% of all AR 
events, but they are weakly correlated with extreme precipitation. Future studies should 
prioritize the intense or prolonged AR events to improve the prediction skills of these events and 
investigate their meteorological, hydrological, and societal impacts. 

Regional climate models such as WRF provide the necessary information to drive physics-
based spatially distributed hydrologic models such as the DHSVM.  However, we found it 
necessary to correct the raw WRF meteorological data for biases in precipitation and air 
temperature to better match observations. The remaining parameters (e.g., humidity, solar 
radiation, etc.) were unadjusted, to a certain extent physically decoupling them from the altered 
precipitation and air temperature. These corrections developed based on historical conditions, 
by necessity, were assumed to apply under future climate conditions, thereby reducing some of 
the perceived advantages in dynamical downscaling over statistical downscaling.  
 
There are a limited number of meteorological observations whose distribution is often dictated 
by ease of access for installation and maintenance (hence, few in snow-dominated mountainous 
locations). Many of these stations only measure daily rainfall (snowfall is notoriously difficult to 
measure) and maximum/minimum air temperature.  Some locations measure additional 
variables such as humidity, wind, and solar radiation at relatively fine time intervals – many 
fewer stations measure incoming longwave radiation, a key component of the energy budget. 
Hydrologic studies without the benefit of RCM data are forced to interpolate or extrapolate 
required data and estimate key meteorologic information (e.g., longwave radiation) from the 
available parameters that were measured. This lack of data also limits the ability to inform 
statistical downscaling methods and improve process representation and validation of dynamic 
downscaling.  
 
To maximize the use of existing data for improved hydrologic modeling, there is a need to 
further test and improve physics-based methods to estimate the full suite of energy-balance 
input parameters from limited datasets. Many of the existing methods are location-specific and 
developed using a limited number of years.  Much of the required data are likely being collected 
in experimental watersheds, or related flux measurement programs such as the AmeriFlux 
network.  It would be necessary to complete a comprehensive inventory of available data and 
look for gaps in spatial coverage that could be filled with additional data collection.  
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