Spent Nuclear Fuel and Reprocessing Waste Inventory

Spent Fuel and Waste Disposition

Prepared for
U.S. Department of Energy
Office of Nuclear Energy
Spent Fuel and Waste Disposition
SRNL: Shan Peters,
PNNL: Joe T. Carter, Kaushik Banerjee
November 2022
FCRD-NFST-2013-000263, Rev. 9

PNNL-33938

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

This is a technical report that does not take into account contractual limitations or obligations under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10 CFR Part 961). To the extent discussions or recommendations in this report conflict with the provisions of the Standard Contract, the Standard Contract governs the obligations of the parties, and this report in no manner supersedes, overrides, or amends the Standard Contract.

This report reflects technical work which could support future decision making by DOE. No inferences should be drawn from this report regarding future actions by DOE, which are limited both by the terms of the Standard Contract and Congressional appropriations for the Department to fulfill its obligations under the Nuclear Waste Policy Act including licensing and construction of a spent nuclear fuel repository.

November 2022 iii

SUMMARY

This report provides information on the inventory of spent nuclear fuel (SNF) in the United States located at Nuclear Power Reactor (NPR) and Independent Spent Fuel Storage Installation (ISFSI) sites, as well as SNF and reprocessing waste located at U.S. Department of Energy (DOE) sites and other research and development (R&D) centers as of the end of calendar year 2021. Actual or estimated quantitative values for current inventories are provided along with inventory forecasts derived from examining different future nuclear power generation scenarios, based on information available and assumptions made at the time the scenarios were developed in the spring of 2022. The report also includes select information on the characteristics associated with the wastes examined (e.g., type, packaging, heat generation rate, decay curves).

THIS PAGE INTENTIONALLY LEFT BLANK

November 2022 v

CONTENTS

1.	INTI	RODUC	TION	1
	1.1	Invent	ory Summary	2
	1.2	Revisi	on History	3
2.	SNF	AT NP	PR AND ISFSI SITES (EXCLUDING DOE LOCATIONS)	5
	2.1	Curren	nt NPR and Away-From-Reactor SNF Inventory	8
		2.1.1	SNF Transfers	9
		2.1.2	Shutdown Reactor SNF as of 12/31/2021	17
	2.2	Future	LWR SNF Inventory Forecast	28
		2.2.1	Reference Scenario: No Replacement Nuclear Power Generation	28
		2.2.2	Alternative Scenario 1: Addition of "New Builds"	37
		2.2.3	Alternative Scenario 2: Subsequent Licenses with Applications Pending	41
		2.2.4	Alternative Scenario 3: Future Subsequent License Renewal Applications	44
		2.2.5	Alternative Scenario 4: Subsequent License Renewal Applications for Reactors Without Announced Shutdown Dates	46
		2.2.6	Scenario Comparison Summary	48
	2.3	Spent	Nuclear Fuel Dry Storage Systems	50
	2.4	Spent	Nuclear Fuel Characteristics	57
3.	SNF	AT DO	DE LOCATIONS	61
	3.1	DOE I	Managed SNF	61
		3.1.1	SNF Inventory	62
		3.1.2	SNF from NPR Research and Development Activities	65
	3.2	Naval	SNF	66
		3.2.1	Naval SNF Inventory	66
		3.2.2	Naval SNF Radionuclide Inventory	66
		3.2.3	Naval SNF Storage/Canisters	66
4.	SNF	то та	THER SITES	69
	4.1	Unive	rsity Research Reactors	69
	4.2	Other	Government Agency Research Reactors	71
	4.3	Comm	nercial Research and Development Centers	71
5.	REF	ROCE	SSING WASTE	73
	5.1	Repro	cessing Waste at DOE Sites	73
		5.1.1	Current Reprocessing Waste Inventory	73

		5.1.2	Projected Reprocessing Waste Inventory	75
		5.1.3	Reprocessing Waste Radionuclide Inventory	78
		5.1.4	Vitrified Reprocessing Waste Storage	78
	5.2	Reproce	essing Waste at West Valley	79
6.	REFE	ERENCI	ES	81
Appe	ndix A	Nuclea	r Fuel Characteristics	83
Appe	ndix B	Decem	ber 2020 Projected Inventory by Reactor	97
Appe			nce Scenario: No Replacement Nuclear Generation Forecast – Discharged or	121
Appe			nce Scenario: No Replacement Nuclear Generation Forecast – Discharged	135
Appe			nce Scenario: No Replacement Nuclear Generation Forecast – Discharged Region	151
Appe			nce Scenario: No Replacement Nuclear Generation Forecast – Inventory by District	157
Appe	ndix G	Revisio	on History	169
Appe			nce Scenario: No Replacement Nuclear Generation Forecast – State	173

November 2022 vii

	\sim 1		-c
ГΙ	Gl	JK	E 3

Figure 1-1. Sites Currently Storing Spent Nuclear Fuel and Reprocessing Waste	4
Figure 2-1. Nuclear Power Reactor and ISFSI Sites (non-DOE) Currently Storing SNF	12
Figure 2-2. Dry SNF Storage at Nuclear Power Reactor Sites	13
Figure 2-3 Estimated Burn-up (GWd/MTHM) Distribution for SNF Through December 2021	14
Figure 2-4 Estimated Initial Enrichment (% U-235) Distribution for SNF Through December 2021	14
Figure 2-5 Average Annual Burn-up (GWd/MT) and Enrichment (U-235%)	15
Figure 2-6 Estimated Burn-up (GWd/MTHM) Distribution by Assembly Count for SNF Through December 2021	16
Figure 2-7 Estimated Burn-up (GWd/MTHM) Distribution by Initial Uranium Mass for SNF Through December 2021	16
Figure 2-8. Dry SNF Storage at Group A Sites Shutdown Before 2000	20
Figure 2-9. Dry SNF Storage at Group A Sites Shutdown Post 2000	22
Figure 2-10. Dry SNF Storage at Group C Sites with Announced Early Shutdown Dates	24
Figure 2-11. Dry SNF Storage from Shutdown Reactors at Group B Sites	26
Figure 2-12. Shutdown Site Inventory at 2025	27
Figure 2-13. Projected Change in Distribution of Nuclear Power Reactor SNF by Group with Time (without interim storage facility or repository available before 2045)	32
Figure 2-14 Reference Scenario Nuclear Power Reactor SNF Forecast	33
Figure 2-15 Reference Scenario SNF Burn-up Distribution	34
Figure 2-16 Reference Scenario Initial Enrichment Distribution for SNF Assemblies	34
Figure 2-17 Estimated Average Annual Burn-up (GWd/MT) and Enrichment (U-235%) Through 2075	35
Figure 2-18 Estimated Burn-up (GWd/MTHM) Distribution by Assembly Count for SNF Through December 2075	36
Figure 2-19 Estimated Burn-up (GWd/MTHM) Distribution by Initial Uranium Mass for SNF Through December 2075	36
Figure 2-20 SNF Dry Storage Summary	53
Figure 2-21. PWR 40 GWd/MT Spent Nuclear Fuel Decay Heat.	57
Figure 2-22. PWR 60 GWd/MT Spent Nuclear Fuel Decay Heat.	58
Figure 2-23. BWR 30 GWd/MT Spent Nuclear Fuel Decay Heat.	59
Figure 2-24. BWR 50 GWd/MT Spent Nuclear Fuel Decay Heat.	60

viii November 2022

TABLES

Table 2-1 LWR Nuclear Power Generation Sites by Group/Subgroup (as of December 2021)	7
Table 2-2. Estimated Reactor Discharges by Reactor Type, Detailed by GC-859* and Forecast Quantities	8
Table 2-3. SNF Transferred to Pool Storage at Morris, Illinois	9
Table 2-4. Nuclear Power Reactor SNF Transfers	10
Table 2-5. Spent Nuclear Fuel Inventory by Reactor Group/Subgroup (Estimate as of 12/31/2021)	11
Table 2-6. Estimated Current Inventory at NPR sites by Storage Method	12
Table 2-7. SNF and Stored GTCC LLRW at Group A Sites Shutdown Prior to 2000	19
Table 2-8. SNF and Stored GTCC LLRW from Group A Sites Shutdown Post 2000	21
Table 2-9. SNF and Stored GTCC LLRW from Groups B&C Sites with Announced Early Shutdown Dates (as of spring 2022)	23
Table 2-10. SNF and Stored GTCC LLRW from Shutdown Reactors at Group B Sites	25
Table 2-11. Projected NPR SNF Inventory for the Reference Scenario by Reactor Type*	30
Table 2-12. Projected SNF Inventory at NPR and Morris for the Reference Scenario by Site Group (Group Status as of 12/31/2021)	31
Table 2-13. Projected NPR SNF Discharges for Alternative Scenario 1 by Reactor Type*	38
Table 2-14. Projected SNF Inventory at NPR and Morris for Alternative Scenario 1 by Site Group (Group Status as of 12/31/2021)	39
Table 2-15. Projected SNF Discharges for Assumed "New Builds"	40
Table 2-16. Projected NPR SNF Discharges for Alternative Scenario 2 by Reactor Type*	42
Table 2-17. Projected SNF Inventory at NPR and Morris for Alternative Scenario 2 by Site Group (Group Status as of 12/31/2021)	43
Table 2-18. Projected NPR SNF Discharges for Alternative Scenario 3 by Reactor Type*	44
Table 2-19. Projected SNF Inventory at NPR and Morris for Alternative Scenario 3 by Site Group (Group Status as of 12/31/2021)	45
Table 2-20. Projected NPR SNF Discharges for Alternative Scenario 4 by Reactor Type*	46
Table 2-21. Projected SNF Inventory at NPR and Morris for Alternative Scenario 4 by Site Group (Group Status as of 12/31/2021)	47
Table 2-22. Summary Table of Projected NPR SNF Discharges*	49
Table 2-23 Dry Storage Method Distribution	50
Table 2-24 Welded SNF Canisters in Storage/Transportation Overpacks	51
Table 2-25 Bare Fuel Casks by Reactor Site and Cask Vendor/Model	51
Table 2-26 Welded Canisters in Concrete Storage Overpacks by Vendor	52

Spent Nuclear Fuel and Reprocessing Waste Inventory

November 2022	ix
Table 2-27. Cask Systems Used at Group A Sites Shutdown Prior to 2000	54
Table 2-28. Cask Systems Used at Group A Sites Shutdown Post 2000	55
Table 2-29. Cask Systems Used at Shutdown Reactors at Group B Sites	56
Table 2-30. PWR 40 GWd/MT Spent Nuclear Fuel Decay Heat	57
Table 2-31. PWR 60 GWd/MT Spent Nuclear Fuel Decay Heat	58
Table 2-32. BWR 30 GWd/MT Spent Nuclear Fuel Decay Heat	59
Table 2-33. BWR 50 GWd/MT Spent Nuclear Fuel Decay Heat	60
Table 3-1. Spent Nuclear Fuel Canister Decay Heat in 2030 [NSNFP, 2022]	64
Table 3-2. Canister Decay Heat Characteristics of NPR Origin SNF in DOE Possession	65
Table 3-3. Naval SNF Canister Decay Heat	67
Table 4-1. University Research Reactors	70
Table 4-2. Other Government Agency Research Reactors SNF	71
Table 4-3. Commercial Research and Development Centers SNF	71
Table 5-1. Current Reprocessing Waste Inventory	74
Table 5-2. Hanford Site Encapsulated Cs and Sr Inventory Distribution as of 1/1/2020	75
Table 5-3. Savannah River Canister Decay Heat Distribution (projected)	76
Table 5-4. Hanford and Idaho Waste Inventory (projected)	77
Table 5-5. Projected Total Number of DOE Vitrified Reprocessing Waste Canisters	78
Table 5-6. West Valley High-Level Waste Inventory	79
Table A-1. Physical characteristics of pressurized water reactor assembly class	85
Table A-2. Physical characteristics of boiling water reactor assembly classes	88
Table A-3. Assembly types and their main characteristics as of December 31, 2002	91
Table B-1. Estimated Inventory at Operating Reactors by Storage Type and Site (Group B & C Sites)	99
Table B-2. Estimated Inventory by Storage Type and Site (Group A Sites Shutdown before 2000)	102
Table B-3. Estimated Inventory by Storage Type and Site (Shutdown Reactors at Group B Sites)	103
Table B-4. Estimated Inventory by Storage Type and Site (Group A Sites Shutdown Post 2000)	104
Table B-5. Estimated Inventory Totals	105
Table B-6 Bare SNF Storage Systems Currently in Use	106
Table B-7 Canister Based Storage Systems Currently in Use	
Table C-1. No Replacement Nuclear Generation SNF Forecast: Discharges by Operating	123

Table C-2. No Replacement Nuclear Generation SNF Discharges by Reactor (Group A Sites Shutdown before 2000)	131
Table C-3. No Replacement Nuclear Generation SNF Discharges by Reactor (Shutdown Reactors at Group B Sites)	132
Table C-4. No Replacement Nuclear Generation SNF Discharges by Reactor Site (Group A Sites Shutdown Post 2000)	133
Table C-5. No Replacement Nuclear Generation SNF Discharges by Reactor Site (Totals)	134
Table D-1. Estimated and Projected Inventory at NPR Sites and Morris Site by State	137
Table D-2. Estimated Inventory at NPR Sites and Morris Site by State and by Storage Configuration at the end of 2021	139
Table D-3. Estimated Pool Inventory by Current Group and by State at the end of 2021	140
Table D-4. Estimated Dry Inventory by Current Group and by State at the end of 2021	142
Table D-5. Estimated Total Inventory of Group A Sites by State at the end of 2021	144
Table D-6. Estimated Total Inventory of Group B Sites by State at the end of 2021	144
Table D-7. Estimated Total Inventory of Group C Sites by State at the end of 2021	145
Table D-8. Estimated Total Inventory of Group F Site by State at the end of 2021	146
Table D-9. Estimated Total Inventory by Current Group and by State at the end of 2021	146
Table D-10. Projected Inventory by Current Group and by State through 2075	148
Table E-1. Estimated and Projected Inventory by NRC Region	153
Table E-2. Estimated Inventory by NRC Region and by Storage Configuration at the end of 2021	154
Table E-3. Estimated Pool Inventory by Current Group and by NRC Region at the end of 2021	155
Table E-4. Estimated Dry Inventory by Current Group and by NRC Region at the end of 2021	155
Table E-5. Estimated Total Inventory by Current Group and by NRC Region at the end of 2021	156
Table E-6. Projected Inventory by Current Group and by NRC Region through 2075	156
Table F-1 Estimated Inventory by State and Congressional District as of December 31, 2021	159

November 2022 xi

ACRONYMS

ATR Advanced Test Reactor

BFC Bare Fuel Cask

BWR Boiling Water Reactor
DOE Department of Energy

EIA Energy Information Administration

GTCC Greater-than-Class-C (category of radioactive waste)
GWd/MT Gigawatt-days per Metric Ton (of Initial Uranium)

GWSB Glass Waste Storage Building

HIP Hot Isostatic Pressing

HLW High-Level Radioactive Waste

INL Idaho National Laboratory
ISF Interim Storage Facility

ISFSI Independent Spent Fuel Storage Installation

LLRW Low-Level Radioactive Waste

LWR Light Water Reactor

MCO Multi-Canister Overpack

MT Metric Tons

MTHM Metric Tons Initial Heavy Metal (typically equivalent to MTU)

MTU Metric Tons Initial Uranium

NIST National Institute of Standards and Technology

NNPP Naval Nuclear Propulsion Program

NPR nuclear power reactor

NRC Nuclear Regulatory Commission

NSNFP National Spent Nuclear Fuel Program

OCRWM Office of Civilian Radioactive Waste Management

ORNL Oak Ridge National Laboratory

PWR Pressurized Water Reactor
R&D Research and Development

SFD Spent Fuel Database

SFWD DOE's Office of Spent Fuel and Waste Disposition

SNF Spent Nuclear Fuel

SRNL Savannah River National Laboratory

SRS Savannah River Site

xii November 2022

TREAT Transient Reactor Test Facility

TMI Three Mile Island

TRU Transuranic

UFDC Used Fuel Disposition Campaign

WEST Waste Encapsulation and Storage Facility

WTP Waste Treatment Project

SPENT NUCLEAR FUEL AND REPROCESSING WASTE INVENTORY

1. INTRODUCTION

This report^a provides information on the inventory of spent nuclear fuel (SNF) and high-level radioactive waste (HLW)^b in the United States as of the end of calendar year 2021. Inventory forecasts for SNF were made for a few selected scenarios of future nuclear power generation involving the existing reactor fleet, as well as reactors under construction for one case. This introductory section (Section 1) provides an overview of the SNF inventory based on three location categories: Nuclear Power Reactor (NPR) and Independent Spent Fuel Storage Installation (ISFSI) sites, DOE sites, and other research sites (universities, other government agencies, and commercial research centers). Section 2 presents more detailed information on the SNF located at NPR and ISFSI sites (excluding DOE ISFSIs). A more in-depth discussion on the SNF located at DOE sites is provided in Section 3. Research and Development centers are discussed in Section 4. Reprocessing waste located on government-owned (federal or state) sites is provided in Section 5. Additional and supporting information is contained in the appendices, namely information on NPR SNF characteristics; SNF discharges by reactor; and inventory forecast breakouts by reactor, storage location, site, state, U.S. Nuclear Regulatory Commission (NRC) region, and Congressional Districts. This report was sponsored by DOE's Office of Spent Fuel and Waste Disposition (SFWD) within the Office of Nuclear Energy and has been generated for SFWD planning and analysis purposes.

^a This is a technical report that does not take into account contractual limitations or obligations under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10 CFR Part 961).

To the extent discussions or recommendations in this report conflict with the provisions of the Standard Contract, the Standard Contract governs the obligations of the parties, and this report in no manner supersedes, overrides, or amends the Standard Contract.

This report reflects technical work which could support future decision making by DOE. No inferences should be drawn from this report regarding future actions by DOE, which are limited both by the terms of the Standard Contract and Congressional appropriations for the Department to fulfill its obligations under the Nuclear Waste Policy Act including licensing and construction of a spent nuclear fuel repository.

^b This report does not necessarily reflect final classifications for the material being discussed; for example, material referred to as "HLW" or "SNF" may be managed as HLW and SNF, respectively, without having been actually classified as such for disposal.

1.1 Inventory Summary

As of the end of 2021, the U.S Inventory of SNF and primary reprocessing waste is located at over 100 sites in 39 states. These locations include: NPR and non-DOE ISFSI sites; DOE sites; and other Research and Development Centers. Figure 1-1 provides the approximate locations for:

- Commercial NPR and ISFSI^c Locations include;
 - o 93 operating nuclear power reactors (see Table 2-1),
 - o 26 shutdown nuclear power reactors (See Table 2-1),
 - o 1 away-from-reactor NPR SNF pool storage facility (see Table 2-3).

Most NPR sites include an ISFSI co-located at the site for dry storage of SNF.

- DOE Locations
 - 6 DOE sites with SNF (see Section 3.1 and 3.2)
- Other Research and Development Locations
 - o 20 university research reactors on 20 sites^d (see Section 4.1),
 - o 4 other Government Agency Research Reactors (see Section 4.2),
 - o 4 commercial Research and Development Centers (see Section 4.3),
- Reprocessing Waste Locations
 - o 3 DOE sites with reprocessing waste (see section 5.1)
 - o 1 HLW storage location (see Section 3.2) which resulted from reprocessing.

The total U.S. SNF inventory is approximately 91,400 metric tons of heavy metal (MTHM) at the end of 2021 and, as indicated by Table 1-1, is comprised of about 88,900 MTHM of SNF at NPR and non-DOE ISFSI locations, about 2,500 MTHM located at DOE sites and a much smaller amount, approximately 1.3 MTHM, at Research and Development Centers. The total number of vitrified reprocessing waste canisters at the end of 2021 is 4,565, with DOE vitrified waste canisters constituting the vast majority (4,287) and with vitrified commercial reprocessing waste canisters at the West Valley Demonstration Project comprising a much smaller portion (278).

^c Until recently there were two Away-From Reactor ISFSI locations which have NRC licenses but were never constructed: one located at the Idaho National Laboratory; and the Private Fuel Storage (PFS) in Utah. On September 12, 2021 the NRC approved an Away-from-Reactor license ISFSI application for Interim Storage Partners in Texas but, the facility has not yet been constructed. There is currently one Away-from-Reactor ISFSI license application in New Mexico under review by the Nuclear Regulatory Commission.

^d Excludes three operational AGN-201 reactors at universities which operate at very low power and which are not expected to have to be refueled prior to permanent shutdown and associated fuel discharge.

November 2022 3

Table 1-1 U.S. SNF and Reprocessing Waste Inventory Summary for 2021

Location	Spent Nuclear Fuel (MTHM) ^a	Vitrified Reprocessing Waste (canisters) ^b
NPR and ISFSI Sites (excluding DOE)	88,880°	-
DOE Sites		
Department of Energy Sites ^d	2,480 °	4,287
Other Sites	1	
University Research Reactors		
Other Government Research Reactors		
Commercial R&D Centers		
West Valley Demonstration Project ^f		278
Total	91,361	4,565

^a Values are rounded to the nearest MTHM.

1.2 Revision History

This document is expected to be a "living" document with expanded additional information and scenarios to develop a broad range of potential inventory for project planning purposes. A description of the revision history for this report is provided in Appendix G.

^b Accounts only for the current inventory of vitrified reprocessing waste canisters produced through December 31, 2021 Reprocessing waste which has yet to be treated is not included. All canisters produced thus far are 2 feet in diameter × 10 feet tall.

^c SNF inventories in this report include: SNF estimated to be discharged through December 31, 2021 from light water nuclear power generating reactors listed in Table 2-1

^d Includes SNF from DOE research reactors.

^e Includes SNF from DOE research and production activities, Naval SNF (approximately 39 MTHM) and some SNF generated by NPRs (approximately 280 MTHM). The NPR-generated SNF includes Three Mile Island Unit 2 SNF debris (approximately 82 MTHM); and SNF discharged from the decommissioned Ft. St. Vrain gas-cooled reactor (approximately 24 MTHM), from some NPRs listed in Table 2-1 (approximately 68 MTHM), and from some other early power reactor demonstration program reactors (approximately 105 MTHM).

f The West Valley Demonstration Project is located at the Western New York Nuclear Service Center which is owned by New York State Energy Research and Development Authority. Vitrified reprocessing waste canisters, including 2 canisters used to evacuate the melter prior to decommissioning and 1 non-routine (end-of-process) canister.

4

Figure 1-1. Sites Currently Storing Spent Nuclear Fuel and Reprocessing Waste

November 2022 5

2. SNF AT NPR AND ISFSI SITES (EXCLUDING DOE LOCATIONS)

Nuclear Power Reactors (NPRs) have operated in the U.S. since about 1960. Excluding a number of civilian reactors categorized as experimental electric-power reactors (e.g. Vallecitos Boiling Water Reactor, Saxton Nuclear Experimental Reactor Project) or primarily used for purposes other than central-station nuclear power generation (e.g., N.S. Savannah), 131 NPRs have been built for civilian nuclear power generation. Nine of these were early prototype or demonstration reactors which have since been or are in a state of being decommissioned (e.g., Peach Bottom 1 and Shippingport in Pennsylvania and Fermi 1 in Illinois) and for which SNF no longer remains on site (SNF remaining from these demonstration reactors is discussed in Section 3.1.1). Another was the high temperature gas cooled Fort St. Vrain demonstration reactor in Colorado which was also decommissioned, however SNF discharged from this reactor is currently managed by DOE and stored partly in an Independent Spent Fuel Storage Installation (ISFSI) near the reactor site and partly at the Idaho National Laboratory (INL) see Section 3.1.2.

Of the remaining 121 NPRs all are light water reactors (LWRS). One LWR (Shoreham in New York) never operated at full power and was decommissioned, the SNF was transferred to another reactor and discharged there. A second (Three Mile Island Unit 2, in Pennsylvania) was disabled, and the vast majority of the SNF debris is managed by the DOE at INL see Section 3.1.2. Another 26 reactors have since shutdown, currently leaving 93 LWRs licensed to operate at the end of 2021.

A typical nuclear power plant includes one or more reactor units on the same site. Almost all of these sites also have a co-located ISFSI. After all the reactors are permanently shut down and later decommissioned, the only facility that might remain at the site is a stand-alone ISFSI. A simple site grouping structure for these NPR and non-DOE ISFSI sites has been adopted for these sites and other non-DOE ISFSI and is used throughout the report. The grouping structure is provided below to distinguish between sites based on the operational status of their reactors.

Nuclear Power Plant Sites (with NPRs and/or co-located ISFSI)

- **Group A:** sites with all reactors permanently shutdown (All units shutdown).
- **Group B:** sites with at least one reactor permanently shutdown co-located with at least one reactor continuing to operate (status is **B**etween Group A and Group C sites)
- **Group C:** sites with all reactors operating or expected to resume operation, i.e., none permanently shutdown (Continuing operations with all reactors)

Other Non-DOE ISFSI Sites:

Group F: Away-from-Reactor ISFSI.

Within each group, a numeric value of 1 is appended to the site group identifier for a site with only dry SNF storage. A value of 2 is used to identify a site with both wet and dry storage, and a value of 3 is appended to sites with SNF in wet storage only. For example, Yankee Rowe is included in Site Group A and Subgroup A1, since the entire inventory of shutdown reactor SNF is currently in dry storage. Seabrook and Surry are included in Site Group C and Subgroup C2, with both wet and dry stored SNF.

Table 2-1 provides a list of LWR power plants by their assigned Groups/Subgroups. The list covers 119 reactors at 73 sites, counting the Hope Creek and Salem plants as a single site due to their proximity and shared ISFSI. Eighty-nine operating reactors are at 52 Group C sites and four are at 2 Group B sites. As of spring 2022, three of the Group C reactors (Palisades in Michigan and Diablo Canyon 1 and 2 in California) have utility-announced early shutdown dates before the end of 2025.

Of the 26 shutdown reactors with SNF remaining onsite, 24 are reactors at 19 sites with no continuing nuclear operations (Group A sites). This includes SNF from 10 reactors on 9 sites that ceased operations prior to 2000 and where all SNF is in dry storage and reactor decommissioning is complete or nearing

completion. This subgroup is sometimes referred to as "legacy" shutdown reactor sites, since these sites have not had an operating reactor on the site for at least 20 years. Group A also includes SNF from 14 reactors on 10 sites that ceased operations after 2000. This subgroup is sometimes referred to "Early Shutdown Reactors" since operations were halted prior to achieving 60 years of operations. Eight of these early shutdown reactors on 7 sites have recently completed moving the SNF into dry storage, bringing the total number of subgroup A1 reactors to 19 reactors on 16 sites. Five reactors on 3 sites in Group A still have SNF both in the pools and in dry storage at the end of 2021°.

In addition to the 26 shutdown reactors at 24 shutdown sites, SNF from 2 shutdown reactors (i.e., Dresden 1 in Illinois, and Millstone 1 in Connecticut) is stored on sites co-located with operating reactors (Group B). Figure 1-1 illustrates the locations of these shutdown nuclear power reactors.

For the 119 LWRs with SNF still located on site^f, the SNF is currently stored in pools or dry storage casks within an ISFSI with disposal in a geologic repository envisioned in a once-through fuel cycle. Some NPR SNF has been transferred to DOE (see Section 3.1.2). The General Electric-Hitachi facility at Morris, Illinois (the lone Group F Site) is currently the only non-DOE operated, NRC licensed pool storage facility that is not co-located at a reactor site. On September 12, 2021, the NRC approved an Away-from-Reactor ISFI license application for Interim Storage Partners in Texas but, the facility has not yet been constructed. There is currently one Away-from-Reactor ISFSI license application in New Mexico under review by the Nuclear Regulatory Commission.

SNF includes irradiated fuel discharged from pressurized water reactors (PWRs) and boiling water reactors (BWRs). The fuel used in these reactors primarily consists of uranium dioxide pellets encased in zirconium alloy (Zircaloy). A small number of early fuel designs used stainless steel cladding. The fuel assemblies vary in physical configuration, depending upon reactor type and manufacturer.

Discharged SNF assemblies are categorized by physical configuration into 22 classes: 16 PWR and 6 BWR fuel assembly classes. Discharged SNF data has been collected by the Energy Information Administration for the Office of Standard Contract Management within the Office of General Counsel (formerly part of Office of Civilian Radioactive Waste Management [OCRWM]). Appendix A, Tables A-1 and A-2 present the assembly class, array size, fuel manufacturer, assembly version, assembly type code, length, width, and cladding material of PWR SNF and BWR SNF, respectively. Physical dimensions are those of unirradiated assemblies. Within an assembly class, assembly types are of a similar size. There are 134 individual fuel assembly types in these classes. Appendix A, Table A-3 presents the manufacturer, initial uranium load, enrichment, and burnup characteristics of NPR SNF assembly types in existence at the end of 2002. Some new fuel types have been introduced since 2002, however, similar information to that presented in Appendix A is not available because non-propriety data sources do not exist.

^e Duane Arnold completed transfer to dry storage in early 2022.

^f Excluding the spent fuel debris at Three Mile Island Unit 2.

Table 2-1 LWR Nuclear Power Generation Sites by Group/Subgroup (as of December 2021)

Group A: All Units Shutdown Sites (# of Units) – 24 Reactors/19 Sites						
Group A	· All	onits Shutuown Sites (#	A2 (Dry and Pool	Sites		
A1 (Dry		ige)	Storage)	A3 (Pool Storage)		
Reactors Shutdown Prior to	,					
Big Rock Point (1) Haddam Neck (1)		cho Seco (1)	Indian Point (3) Three Mile Island (1) ††			
` ′		an (1)	` ′			
Humboldt Bay (1)		kee Rowe (1)	Duane Arnold (1)			
La Crosse (1)	Zioi	1 (2)				
Maine Yankee (1)						
Reactors Shutdown Post 200						
Crystal River (1)		mont Yankee (1)				
Kewaunee (1)		Calhoun (1)				
San Onofre (3)	Oys	ter Creek (1)				
Pilgrim (1)						
Group B: Mixed State	us Sit	es (# of Units) – Total 9	Reactors (4 Operating, 2 S	Shutdown) /2 Sites		
Currently All Group B Sites h	ave	B2† (Dry and Pool	Storage)			
both Dry and Wet Storage		Dresden (3)				
Capabilities		Millstone (3)				
Group C: All Units Operating (# of Units)– 89 Reactors /52 Sites (Note: All Group C Sites have Wet Storage Capabilities)						
ì		ory and Pool Storage)	wet storage Capabilities)	C3 (Pool Storage)		
Arkansas Nuclear (2)	C2 (D	Fitzpatrick (1)	Point Beach (2)	Shearon Harris (1)		
Beaver Valley (2)		Fermi (1) ††	Prairie Island (2)	Wolf Creek (1)		
Braidwood (2)		Ginna (1)	Quad Cities (2)	` '		
Browns Ferry (3)		Grand Gulf (1)	River Bend (1)			
Brunswick (2)		Hatch (2)	Robinson (1)			
Byron (2)		Hope Creek (1) ‡‡	Saint Lucie (2)			
Calvert Cliffs (2)		La Salle (2)	Salem (2) ‡‡	-		
Callaway (1)		Limerick (2)	Seabrook (1)			
Catawba (2)		McGuire (2)	Sequoyah (2)	-		
Clinton (1)		Monticello (1)	South Texas (2)	-		
Columbia Generating Station	(1)	Nine Mile Point (2)	Summer (1)	-		
Comanche Peak (2)		North Anna (2)	Surry (2)			
Cooper (1)		Oconee (3)	Susquehanna (2)			
Davis-Besse (1)		Palisades (1)	Turkey Point (2)	1		
D.C. Cook (2)		Palo Verde (3)	Vogtle (2)	-		
` ′			5 ()			
Diablo Canyon (2)		Peach Bottom (2) ††	Waterford (1)			
Diablo Canyon (2) Farley (2)		Peach Bottom (2) ^{††} Perry (1)	Waterford (1) Watts Bar (2)	_		

[†] Two B2 Sites have a single shutdown reactor and 2 operating reactors.
†† Does not include prototype (Fermi 1), experimental (Peach Bottom-1), or disabled (TMI-2) reactors.
‡‡ Hope Creek and Salem are considered as a single site in this report due to proximity and shared ISFSI.

2.1 Current NPR and Away-From-Reactor SNF Inventory

The source of historical inventory data for this study is information collected by the Energy Information Administration (EIA). Information collected from GC-859 forms is available on an assembly basis for SNF discharges from 1968 through December, 2017.

To develop an inventory estimate through 2021 and beyond, SNF discharge projections were developed using the U.S. Commercial Spent Nuclear Fuel Projection tool [Vinson, 2015]. The methodology used by the tool is documented in "Description and Validation of a Revised Tool for Projecting U.S. Commercial Spent Nuclear Fuel Inventory", March 2015 [Vinson, 2015]. The tool allows for multiple methodologies for handling plant capacity factors, reactor uprates, and other operating inputs. Based on the validation report findings, the methodology utilized in this report makes no adjustment for reactor-specific capacity factors or EIA-forecast nuclear energy demand data. This methodology was found to provide the best agreement to preliminary GC-859 data (<1.4% difference between preliminary GC-859 and projected assembly discharged data between the beginning of 2003 and the end of 2012) [Vinson 2015].

The projection method forecasts each LWR individually and these quantities have been adopted for this study except for shutdown reactors that have published the actual quantities of discharged SNF. Actual discharges from reactors shutdown prior to December 31, 2017 are taken from the GC-859 EIA survey. Data for reactors shutdown after this date are a combination of the historical data and the forecast discharges up to the announced shutdown date.

Table 2-2 provides the estimated SNF discharged at the end of 2021 by reactor type. The total projected inventory is more than 88,950 metric tons (MT) of uranium (MTU) contained in approximately 308,200 discharged assemblies. The table is detailed to provide actual discharges through December 31, 2017 from the GC-859 data set and the projected quantities between 1/1/2018 and 12/31/2021.

Table 2-2. Estimated Reactor Discharges by Reactor Type, Detailed by GC-859* and Forecast Quantities

		rged through /2017		Discharges 12/31/2021	Total Estimated Discharged SNF through 12/31/2021		
Reactor Type	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	
PWR	119,338	51,808	13,385	5,903	132,723	57,711	
BWR	157,774	28,090	17,704	3,153	175,478	31,243	
Totals	277,112	79,898	31,089	9,057	308,201	88,954	

^{*} Excludes SNF that was reprocessed at West Valley in NY, removed from TMI Unit 2, or discharged from the Fort St. Vrain reactor (now decommissioned).

November 2022 9

2.1.1 SNF Transfers

The values reported in Table 2-2 indicate reported and forecast discharge quantities by reactor type and do not reflect subsequent transfer of discharged SNF assemblies. Utilities did not report (via GC-859 forms) SNF that was transferred to West Valley, NY for reprocessing. Prior to 2000, some discharged SNF was transferred to other locations. Five reactors transferred some of their discharged SNF to the pool storage facility at Morris, IL. Table 2-3 details the transfers to Morris which totals 3,217 assemblies and approximately 674 MTU.

The EIA survey process indicates approximately 73 MTU of the SNF from the reactors listed in Table 2-1 was transferred to DOE for research and development purposes such as fuel rod consolidation, dry storage demonstrations, and nuclear waste vitrification projects. This SNF has been transferred to the DOE and is not stored in NRC licensed facilities. DOE has dispositioned some of the material transferred, and so the quantity which remains in storage is approximately 68 MTU. This quantity does not include Ft. St. Vrain and TMI-2 SNF debris that is stored in an NRC-licensed ISFSI at INL. See Section 3.1.2.

Since 2000, essentially all SNF generated has remained on the generating reactor sites in either pool or dry storage. Some utilities did transfer some SNF between its operating reactors (see Table 2-4).

Table 2-3. SNF Transferred to Pool Storage at Morris, Illinois

		Discharges as	s of Dec 2017	Transferre	d to Morris
Reactor [Unit] (Site Subgroup)	Operating Status	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)
Cooper (C2)	Operating	3,964	722.49	1,054	198.02
Dresden 2 (B2)	Operating	5,729	1,020.99	753	145.19
Monticello (C2)	Operating	3,612	642.17	1,058	198.19
Haddam Neck (A1)	Shutdown	1,102	448.42	82	34.48
San Onofre 1 (A2)	Shutdown	665	244.61	270	98.41
			Totals	3,217	674.29

	Transfer	red SNF	
Discharge Reactor	Assemblies	Estimated Initial Uranium (MT)	Transferred to Reactor Site
Robinson	304	132.2	Brunswick
Robinson	504	219.3	Shearon Harris
Brunswick	4,397	800.3	Shearon Harris
Oconee	300	139.8	McGuire

Table 2-4. Nuclear Power Reactor SNF Transfers

Table 2-5 provides a summary of estimated SNF inventory, by Site Group and storage method, as of December 31, 2021. Table 2-5 excludes discharges that were reprocessed at West Valley, NY, and transfers to DOE for research and development purposes and therefore represents the quantity of SNF stored at the 119 power reactor sites and the away from reactor pool storage location at Morris, IL.

Table 2-6 provides the end of 2021 inventory remaining at the LWR sites by storage method accounting for all known SNF transfers (this does not include the inventory at Morris). The dry storage assembly and canister/cask quantities as of 12/31/2021 have been derived from publicly available sources [Store Fuel, 2022]. The balance of the projected inventory remains in the reactor pools. The end of 2021 marks the first year there is more SNF in dry storage than in the reactor pools. Appendix B provides additional details on a reactor specific basis and site group basis. Appendix B reflects known transfers.

Figure 2-1 illustrates the current distribution by site group and storage method, and Figure 2-2 illustrates the current distribution of storage casks by site group.

The estimated burn-up (GWd/MTHM) distribution and the initial enrichment (% U-235) distribution for the current inventory (as extracted from the GC-859 and projection tool forecast) are shown in Figures 2-3 and 2-4. Similar to the discharge quantities, the enrichment and burn-up is estimated for individual LWRs based on the last 5 discharge cycles reported in the GC-859 database. Adjustments are made for reactor power uprates where applicable. These estimates are also used to generate Figures 2-5 through 2-7, described below.

Figure 2-5 shows the annual average Burn-up (GWd/MT) and the initial enrichment (% U-235) between 1968 and 2021.

Figure 2-6 provides the Burn-up (GWd/MT) distribution based on assembly counts for the PWR and BWRs.

Figure 2-7 provides the Burn-up (GWd/MT) distribution based on the initial uranium mass (MTU) for the PWR and BWRs.

Table 2-5. Spent Nuclear Fuel Inventory by Reactor Group/Subgroup (Estimate as of 12/31/2021)

	D	ry Inventory**		Pool In	ventory	Site To	tal
Site Group/ Subgroup	Assy.	Initial Uranium (MT)	Number of Casks	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
			Gro	oup A Sites			
A1 Pre 2000	7,659	2,815	248	-	1	7,659	2,815
A1 Post 2000	20,193	5,410	427	-	-	20,193	5,410
A2	4,017	1,235	95	5,289	1,983	9,306	3,218
A3	-	-	-	-	_	-	_
A	31,869	9,460	770	5,289	1,983	37,158	11,443
			Gre	oup B Sites			
B1	-	-	-	-	-	-	-
B2	7,488	1,670	135	10,534	2,338	18,022	4,008
В3	-	-	-	-	-	-	-
В	7,488	1,670	135	10,534	2,338	18,022	4,008
			Gre	oup C Sites			
C1	-	-	-	-	-	-	-
C2	115,560	33,611	2,658	125,728	36,581	241,288	70,192
C3	-	-	-	8,283	2,563	8,283	2,563
C	115,560	33,611	2,658	134,011	39,144	249,571	72,755
			Gre	oup F Sites			
F	-	-	-	3,217	674	3,217	674
Total All Sites	154,917	44,741	3,563	153,051	44,139	307,968	88,880

^{*} Discharges exclude NPR SNF reprocessed at West Valley in NY, removed from TMI Unit 2, discharged from the decommissioned Fort St. Vrain reactor, or transferred to DOE for R&D purposes.

^{**} Dry storage cask and assembly quantities at the end of 2021 are as reported in Storefuel Vol 24 No. 281, Jan. 4, 2022.

[†] Mass values for totals were rounded up to the next MTHM, totals are rounded, after summing pre-rounded values.

Table 2-6. Estimated Current Inventory at NPR sites by Storage Method

	Γ	Ory Inventory 12/31/2021		Pool In	ventory	Total Pr Discharg 12/31	ged SNF
Reactor Type	Assy.	Initial Uranium (MT)	SNF Casks	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
PWR	68,091	29,296	2,267	68,233	28,890	136,324	58,186
BWR	86,826	15,445	1,296	81,601	14,576	168,427	30,021
Totals	154,917	44,741	3,563	149,834	43,466	304,751	88,207

Appendix B, Tables B-1 – B-5 provide additional details of this estimate on a reactor specific basis.

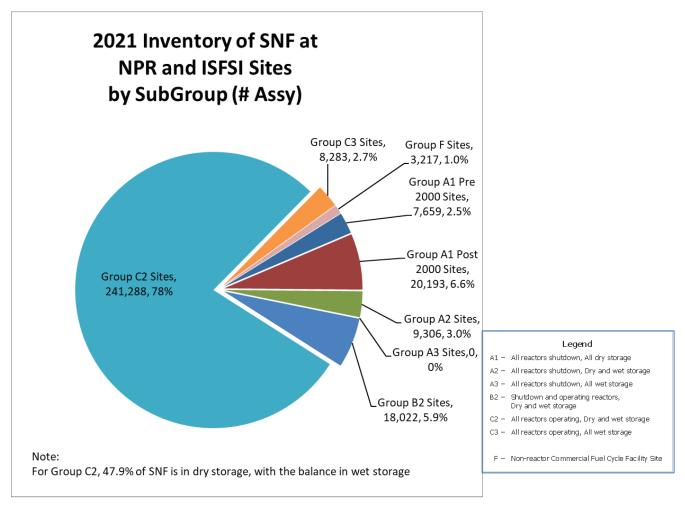


Figure 2-1. Nuclear Power Reactor and ISFSI Sites (non-DOE) Currently Storing SNF

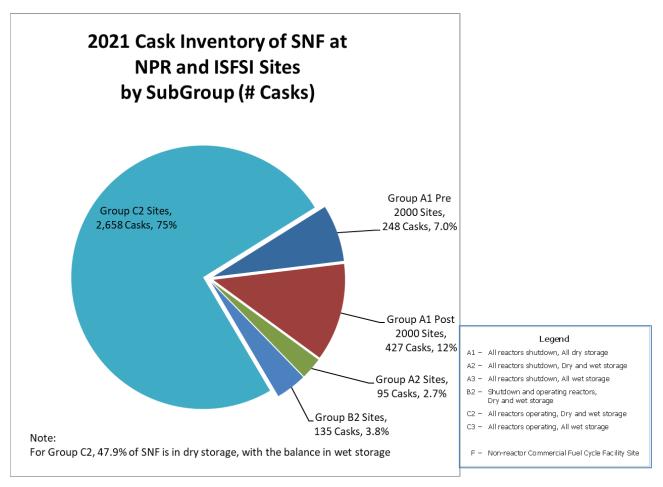


Figure 2-2. Dry SNF Storage at Nuclear Power Reactor Sites

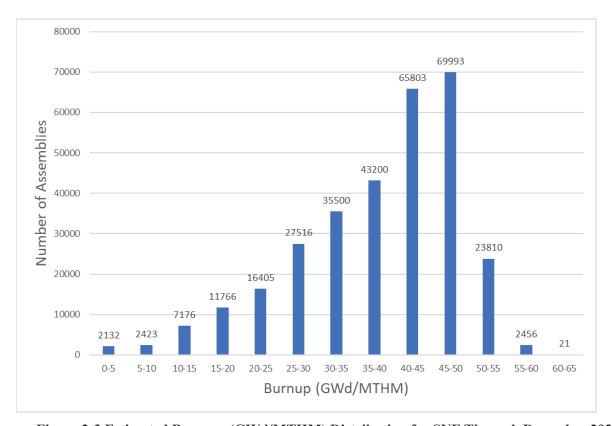


Figure 2-3 Estimated Burn-up (GWd/MTHM) Distribution for SNF Through December 2021

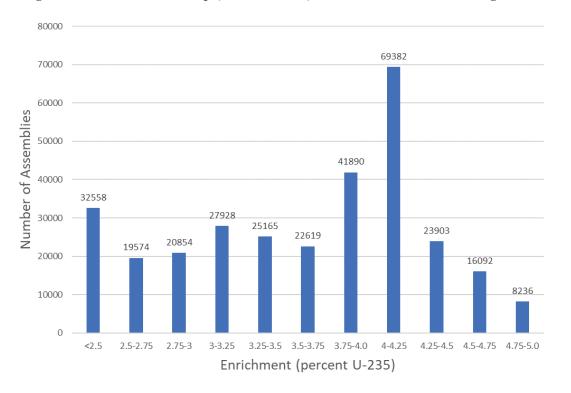
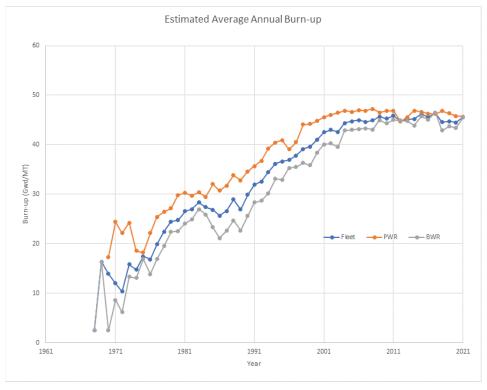



Figure 2-4 Estimated Initial Enrichment (% U-235) Distribution for SNF Through December 2021

November 2022 15

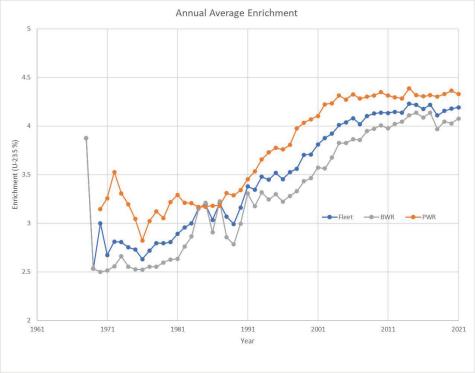


Figure 2-5 Average Annual Burn-up (GWd/MT) and Enrichment (U-235%)

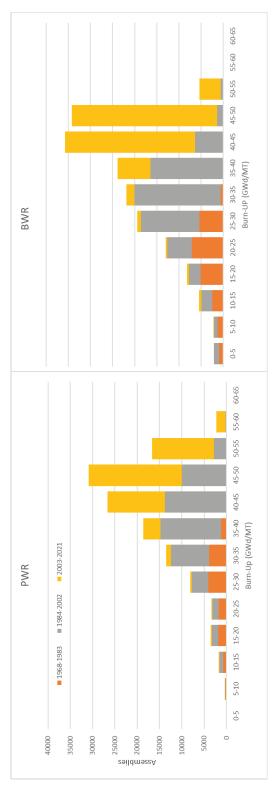


Figure 2-6 Estimated Burn-up (GWd/MTHM) Distribution by Assembly Count for SNF Through December 2021

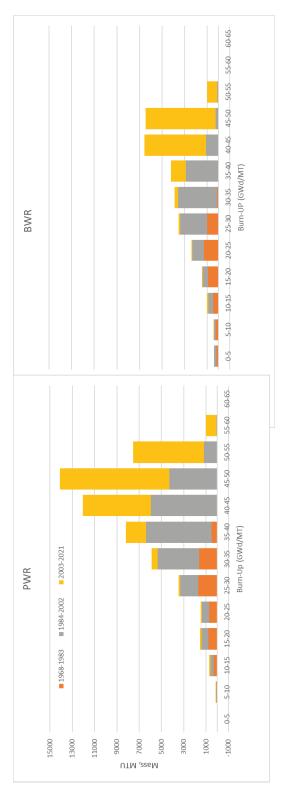


Figure 2-7 Estimated Burn-up (GWd/MTHM) Distribution by Initial Uranium Mass for SNF Through December 2021

2.1.2 Shutdown Reactor SNF as of 12/31/2021

The shutdown reactors continue to increase as well as the corresponding total quantity of SNF at these sites and the amount in dry storage. On 12/31/2021 (the data date for this report) the inventory at 26 shutdown reactors with SNF remaining on site includes the following categories.:

- Reactors that were shutdown prior to 2000 with no other ongoing nuclear operations. Table 2-7 and Figure 2-8 provides additional details on this category. This SNF (from 10 reactors) is located at nine sites and totals 7,659 assemblies containing 2,815 MTU. SNF at these sites was discharged prior to 2000, and the quantities are from the GC-859 database. Also shown in the table and figure are the number of storage casks loaded with Greater-than-Class C (GTCC) Low-Level Radioactive Waste (LLRW) to provide a complete cask count for these sites, since GTCC casks for sites with shutdown reactors are typically stored at the ISFSI along with the SNF casks^g.
- Early shutdown reactor SNF (from fourteen reactors) at ten sites are those reactors which have ceased operations since 2000 and prior to reaching the 60-year operating lifetime. Table 2-8 and Figure 2-9 provides the detailed inventory of each of these fourteen reactors. There are no nuclear operations on these sites. This category includes:
 - Crystal River was last operated in 2009 and has an official shutdown date of February 20,
 2013. Crystal River data are based on the GC-859 database.
 - Kewaunee was shutdown in May of 2013. Kewaunee data are based on the GC-859 database.
 - San Onofre 1 last operated in 1992 (shutdown 11/30/1992). San Onofre 2 and 3 last operated in 2012 and were officially shutdown on 6/12/2013. The inventory is based on the GC-859 database.
 - Vermont Yankee shutdown on December 29, 2014. The inventory is based on the GC-859 database.
 - Fort Calhoun was shutdown in October of 2016. The inventory is based on the GC-859 database.
 - Oyster Creek last operated 9/17/2018. The inventory is based on the GC-859 database and the forecast beyond 12/31/2017.
 - Pilgrim last operated 5/31/2019. The inventory is based on the GC-859 database and the forecast beyond 12/31/2017.
 - Three Mile Island Unit 1 last operated 9/20/2019. The inventory is based on the GC-859 database and the forecast beyond 12/31/2017.
 - Duane Arnold last operated 10/12/2020. The inventory is based on the GC-859 database and the forecast beyond 12/31/2017.
 - Indian Point unit 1 last operated in 1974, unit 2 in 2020 and unit 3 shutdown on 4/30/2021.
 The inventory is based on the GC-859 database and the forecast beyond 12/31/2017.
- As of spring of 2022, a couple utilities have announced their intentions to shutdown three additional reactors on 2 sites prior to reaching a 60-year operating lifetime. These reactors are planned for shutdown before 2025. Table 2-9 and Figure 2-10 details the scenario inventory based on GC-859

^g This report does not provide an over-arching estimate for GTCC LLRW associated with decommissioning the U.S. fleet of current and future nuclear power reactors. For estimates of GTCC LLRW and information on the characteristics of this type of waste and its disposal, the reader is referred to Final Environmental Impact Statement for the Disposal of GTCC LLRW and GTCC-Like Waste [DOE, 2016].

and forecast discharges from these reactors beyond 2017. Once shutdown, there will be no other nuclear operations on these sites.

• Shutdown reactor SNF discharged by 2 permanently shutdown reactors at sites with continued nuclear operations (Group B sites) are detailed in Table 2-10 and Figure 2-11. These reactors shutdown prior to 2000 and the quantities are based on the GC-859 database.

The Group A reactors include nineteen reactors on sixteen sites that have only dry storage capabilities (A1); Five reactors on three sites with SNF in both wet and dry storage (A2) at the end of 2021. All the Group A sites that shutdown prior to 2000 (10 reactors on 9 sites) are Subgroup A1 sites. Seven of the Group A sites shutdown after 2000 (Crystal River, Kewaunee Vermont Yankee, Ft. Calhoun, San Onofre, Pilgrim and Oyster Creek) recently completed SNF pool de-inventory as part of the decommissioning process and became Subgroup A1 sites^h. The Group A sites now total approximately 37,160 assemblies containing approximately 11,440 MTU which is forecast to be stored in 905 SNF canisters/casks (770 canisters are currently loaded with approximately 135 canisters remaining to be loaded).

-

^h In early 2022, Duane Arnold also completed transfer to dry storage.

Table 2-7. SNF and Stored GTCC LLRW at Group A Sites Shutdown Prior to 2000

	13	DIC 7-7. SINE A	nd Stored G	ICC LLKW &	c eroup a si	Table 2-7. SNF and Stored GTCC LLRW at Group A Sites Snutdown Frior to 2000	FF10F to 2000			
		Discharges	ırges	Transferred	erred	Remai	Remaining Inventory at the end of 2021	at the	end of 2	021
Reactor	Shutdown Date	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	SNF Casks Loaded / Estimated	asks ed / ated	GTCC LLRW Casks Loaded
Big Rock Point	8/29/1997	226	69.40	85	11.48	441	57.92	7	7	1
Haddam Neck	12/5/1996	1,102	448.42	83	34.89	1,019	413.53	40	40	3
Humboldt Bay 3	7/2/1976	390	28.94	I	I	390	28.94	5	5	1
La Crosse	4/30/1987	334	38.09	1	0.12	333	37.97	5	5	I
Maine Yankee	12/6/1996	1,434	542.26	I	ı	1,434	542.26	09	09	4
Rancho Seco	6/7/1989	493	228.38	1	ı	493	228.38	21	21	1
Trojan	11/9/1992	190	359.26	ı	ı	190	359.26	34	34	I
Yankee Rowe	10/1/1991	533	127.13	1	ı	533	127.13	15	15	1
Zion 1	2/21/1997	1,143	523.94	I	I	1,143	523.94	ı	'	2
Zion 2	9/19/1996	1,083	495.47	I	I	1,083	495.47	ı	'	2
Zion Totals	ı	2,226	1,019.41	ı	1	2,226	1,019.41	61	61	4
Totals	ı	7,828	2,861.28	169	46.49	7,659	2,814.79		248	15

* One assembly at Big Rock Point was consolidated into other assemblies.

Group A Sites Shutdown Before 2000 248 Fuel Casks, 15 GTCC Casks, 7,659 Assemblies [2,815 MT]

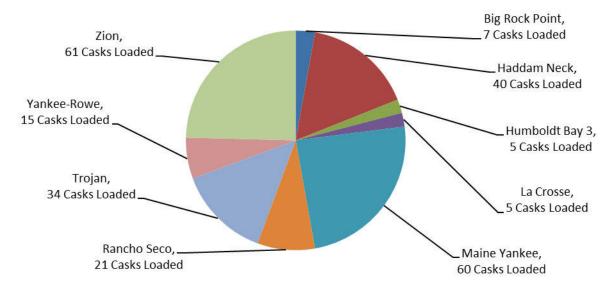


Figure 2-8. Dry SNF Storage at Group A Sites Shutdown Before 2000

Table 2-8. SNF and Stored GTCC LLRW from Group A Sites Shutdown Post 2000

		Discha 12/3]	Discharges as of 12/31/2017⁺	Forecast I 1/1/2018 to	Forecast Discharges 1/1/2018 to 12/31/2021	Total Pro	Total Projected Discharged SNF through 12/31/2021	rged SN	F thro	ugh 12/31/.	2021⁴
Reactor [Unit]	Shutdown Date	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	SNF Casks Loaded / Estimated	asks ed / ated	GTCC LLRW Casks Loaded / Estimated**	LLRW ks ed / ted**
Duane Arnold	10/12/2020	3,128	999	520	94	3,648	099	33	09	ı	2
Crystal River 3	2/20/2013	1,243	582	ı	1	1,243	582	39	39	ı	2
Fort Calhoun	10/24/2016	1,264	466	ı	1	1,264	466	40	40	ı	2
Kewaunee	5/7/2013	1,335	519	ı	ı	1,335	519	38	38	2	2
Oyster Creek	9/25/2018	3,944	701	999	96	4,504	797	29	29	ı	2
Pilgrim	5/31/2019	3,533	630	580	101	4,113	731	62	62	ı	2
San Onofre	various	3,855	1,609	ı	1	3,855	1,609	123	123	1	5
Three Mile Island 1	9/20/2019	1,486	700	177	85	1,663	982	4	45	ı	2
Vermont Yankee	12/29/2014	3,879	902	ı	1	3,879	902	58	58	ı	2
Indian Point	various	3,426	1,515	695	257	3,995	1,773	58	125	I	9
Totals		27,093	7,995	2,406	634	29,499	8,629	522	657	8	27

† These inventory data reflect SNF assembly transfers.

^{**}For simplicity GTCC Casks are estimated at 2 per reactor unless decommissioning is complete. More detailed information on estimates of GTCC LLRW can be found in [DOE, 2016] and supporting documentation.

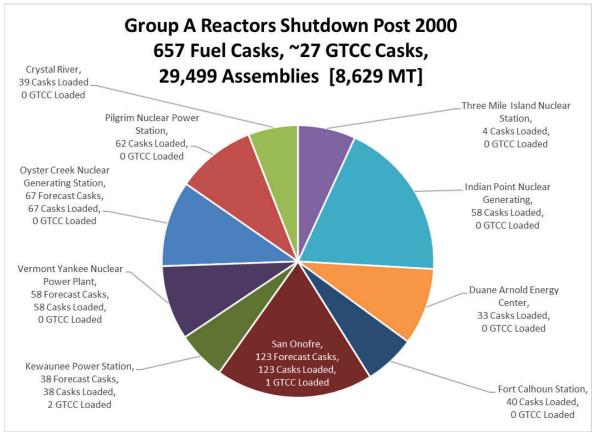


Figure 2-9. Dry SNF Storage at Group A Sites Shutdown Post 2000

N GTCC LLRW Loaded / Estimated* Total Projected Discharged SNF through 12/31/2025 Casks Table 2-9. SNF and Stored GTCC LLRW from Groups B&C Sites with Announced Early Shutdown Dates (as of spring 2022) 154 70 42 42 SNF Casks Estimated Loaded/ 107 49 **28**** Initial (MT) 698 962 973 2,804 Uranium 2,097 2,245 2,271 6,613 Assy. 118 119 319 Initial Uranium (MT) 82 **Forecast Discharges** 1/1/2018 to 12/31/2021 282 **753** 279 192 Assy. 2,115 Initial (MT) 669 723 692 Uranium Discharges as of 12/31/2017 1,608 4,989 Assy. 1,680 1,701 Date Totals Announced Shutdown 4/30/2022 11/2/2024 8/26/2025 Diablo Canyon 2 Diablo Canyon 1 Reactor [Unit] Palisades

^{*} For simplicity GTCC Casks are estimated at 2 per reactor unless decommissioning is complete. More detailed information on estimates of GTCC LLRW can be found in [DOE, 2016] and supporting documentation.

^{**} Site total canisters from both units included.

Announced Early Shutdown at Group C Sites 154 Fuel Casks, ~6 GTCC Casks, 6,613 Assemblies [2,804 MT]

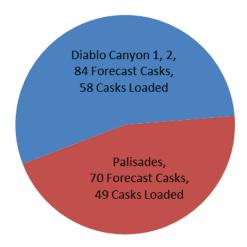
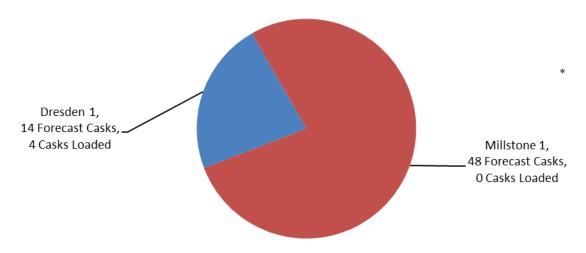


Figure 2-10. Dry SNF Storage at Group C Sites with Announced Early Shutdown Dates


Table 2-10. SNF and Stored GTCC LLRW from Shutdown Reactors at Group B Sites

Discharge as of Transferred to Morris Discharges from Project	Discharges as of Transfar	Transfer	Transfor	200	to Morris	Discharge from	from	Proio	Projected Remaining Oncite Inventory	ning One	ito Inv	ontory	i
		12/31/2017	2017	(Group F Site)	Site)	1/1/2018 to 12/31/2021	2/31/2021		at the	at the end of 2021)21		
Reactor [Unit]	Shutdown Date	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Initial Uranium Assemblies (MT)	Initial Uraniu m (MT)	Assem	Initial Uranium (MT)	SNF Casks Loaded / Estimated	asks ded / ated	GTCC LLRW Casks** Loaded /	CC VW S** cd /
Dresden 1*	10/31/1978	892	90.87	3	0.26	1	ı	688	09:06	4 14	14	1	7
Millstone 1	7/21/1998	2,884	525.62	1	0.00	1	1	2,884	525.62	ı	48	ı	2
		3,776	616.49	3	0.26	-	1	3,773	616.23	4	62	,	4

^{* 617} Dresden 1 assemblies (~63.2MTU) are co-mingled with unit 2 and 3 SNF. This SNF is being moved to dry canister storage in a co-mingled fashion.

^{**} For simplicity GTCC Casks are estimated at 2 per reactor unless decommissioning is complete. More detailed information on estimates of GTCC LLRW can be found in [DOE, 2016] and supporting documentation.

Shutdown Reactors at Group B Sites 62 Fuel Casks, ~4 GTCC Casks, 3,156 Assemblies [553 MT]

^{* 617} Dresden 1 assemblies (~63.2MTU) are co-mingled with unit 2 and 3 fuel are excluded from this Figure.

Figure 2-11. Dry SNF Storage from Shutdown Reactors at Group B Sites

The shutdown site inventory in 2025 (including both currently shutdown reactors and announced shutdown reactors, exclusive of shutdown reactors on sites with continuing nuclear operations) will be approximately 43,775 assemblies to be stored in approximately 1,118 casks, containing nearly 14,250 MTU, and between 16 (existing) and 33 GTCC casks depending upon reactor decommissioning progress. Figure 2-12 details the shutdown reactor SNF in 2025.

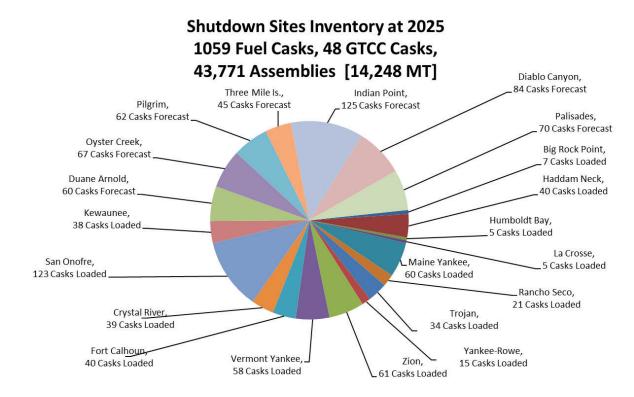


Figure 2-12. Shutdown Site Inventory at 2025

2.2 Future LWR SNF Inventory Forecast

The methods outlined above (Section 2.1) have been extended to provide the individual NPR forecasts inventory. Such forecasts vary with the estimation method parameters described above, and also with scenario specific details. Multiple scenarios have been included in the current revision of this report, as described herein. The reference projection scenario is described in the next section and assumes no new reactors and 60 or 80 (depending upon the renewal status) years of operation for existing reactors, when early shutdowns have not been announced. The scenarios examined are based on the end-of-2021 inventory estimates, the status of early shutdown announcements as of spring 2022, and other assumptions as noted for each of the scenarios discussed below.

2.2.1 Reference Scenario: No Replacement Nuclear Power Generation

The "No Replacement Nuclear Power Generation" scenario assumes no new NPRs are constructed and operated. This is the Reference Scenario for the purpose of comparison to alternative scenarios. The inventory for this initial scenario includes the SNF discharged from the 26 shutdown LWRs and the 93 currently operating LWRs listed in Table 2-1. Eighty-four of the 93 operating LWRs are assumed to have one 20 year life extension and will be decommissioned after 60 years of operation. Six reactors (Turkey Creek Units 3 and 4, Peach Bottom Units 2 and 3, and Surry Units 1 and 2) have received a "subsequent" or second 20 year license extension and will operate for 80 years."

Three operating LWRs have utility-announced early shutdown dates as indicated:

- Palisades, 2022
- Diablo Canyon Unit 1, 2024
- Diablo Canyon Unit 2, 2025

Applying these assumptions, the last nuclear generator finishes operations in 2075 (Watts Bar Unit 2).

Table 2-11 provides the scenario inventory by reactor type as a function of the estimate phase. Actual quantities are used for discharges through December 31, 2017, forecast discharges are used for the individual reactors for later time periods.

The scenario totals nearly 475,600 assemblies containing nearly 138,200 MTU.

Table 2-12 provides the scenario inventory detailed to provide actual discharges through December 31, 2017 from the GC-859 database, the projected quantities between 1/1/2018 and 12/31/2021, and between 1/1/2022 and the end of the scenario, by major storage location category and by site Group. Table 2-15 excludes discharges that were reprocessed at West Valley, NY, and transfers to DOE for research and development purposes and therefore represents the quantity of SNF stored at the 119 power reactor sites and the away-from-reactor pool storage location at Morris, IL.

Figure 2-13 provides the reference scenario quantities at two points in time assuming a consolidated interim storage facility and/or repository is not available before 2045.

Figure 2-14 provides the Reference Scenario including the historical and forecast SNF discharges and the historical and forecast dry storage canister/casks assuming a consolidated interim storage facility and/or repository is not available before the end of the scenario.

ⁱ On 2/24/2022 the NRC notified these subsequent license holders they must go through a full environmental review before they would be allowed to operate for the additional 20 years. This report assumes successful completion of this process.

Figures 2-15 and 2-16 provide the burn-up distribution and initial enrichment distribution, respectively, for the Reference Scenario.

Figure 2-17 shows the estimated annual average Burn-up (GWd/MT) and the initial enrichment (% U-235) between 1968 and 2060.

Figure 2-18 provides the estimated Burn-up (GWd/MT) distribution based on assembly counts for the PWR and BWRs.

Figure 2-19 provides the estimated Burn-up (GWd/MT) distribution based on the initial uranium mass(MTU) for the PWR and BWRs.

Appendix C, Tables C-1 through C-5 provides additional details for this Reference Scenario on a reactor specific basis. Appendix C is discharged SNF information and does not reflect transfers.

Appendices D and E provide summary information for the Reference Scenario by state, and by NRC Region, respectively.

Appendix F and H provides additional congressional district and state detail for the reference scenario and also DOE SNF and reprocessing waste. Appendix H also provides SNF discharges by reactor before and after transfers reflecting the actual or estimated quantities in storage for a given site, Congressional District or state.

Table 2-11. Projected NPR SNF Discharges for the Reference Scenario by Reactor Type*

	SNF Discharges a 12/31/2017	arges as of	Forecast Discharges 1/1/18 to 12/31/21	SNF Discharges as of Forecast Discharges 1/1/18 Forecast Discharges 1/1/22 to 12/31/2017 to 12/31/21	Forecast Discharge to 12/31/75	Forecast Discharges 1/1/22 to 12/31/75	Total Projected Discharged	d Discharged
Reactor Type	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)
PWR	119,338	51,808	13,385	5,903	73,108	32,353	205,831	90,064
BWR	157,774	28,090	17,704	3,153	94,286	16,870	269,764	48,113
Totals	277,112	868'62	31,089	9,057	167,394	49,222	475,595	138,177

^{*}Includes NPR SNF inventory at Morris and that was transferred to DOE sites, other than debris from TMI-2. (Not all SNF transferred to DOE is still in the form of SNF, some has been processed and vitrified.)

Table 2-12. Projected SNF Inventory at NPR and Morris for the Reference Scenario by Site Group (Group Status as of

616 2,815 2,804 4,973 674 117,594 8,629 (MT) 138,104 Initial Uranium Total Projected Discharged SNF 6,613 19,799 3,773 29,499 7,659 3,217 404,802 475,362 ASSY. (MT) 47,273 370 Initial Uranium 1,581 49,222 Forecast Discharges 1/1/2022 to 12/31/2075 5,550 167,394 160,973 871 ASSY. 7,765 319 338 634 9,057 (MT) Uranium [nitia] Forecast Discharges 1/1/2018 to 12/31/2021 26,544 753 1,386 2,406 31,089 12/31/2021) ASSY. (MT) 2,115 616 2,815 62,556 3,054 7,995 674 Initial 79,825 Uranium SNF Discharges as of 12/31/2017 7,659 4,989 3,773 3,217 217,285 12,863 27,093 276,879 Assy. Group Site \Box \Box \mathbf{B} B \mathbf{B} A ⋖ [I Shutdown Reactors at Group B Sites Operating Reactors at Group C Sites Operating Reactors at Group C Sites Operating Reactors at Group B Sites Operating Reactors at Group B Sites with Announced Shutdown Date with Announced Shutdown Date Reactors Shutdown Prior to 2000 Reactors Shutdown Since 2000 Away-from-Reactor Storage (86 Rx/50 Sites)* (14 Rx/10 Sites) (4 Rx/2 Sites)* (10 Rx/9 Sites) (3 Rx/2 Sites) (2 Rx/2 Sites) Description (0 Rx/0 Site) Totals

^{*} Excludes reactors with announced early shutdowns.

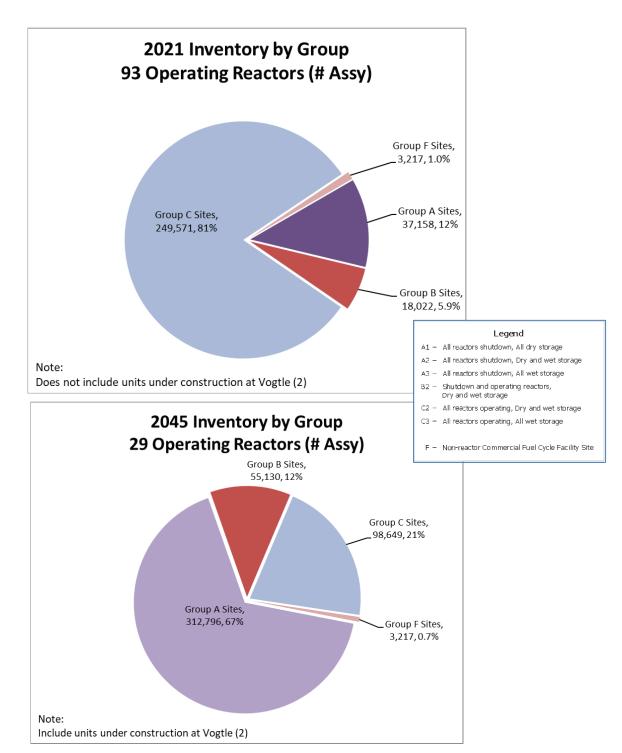


Figure 2-13. Projected Change in Distribution of Nuclear Power Reactor SNF by Group with Time (without interim storage facility or repository available before 2045)

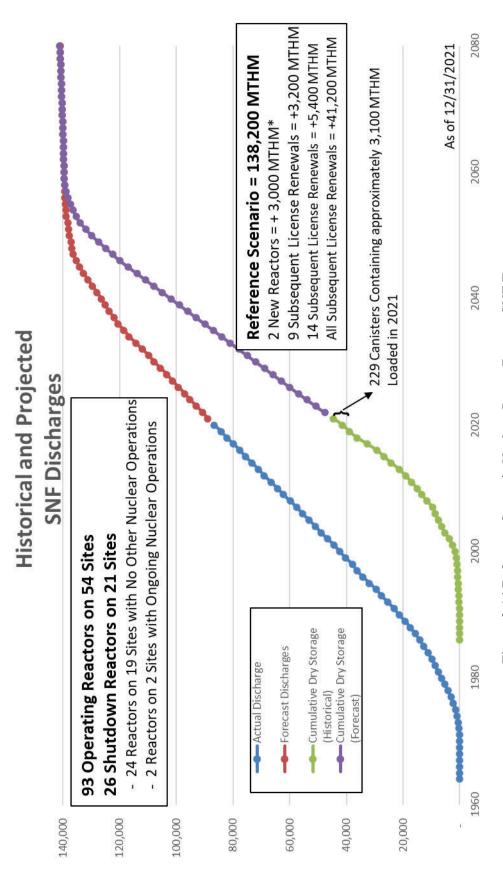


Figure 2-14 Reference Scenario Nuclear Power Reactor SNF Forecast

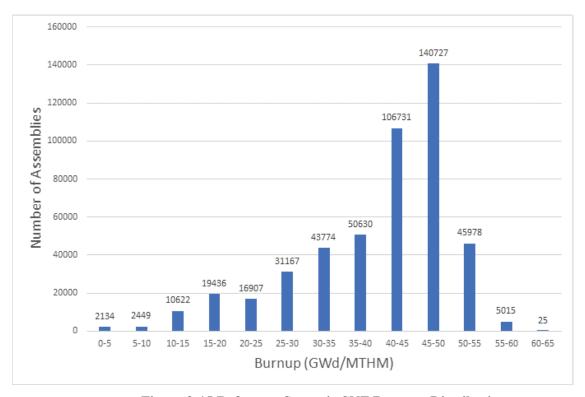
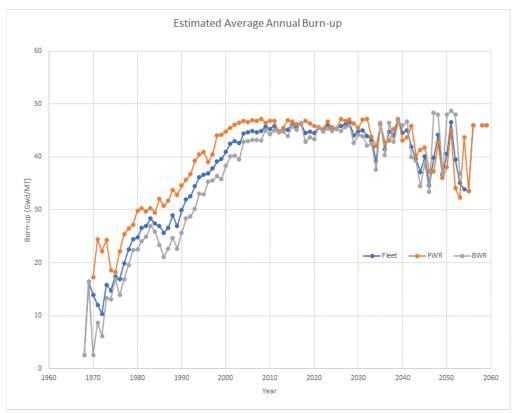



Figure 2-15 Reference Scenario SNF Burn-up Distribution

Figure 2-16 Reference Scenario Initial Enrichment Distribution for SNF Assemblies

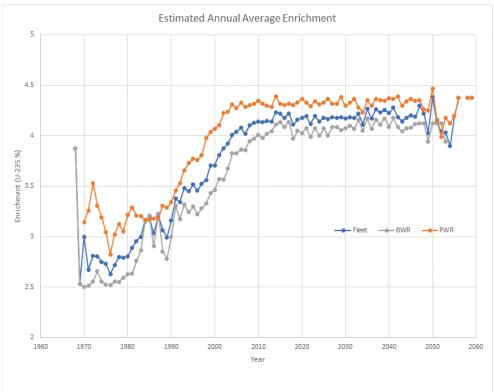


Figure 2-17 Estimated Average Annual Burn-up (GWd/MT) and Enrichment (U-235%) Through $2075\,$

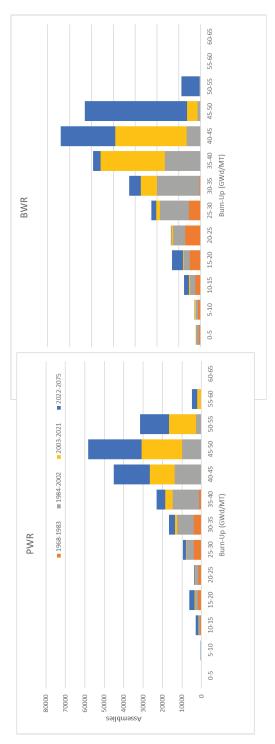


Figure 2-18 Estimated Burn-up (GWd/MTHM) Distribution by Assembly Count for SNF Through December 2075

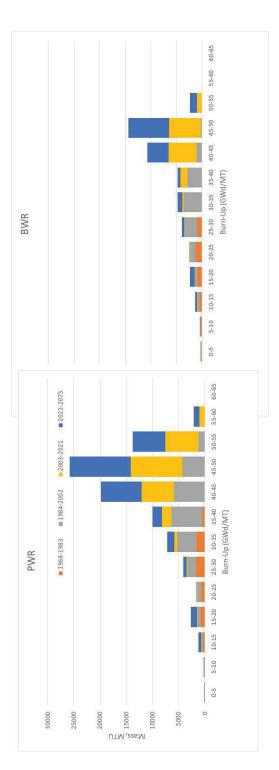


Figure 2-19 Estimated Burn-up (GWd/MTHM) Distribution by Initial Uranium Mass for SNF Through December 2075

2.2.2 Alternative Scenario 1: Addition of "New Builds"

Alternative Scenario 1 is based on the Reference Scenario with the addition of two "New Builds". This scenario has the same underlying assumptions that characterize the Reference Scenario with the additional assumption that two reactors that are currently under construction come online and begin discharging SNF over the next two years. For the purpose of the current revision to this report, these reactors, Vogtle, Units 3 & 4, are assumed to operate for 60 years. No other modifications to the Reference Scenario assumptions are made for this alternative scenario.

Table 2-13 provides the scenario inventory by reactor type as a function of the estimate phase. Actual quantities are used for discharges prior to 12/31/2017. Forecast discharges are used for the individual reactors for later time periods.

Table 2-14 provides the scenario inventory detailed to provide actual discharges through December 31, 2017 from the GC-859 database and the projected quantities between 1/1/2018 and 12/31/2021, and between 1/1/2022 and the end of the scenario (2083), by major storage location category and by site Group. One additional category beyond the Reference Scenario is included:

• "New Builds" includes two new reactors at an existing site in Georgia. Table 2-15 provides details of the projected discharges from these reactors.

The scenario totals approximately 482,800 assemblies containing approximately 141,200 MTU. The assumptions in this scenario are projected to generate an additional 7,170 SNF assemblies and approximately 3,030 MTU beyond that of the Reference Scenario.

Table 2-13, Projected NPR SNF Discharges for Alternative Scenario 1 by Reactor Type*

	1 anic 4-15, 11		INI DISCHALGE	IOI MICHINALI	Table 2-15. IT of etter INT IN SINE Discharges for Affect hative Section to by Acaetol 13 per	y incactor 1 y	3	
	SNF Discharges as of 12/31/2017	arges as of 2017	Forecast Discharges 1/1/18 to 12/31/21	harges 1/1/18 31/21	Forecast Discharge to 12/31/83	Forecast Discharges 1/1/22 to 12/31/83	Total Projected Discharged SNF	d Discharged
Reactor Type	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)
PWR	119,338	51,808	13,385	5,903	80,280	35,387	213,003	93,098
BWR	157,774	28,090	17,704	3,153	94,286	16,870	269,764	48,113
Totals	277,112	868'62	31,089	9,057	174,566	52,256	482,767	141,211

^{*} Includes NPR SNF inventory at Morris and that was transferred to DOE sites, other than debris from TMI-2. (Not all SNF transferred to DOE is still in the form of SNF, some has been processed and vitrified.)

Table 2-14. Projected SNF Inventory at NPR and Morris for Alternative Scenario 1 by Site Group (Group Status as of 12/31/2021)

			12/3	12/31/2021)					
		SNF Discharges as of	rges as of	Forecast 1	Forecast Discharges	Forecast Discharges	ischarges	Total Projected	ojected
		12/31/2017	2017	1/1/2018 to	1/1/2018 to 12/31/2021	1/1/2021 to 12/31/2082	12/31/2082	Discharged SNF	ed SNF
			Initial		Initial		Initial		Initial
	Site		Uranium		Uranium		Uranium		Uranium
Description	Group	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)
Operating Reactors at Group C Sites (86 Rx/50 Sites)*	C	217,285	62,556	26,544	7,765	160,973	47,273	404,802	117,594
Operating Reactors at Group C Sites with Announced Shutdown Date	C		,	C I			i i		•
(5 Rx/2 Sites) Operating Reactors at Group B Sites	В	4,989	2,115	1 286	319	8/1	370	6,613	2,804
Operating Reactors at Group B Sites with Announced Shutdown Date (0 Rx/0 Site)	B	10000	,,,	1			100	1	
Shutdown Reactors at Group B Sites (2 Rx/2 Sites)	В	3,773	616	1	1	ı	1	3,773	616
Reactors Shutdown Since 2000 (14 Rx/10 Sites)	A	27,093	7,995	2,406	634	I	ı	29,499	8,629
Reactors Shutdown Prior to 2000 (10 Rx/9 Sites)	А	7,659	2,815	ı	ı	ı	ı	7,659	2,815
Away-from-Reactor Storage	F	3,217	674	ı	ı	ı	1	3,217	674
New Builds (2 Rx/1 Sites)		ı	-	'	1	7,172	3,034	7,172	3,034
Totals		276,879	79,825	31,089	9,057	174,566	52,256	482,534	141,138

^{*} Excludes reactors with announced early shutdowns.

Table 2-15. Projected SNF Discharges for Assumed "New Builds"

		gected d SNF	Initial	Uranium	(MT)	1,517	1,517	3,034
	E	1 otal Projected Discharged SNF			Assy.	3,586	3,586	7,172
8	Future	rges 12/31/2082	Estimated Initial	Uranium	(MT)	1,517	1,517	3,034
13. I rojected SIVF Discharges for Assumed Thew Dunds	Forecast Future	Discharges 1/1/2022 to 12/31/2082			Assy.	3,586	3,586	7,172
S IOF ASSUIRE		12/31/2021	Initial	Uranium	(MT)	1	1	1
MAL DISCHALGE		Forecast Discharges 1/1/2018 to 12/31/2021			Assy.	1	ı	1
is. r rojecieu z	J	SNF Discharges as of 12/31/2017	Initial	Uranium	(MT)	I	ı	1
1 anie 2-1		SINF DISCR 12/31,			Assy.	1	1	1
				Assumed	Startup Year	2022	2023	
					Reactor [Unit] Startup Year	Vogtle 3	Vogtle 4	Totals

2.2.3 Alternative Scenario 2: Subsequent Licenses with Applications Pending

Alternative Scenario 2 provides the additional inventory from nine reactors which have applications pending for NRC approval of a "subsequent" or an additional 20 year operating license renewal. These nine reactors are:

- North Anna 1
- North Anna 2
- Point Beach Unit 1
- Point Beach Unit 2
- Oconee 1
- Oconee 2
- Oconee 3
- St. Lucie Unit 1
- St. Lucie Unit 2

Table 2-16 provides the scenario inventory by reactor type as a function of the estimate phase. Actual quantities are used for discharges to December 31, 2017. Forecast discharges are used for the individual reactors for later time periods.

Table 2-17 provides the scenario inventory detailed for actual discharges through December 31, 2017 from the GC-859 database; the projected quantities between 1/1/2018 and 12/31/2021; and the projected quantities between 1/1/2022 and the end of the scenario (2083), by major storage location category and by site Group.

The scenario totals approximately 483,000 assemblies containing 141,600 MTU. The assumptions in this scenario are projected to result in an increase of 7,373 SNF assemblies totaling 3,210 MTU relative to the projections of the Reference Scenario.

Table 2-16. Projected NPR SNF Discharges for Alternative Scenario 2 by Reactor Type*

	1 and 5 2-10. 1 1		MAIN DISCHALGE	Table 2-10. I Tojected INT IN SINE Discharges for Africa matrix Section 19 be	ve Section 10 4 b	y Incactor 1 yp		
	SNF Discharges : 12/31/2017	arges as of /2017	Forecast Discharges to 12/31/2021	Forecast Discharges 1/1/18 to 12/31/2021	Forecast Discharges 1/1/22 to 12/31/83	harges 1/1/22 31/83	Total Projected Discharged SNF	d Discharged IF
Reactor Type	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)
PWR	119,338	51,808	13,385	5,903	80,480	35,563	213,203	93,640
BWR	157,774	28,090	17,704	3,153	94,286	16,870	269,764	48,113
Totals	277,112	868'62	31,089	9,057	174,766	52,433	482,967	141,653

^{*} Includes NPR SNF inventory at Morris and that was transferred to DOE sites, other than debris from TMI-2. (Not all SNF transferred to DOE is still in the form of SNF, some has been processed and vitrified.)

Table 2-17. Projected SNF Inventory at NPR and Morris for Alternative Scenario 2 by Site Group (Group Status as of 12/31/2021)

				171711711					
		SNF Discharges as of 12/31/2017	rges as of 2017	Forecast Discharges 1/1/2018 to 12/31/2020	scharges 2/31/2020	Forecast Discharges 1/1/2021 to 12/31/2082	charges 2/31/2082	Total Projected Discharged SNF	ojected ed SNF
	Site Grou		Initial Uranium		Initial Uranium		Initial Uranium		Initial Uranium
Description	d	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)
Operating Reactors at Group C Sites (86 Rx/50 Sites)*	C	217,285	62,556	26,544	7,765	168,345	50,481	412,174	120,802
Operating Reactors at Group C Sites with Announced Shutdown Date (3 Rx/2 Sites)	C	4,989	2,115	753	319	871	370	6,613	2,804
Operating Reactors at Group B Sites (4 Rx/2 Sites)*	В	12,863	3,054	1,386	338	5,550	1,581	19,799	4,973
Operating Reactors at Group B Sites with Announced Shutdown Date (0 Rx/0 Site)	В	ı		ı	ı	ı	ı	I	I
Shutdown Reactors at Group B Sites (2 Rx/2 Sites)	В	3,773	616	I	ı	I	,	3,773	616
Reactors Shutdown Since 2000 (14 Rx/10 Sites)	А	27,093	7,995	2,406	634	1	1	29,499	8,629
Reactors Shutdown Prior to 2000 (10 Rx/9 Sites)	А	7,659	2,815	1	ı	ı	1	7,659	2,815
Away-from-Reactor Storage	H	3,217	674	1	ı	-	'	3,217	674
Totals		276,879	79,825	31, 089	9,057	174,766	52,432	482,734	141,313

^{*} Excludes reactors with announced early shutdowns.

44

Alternative Scenario 3: Future Subsequent License Renewal Applications

Alternative Scenario 3 provides the additional inventory from 14 reactors obtaining a "subsequent" license approval. These include the 9 reactors in alternate Scenario 2 and 5 reactors which have publicly expressed intentions to apply for a "subsequent" license renewal including:

- Monticello Unit 1
- Browns Ferry Units 1, 2, and 3
- Summer Unit 1

Table 2-18 provides the scenario inventory by reactor type as a function of the estimate phase. Actual quantities are used for discharges to December 31, 2017. Forecast discharges are used for the individual reactors for later time periods.

Table 2-19 provides the scenario inventory detailed for actual discharges through December 31, 2017 from the GC-859 database; the projected quantities between 1/1/2018 and 12/31/2021; and the projected quantities between 1/1/2022 and the end of the scenario (2083), by major storage location category and by site Group. The scenario totals approximately 494,000 assemblies containing 143,600 MTU. The assumptions in this scenario are projected to result in an increase of 18,424 SNF assemblies totaling 5,383 MTU relative to the projections of the Reference Scenario.

Table 2-18. Projected NPR SNF Discharges for Alternative Scenario 3 by Reactor Type*

143,559	494,018	54,606	185,817	9,057	31,089	79,898	277,112	Totals
49,920	279,944	18,677	104,466	3,153	17,704	28,090	157,774	BWR
93,640	214,074	35,929	81,351	5,903	13,385	51,808	119,338	PWR
Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Reactor Type
Total Projected Discharged SNF	Total Project	Forecast Discharges 1/1/22 to 12/31/83	Forecast Disc to 12/	Forecast Discharges 1/1/18 to 12/31/2021	Forecast Discharges to 12/31/2021	SNF Discharges as of 12/31/2017	SNF Disch 12/31	
)	INCALLLI	LIVE DUCING IV		DIVISCHAL	Table 2-10: I logette in the Bischarges for Antermative Section 10 by the action 1900	I and to all the	

^{*} Includes NPR SNF inventory at Morris and that was transferred to DOE sites, other than debris from TMI-2. (Not all SNF transferred to DOE is still in the form of SNF, some has been processed and vitrified.)

Table 2-19. Projected SNF Inventory at NPR and Morris for Alternative Scenario 3 by Site Group (Group Status as of 12/31/2021)

		SNF Disc. 12/3	SNF Discharges as of 12/31/2017	Forecast I 1/1/2018 to	Forecast Discharges 1/1/2018 to 12/31/2020	Forecast Discharges 1/1/2021 to 12/31/208:	Forecast Discharges 1/1/2021 to 12/31/2082	Total Projected Discharged SNF	ojected ged SNF
	Sife		Initial		Initial Uranium		Initial		Initial
Description	Group	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)
Operating Reactors at Group C Sites (86 Rx/50Sites)*	C	217,285	62,556	26,544	7,765	179,396	52,654	423,225	122,975
Operating Reactors at Group C Sites with Announced Shutdown Date (3 Rx/2 Sites)	C	4,989	2,115	753	319	871	370	6,613	2,804
Operating Reactors at Group B Sites (4 Rx/2 Sites)*	В	12,863	3,054	1,386	338	5,550	1,581	19,799	4,973
Operating Reactors at Group B Sites with Announced Shutdown Date (0 Rx/0 Site)	В	'		1	ı	ı	ı	I	ı
Shutdown Reactors at Group B Sites (2 Rx/2 Sites)	В	3,773	616	I	ı	ı	ı	3,773	616
Reactors Shutdown Since 2000 (14 Rx/10 Sites)	A	27,093	7,995	2,406	634	ı	ı	29,499	8,629
Reactors Shutdown Prior to 2000 (10 Rx/9 Sites)	A	7,659	2,815	ı	•	ı	1	7,659	2,815
Away-from-Reactor Storage	ഥ	3,217	674	1	1	ı	•	3,217	674
Totals		276,879	79,825	31, 089	9,057	185,817	54,605	493,785	143,486

^{*} Excludes reactors with announced early shutdowns.

46

Alternative Scenario 4: Subsequent License Renewal Applications for Reactors Without Announced Shutdown Dates 2.2.5

Alternative Scenario 4 provides the additional inventory assuming all reactors operating on 12/31/2025 ultimately obtain for a "subsequent" license renewal. This includes the new build reactors Vogtle, Units 3 & 4. This scenario provides a reasonable bounding scenario for the existing LWR

Table 2-20 provides the scenario inventory by reactor type as a function of the estimate phase. Actual quantities are used for discharges to December 31, 2017. Forecast discharges are used for the individual reactors for later time periods. Table 2-21 provides the scenario inventory detailed for actual discharges through December 31, 2017 from the GC-859 database; the projected quantities between 1/1/2018 and 12/31/2021; and the projected quantities between 1/1/2022 and the end of the scenario (2103), by major storage location category and by site Group. The scenario includes the new build reactors operating to 80 years. The scenario totals approximately 613,250 assemblies containing 179,400 MTU. The assumptions in this scenario are projected to result in an increase of 137,660 SNF assemblies totaling 41,200 MTU relative to the projections of the Reference Scenario.

 Γ Fable 2-20. Projected NPR SNF Discharges for Alternative Scenario 4 by Reactor Γ Type*

	SNF Discharges as 12/31/2017	SNF Discharges as of Forecast Discharges 1/1/18 Forecast Discharges 1/1/22 to 12/31/2017	Forecast Discharges 1/1/18 to 12/31/2021	harges 1/1/18 1/2021	Forecast Discharges 1/1/22 to 12/31/83	harges 1/1/22 31/83	Total Projected Discharged SNF	d Discharged F
Reactor Type	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)	Assemblies	Initial Uranium (MT)
PWR	119,338	51,808	13,385	5,903	137,406	60,473	270,129	118,184
BWR	157,774	28,090	17,704	3,153	167,644	29,936	343,122	61,179
Totals	277,112	868,67	31,089	9,057	305,050	90,410	613,251	179,363

^{*} Includes NPR SNF inventory at Morris and that was transferred to DOE sites, other than debris from TMI-2. (Not all SNF transferred to DOE is still in the form of SNF, some has been processed and vitrified.)

Table 2-21. Projected SNF Inventory at NPR and Morris for Alternative Scenario 4 by Site Group (Group Status as of 12/31/2021)

				12/21/21/21					
		SNF Disch 12/31	SNF Discharges as of 12/31/2017	Forecast Discharges 1/1/2018 to 12/31/2020	Forecast Discharges 1/1/2018 to 12/31/2020	Forecast I 1/1/2021 to	Forecast Discharges 1/1/2021 to 12/31/2082	Total Pa Discharg	Total Projected Discharged SNF
	į		Initial		Initial		Initial		Initial
	Site		Uranium		Uranium		Uranium		Uranium
Description	Group	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)
Operating Reactors at Group C Sites (86 Rx/50Sites)*	Э	217,285	62,556	26,544	7,765	281,910	78,649	525,739	148,970
Operating Reactors at Group C Sites with Announced Shutdown Date (3 Rx/2 Sites)	C	4,989	2,115	753	319	871	370	6,613	2,804
Operating Reactors at Group B Sites (4 Rx/2 Sites)*	В	12,863	3,054	1,386	338	12,661	7,326	26,910	10,718
Operating Reactors at Group B Sites with Announced Shutdown Date (0 Rx/0 Site)	В	I		ı	1	ı	,	ı	ı
Shutdown Reactors at Group B Sites (2 Rx/2 Sites)	В	3,773	616	I	ı	ı	ı	3,773	616
Reactors Shutdown Since 2000 (14 Rx/10 Sites)	А	27,093	7,995	2,406	634	'	٠	29,499	8,629
Reactors Shutdown Prior to 2000 (10 Rx/9 Sites)	А	7,659	2,815	ı	1	1	1	7,659	2,815
Away-from-Reactor Storage	F	3,217	674	ı	ı	'	ı	3,217	674
New Builds	C					9,608	4,064	9,608	4.064
Totals		276,879	79,825	31, 089	9,057	305,050	90,409	613,018	179,290

^{*} Excludes reactors with announced early shutdowns.

2.2.6 Scenario Comparison Summary

The methods described previously have been extended to provide the forecast discharges based on a number of scenarios. Four alternative scenarios, in addition to the Reference Scenario have been included in the current report. A summary and comparison are provided in Table 2-22 to illustrate the impact of the scenario assumptions for each alternative scenario, relative to the Reference Scenario. The results of the alternative scenarios considered in this revision of the report indicate a potential inventory that would vary from the Reference Scenario by an increase of approximately 6,200 assemblies (~2,700 MTU), in the case where nine reactors have subsequent operating licenses approved to over 137,650 assemblies (~41,200 MTU) if the entire fleet including the newbuild units Vogtle, Units 3 & 4 obtain a subsequent 20-year license extension.

Table 2-22. Summary Table of Projected NPR SNF Discharges*

			•	0		0				
	SNF Discl 12/3	SNF Discharges as of 12/31/2017	Forecast 1/1/2 12/3	Forecast Discharges 1/1/2018 to 12/31/2020	Forecas Disc 1/1/2021 to	Forecast Future Discharges 1/1/2021 to 12/31/2083	Total P Dischar	Total Projected Discharged SNF	Delta Refe	Delta from Reference
Scenario	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Reference Scenario 60 Year Operation unless Announced Otherwise	277,112	79,898	31,089	6,057	167,394	49,222	475,595	138,177	1	1
Scenario 1: Addition of 2 New Builds	277,112	79,898	31,089	9,057	174,566	52,256	482,767	141,211	7,172	3,034
Scenario 2: Subsequent Licenses with Applications Pending - 9 Reactors	277,112	79,898	31,089	6,057	174,766	52,433	482,967	141,653	7,373	3,210
Scenario 3: Future Subsequent License Renewal Applications – 14 Reactors	277,112	79,898	31,089	9,057	185,817	54,606	494,018	143,559	18,424	5,383
Scenario 4: Subsequent License Renewal Applications for Reactors Without Announced Shutdown Dates	277,112	79,898	31,089	9,057	305,050	90,410	613,251	179,363	137,657	41,187

* Prior to transfers excluding TMI-2 fuel debris.

2.3 Spent Nuclear Fuel Dry Storage Systems

SNF is initially stored at the nuclear plants in water-filled pools. Most of these pools were not designed for long term storage and many facilities have run out of capacity to store all the SNF in their pools. At these facilities, dry storage systems are utilized to store the SNF. As more facilities run out of pool storage and as reactors continue to generate SNF, the amount of dry storage is increasing. As of December 31, 2021, 3,563 dry storage SNF casks have been loaded at NPR sites containing 155,023 SNF assemblies (~41,600 MT) (Table 2-6 and Appendix B). The distribution of SNF by storage method is provided in Figure 2-12, over 47% of the SNF assemblies are now in dry storage.

As of the end of 2021, only two sites (Shearon Harris, and Wolf Creek) do not have dry storage capabilities. Wolf Creek has selected their dry storage system and initiated project activities, loading activities are expected to begin in 2022. Shearon Harris will not require dry storage before the end of the current license.

In 2021, utilities loaded 229 dry storage canisters containing 14,429 assemblies, and approximately 3,100 MT of SNF. This is the lowest annual loading since 2013 and is likely the result of COVID-19 loading deferments. Annual loading is expected to increase in 2021 and 2022.

SNF storage methods have changed since its inception and today there are three broad categories of storage methods: SNF assemblies in heavy composite wall casks which provide integral confinement and shielding (often called bare fuel casks), SNF in welded steel canisters loaded into storage/transportation overpacks and SNF in welded steel canisters stored in vented concrete storage overpacks which provide shielding for the SNF canister pending transportation. Table 2-23 provides the distribution by storage method.

Storage Method	Canisters/Casks	Assemblies
Bare Fuel Casks	232	10,822
Welded Canister in Storage/Transportation Overpacks	12	866
Weld Canisters in Concrete Storage Overpacks/Modules	3,319	143,229
Total	3,563	154,917

Table 2-23 Dry Storage Method Distribution

Only 12 welded canisters already loaded in storage/transportation overpacks are in use at 3 sites. These systems are no longer being loaded. See Table 2-24.

Table 2-24 Welded SNF Canisters in Storage/Transportation Overpacks

Reactor, Unit	Canisters	Assemblies
Humboldt Bay	5	390
Dresden, 1	4	272
Hatch	3	204
Total	12	866

Bare Fuel Casks (BFCs) are still in use and are being routinely loaded at Prairie Island. Peach Bottom stopped loading these systems in 2019. Table 2-25 provides details on these canisters. There are currently 232 BFCs in use containing 10,822 assemblies.

Table 2-25 Bare Fuel Casks by Reactor Site and Cask Vendor/Model

Reactor, Vendor/Model	Canisters	Assemblies
Surry Castor	26	558
Surry MC-10	1	24
Surry NAC 128S/T	2	56
Surry TN-32	26	832
McGuire TN-32	10	320
North Anna TN-32	28	896
Prairie Island TN-40	29	1,160
Prairie Island TN-40HT	18	720
Peach Bottom TN-68	92	6,256
Total	232	10,822

The majority (over 91%) of the SNF in dry storage is in welded canisters stored in concrete overpacks. These dry storage systems are referred to as vented concrete casks or modules. Table 2-26 provides the vendor distribution.

Figure 2-20 summarizes the current composition of SNF dry storage systems.

Table 2-26 Welded Canisters in Concrete Storage Overpacks by Vendor

Vendor	Canisters	Assemblies
Holtec	1,598	81,528
NAC	479	13,918
Transnuclear	1,177	45,950
Westinghouse/other	65	1,833
Total	3,319	143,229

Table 2-27 to 2-29 provides the storage systems used at the Group A and Group B shutdown sites [Leduc, 2012 updated to reflect current knowledge]. These tables also provide the transportation cask status for the anticipated storage cask [Leduc, 2012 updated to reflect current knowledge]. Except for Millstone 1, all the reactor sites listed in these tables have implemented a dry storage system. All SNF from the shutdown Millstone 1 reactor is currently still in wet storage. Dry storage operations at Millstone have thus far been limited to discharges from the two operating PWRs at this site.

An additional six casks are currently stored on the cask pad and two casks containing SNF from West Valley are stored on rail cars at CPP-2707 at INL. The TMI-2 core debris is currently stored in 29 casks at the TMI-2 ISFSI, also at INL. The Fort St. Vrain ISFSI stores 1,464 SNF elements in 244 canisters in a vault type storage system near Platteville, Colorado.

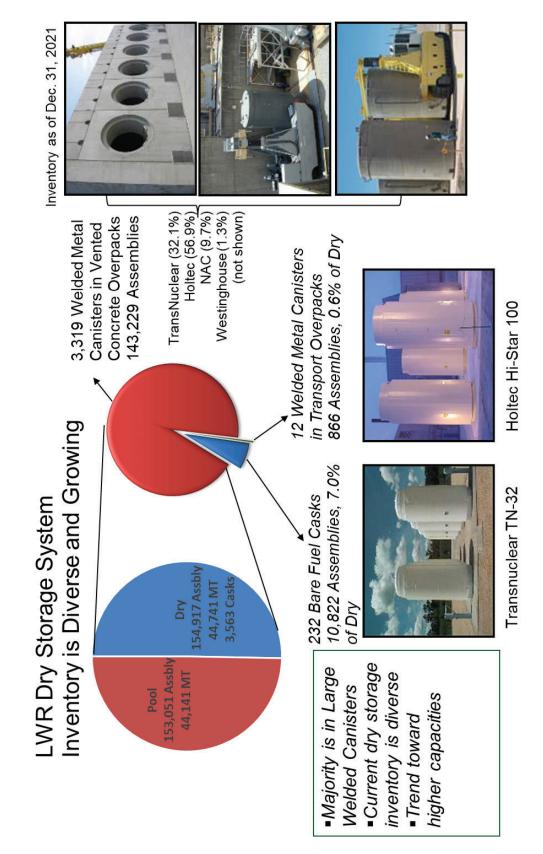


Figure 2-20 SNF Dry Storage Summary

Table 2-27. Cask Systems Used at Group A Sites Shutdown Prior to 2000

Reactor [Unit] Type ISFSI		ISFSI Load Dates ^a	Storage System/Canisters	Transport Cask Status
Big Rock Point	BWR	12/2002- 03/2003	Fuel Solutions W150 Storage Overpack W74 Canister	TS-125 (Docket No. 71-9276); Certificate expires 10/31/2022 None fabricated
Haddam Neck	PWR	05/2004- 03/2005	NAC-MPC/CY- MPC (26 Assy) canister	NAC-STC (Docket No. 71-9235); Certificate expires 5/31/2024. Foreign use versions fabricated.
Humboldt Bay 3	BWR	08/2008- 12/2008	Holtec HI-STAR HB/MPC-HB canister	HI-STAR HB (Docket No. 71-9261); Certificate expires 4/30/2024. SNF in canisters in fabricated casks. No impact limiters.
La Crosse	BWR	07/2012- 09/2012	THE CALIED WIL	
Maine Yankee	PWR	08/2002- 03/2004	NAC-UMS/UMS-24 canister	NAC-UMS Universal Transport Cask (Docket No. 71-9270); Certificate expires 11/20/2020. None fabricated
Rancho Seco	PWR	04/2001- 08/2002	TN Standardized NUHOMS/FO-DSC, FC-DSC, and FF DSC canisters	NUHOMS MP187 (Docket No. 71-9255); Certificate expires 11/30/2023. One cask fabricated. No impact limiters.
Trojan	PWR	12/2002- 09/2003	TranStor Storage Overpack/Holtec MPC-24E and MPC- 24EF canisters	HI-STAR 100 (Docket No. 71-9261) Certificate expires 4/30/2024. Units fabricated but dedicated to storage at other sites. No impact limiters
Yankee Rowe	PWR	06/2002- 06/2003	NAC-MPC/Yankee- MPC canister	NAC-STC (Docket No. 71-9235); Certificate expires 05/31/2024. Foreign use versions fabricated
Zion 1 & 2	PWR	2013-2016	NAC MAGNASTOR/TSC 37 canister	NAC MAGNATRAN (Docket No. 71-9356); Certificate expires 4/30/2024. No units fabricated.

a. Dates represent the dates that the spent nuclear fuel was transferred to the ISFSI.

Table 2-28. Cask Systems Used at Group A Sites Shutdown Post 2000

	Labit		sk Systems Used at Group A Sites Sl	nutuown 1 ost 2000
Reactor [Unit]	Туре	ISFSI Load Dates ^a	Storage System/Canisters	Transport Cask Status
Crystal River	PWR	2017- 2018	TransNuclear, Standardized NUHOMS 32PTH1 storage canister, in a Horizontal Concrete Overpack	TN MP197HB (Docket No. 71-9302) Certificate expires 8/31/2022. One unit started fabrication which has resumed.
Fort Calhoun	PWR	2006- 2019	TransNuclear, Standardized NUHOMS 32PT-S100 storage canister, in a Horizontal Concrete Overpack	TN MP197 HB (Docket No. 71-9302); Certificate expires 8/31/2022.
Kewaunee	PWR	2009- 2017	TransNuclear, Standardized NUHOMS 32PT-S100 storage canister, in a Horizontal Concrete Overpack Kewaunee also loaded the NAC MAGNASTOR 37 PWR assembly canister	TN MP197HB (Docket No. 71-9302); Certificate expires 8/31/2022. NAC MAGNATRAN (Docket 71-9356) Certificate expires 4/30/2024. None fabricated
Oyster Creek	BWR	2002- 2021	TransNuclear, Standardized NUHOMS 61BT and 61BTH canisters	NUHOMS MP187 (Docket No. 71-9255); Certificate expires 11/30/2023. One cask fabricated. No impact limiters.
Pilgrim	BWR	2015-?	HI-STORM 100 Vertical Concrete Storage Cask containing MPC-68 Canisters	HI-STAR 100 (Docket No. 71-9261) Certificate expires 4/30/2024. No impact limiters
San Onofre	PWR	2003- 2020	TransNuclear, Advanced NUHOMS 24PT1 and 24 PT4 storage canister, in a Horizontal Concrete Overpack SONGS is currently loading the Holtec UMAX MPC-37 canister	NUHOMS MP187 (Docket No. 71-9255); Certificate expires 11/30/2023. TN MP197HB (Docket No. 71-9302); Certificate expires 8/31/2022. HI-STAR 190 (Docket No. 71-9373), Certificate expires 8/31/2022. None fabricated.
Vermont Yankee	BWR	2008- 2018	HI-STORM 100 Vertical Concrete Storage Cask containing MPC-68 and MPC-68M DSC canisters	HI-STAR 100 (Docket No. 71-9261) Certificate expires 4/30/2024.
Duane Arnold	BWR	2003-	TransNuclear, Advanced NUHOMS 61BT and 61BTH storage canister, in a Horizontal Concrete Overpack	NUHOMS MP187 (Docket No. 71-9255); Certificate expires 11/30/2023. One cask fabricated. No impact limiters.
Indian Point	PWR	2008- ongoing	HI-STORM Vertical Concrete Storage Cask containing MPC-32 canisters	HI-STAR 100 (Docket No. 71-9261) Certificate expires 4/30/2024. No impact limiters fabricated
Three Mile Island	PWR	2021-??	NAC MAGNASTOR/TSC-37	NAC MAGNATRAN (Docket 71-9356) Certificate expires 4/30/2024. None fabricated

a. Dates represent the dates that the spent nuclear fuel was transferred to the ISFSI.

Table 2-29. Cask Systems Used at Shutdown Reactors at Group B Sites

Table 2 27. Cash Systems osed at Shataowii Reactors at Group 2 Sites									
Reactor [Unit]	Туре	ISFSI Load Dates ^a	Storage System/Canisters	Transport Cask Status					
Dresden 1	BWR	2000-ongoing	HI-STORM Vertical Concrete Storage Cask containing MPC-68 canisters. Four HI- STAR 100 casks are used to store some SNF from Dresden 1.	HI-STAR 100 (Docket No. 71-9261) Certificate expires 4/30/2024. No impact limiters fabricated					
Millstone 1	BWR	N/A	All BWR SNF at the Millstone is currently in pool storage.	N/A					

a. Dates represent the dates that the spent nuclear fuel was transferred to the ISFSI.

2.4 Spent Nuclear Fuel Characteristics

To date SNF has been discharged with burnup ranging from less than 20 gigawatt-days per metric ton (GWd/MT) and projected to approach 60 GWd/MT. Tables 2-30 through 2-33 and Figures 2-21 to 2-24 present the radionuclide decay heat for the 40 and 60 GWd/MT burnup PWR and 30 and 50 GWd/MT BWR as representative SNF. The figures and tables provide the total decay heat and decay heat by isotopic groups with similar isotopic parameters. Discharged SNF compositions (in g/MT) for representative SNF are available in Appendix C of the Used Fuel Disposition Campaign (UFDC) Inventory report [Carter, 2013].

Table 2-30. PWR 40 GWd/MT Spent Nuclear Fuel Decay Heat

	Decay Heat (Watts/MT)								
Elements	Time (years)								
	1	10	30	50	70	100	300	500	
Gases H, C, Xe, Kr, I	0	0	0	0	0	0	0	0	
Cs/Sr/Ba/Rb/Y	2,765	1,054	566	354	222	110	1	0	
Noble Metals Ag, Pd, Ru, Rh	2,752	11	0	0	0	0	0	0	
Lanthanides La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Ho, Tm	3,593	64	10	2	0	0	0	0	
Actinides Ac, Th, Pa, U	0	0	0	0	0	0	0	0	
Transuranic Np, Pu, Am, Cm, Bk, Cf, Es	819	348	332	309	287	258	159	116	
Others	515	15	2	1	0	0	0	0	
Totals	10,444	1,492	910	666	509	368	160	116	

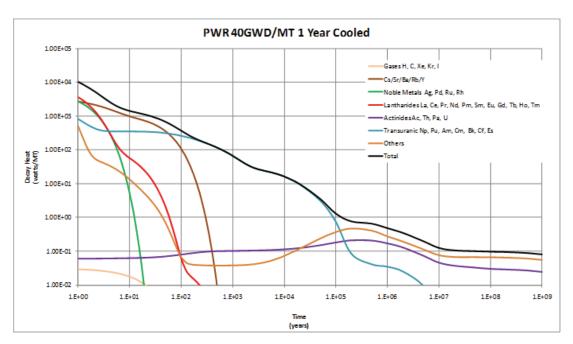


Figure 2-21. PWR 40 GWd/MT Spent Nuclear Fuel Decay Heat.

Table 2-31. PWR 60 GWd/MT Spent Nuclear Fuel Decay Heat

	Decay Heat (Watts/MT)								
Elements	Time (years)								
	1	10	30	50	70	100	300	500	
Gases H, C, Xe, Kr, I	0	0	0	0	0	0	0	0	
Cs/Sr/Ba/Rb/Y	4,608	1,576	824	516	323	160	1	0	
Noble Metals Ag, Pd, Ru, Rh	3,447	14	0	0	0	0	0	0	
Lanthanides La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Ho, Tm	3,843	109	17	3	1	0	0	0	
Actinides Ac, Th, Pa, U	0	0	0	0	0	0	0	0	
Transuranic Np, Pu, Am, Cm, Bk, Cf, Es	1,515	785	613	516	449	381	199	139	
Others	522	21	3	1	0	0	0	0	
Totals	13,936	2,505	1,458	1,036	773	541	201	139	

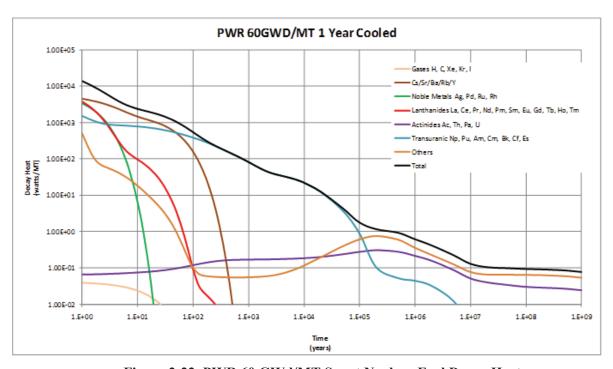


Figure 2-22. PWR 60 GWd/MT Spent Nuclear Fuel Decay Heat.

Table 2-32. BWR 30 GWd/MT Spent Nuclear Fuel Decay Heat

Table 2 52. B	Decay Heat (Watts/MT)									
Elements		Time (years)								
	1	10	30	50	70	100	300	500		
Gases H, C, Xe, Kr, I	0	0	0	0	0	0	0	0		
Cs/Sr/Ba/Rb/Y	1,895	778	425	266	166	82	1	0		
Noble Metals Ag, Pd, Ru, Rh	2,042	8	0	0	0	0	0	0		
Lanthanides La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Ho, Tm	2,675	43	6	1	0	0	0	0		
Actinides Ac, Th, Pa, U	0	0	0	0	0	0	0	0		
Transuranic Np, Pu, Am, Cm, Bk, Cf, Es	588	225	234	225	213	196	127	94		
Others	403	12	2	0	0	0	0	0		
Totals	7,603	1,067	667	493	380	278	128	94		

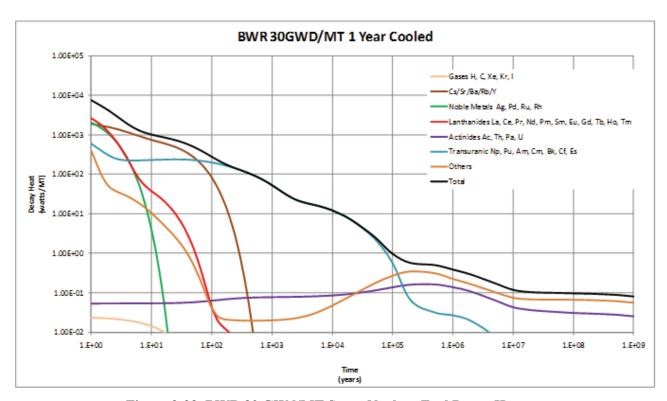


Figure 2-23. BWR 30 GWd/MT Spent Nuclear Fuel Decay Heat.

Table 2-33. BWR 50 GWd/MT Spent Nuclear Fuel Decay Heat

	Decay Heat (Watts/MT)									
Elements		Time (years)								
	1	10	30	50	70	100	300	500		
Gases H, C, Xe, Kr, I	0	0	0	0	0	0	0	0		
Cs/Sr/Ba/Rb/Y	3,558	1,257	662	414	259	128	1	0		
Noble Metals Ag, Pd, Ru, Rh	2,669	11	0	0	0	0	0	0		
Lanthanides La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Ho, Tm	2,734	92	14	3	1	0	0	0		
Actinides Ac, Th, Pa, U	0	0	0	0	0	0	0	0		
Transuranic Np, Pu, Am, Cm, Bk, Cf, Es	1,627	760	591	496	433	369	199	139		
Others	420	17	2	1	0	0	0	0		
Totals	11,008	2,137	1,271	914	693	498	200	139		

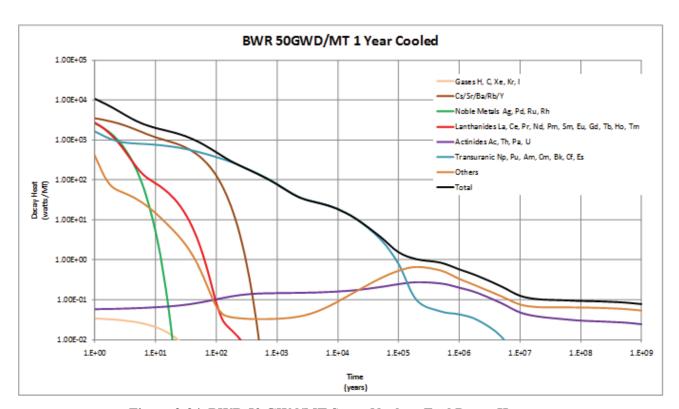


Figure 2-24. BWR 50 GWd/MT Spent Nuclear Fuel Decay Heat.

3. SNF AT DOE LOCATIONS

Since the inception of nuclear reactors, the DOE and its predecessor agencies operated or sponsored a variety of production, research, test, training, and other experimental reactors both domestically and overseas. The Naval Nuclear Propulsion Program (NNPP) has generated SNF from operation of nuclear-powered submarines and surface ships, operation of land-based prototype reactor plants, operation of moored training ship reactor plants, early development of nuclear power reactors, and irradiation test programs.

3.1 DOE Managed SNF

The SNF located at DOE sites can be generally categorized as:

SNF generated in production reactors supported defense programs and other isotope production programs. An example of SNF existing today from production reactors is the N Reactor SNF stored at Hanford. This is the largest quantity (over 2,100 MTHM) by mass and is included in Section 3.1.1.

DOE sponsored nuclear research activities in the U.S. and overseas. There are four main DOE research reactors; the Advanced Test Reactor (ATR) and the Transient Reactor Test (TREAT) Facility at Idaho National Laboratory (INL), the Annular Core Research Reactor (SNL) and the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). In addition to these there is also the Advanced Test Reactor Critical Facility (a low-power version of the higher-powered ATR core) and the Neutron Radiography (NRAD) Reactor (a TRIGA-type reactor), both at INL. Spent nuclear fuel from ATR is stored in the ATR canal prior to transfer to dry storage at INL's CPP-603 facility, while spent nuclear fuel from HFIR is stored in storage racks within the HFIR pool outside the core zone awaiting shipment to Savannah River Site. Additional information regarding DOE-Research Reactors can be found in Appendices F and H, the listing by state and congressional district and the state-by-state maps, respectively. The inventory is included in Section 3.1.1.

There are numerous university and other government agency research reactor sites within the United States. Permanently discharged SNF from research reactors is stored primarily at the INL and SRS and included in Section 3.1.1. (See Section 4 for more information on the university and other government agency reactors.)

DOE has some early demonstration power reactor SNF remaining from Atomic Energy Commission activities. This inventory is also included in Section 3.1.1

DOE has some NPR SNF resulting from the R&D activities supporting the nuclear power reactors and geologic repository development activities. This inventory is discussed in Section 3.1.2.

SNF resulting from The Nuclear Naval Propulsion Program is included in Section 3.2

3.1.1 SNF Inventory

The source of current inventory data for this study is the Spent Fuel Database (SFD) maintained by the National Spent Nuclear Fuel Program (NSNFP) at the INL [NSNFP, 2022]. The current total inventory of SNF is approximately 2,273 MTHM (12/31/2021). DOE continues to operate several research reactors and will be receiving SNF from universities and the foreign research reactor return program. Projected material amounts (out to 2035) are relatively small (about 14 MTHM) and there is some uncertainty as to the total amount that will be generated or received. This quantity includes prior receipts of research reactor SNF from all sources, including SNF remaining from very early power demonstration reactors (approximately 105 MT) such as Shippingport and Peach Bottom Unit 1. This quantity does not include any Naval spent nuclear fuel (see section 3.2) nor the 174 MTHM of spent nuclear fuel of NPR origin (See Section 3.1.2) used in various Research and development studies.

SNF comes from a wide range of reactor types, such as light- and heavy-water-moderated reactors, graphite-moderated reactors, and breeder reactors, with various cladding materials and enrichments, varying from depleted uranium to over 93% enriched ²³⁵U. Many of these reactors, now decommissioned, had unique design features, such as core configuration, fuel element and assembly geometry, moderator and coolant materials, operational characteristics, and neutron spatial and spectral properties.

As described below, there is a large diversity of reactor and fuel designs. In addition, there is a relatively large number (over 215,000) of fuel pieces or assemblies, which range from many pieces for some reactors (N Reactor) to a few individual pieces for other unique reactors (Chicago Pile-5 converter cylinders).

There are several hundred distinct types of DOE SNF. This SNF inventory was reduced to 34 groups based on fuel matrix, cladding, cladding condition, and enrichment. These parameters were selected because of their potential relevance to supporting system-level evaluations.

A discussion of each of the 34 groupings is presented in Appendix D of UFDC Inventory [Carter, 2013]. The discussions of each of the 34 groups provide a description of the SNF group and an example of SNF that makes up the group. When appropriate, a more detailed description of a SNF with the largest percentage of MTHM within each group is provided. This discussion is not intended to address each SNF in the group.

Appendix D Table D-1 of UFDC Inventory [Carter, 2013] describes the typical ranges of the nominal properties for SNF in the 34 groups.

3.1.1.1 **SNF Radionuclide Inventory**

Process knowledge and the best available information regarding fuel fabrication, operations, and storage for DOE SNF are used to develop a conservative source-term estimate. The DOE SNF characterization process relies on pre-calculated results that provide radionuclide inventories for typical SNF at a range of decay times. These results are used as templates that are scaled to estimate radionuclide inventories for other similar SNF.

To estimate an SNF source term, the appropriate template is selected to model the production of activation products and transuranics by matching the reactor moderator and fuel cladding, constituents, and beginning-of-life enrichment. Pre-calculated radionuclide inventories are extracted from the appropriate template at the desired decay period and then scaled to account for differences in fuel mass and specific burnup. Appendix A of "DOE Managed Waste" [Wilson, 2016] lists the projected radionuclide inventory of DOE SNF for the nominal and bounding cases as of 2010. The nominal case is the expected or average inventory. The bounding case represents the highest burnup assembly or accounts for uncertainties if fuel burnup is not known.

From the SFD [NSNFP, 2022], the total estimated nominal radionuclide inventory is 96 million Ci for the year 2030. The estimated bounding radionuclide inventory is 195 million Ci for the year 2030. The nominal case is the expected or average inventory. The bounding case represents the highest burnup assembly or accounts for uncertainties if fuel burnup is not known.

3.1.1.2 **SNF Storage/Canisters**

SNF has been stored throughout the U.S. at numerous facilities. A decision was made in 1995 to consolidate the material at three existing DOE sites; Hanford Site in Washington (2,126 MT), the INL in Idaho (114 MT), and the SRS in South Carolina (27 MT). The vast majority of SNF is currently stored at these three sites. The storage configurations vary for each of the sites and include both dry and wet storage. On a MTHM basis, a large portion (~2,100 MT) of the SNF is contained in about 388 Multi-canister Overpacks (MCO) at the Hanford site. The MCO is a sealed, stainless steel canister which is about 24 inches in diameter and about 14 feet long.

For the remaining SNF, a standard disposal canister design was developed which included canisters of 18-and 24-inch diameters and 10- and 15-foot lengths. Because of uncertainty in disposal and packaging efficiencies, the total number of canisters to be generated ranged from about 50% to 160% of a point estimate of 2,682. Currently, no SNF has been packaged into the standardized disposal canister design.

The radionuclide inventory and resulting decay heat was calculated for the year 2030 based on the estimated radionuclide inventory as described in Section 3.1.2. The decay heat per canister is calculated as the estimated decay heat associated with each SNF record divided by the number of canisters (unrounded) required for the SNF (based on volume). These values are considered adequate for this scoping evaluation.

Table 3-1 provides the distribution of standard canisters based on the 2030 nominal decay heat using the 2,682 nominal total canister count. Table 3-1 provides detail for the DOE SNF. The 2030 data indicate over 60% of the DOE SNF canisters will be generating decay heat of less than 100 watts. About 95% of the DOE SNF canisters will be generating decay heat less than 300 watts. Nearly all the DOE SNF canisters (>99%) will be generating less than 1 kW. Since the methodology used to calculate the radionuclide inventory is very conservative, some SNF have radionuclide amounts based on bounding assumptions resulting in extreme decay heat values.

Table 3-1. Spent Nuclear Fuel Canister Decay Heat in 2030 [NSNFP, 2022]

	DOE SNF			
Decay heat per canister (watts)	Number of canisters ^j	Cumulative %		
<50	1,386	51.6%		
50 - 100	459	68.8%		
100 - 220	647	92.9%		
220 - 300	100	96.7%		
300 - 500	77	99.5%		
500 - 1000	6	99.7%		
1000 - 1500	-	99.7%		
1500 - 2000	-	99.7%		
>2000	6	100.0%		
Total	2,682			

^j The fractional canister counts from the application of a loading algorithm in the SFD database have been rounded up to the whole canister. These provide a relative comparison for the quantities in each decay heat range and do not represent a future "as loaded" condition. These do not sum to the "Total" provided by the SFD database. The Cumulative percentages use the algorithm values.

3.1.2 SNF from NPR Research and Development Activities

The Spent Fuel Database (SFD) maintained by the National Spent Nuclear Fuel Program at the INL [NSNFP, 2020] tracks spent nuclear fuel of NPR origin which is being managed by DOE. For this study, NPR SNF is identified as having been discharged from the reactors listed in Table 2-1 as well as Three Mile Island Unit 2 debris, and Ft. St. Vrain.

There is 173.6 MTHM of NPR SNF, as defined in this report, that is currently managed by DOE according to the SFD. The contributors to this total include 81.6 MTHM of Three Mile Island Unit 2 core debris, 23.6 MTHM for Ft St. Vrain SNF (both in Colorado and Idaho), and 68.4 MTHM from other NPR sites (e.g., Surry, Ginna, and Robinson) used in various research and development programs. This 68.4 MTU is less than the 73 MTU reported in GC-859 to have been transferred to DOE. This is due to DOE material disposition programs, vitrification research programs, and post irradiation examination.

The intact portion of this SNF from LWRs could be transported and disposed in six waste packages sized to accommodate 21 PWR assemblies or 44 BWR assemblies. The non-intact portion of this SNF could be loaded into DOE standard canisters (see Section 3.1.2 for a description of the standard canister) before shipment and disposal. The non-intact portion is projected to generate 944 DOE standard canisters. Table 3-2 provides a breakdown of the decay heat characteristics for all 950 canisters containing SNF of NPR origin.

Table 3-2. Canister Decay Heat Characteristics of NPR Origin SNF in DOE Possession

	2030		
Decay heat per canister (watts)	Number of DOE Standard Canisters ^k	Cumulative %	
<50	792	83.4%	
50 - 100	54	89.0%	
100 - 220	33	92.5%	
220 - 300	40	96.7%	
300 - 500	3	97.0%	
500 - 1000	24	99.6%	
1000 - 1500	0	99.6%	
1500 - 2000	0	99.6%	
>2000	5	100.0%	
Totals	950		

^k The fractional canister counts from the application of a loading algorithm in the SFD database have been rounded up to the next whole canister. These provide a relative comparison for the quantities in each decay heat range and do not represent a future "as loaded" condition. These do not sum to the "Total" provided by the SFD database. Cumulative % is based on the algorithm values.

3.2 Naval SNF

The NNPP has generated SNF from operation of nuclear-powered submarines and surface ships, operation of land-based prototype reactor plants, operation of moored training ship reactor plants, early development of nuclear power, and irradiation test programs. The source of naval SNF information for this report is the unclassified portion of the Yucca Mountain Repository License Application [DOE, 2008] and an evaluation report on options for permanent geologic disposal of spent nuclear fuel and HLW [SNL, 2014]. Since most details regarding naval SNF are classified, only limited information is presented herein.¹

3.2.1 Naval SNF Inventory

Naval SNF consists of solid metal and metallic components that are nonflammable, highly corrosion-resistant, and neither pyrophoric, explosive, combustible, chemically reactive, nor subject to gas generation by chemical reaction or off-gassing. Approximately 39 MTHM of Naval SNF currently exists with a projected inventory of less than 65 MTHM in 2035.

New naval nuclear fuel is highly enriched uranium. As a result of the high uranium enrichment, very small amounts of transuranics (TRU) are generated by end of life when compared to NPR SNF.

3.2.2 Naval SNF Radionuclide Inventory

Each naval SNF canister is loaded such that thermal, shielding, criticality, and other characteristics of the received waste will be within the proposed repository waste acceptance requirement limits. As a result, a radionuclide inventory for a representative naval SNF canister, five years after reactor shutdown, was developed for use in the repository source term analyses (UFD Inventory Appendix E, Table E-1 [Carter, 2013]). Different packaging designs may be needed dependent upon the future disposal options.

3.2.3 Naval SNF Storage/Canisters

SNF from the NNPP is temporarily stored at the INL. To accommodate different naval fuel assembly designs, naval SNF is loaded in either a naval short SNF canister or a naval long SNF canister. Both were sized to fit within the proposed design for the Yucca Mountain repository waste package.

The outer diameter of the naval SNF canister is 66 in. nominal (66.5 inches maximum). The maximum external dimensions ensure naval SNF canisters fit into the waste packages. The naval short SNF canister is 185.5 inches (nominal) in length (187 inches maximum), and the naval long SNF canister is 210.5 inches (nominal) in length (212 inches maximum). Except for length, the geometry of the naval SNF canisters are identical.

Approximately 400 naval SNF canisters (310 long and 90 short) are currently planned to be packaged and temporarily stored pending shipment. The average thermal load is 4,250 watts/container. The maximum heat load of all containers will be under the 11,800 watts/container limit established for Yucca Mountain. The NNPP is responsible for preparing and loading naval SNF canisters and began canister loading operations in 2002. As of December 31, 2021, 197 naval SNF canisters have been loaded and are being temporarily stored at INL. Table 3-3 provides the distribution of Naval SNF canisters based on nominal decay heat. [SNL, 2014]

¹ Before using the information in this section for studies involving naval SNF, contact the NNPP Program Manager, Naval Spent Nuclear Fuel at (202) 781-5903.

Table 3-3. Naval SNF Canister Decay Heat

Decay heat per canister (watts)	Number of canisters	Cumulative %
500 to 1000	13	3.3%
1000 to 2500	36	12.3%
2500 to 5000	94	35.8%
>5000	257	100.0%
Total	400	

THIS PAGE INTENTIONALLY LEFT BLANK

4. SNF AT OTHER SITES

Spent Nuclear Fuel at other sites includes: University Research Reactors, other Government Agency reactors, and Commercial Research and Development Centers. The SNF quantities are derived from the Spent Fuel Database version 8.1.8. The total SNF is approximately 1.35 MT.

4.1 University Research Reactors

University research reactors operate at power levels that range from around 0.005 kW (AGN-201) up to 20 MW (NIST). Permanently discharged SNF from these reactors is generally sent to either SRS or INL, and the SNF is managed by DOE and included in the inventory discussed in Section 3.1. Excluding the AGN-201 reactors located at Idaho State University, Texas A&M University, and the University of New Mexico and which have such a low fuel bumup rate that they should never have to be refueled in their useful lifetime, there are twenty university research reactors in operation at twenty sites. Table 4-1 provides a listing of the university reactors and the quantities of spent nuclear fuel at those locations. The quantities reported include the in-core amounts and SNF which has not reached the end of its useful life. Permanently discharged SNF is returned to DOE and included in the inventory in Section 3.1.1. Additional information regarding research reactors at universities is included in the listing by state and congressional district (Appendix F) and the state-by-state maps (Appendix G).

Table 4-1. University Research Reactors

State	Installation	Inventory (kg)
C 1:C :	University of California (Irvine)	20.34
California	University of California (Davis)	80.34
Florida	University of Florida (Gainesville)	19.30
Indiana	Purdue University (West Lafayette)	12.03
Kansas	Kansas State University (Manhattan)	21.44
Maryland	University of Maryland (College Park)	19.84
	University of Massachusetts-Lowell	10.64
Massachusetts	Massachusetts Institute of Technology (Cambridge)	20.21
Missouri	University of Missouri (Columbia)	28.95
Wiissouri	University of Missouri (Rolla)	25.52
North Carolina	North Carolina State University (Raleigh)	484.05
Ohio	Ohio State University (Columbus)	26.15
0,,,,,,,,	Oregon State University (Corvallis)	75.63
Oregon	Reed College (Portland)	18.95
Pennsylvania	Pennsylvania State University (University Park)	37.94
Texas	Texas A&M University (College Station)	68.76
	University of Texas (Austin)	42.83
Utah	University of Utah (Salt Lake City)	25.77
Washington	Washington State University (Pullman)	57.53
Wisconsin	University of Wisconsin (Madison)	58.29
Total		1,154.48

4.2 Other Government Agency Research Reactors

Table 4-2 lists research reactors operated by other government organizations. Permanently discharged SNF from these reactors is generally sent to either SRS or INL, and the SNF is managed by DOE and included in the inventory discussed in Section 3.1.

Table 4-2. Other Government Agency Research Reactors SNF

State	Installation	Inventory (kg)*
Colorado	U.S. Geological Survey	65.76
	(Denver)	
Maryland	National Institute of Standards and	13.91
	Technology	
	(Gaithersburg)	
	Armed Forces Radiobiology Research	18.27
	Institute	
	(Bethesda)	
Rhode Island	Rhode Island Atomic Energy	19.24
	Commission	
	(Narragansett)	
Total		117.17

4.3 Commercial Research and Development Centers

Table 4-3 lists commercial research and development centers. Three sites have reactors while the BWX Technologies site in Virginia is a fuel cycle research center conducting SNF destructive examinations among other activities.

Table 4-3. Commercial Research and Development Centers SNF

State	Installation	Inventory (kg)
California	Aerotest Research Reactor	17.50
	(San Ramon)	
	General Electric	3.98
	(Pleasanton)	
Michigan	Dow Chemical, Research Reactor	14.81
	(Midland)	
Virginia	BWX Technology,	43.89
	Fuel cycle R&D Center	
	(Lynchburg)	
		00.10
Total		80.19

THIS PAGE INTENTIONALLY LEFT BLANK

5. REPROCESSING WASTE

Aqueous reprocessing of SNF has occurred at the Hanford Site, the INL, and the SRS. The INL is using electro-chemical processing to treat up to 60 MTHM of sodium bonded SNF. The Defense Waste Processing Facility at SRS is converting the reprocessing waste into borosilicate glass and a reprocessing waste treatment facility is under construction at the Hanford site.

In addition, some NPR SNF was reprocessed at a private company, Nuclear Fuel Services, located at the Western New York Service Center which is owned by the New York State Energy Research and Development Authority. The reprocessing waste has been treated by conversion into borosilicate glass and is stored on the site. (Section 5.2)

5.1 Reprocessing Waste at DOE Sites

High-level radioactive waste^m is the highly radioactive material resulting from the reprocessing of SNF, including liquid waste produced directly in reprocessing and any solid material derived from such liquid waste that contains fission products in sufficient concentrations; and other highly radioactive material that is determined, consistent with existing law, to require permanent isolation. Aqueous reprocessing waste is in a liquid form and historically has been stored in underground metal storage tanks. Long term storage of reprocessing waste requires stabilization of the wastes into a form that will not react, nor degrade, for an extended period of time. Two treatment methods used for stabilization of the waste are vitrification or calcination. Vitrification is the transition of the reprocessing waste into a glass by mixing with a combination of silica sand and other constituents or glass forming chemicals that are melted together and poured into stainless steel canisters. Glass canisters have a nominal diameter of 2 feet and have heights of 10 or 15 feet. Calcination of reprocessing waste is accomplished by injecting the waste with calcining additives into a fluidized bed to evaporate the water and decompose the remaining constituents into a granular solid material.

In addition to aqueous reprocessing, the INL is using electro-chemical processing to treat up to 60 MTHM of sodium bonded SNF. The process converts the bond sodium into sodium chloride and separates the SNF into a uranium product and reprocessing waste. The reprocessing waste is produced in two forms, ceramic and metal. The ceramic waste form primarily contains the salt electrolyte with active metal fission products and the metal waste is primarily the cladding hulls and undissolved noble metals. The process has been demonstrated and used to treat about 4 MTHM of sodium bonded SNF to date.

5.1.1 Current Reprocessing Waste Inventory

The sources of inventory data for this report includes information collected by the Department's OCRWM for the Yucca Mountain License Application [DOE, 2008] and recent site treatment plans. [DOE, 2017; Chew, 2019]

The INL reprocessed SNF from naval propulsion reactors, test reactors, and research reactors to recover uranium and generated approximately 30,000 m³ of liquid reprocessing waste. Between 1960 and 1997, the INL converted their liquid reprocessing waste into about 4,400 m³ of a solid waste form called calcine

^m This report does not necessarily reflect final classifications for the material being discussed; for example, material referred to as "HLW" or "SNF" may be managed as HLW and SNF, respectively, without having been actually classified as such for disposal. In this report "reprocessing waste" primarily refers to the waste stream containing most of the fission products which is typically extracted during the first cycle of nuclear fuel reprocessing and, for aqueous reprocessing, often proposed for vitrification.

(a granular solid with the consistency of powder laundry soap). These solids are stored retrievably on-site in stainless steel bins (like grain silos but smaller) within concrete vaults.

The SRS has reprocessed defense reactor SNF and nuclear targets to recover valuable isotopes since 1954 producing more than 600,000 m³ of liquid reprocessing waste. Through evaporation and vitrification of the waste, SRS has reduced this inventory to the current level of about 133,000 m³ of liquid reprocessing waste. [Chew, 2016] SRS began vitrifying reprocessing waste in 1996 and through December 31, 2021 has produced 4,287 vitrified waste canisters (2 feet × 10 feet).

The Hanford Site reprocessed defense reactor SNF since the 1940s and has generated about 220,000 m³ of liquid reprocessing waste to recover the plutonium, uranium, and other elements for defense and other federal programs. Construction of a vitrification facility is currently underway. Table 5-1 summarizes the current reprocessing inventory.

Table 5-1. Current Reprocessing Waste Inventory

Site	Vitrified Waste Canisters ¹	Liquid Reprocessing Waste ² (m ³)	Dry Reprocessing Waste ³ (m ³)
Hanford	N/A	220,000	N/A
INL	N/A	N/A	4,400
SRS	4,2874	133,000	N/A

- 1. Vitrified Reprocessing Waste in stainless steel canisters.
- 2. Reprocessing Waste stored in tanks.
- 3. Calcined reprocessing waste stored in bins.
- 4. Produced through December 31, 2021. Source: "DWPF Operations Summary Report" SRR-RP-
- 2021-00002-0245, December 29, 2021 05:00 hrs to December 30, 2021 05:00.

The Hanford Site encapsulated Cs and Sr separated from the liquid waste between 1974 and 1985. Some of these capsules were leased to companies as radiation sources. After one of the capsules developed a microscopic leak, the capsules were recalled. Hanford is storing 1,335 Cs capsules and 601 Sr capsules, which contained approximately 109 million curies at the time of production. Table 5-2 provides the capsule inventory broken down by decay heat load. Decay heat continues to decrease and as of 1/1/2020 the total radioactivity has been reduced to approximately 42M Ci with decay continuing to approximately 24 million curies by January 2043 [Covey, 2002].

The Hanford Tank Closure and Waste Management FEIS evaluated selected disposition pathways for the capsule contents. One alternative evaluated was conversion to glass. In this scenario, the capsule contents have potential to generate an additional 340 vitrified reprocessing waste canisters.

No decision has been made on the disposition of the Cs/Sr capsules. At present, DOE is working to construct a dry storage facility to replace wet storage in Waste Encapsulation and Storage Facility (WESF). After transferring the 1,936 capsules to dry storage, they would be safely stored until a future decision on disposition is made.

Table 5-2. Hanford Site Encapsulated Cs and Sr Inventory Distribution as of 1/1/2020

	Cs Caj	psules	Sr Ca	psules	Total Ca	apsules
Decay heat per canister (watts)	Number of canisters	Cumulative %	Number of canisters	Cumulative %	Number of canisters	Cumulative %
<50	3	0.2%	64	10.6%	67	3.5%
50 – 100	232	17.6%	125	31.4%	357	21.9%
100 - 200	1,100	100.0%	298	81.0%	1,398	94.1%
200 - 300	-	100.0%	105	98.5%	105	99.5%
300 - 500	-	100.0%	9	100.0%	9	100.0%
500 - 1000	-	100.0%	-	100.0%	-	100.0%
1000 - 1500	-	100.0%	-	100.0%	-	100.0%
1500 - 2000	-	100.0%	-	100.0%	-	100.0%
>2000	-	100.0%	-	100.0%	-	100.0%
Total Canisters	1,335		601		1,936	
Total Decay Heat (watts)	144,421		85,508		229,930	

5.1.2 Projected Reprocessing Waste Inventory

SRS currently has the only operating reprocessing facility in the United States, H Canyon. It is estimated that an additional 12,000 m³ of liquid reprocessing waste may be generated with continued canyon operations [Chew, 2019] (approximately 2026, including H-Canyon shutdown flows).

The projected number of vitrified reprocessing waste canisters to be generated at each site will be dependent on actual loading and final waste form. Because of this uncertainty, the actual number of reprocessing waste canisters produced may vary significantly from what is anticipated today.

SRS began conversion of the liquid defense waste into borosilicate glass in 1996 and is the only DOE site with vitrified waste in a packaged configuration. A total of 4,287 canisters have been produced through December 31, 2021. Therefore, the SRS inventory can be described as those canisters in the current inventory and those projected from future operations. Decay heat of the current inventory is based on radiological inventories contained in the production records for those canisters. The decay heat of future canisters is estimated based on the radionuclide composition of the reprocessing waste inventory remaining in the liquid waste storage tanks. The radionuclide and resulting decay heat is calculated based on the year the canister is/will be produced. The total Savannah River canister count is based on information supporting Savannah River Liquid Waste Disposition Plan revision 21 which assumes a Salt Waste Processing Facility start-up date of FY-20.

Table 5-3 provides the projected canister distribution of SRS canisters based on the nominal decay heat at the time of production. The data indicate: about 33% of the Savannah River canisters will be generating less than 50 watts; 96% of the Savannah River canisters will be generating less than 300 watts; all the SRS canisters will be generating less than 500 watts.

Table 5-3. Savannah River Canister Decay Heat Distribution (projected)

Savannah River				
Decay heat per canister (watts)	Number of canisters	Cumulative %		
<50	2,625	32.3%		
50 – 100	984	44.4%		
100 – 200	3,668	89.6%		
200 – 300	537	96.2%		
300 – 500	307	100.0%		
500 – 1000	-	100.0%		
1000 – 1500	-	100.0%		
1500 – 2000	-	100.0%		
>2000	-	100.0%		
Totals	8,121			
Total Decay Heat (watts)	855,088			

The Hanford Waste Treatment Project (WTP) is currently under construction and therefore the Hanford borosilicate glass canisters are based on a reference baseline inventory for their future production taken from *River Protection Project System Plan*, Revision 8 [DOE, 2017] as 7,800 canisters of glass and 8,400 TRU waste drums. System Plan Revision 8 includes 11 different scenarios with glass canister production ranging from 7,200 (Scenario 4) to 63,600 (Scenario 3). Scenario 2 assumes DOE does not elect to pursue Contact-Handled Transuranic (CH-TRU) waste treatment which results in an estimated 11,400 canisters.

Scenario 2 is similar with 11,079 canisters estimated by the January 2011 Waste Treatment Plant document titled "2010 Tank Utilization Assessment". This tank utilization assessment includes individual canister specific decay heat values which are summarized in Table 3-6 indicating 85% of the Hanford canisters will be generating less than 50 watts; and 100% of the Hanford canisters will be generating less than 300 watts. Since the Hanford system plan baseline (Scenario 1ⁿ) results in about 3,279 fewer canisters (29.6%) and the CH-TRU waste drums will not contain significant decay heat products, the decay heat values resulting from the current Hanford baseline will result in approximately 30% increase in each decay heat value group in Table 5-4.

At INL several options were considered for ultimate disposal of the calcine. Alternatives included direct disposal, vitrification, or hot isostatic pressing (HIP) to compress the calcine into a volume-reduced monolithic waste form. A Record of Decision issued December 2009 determined that DOE will use the HIP technology to treat the calcine.

ⁿ Specific canister decay heat projections are not available for the current Hanford reference baseline scenario

Decay heat of DOE calcined waste currently stored at the Idaho site is taken from the October 2005 Idaho Cleanup Project document titled "Decay Heat and Radiation from Direct Disposed Calcine", EDF-6258 revision 0. EDF-6258 provides this data for direct disposal of the calcine waste. The current Record of Decision for disposal of the calcine is for it to be treated using HIP, which will result in an approximate 50% increase in the volume of calcine material (due to additives) followed by about 30% decrease in the volume as a result of the HIP process. The size of the final HIP container and final packaged canister remains under investigation. The current estimate is 3700 canisters.

Table 5-4 provides the projected distribution of DOE calcine canisters based on the nominal decay heat in the year 2017. The data indicates that 100% of calcine canisters will be less than 50 watts.

Table 5-4. Hanford and Idaho Waste Inventory (projected)

	Hanford Boro	Hanford Borosilicate Glass ^a		Calcineb
Decay heat per canister (watts)	Number of canisters	Cumulative %	Number of canisters	Cumulative %
<50	9,291	83.9%	3,700	100.0%
50 - 100	1,237	95.0%		
100 - 200	523	99.7%		
200 - 300	28	100.0%		
300 - 500	0	100.0%		
500 - 1000	0	100.0%		
1000 - 1500	0	100.0%		
1500 - 2000	0	100.0%		
>2000	0	100.0%		
Totals	11,079		3,700	
Total Decay Heat (watts)	304,904		92,674	

^a Projected based on future waste vitrification operations.

Table 5-5 shows the estimated number of vitrified reprocessing waste canisters to be produced. The current best estimate and a potential range are provided. [Marcinowski memo to Kouts, 2008; EIS, 2002; Chew, 2019, DOE-2017] Table 1-1 and Appendix F provides the equivalent MTHM using the "Best Estimate" canisters count and using the historical factor of 0.5 MTHM per canister established in DOE/DP 0020/1 [DOE, 1985].

^b Projected based on future waste treatment which may change.

Table 3-3. Projected Total Number of DOE vitrilled Reprocessing waste Calliste				
	Canisters ¹ Best Estimate	Canister Range		
Hanford	7,800	7,200-63,600		
INL (Calcine)	3,700	1,190 - 11,200		
INL (Electro-chemical processing)	102	82-135		
SRS	8,121	8,000 - 8,300		
Totals	19,723	~16,500 - ~83,200²		

Table 5-5. Projected Total Number of DOE Vitrified Reprocessing Waste Canisters

5.1.3 Reprocessing Waste Radionuclide Inventory

"DOE Managed Waste" [Wilson, 2016 Appendix B] lists the total reprocessing waste radionuclide inventory for each of the generating sites decayed to 2017. Although there may be some variation in the number of canisters produced for the sites that have not completed waste treatment, the total amount of radionuclide will not change except by radioactive decay. The combined inventory from all three sites is approximately 1.3 million watts.

OCRWM used the "projected maximum" inventory on a per canister basis for the vitrified reprocessing waste curie content supplied by SRS. The use of the "projected maximum" on a per canister basis resulted in a conservative total curie content for SRS that is approximately twice the actual SRS tank farm inventory. The expected curie content of SRS reprocessing waste is presented in DOE Managed Waste [Wilson, 2016 Appendix B].

SRS is also the only DOE site continuing reprocessing, and the DOE-EM program periodically processes excess special isotopes via the reprocessing facility and the vitrification process. The potential for future EM special isotope disposal campaigns has not been assessed in this study.

The total radionuclide inventory for treatment of sodium bonded SNF is shown in UFD Inventory Table F3. [Carter, 2013]

5.1.4 Vitrified Reprocessing Waste Storage

The vitrified reprocessing waste canisters at SRS is stored in below grade concrete vaults, called Glass Waste Storage Buildings (GWSB), containing support frames for vertical storage of 2,262 canisters. SRS currently has two GWSBs. The first GWSB is being modified such that canisters can be stacked two high, doubling the capacity of this building and delaying the need for a third GWSB. As of January 2020, one thousand additional storage positions have been recovered by the double stack modifications.

^{1.} With the exception of Hanford, all canisters are 2 feet \times 10 feet, Hanford canisters are 2 feet \times 15 feet

^{2.} Rounded to nearest 100 canisters

5.2 Reprocessing Waste at West Valley

A spent nuclear fuel reprocessing plant was constructed and operated by Nuclear Fuel Service. The facility was located at Western New York Service Center which is owned by the New York State Energy Research and Development Authority. The facility operated from 1966 through 1972 and reprocessed approximately 640 metric tons of SNF to recover the plutonium and unused uranium [NFS, 1973]. Of the SNF reprocessed at West Valley, about 260 metric tons were NPR fuel and about 380 metric tons were DOE N Reactor fuel. Included in this amount processed were approximately 30 MTHM of unirradiated fuel for the N Reactor and 3 MTHM of unirradiated fuel for the Pathfinder reactor.

During operations, about 2,500 m³ of liquid HLW was generated. The liquid HLW was vitrified between 1996 and 2001 producing 278 canisters, including 275 canisters of vitrified HLW, two additional canisters used to evacuate the melter prior to decommissioning, and one non-routine HLW canister (WV-413), that are stored at West Valley [DOE, 1996]. Appendix F provides the equivalent MTHM contained in these canisters based upon the historical factor of 2.3 MTHM per canister established in DOE/DP 0020/1. This factor is conservative for the West Valley canisters, recognizing that a portion of the fuel processed was unirradiated.

Table 5-6. West Valley High-Level Waste Inventory

Site	HLW Canisters ¹	Liquid HLW (m³)	Dry HLW (m³)
West Valley	278 ²	N/A	N/A

- Vitrified HLW in stainless steel canisters.
- 2. Includes 2 canisters used to evacuate the melter prior to decommissioning in 2002 and 1 non-routine HLW canister (WV-413).

THIS PAGE INTENTIONALLY LEFT BLANK

6. REFERENCES

Carter, J. T., et al., Fuel Cycle Potential Waste Inventory for Disposition, FCRD-USED-2010-000031, Revision 6, July 2013.

Chew, D.P., et al., Liquid Waste System Plan, SRR-LWP-2009-00001, Revision 21, January 2019.

Cooper, Mark, Renaissance in Reverse: Competition Pushes Aging U.S. Nuclear Reactors to the Brink of Economic Abandonment, Institute for Energy and the Environment, Vermont Law School, July 18, 2013.

Covey, L. I. WESF Capsule and EDS Configuration Document. 2002.

"Decay Heat and Radiation from Direct Disposed Calcine", EDF-6258 revision 0.

DOE 1985, An Evaluation of the Commercial Repository Capacity for the Disposal of Defense High Level Waste, DOE/DP-0020/1, June 1985.

DOE 1996, Plutonium Recovery from Spent Fuel Reprocessing by Nuclear Fuel Services at West Valley, New York from 1966 to 1972, February 1996.

DOE 2008, Yucca Mountain Repository License Application, DOE/RW-0573, Rev. 1, November 2008.

DOE 2016, Final Environmental Impact Statement (EIS) for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW) and GTCC-Like Waste, DOE/EIS-0375, January 2016.

DOE 2017, River Protection Project System Plan, ORP-11242, Rev. 8, October 2017.

DOE Order 413.3B, *Program and Project Management for the Acquisition of Capital Asset Projects*, November 29, 2010.

Dominion Energy Kewaunee, Inc., *Kewaunee Power Station Updated Irradiated Fuel Management Plan – 10CFR55.54(bb)*, ML13059A028, February 26, 2013.

"DWPF Operations Summary Report" SRR-RP-2020-0000-245, December 29, 2021 05:00 hrs to December 30, 2021 05:00.

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-level Radioactive Waste at Yucca Mountain, Nye County, Nevada, DOE/EIS-0250, February 2002.

Fuel Cycle Technologies Program Systems Engineering Management Plan, DRAFT, D.A. Berry, SRNS, September 2010.

Gombert, D., et. al., *Global Nuclear Energy Partnership Integrated Waste Management Strategy Baseline Study*, Volume 1 and 2", GNEP-WAST-AI-RT-2007-000324, September 2007.

Gutherman, B. ACI Nuclear Energy Solutions, E-mail dated 12/08/09, *Fuel Data*, attachments with PWR and BWR projections of assemblies and MTU.

INEEL 1999, Options for Determining Equivalent MTHM For DOE High-Level Waste, Dieter A. Knecht et al, Idaho National Engineering and Environmental Laboratory, INEEL/EXT-99-00317, Revision 1, April 1999.

Kilinina, Elana (2012). Calvin Database Update in Support of UFD System Architecture Study, Albuquerque: Sandia National Laboratory.

Leduc, D. R., *Dry Storage of Used Fuel Transition to Transport*, FCRD-UFD-2012-000253, Savannah River National Laboratory, Aiken, SC, August 2012.

Marcinowski memo to Kouts, Canister Projections for High-Level Waste and Spent Nuclear Fuel, April 16, 2008.

McMahon, 6 Nuclear Plants That Could Be Next to Shut Down, published by Forbes, November 7, 2013.

National Spent Nuclear Fuel Program (NSNFP) Spent Fuel Database (SFD) Version 8.1.8, April 2022.

Nesbit, S., E-mail dated 7/8/2013, "RE: NIC Workshop Presentation".

NFS, 1973, Safety Analysis Report, Nuclear Fuel Services, Inc., Reprocessing Plant, West Valley, N.Y., Nuclear Fuel Services, Inc., 1973.

OCRWM 2002, Calculation Method for the Projection of Future Spent Fuel Discharge, TDR-WAT-NU-00002 Rev. 01, February 2002.

Performance Specification for Trains Used to Carry High-Level Radioactive Material, AAR Standard S-2043, AAR Manual of Standards and Recommended Practices Car Construction Fundamentals and Details, Effective: May 1, 2003.

Pincock, L.F. et al, Source Term Estimates for DOE Spent Nuclear Fuels, DOE/SNF/REP-078, Revision 2, May 2018.

Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analyses, FCRD-USED-2012-000215, July 31, 2012.

SNL, 2014, Evaluation of Options for Permanent Geologic Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste in Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volume II: Appendices, Prepared for the U.S. Department of Energy Used Fuel Disposition Campaign by Sandia National Laboratories, FCRD-UFD-2013-000371, SAND2013-0189P (Vol. II), March 31, 2014.

SRS 2007, Life Cycle Liquid Waste Disposition System Plan, Rev 14.1, October 2007.

StoreFuel and Decommissioning Report Vol. 12 No. 149, January 4, 2011.

StoreFuel and Decommissioning Report Vol 24 No. 281, Jan. 4, 2022.

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste, US Department of Energy, January 2013.

UFDC. 2012a. *Gap Analysis to Support Extended Storage of Used Nuclear Fuel*. FCRD-USED-2011-000136 Rev. 0, PNNL-20509, Prepared for the U.S. Department of Energy Used Fuel Disposition Campaign, Washington, D.C.

UFDC. 2012b. *Used Nuclear Fuel Storage and Transportation Data Gap Prioritization*. FCRD-USED-2012-000109 Draft, PNNL-21360, Prepared for the U.S. Department of Energy Used Fuel Disposition Campaign, Washington, D.C.

Used Fuel Management System Architecture Evaluation, Fiscal Year 2012, FCRD-NFST-2013-000020, Rev 0, October 31, 2012 authored by Mark Nutt (ANL), et. al.

Vinson, D., Description and Validation of a Revised Tool for Projecting U.S. Commercial Spent Nuclear Fuel Inventory. FCRD-NFST-2015-000534, SRNL-STI-2015-00201, March 31, 2015.

Waste Encapsulation Storage Facility Fact Sheet, August 2000

Wilson, J., *Decay Heat of Selected DOE-Managed Waste Materials*. FCRD-UFD-2016-000636, SRNL-RP-2016-00249, June 2016.

Appendix A

Nuclear Fuel Characteristics

THIS PAGE INTENTIONALLY LEFT BLANK

Table A-1. Physical characteristics of pressurized water reactor assembly class

Assembly Class	Array Size	Manufacturer Code	Version	Assembly Code	Length (in.)	Width (in.)	Clad Material
B&W 15 × 15	15 × 15	B&W	B&W Mark B	B1515B	165.7	8.54	Zircaloy-4
			B&W Mark B10	B1515B10	165.7	8.54	Zircaloy-4
			B&W Mark B3	B1515B3	165.7	8.54	Zircaloy-4
			B&W Mark B4	B1515B4	165.7	8.54	Zircaloy-4
			B&W Mark B4Z	B1515B4Z	165.7	8.54	Zircaloy-4
			B&W Mark B5	B1515B5	165.7	8.54	Zircaloy-4
			B&W Mark B5Z	B1515B5Z	165.7	8.54	Zircaloy-4
			B&W Mark B6	B1515B6	165.7	8.54	Zircaloy-4
			B&W Mark B7	B1515B7	165.7	8.54	Zircaloy-4
			B&W Mark B8	B1515B8	165.7	8.54	Zircaloy-4
			B&W Mark B9	B1515B9	165.7	8.54	Zircaloy-4
			B&W Mark BGD	B1515BGD	165.7	8.54	Zircaloy-4
			B&W Mark BZ	B1515BZ	165.7	8.54	Zircaloy-4
		WE	WE	B1515W	165.7	8.54	not available
B&W 17 × 17	17 × 17	B&W	B&W Mark C	B1717B	165.7	8.54	Zircaloy-4
CE 14 × 14	14 × 14	ANF	ANF	C1414A	157.0	8.10	Zircaloy-4
		CE	CE	C1414C	157.0	8.10	Zircaloy-4
		WE	WE	C1414W	157.0	8.10	Zircaloy-4
CE 16 × 16	16 × 16	CE	CE	C1616CSD	176.8	8.10	Zircaloy-4
CE System 80	16 × 16	CE	CE System 80	C8016C	178.3	8.10	Zircaloy-4
WE 14 × 14	14 × 14	ANF	ANF	W1414A	159.8	7.76	Zircaloy-4
		ANF	ANF Top Rod	W1414ATR	159.8	7.76	Zircaloy-4
		B&W	B&W	W1414B	159.8	7.76	not available
		WE	WE LOPAR	W1414WL	159.8	7.76	Zircaloy-4
		WE	WE OFA	W1414WO	159.8	7.76	Zircaloy-4
		WE	WE Std	W1414W	159.8	7.76	Zircaloy-4

Assembly Class	Array Size	Manufacturer Code	Version	Assembly Code	Length (in.)	Width (in.)	Clad Material
WE 15 × 15	15 × 15	ANF	ANF	W1515A	159.8	8.44	Zircaloy-4
			ANF HT	W1515AHT	159.8	8.44	not available
			ANF Part Length	W1515APL	159.8	8.44	not available
		WE	LOPAR	W1515WL	159.8	8.44	Zircaloy-4
			OFA	W1515WO	159.8	8.44	Zircaloy-4
			WE Std	W1515W	159.8	8.44	Zircaloy
			WE Vantage 5	W1515WV5	159.8	8.44	not available
WE 17 × 17	17 × 17	ANF	ANF	W1717A	159.8	8.44	Zircaloy-4
		B&W	B&W Mark B	W1717B	159.8	8.44	not available
		WE	WE	W1717WRF	159.8	8.44	not available
			WE	W1717WVJ	159.8	8.44	not available
			WE LOPAR	W1717WL	159.8	8.44	Zircaloy-4
			WE OFA	W1717WO	159.8	8.44	Zircaloy-4
			WE Pressurized	W1717WP	159.8	8.44	not available
			WE Vantage	W1717WV	159.8	8.44	not available
			WE Vantage +	W1717WV+	159.8	8.44	ZIRLO
			WE Vantage 5	W1717WV5	159.8	8.44	Zircaloy-4
			WE Vantage 5H	W1717WVH	159.8	8.44	not available
South Texas	17 × 17	WE	WE	WST17W	199.0	8.43	Zircaloy-4
Ft. Calhoun	14 × 14	ANF	ANF	XFC14A	146.0	8.10	not available
		CE	CE	XFC14C	146.0	8.10	Zircaloy-4
		WE	WE	XFC14W	146.0	8.10	not available

Table A-1 (continued)

Table A-1 (continued)											
Assembly Class	Array Size	Manufacturer Code	Version	Assembly Code	Length (in.)	Width (in.)	Clad Material				
Haddam Neck	15 × 15	B&W	B&W SS	XHN15B	137.1	8.42	SS-304				
			B&W Zir	XHN15BZ	137.1	8.42	Zircaloy				
		GA	Gulf SS	XHN15HS	137.1	8.42	SS				
			Gulf Zir	XHN15HZ	137.1	8.42	Zircaloy				
		NU	NUM SS	XHN15MS	137.1	8.42	SS				
			NUM Zir	XHN15MZ	137.1	8.42	Zircaloy				
		WE	WE	XHN15W	137.1	8.42	SS-304				
			WE Zir	XHN15WZ	137.1	8.42	not available				
Indian Point-1	13 × 14	WE	WE	XIP14W	138.8	6.27	SS				
Palisades	15 × 15	ANF	ANF	XPA15A	147.5	8.20	Zircaloy-4				
		CE	CE	XPA15C	147.5	8.20	Zircaloy-4				
St. Lucie-2	16 × 16	CE	CE	XSL16C	158.2	8.10	Zircaloy-4				
San Onofre-1	14 × 14	WE	WE	XSO14W	137.1	7.76	SS-304				
			WE D	XSO14WD	137.1	7.76	not available				
			WE M	XSO14WM	137.1	7.76	not available				
Yankee Rowe	15 × 16	ANF	ANF	XYR16A	111.8	7.62	Zircaloy-4				
		CE	CE	XYR16C	111.8	7.62	Zircaloy-4				
		UNC	UNC	XYR16U	111.8	7.62	not available				
	17 × 18	WE	WE	XYR18W	111.8	7.62	SS				

NOTE: Some characteristics of more recently discharged SNF (post-2002) have not yet been provided

Table A-2. Physical characteristics of boiling water reactor assembly classes

Table A-2. Physical characteristics of boiling water reactor assembly classes										
Assembly Class	Array Size	Manufacturer Code	Version	Assembly Code	Length (in.)	Width (in.)	Clad Material			
GE BWR/	7 × 7	ANF	ANF	G2307A	171.2	5.44	Zircaloy-2			
2,3	8 × 8	ANF	ANF	G2308A	171.2	5.44	Zircaloy-2			
	9 × 9	ANF	ANF	G2309A	171.2	5.44	Zircaloy-2			
			ANF IX	G2309AIX	171.2	5.44	Zircaloy-2			
	8 × 8	ANF	ANF Pressurized	G2308AP	171.2	5.44	Zircaloy-2			
		GE	GE-10	G2308G10	171.2	5.44	Zircaloy-2			
	9 × 9	GE	GE-11	G2309G11	171.2	5.44	Zircaloy-2			
	7 × 7	GE	GE-2a	G2307G2A	171.2	5.44	Zircaloy-2			
			GE-2b	G2307G2B	171.2	5.44	Zircaloy-2			
			GE-3	G2307G3	171.2	5.44	Zircaloy-2			
	8 × 8	GE	GE-4	G2308G4	171.2	5.44	Zircaloy-2			
			GE-5	G2308G5	171.2	5.44	Zircaloy-2			
			GE-7	G2308G7	171.2	5.44	NA			
			GE-8a	G2308G8A	171.2	5.44	Zircaloy-2			
			GE-8b	G2308G8B	171.2	5.44	Zircaloy-2			
			GE-9	G2308G9	171.2	5.44	Zircaloy-2			
			GE-Barrier	G2308GB	171.2	5.44	Zircaloy-2			
			GE-Pressurized	G2308GP	171.2	5.44	Zircaloy-2			
	not available	not available	not available	9X9IXQFA	171.2	5.44	not available			
GE BWR/	9 × 9	ANF	ANF	G4609A	176.2	5.44	Zircaloy-2			
4-6	10 × 10	ANF	ANF	G4610A	176.2	5.44	NA			
	9 × 9	ANF	ANF 9-5	G4609A5	176.2	5.44	Zircaloy-2			
			ANF 9X	G4609A9X	176.2	5.44	Zircaloy-2			
			ANF IX	G4609AIX	176.2	5.44	Zircaloy-2			
	10 × 10	ANF	ANF IX	G4610AIX	176.2	5.44	not available			
	9 × 9	ANF	ANF X+	G4609AX+	176.2	5.44	not available			
	8 × 8	ANF	ANF-Pressurized	G4608AP	176.2	5.44	Zircaloy-2			

	not available	AREVA	not available	ATRIUM10	176.2	5.44	Zircaloy-2
GE BWR/	10 × 10	ABB	CE	G4610C	176.2	5.44	not available
4-6 (Continued)	8 × 8	GE	GE-10	G4608G10	176.2	5.44	Zircaloy-2
			GE-11	G4608G11	176.2	5.44	not available
	9 × 9	GE	GE-11	G4609G11	176.2	5.44	Zircaloy-2
	8 × 8	GE	GE-12	G4608G12	176.2	5.44	not available
	10 × 10	GE	GE-12	G4610G12	176.2	5.44	Zircaloy-2
	9 × 9	GE	GE-13	G4609G13	176.2	5.44	Zircaloy-2
	10 × 10	GE	GE-14	G4610G14	176.2	5.44	not available
	7 × 7	GE	GE-2	G4607G2	176.2	5.44	Zircaloy-2
			GE-3a	G4607G3A	176.2	5.44	Zircaloy-2
			GE-3b	G4607G3B	176.2	5.44	Zircaloy-2
	8 × 8	GE	GE-4a	G4608G4A	176.2	5.44	Zircaloy-2
			GE-4b	G4608G4B	176.2	5.44	Zircaloy-2
			GE-5	G4608G5	176.2	5.44	Zircaloy-2
			GE-8	G4608G8	176.2	5.44	Zircaloy-2
			GE-9	G4608G9	176.2	5.44	Zircaloy-2
			GE-Barrier	G4608GB	176.2	5.44	Zircaloy-2
			GE-Pressurized	G4608GP	176.2	5.44	Zircaloy-2
		WE	WE	G4608W	176.2	5.44	Zircaloy-2
Big Rock	9 × 9	ANF	ANF	XBR09A	84	6.52	Zircaloy-2
Point	11 × 11	ANF	ANF	XBR11A	84	6.52	Zircaloy-2
	7 × 7	GE	GE	XBR07G	84	6.52	not available
	8 × 8	GE	GE	XBR08G	84	6.52	not available
	9 × 9	GE	GE	XBR09G	84	6.52	Zircaloy-2
	11 × 11	GE	GE	XBR11G	84	6.52	Zircaloy-2
		NFS	NFS	XBR11N	84	6.52	not available
Dresden-1	6 × 6	ANF	ANF	XDR06A	134.4	4.28	Zircaloy-2
		GE	GE	XDR06G	134.4	4.28	Zircaloy-2

	7 × 7	GE	GE SA-1	XDR07GS	134.4	4.28	not available			
	8 × 8	GE	GE PF Fuels	XDR08G	134.4	4.28	not available			
	6 × 6	GE	GE Type III-B	XDR06G3B	134.4	4.28	not available			
			GE Type III-F	XDR06G3F	134.4	4.28	not available			
			GE Type V	XDR06G5	134.4	4.28	not available			
		UNC	UNC	XDR06U	134.4	4.28	not available			
Humboldt	6 × 6	ANF	6 × 6 ANF	XHB06A	95	4.67	Zircaloy			
Bay		GE	GE	XHB06G	95	4.67	Zircaloy-2			
	7 × 7	GE	GE Type II	XHB07G2	95	4.67	Zircaloy			
La Crosse	10 × 10	AC	AC	XLC10L	102.5	5.62	SS348H			
		ANF	ANF	XLC10A	102.5	5.62	SS348H			
NOTE: Some characteristics of more recently discharged SNF (post-2002) have not yet been provided.										

Table A-3. Assembly types and their main characteristics as of December 31, 2002

Reactor	Manufacturer	Assembly	Initial U Loa	Jranium ding sembly)	E	nrichme	nt	Bur	nup /MTU)
Туре	Code	Code	Avg.	Max.	Min.	Avg.	Max.	Avg.	Max.
BWR	not available	9X9IXQFA	170.713	170.800	3.25	3.25	3.25	39,166	39,248
BWR	AC	XLC10L	120.160	121.034	3.63	3.77	3.94	14,419	21,532
BWR	ANF	G2307A	181.574	183.797	2.56	2.64	2.65	24,256	27,826
BWR	ANF	G2308A	174.624	184.355	2.39	2.66	3.13	28,814	36,826
BWR	ANF	G2308AP	172.753	173.132	2.82	2.83	2.83	34,366	34,826
BWR	ANF	G2309A	168.097	169.520	2.78	3.10	3.15	35,941	40,818
BWR	ANF	G2309AIX	169.185	170.059	3.25	3.31	3.82	39,151	43,778
BWR	ANF	G4608AP	176.175	176.800	2.62	2.88	3.40	31,248	35,518
BWR	ANF	G4609A	172.970	174.700	0.72	3.42	3.73	36,933	47,000
BWR	ANF	G4609A5	176.147	177.000	2.90	3.28	3.55	36,536	43,555
BWR	ANF	G4609A9X	169.155	176.800	2.53	2.87	3.11	36,880	43,330
BWR	ANF	G4609AIX	174.788	177.000	3.00	3.58	3.94	24,156	36,777
BWR	ANF	G4609AX+	167.264	167.277	3.13	3.14	3.15	39,239	40,457
BWR	ANF	G4610A	176.900	176.900	3.94	3.94	3.94	38,207	39,000
BWR	ANF	G4610AIX	175.000	175.000	3.39	3.39	3.39	37,706	38,009
BWR	ANF	XBR09A	127.687	131.406	3.45	3.48	3.52	20,981	22,811
BWR	ANF	XBR11A	130.237	133.174	3.13	3.42	3.82	22,716	34,212
BWR	ANF	XDR06A	95.206	95.478	2.23	2.23	2.24	4,907	5,742
BWR	ANF	XHB06A	69.734	73.800	2.35	2.40	2.41	9,037	22,377
BWR	ANF	XLC10A	108.657	109.609	3.68	3.69	3.71	15,017	20,126
BWR	AREVA	ATRIUM10	176.900	176.900	3.94	3.94	3.94	38,406	39,000
BWR	ABB	G4610C	175.683	176.300	2.51	3.29	3.62	38,133	42,640
BWR	GE	G2307G2A	194.902	197.604	2.07	2.10	2.11	16,775	24,902
BWR	GE	G2307G2B	193.203	197.400	1.65	2.15	2.62	16,384	29,728

		Initial Uranium Loading				nrichme		Burnup		
Reactor	Manufacturer	Assembly	(kg/ass	sembly)	J)	J ²³⁵ wt %	(o)	(MWd	/MTU)	
Type	Code	Code	Avg.	Max.	Min.	Avg.	Max.	Avg.	Max.	
BWR	GE	G2307G3	187.419	189.105	1.96	2.41	2.60	25,420	38,861	
BWR	GE	G2308G10	172.225	173.512	3.10	3.25	3.56	33,988	43,977	
BWR	GE	G2308G4	183.991	185.496	2.19	2.51	2.76	26,087	40,523	
BWR	GE	G2308G5	176.971	177.628	2.39	2.66	2.82	29,009	33,597	
BWR	GE	G2308G7	178.520	179.400	2.96	2.97	2.99	31,570	35,894	
BWR	GE	G2308G8A	175.695	179.584	2.55	3.09	3.40	34,848	44,933	
BWR	GE	G2308G8B	172.590	178.000	2.96	3.19	3.39	36,400	42,518	
BWR	GE	G2308G9	172.017	173.108	2.85	3.18	3.48	37,268	42,295	
BWR	GE	G2308GB	177.983	180.060	2.62	2.80	3.39	32,014	43,381	
BWR	GE	G2308GP	177.145	179.200	2.08	2.77	3.01	29,317	38,139	
BWR	GE	G2309G11	165.650	169.500	3.10	3.56	3.78	40,522	45,117	
BWR	GE	G4607G2	194.729	197.334	1.09	1.56	2.50	9,362	11,829	
BWR	GE	G4607G3A	187.455	189.141	1.10	2.33	2.51	21,058	32,188	
BWR	GE	G4607G3B	189.925	191.542	1.10	2.31	2.51	21,948	30,831	
BWR	GE	G4608G10	177.778	186.094	2.63	3.24	3.70	36,695	44,343	
BWR	GE	G4608G11	170.786	171.000	3.38	3.38	3.38	35,194	42,551	
BWR	GE	G4608G12	180.873	181.484	3.69	3.71	3.99	32,069	34,462	
BWR	GE	G4608G4A	183.931	185.221	2.19	2.62	2.99	24,931	43,430	
BWR	GE	G4608G4B	186.709	187.900	2.10	2.31	2.76	21,362	32,941	
BWR	GE	G4608G5	183.007	185.366	0.70	2.36	3.01	23,964	38,224	
BWR	GE	G4608G8	179.801	185.854	2.95	3.19	3.40	34,905	44,640	
BWR	GE	G4608G9	177.738	185.789	1.51	3.23	3.88	36,492	47,062	
BWR	GE	G4608GB	184.636	186.653	0.71	2.53	3.25	26,297	45,986	
BWR	GE	G4608GP	183.195	186.888	0.70	2.38	3.27	23,112	42,428	
BWR	GE	G4609G11	170.123	178.136	1.46	3.56	4.14	40,351	65,149	

		Initial Uranium Loading				nrichme		Burnup		
Reactor	Manufacturer	Assembly	(kg/ass	embly)	J)	U ²³⁵ wt %	(0)	(MWd	/MTU)	
Type	Code	Code	Avg.	Max.	Min.	Avg.	Max.	Avg.	Max.	
BWR	GE	G4609G13	171.417	172.912	3.24	3.85	4.17	42,045	53,636	
BWR	GE	G4610G12	176.100	182.141	3.12	3.98	4.20	44,175	52,735	
BWR	GE	G4610G14	179.127	180.402	4.01	4.11	4.24	5,868	8,915	
BWR	GE	XBR07G	131.500	133.000	2.88	2.88	2.88	1,643	1,690	
BWR	GE	XBR08G	112.500	113.000	2.85	2.85	2.85	4,546	7,027	
BWR	GE	XBR09G	137.088	141.000	3.51	3.58	3.62	15,092	22,083	
BWR	GE	XBR11G	124.500	132.000	3.11	3.46	3.63	22,802	24,997	
BWR	GE	XDR06G	111.352	111.352	1.47	1.47	1.47	23,522	23,522	
BWR	GE	XDR06G3B	101.610	102.520	1.83	1.83	1.83	18,632	27,106	
BWR	GE	XDR06G3F	102.049	102.876	2.25	2.25	2.25	22,132	28,138	
BWR	GE	XDR06G5	105.857	112.257	2.26	2.26	2.26	21,095	25,886	
BWR	GE	XDR07GS	59.000	59.000	3.10	3.10	3.10	29,000	29,000	
BWR	GE	XDR08G	99.714	99.714	1.95	1.95	1.95	25,287	25,287	
BWR	GE	XHB06G	76.355	77.000	2.35	2.43	2.52	17,170	22,876	
BWR	GE	XHB07G2	76.325	77.100	2.08	2.11	2.31	18,187	20,770	
BWR	NFS	XBR11N	128.991	134.414	2.16	2.83	3.51	18,940	21,850	
BWR	UNC	XDR06U	102.021	103.441	1.83	2.24	2.26	17,685	26,396	
BWR	WE	G4608W	156.696	171.403	2.69	2.85	3.01	28,041	33,140	
PWR	ANF	C1414A	380.870	400.000	0.30	3.50	4.32	38,899	50,871	
PWR	ANF	W1414A	378.274	406.840	0.71	3.42	4.50	37,500	56,328	
PWR	ANF	W1414ATR	362.788	368.011	2.39	3.38	3.57	38,168	46,000	
PWR	ANF	W1515A	428.888	434.792	2.01	3.00	3.60	33,344	49,859	
PWR	ANF	W1515AHT	434.546	438.074	3.51	4.08	4.59	45,441	56,922	
PWR	ANF	W1515APL	307.361	310.073	1.23	1.55	1.88	27,971	37,770	
PWR	ANF	W1717A	413.845	460.540	2.43	4.19	4.77	45,291	53,958	

			Loa	Jranium ding	E	nrichme			nup
Reactor	Manufacturer	Assembly	(kg/ass	sembly)	Ì.	U ²³⁵ wt %	6)	(MWd	/MTU)
Type	Code	Code	Avg.	Max.	Min.	Avg.	Max.	Avg.	Max.
PWR	ANF	XFC14A	353.345	358.811	3.50	3.57	3.80	37,205	46,048
PWR	ANF	XPA15A	396.674	408.040	1.50	3.17	4.05	34,362	51,486
PWR	ANF	XYR16A	233.555	237.300	3.49	3.78	4.02	29,034	35,088
PWR	B&W	B1515B	463.398	465.480	2.74	3.57	3.62	40,407	50,128
PWR	B&W	B1515B10	476.778	489.299	3.24	3.90	4.73	44,417	56,880
PWR	B&W	B1515B3	463.845	465.830	1.08	2.42	2.84	21,036	32,267
PWR	B&W	B1515B4	464.285	474.853	0.90	2.91	4.06	29,534	57,000
PWR	B&W	B1515B4Z	463.735	466.305	3.22	3.84	3.95	39,253	51,660
PWR	B&W	B1515B5	468.250	468.250	3.13	3.13	3.13	38,017	39,000
PWR	B&W	B1515B5Z	464.421	465.176	3.20	3.22	3.23	36,016	42,328
PWR	B&W	B1515B6	462.495	464.403	3.22	3.47	3.66	41,790	49,383
PWR	B&W	B1515B7	463.244	464.513	3.48	3.51	3.55	42,059	48,738
PWR	B&W	B1515B8	464.864	468.560	3.29	3.65	4.01	42,692	54,000
PWR	B&W	B1515B9	463.566	467.566	3.29	3.96	4.76	44,097	53,952
PWR	B&W	B1515BGD	429.552	430.255	3.92	3.92	3.92	49,027	58,310
PWR	B&W	B1515BZ	463.410	466.279	3.05	3.47	4.68	37,441	54,023
PWR	B&W	B1717B	456.722	457.929	2.64	2.84	3.04	29,517	33,904
PWR	B&W	W1414B	383.157	383.157	3.22	3.22	3.22	24,398	24,465
PWR	B&W	W1717B	455.799	466.688	2.00	3.84	4.60	40,741	54,014
PWR	B&W	XHN15B	409.913	415.060	3.00	3.99	4.02	33,776	37,833
PWR	B&W	XHN15BZ	363.921	368.072	3.40	3.80	3.91	34,278	42,956
PWR	СЕ	C1414C	382.437	408.508	1.03	3.20	4.48	33,597	56,000
PWR	СЕ	C1616CSD	413.912	442.986	1.87	3.62	4.63	37,916	63,328
PWR	СЕ	C8016C	421.468	442.000	1.92	3.57	4.27	38,490	56,312
PWR	СЕ	XFC14C	362.313	376.842	1.39	2.96	3.95	32,130	52,125

				Jranium ding	E	nrichme		Burnup	
Reactor	Manufacturer	Assembly	(kg/ass	sembly)	J)	J ²³⁵ wt %	(6)	(MWd	/MTU)
Type	Code	Code	Avg.	Max.	Min.	Avg.	Max.	Avg.	Max.
PWR	СЕ	XPA15C	412.442	416.780	1.65	2.47	3.06	16,020	33,630
PWR	CE	XSL16C	381.018	394.400	1.72	3.44	4.28	38,807	54,838
PWR	CE	XYR16C	228.766	233.400	3.51	3.80	3.92	24,282	35,999
PWR	GA	XHN15HS	406.163	406.163	3.99	3.99	3.99	32,151	32,151
PWR	GA	XHN15HZ	362.863	362.863	3.26	3.26	3.26	18,546	18,546
PWR	NU	XHN15MS	405.979	406.992	3.66	3.66	3.66	28,324	28,324
PWR	NU	XHN15MZ	370.776	371.039	2.95	2.95	2.95	25,643	25,643
PWR	UNC	XYR16U	238.573	241.300	3.96	3.99	4.02	27,461	31,986
PWR	WE	B1515W	461.819	464.763	3.90	4.06	4.22	36,993	49,075
PWR	WE	C1414W	403.483	411.719	2.70	3.15	3.76	30,039	37,781
PWR	WE	W1414W	393.896	403.683	2.26	3.04	3.47	27,315	39,723
PWR	WE	W1414WL	399.092	405.809	2.27	3.07	3.41	31,940	47,932
PWR	WE	W1414WO	355.724	369.265	0.99	3.92	4.95	44,730	69,452
PWR	WE	W1515W	451.193	458.091	2.21	3.00	3.35	29,324	41,806
PWR	WE	W1515WL	455.236	465.600	1.85	2.98	3.80	30,874	55,385
PWR	WE	W1515WO	460.764	465.747	1.91	3.53	4.60	39,071	56,138
PWR	WE	W1515WV5	457.793	462.934	2.99	3.92	4.80	37,556	53,056
PWR	WE	W1717WL	461.323	469.200	1.60	3.12	4.40	32,340	58,417
PWR	WE	W1717WO	425.107	459.433	1.60	3.05	4.02	32,690	53,000
PWR	WE	W1717WP	417.069	417.878	3.73	4.59	4.81	50,707	58,237
PWR	WE	W1717WRF	455.497	456.735	4.00	4.18	4.42	45,530	48,037
PWR	WE	W1717WV	425.399	426.042	4.21	4.38	4.41	44,263	48,385
PWR	WE	W1717WV+	424.010	465.469	1.61	4.16	4.66	45,430	61,685
PWR	WE	W1717WV5	424.269	430.925	1.49	4.01	4.95	43,872	56,570
PWR	WE	W1717WVH	461.954	473.962	2.11	3.87	4.95	41,081	55,496

Reactor			Initial Uranium Loading (kg/assembly) Assembly		Enrichment (U ²³⁵ wt %)			Burnup (MWd/MTU)	
Type	Code	Code	Avg.	Max.	Min.	Avg.	Max.	Avg.	Max.
PWR	WE	W1717WVJ	461.518	465.200	3.71	3.99	4.40	43,922	46,847
PWR	WE	WST17W	540.480	546.600	1.51	3.38	4.41	35,926	54,399
PWR	WE	XFC14W	374.055	376.000	0.27	3.75	4.25	38,521	51,971
PWR	WE	XHN15W	415.557	421.227	3.02	3.59	4.00	27,922	35,196
PWR	WE	XHN15WZ	384.894	386.689	4.20	4.39	4.60	14,321	19,376
PWR	WE	XIP14W	191.152	200.467	2.83	4.12	4.36	16,471	27,048
PWR	WE	XSO14W	368.153	374.885	3.16	3.87	4.02	27,232	39,275
PWR	WE	XSO14WD	373.323	373.643	4.01	4.01	4.02	18,259	18,424
PWR	WE	XSO14WM	311.225	311.225	0.71	0.71	0.71	19,307	19,636
PWR	WE	XYR18W	273.350	274.100	4.94	4.94	4.94	25,484	31,755

Appendix B

December 2020 Projected Inventory by Reactor

THIS PAGE INTENTIONALLY LEFT BLANK

November 2022

Table B-1. Estimated Inventory at Operating Reactors by Storage Type and Site (Group B & C Sites)

Table B-1. Estimated inventory at Operating reactors by Storage 17 pe and Site (Group B & Cares)	mony at Ope	I atilig incaci	വാ വു വ	nage Type a	שוט שוני מוני	Table Section	(8)
	ā	Dry Inventory		Pool In	Pool Inventory	Site Inv	Site Inventory
		12/31/2021		12/31/2021	/2021	12/31/2021	/2021
Reactor		Estimated Initial			Estimated Initial		Estimated Initial
		Uranium	SNF		Uranium		Uranium
	Assy.	(MT)	Casks	Assy.	(MT)	Assy.	(MT)
Arkansas Nuclear One (2)	2,576	1,142	96	1,338	593	3,914	1,734
Beaver Valley Power Station (2)	518	239	14	2,547	1,177	3,065	1,416
Braidwood Station (2)	1,120	470	35	2,689	1,130	3,809	1,600
Browns Ferry Nuclear Plant (3)	7,777	1,402	86	6,509	1,173	14,286	2,575
Brunswick Steam Electric Plant (2)	2,806	542	46	2,310	449	5,116	686
Byron Station (2)	1,376	625	43	2,637	1,109	4,013	1,688
Callaway Plant (1)	1,110	470	30	1,062	449	2,172	919
Calvert Cliffs Nuclear Power Plant (2)	2,735	1,076	6	1,392	547	4,127	1,623
Catawba Nuclear Station (2)	1,501	829	49	2,223	966	3,724	1,669
Clinton Power Station (1)	979	177	11	3,093	999	4,072	738
Columbia Generating Station (1)	3,060	541	45	1,780	314	4,840	855
Comanche Peak Steam Electric Station	,					1	,
(2)	1,536	647	48	2,013	847	3,549	1,494
Cooper Nuclear Station (1)	1,830	330	30	1,408	254	3,238	584
Davis-Besse Nuclear Station (1)	496	236	15	931	444	1,427	089
Diablo Canyon Nuclear Power Plant (2)	1,856	797	58	1,993	856	3,849	1,652
Donald C. Cook Nuclear Power Plant (2)	1,824	799	57	2,523	1,105	4,347	1,903
Dresden Nuclear Power Station (2)	5,712	1,004	84	5,583	936	11,295	1,940
Edwin I. Hatch Nuclear Plant (2)	6,052	1,090	88	4,074	734	10,126	1,824
Fermi (1)	1,564	277	23	2,577	456	4,141	732
Grand Gulf Nuclear Station (1)	2,992	533	44	3,108	554	6,100	1,087
H.B. Robinson Steam Electric Plant (1)	728	315	36	278	120	1,006	435
Hope Creek Generating Station (1)	2,312	416	34	2,833	509	5,145	925
James A. FitzPatrick Nuclear Power Plant	2.176	395	32	2.250	408	4.426	802
Joseph M. Farley Nuclear Plant (2)	1,824	86 <i>L</i>	57	1,847	808	3,671	1,606
		*					

Spent Nuclear Fuel and Reprocessing Waste Inventory

100

		Table B-1 (continued)	continued				
	Ū	Dry Inventory		Pool In	Pool Inventory	Site Inv	Site Inventory
		12/31/2021		12/31	12/31/2021	12/31/2021	/2021
Reactor		Estimated			Estimated		Estimated
		Initial Uranium	SNF		Initial Uranium		Initial Uranium
	Assy.	(MT)	Casks	Assy.	(MT)	Assy.	(MT)
LaSalle County Station (2)	3,332	297	49	6,482	1,161	9,814	1,758
Limerick Generating Station (2)	3,533	632	57	6,270	1,121	9,803	1,753
McGuire Nuclear Station (2)	2,102	946	89	2,111	953	4,213	1,901
Millstone Power Station (2)	1,504	638	47	2,067	877	3,571	1,515
Monticello Nuclear Generating Plant (1)	1,830	318	30	1,034	180	2,864	498
Nine Mile Point Nuclear Station (2)	2,885	511	45	5,855	1,038	8,740	1,549
North Anna Power Station (2)	2,287	1,060	71	1,216	564	3,503	1,624
Oconee Nuclear Station (3)	3,984	1,867	166	1,355	635	5,339	2,502
Palisades Nuclear Plant (1)	1,355	655	49	538	222	1,893	782
Palo Verde Nuclear Generating Station (3)	4,055	1,747	163	2,625	1,131	6,680	2,878
Peach Bottom Atomic Power Station (2)	6,879	1,241	66	5,501	992	12,380	2,233
Perry Nuclear Power Plant (1)	1,700	306	25	3,206	577	4,906	883
Point Beach Nuclear Plant (2)	1,694	651	99	1,090	419	2,784	1,070
Prairie Island Nuclear Generating Plant	•		ţ	•	i c	0	•
	1,880	694	4./	1,002	370	2,882	1,064
Quad Cities Nuclear Power Station (2)	4,216	747	62	6,527	1,156	10,743	1,903
River Bend Station (1)	2,108	376	31	2,494	444	4,602	820
R.E. Ginna Nuclear Power Plant (1)	448	167	14	1,105	412	1,553	579
St. Lucie Plant (2)	1,312	511	41	2,979	1,161	4,291	1,673
Salem Nuclear Generating Station (2)	1,280	587	40	2,406	1,104	3,686	1,691
Seabrook Station (1)	704	322	22	986	452	1,690	774
Sequoyah Nuclear Plant (2)	2,148	982	64	1,698	922	3,846	1,759
Shearon Harris Nuclear Power Plant (1)	0	0	0	6,355	1,678	6,355	1,678
South Texas Project (2)	444	238	12	2,709	1,450	3,153	1,688
Surry Nuclear Power Station (2)	2,750	1,261	95	850	390	3,600	1,651
Susquehanna Steam Electric Station (2)	7,138	1,261	121	4,188	740	11,326	2,001

101

Table B-1 (continued)

	Ū	Dry Inventory		Pool Inventory	ventory	Site Inventory	ventory
		12/31/2021		12/31/2021	/2021	12/31/2021	/2021
Reactor		Estimated Initial			Estimated Initial		Estimated Initial
	Assy.	Uranium (MT)	SNF Casks	Assy.	Uranium (MT)	Assy.	Uranium (MT)
Turkey Point Nuclear Generating (2)	1,216	253	38	2,172	886	3,388	1,541
Virgil C. Summer Nuclear Station (1)	296	126	8	1,411	602	1,707	728
Vogtle Electric Generating Plant (2)	1,504	647	47	2,361	1,016	3,865	1,663
Waterford Steam Electric Station (1)	992	419	31	1,263	534	2,255	826
Watts Bar Nuclear Plant (2)	740	341	20	628	405	1,619	746
Wolf Creek Generating Station (1)	0	0	0	1,928	885	1,928	\$88
Totals (93 reactors)	122,776	35,253	2,789	141,661	40,957	264,437	76,210

*Note: This Table does reflect SNF transfers.

Dresden quantities include 617 Dresden Unit 1 assemblies (~63.2MTU) which are co-mingled with unit 2 and 3 SNF and which are being moved to dry canister storage in a co-mingled fashion.

Spent Nuclear Fuel and Reprocessing Waste Inventory

November 2022

102

Table B-2. Estimated Inventory by Storage Type and Site (Group A Sites Shutdown before 2000)

Table B-2. Estilla		Ory Inventory 12/31/2021		Pool 1	Inventory 31/2021	Site I	nventory 31/2021
Reactor	Assy.	Initial Uranium (MT)	SNF Casks	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Big Rock Point	441	57.92	7	-	-	441	57.92
Haddam Neck	1,019	413.53	40	-	-	1,019	413.53
Humboldt Bay	390	28.94	5	-	-	390	28.94
La Crosse	333	37.97	5	-	-	333	37.97
Maine Yankee	1,434	542.26	60	-	-	1,434	542.26
Rancho Seco	493	228.38	21	-	-	493	228.38
Trojan	790	359.26	34	-	-	790	359.26
Yankee Rowe	533	127.13	15	-	-	533	127.13
Zion	2,226	1,019.41	61	-	-	2,226	1,019.41
Totals	7,659	2,814.79	248	-	-	7,659	2,814.79

^{*}Note: This Table **does** reflect SNF transfers.

Table B-3. Estimated Inventory by Storage Type and Site (Shutdown Reactors at Group B Sites)

	D	Ory Inventory 12/31/2021	-gjp-	Pool 1	Inventory 31/2021		iventory 1/2021
Reactor [Unit]	Assy.	Initial Uranium (MT)	SNF Casks	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Dresden 1	272	27.72	4	Pool Empty	Remaining Inventory with Units 2 and 3**	272	27.71
Millstone 1	-	-	-	2,884	525.62	2,884	525.62
Totals	272	27.72	4	2,884	525.62	3,156	553.34

^{*}Note: This Table **does** reflect SNF transfers.

^{** 617} Dresden 1 assemblies (~63.2MTU) are co-mingled with unit 2 and 3 SNF. This SNF is being moved to dry canister storage in a co-mingled fashion.

Table B-4. Estimated Inventory by Storage Type and Site (Group A Sites Shutdown Post 2000)

	Ι	Ory Inventory 12/31/2021			nventory 1/2021		iventory 1/2021
Reactor [Unit]	Assy.	Initial Uranium (MT)	SNF Casks	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Fort Calhoun	1,264	466	40	-	-	1,264	466
Vermont Yankee	3,879	706	58	-	-	3,879	706
Crystal River	1,243	582	39	-	-	1,243	582
Kewaunee	1,335	519	38	-	-	1,335	519
San Onofre	3,855	1,609	123	-	-	3,855	1,609
Oyster Creek	4,504	797	67	-	-	4,504	797
Pilgrim	4,113	731	62	-	-	4,113	731
Duane Arnold	2,013	364	33	1,635	296	3,648	660
Indian Point	1,856	801	58	2,139	972	3,995	1,773
Three Mile Island	148	70	4	1,515	716	1,663	786
Totals	24,210	6,646	522	5,289	1,983	29,499	8,629

^{*}Note: This Table **does** reflect SNF transfers.

Table B-5. Estimated Inventory Totals

	D	ory Inventory 12/31/2021		Pool I	Inventory 31/2021		nventory 1/2021
Reactor Group	Assy.	Initial Uranium (MT)	SNF Casks	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Operating Sites	122,776	35,253	2,789	141,661	40,987	264,437	76,210
Group A Pre-2000 All Dry Storage	7,659	2,815	248	1	-	7,659	2,815
Shutdown Group B	272	28	4	2,884	526	3,156	553
Group A Post-2000 All Dry Storage	20,193	5,410	427	-	-	20,193	5,410
Group A Post 2000 All Pool Storage	-	-	-	-	-	-	-
Group A Post 2000 Pool and Dry Storage	4,017	1,235	95	5,289	1,984	9,306	3,219
Grand Total	154,917	44,741	3,563	149,834	43,467	304,751	88,207

^{*}Note: This Table **does** reflect SNF transfers.

Table B-6 Bare SNF Storage Systems Currently in Use

		Dare Sivi Stor				
Utility	Reactor	Cask System	Licensed Purpose	Casks Loaded	Assemblies	MTiHM
Dominion	North Anna	TN-32	Storage Only	28	896	415.1
Dominion	Surry	CASTOR V/21	Storage Only	25	525	240.8
Dominion	Surry	CASTOR X/33	Storage Only	1	33	15.1
Dominion	Surry	MC-10	Storage Only	1	24	11.0
Dominion	Surry	NAC I28 S/T	Storage Only	2	56	25.7
Dominion	Surry	TN-32	Storage Only	26	832	381.7
Duke	McGuire	TN-32 (Note 1)	Storage Only	10	320	143.9
Exelon	Peach Bottom 2 & 3	TN-68	Storage and Transportation	92	6,256	1,127.9
Xcel		TN-40 HT	Storage and Transportation	18	720	270.6
Energy	Prairie Island	TN-40	Storage and Transportation	29	1160	423.4
Totals				232 Casks Loaded	10,822 Assemblies Loaded	3,055 MTiHM Loaded

^{1.} The TN-32 casks used at McGuire are TN-32A models

Spent Nuclear Fuel and Reprocessing Waste Inventory

Table B-7 Canister Based Storage Systems Currently in Use

Reactor	Cask System ¹	Canister ²	License or CoC	Amendment ³	Canisters Loaded ⁴	Assemblies 4	MTiHM ⁴
Humboldt Bay	HI-STAR 100HB	MPC-HB	SNM-2514	S.L.	5	390	28.94
La Crosse	NAC-MPC	LACBWR	1025	9	5	333	37.97
Rancho Seco	Standardized NUHOMS	NUHOMS FC-DSC		S.L.	18	432	200.12
Rancho Seco	Standardized NUHOMS	NUHOMS FF-DSC	SNM-2510	S.L.	1	13	6.02
Rancho Seco	Standardized NUHOMS	NUHOMS FO-DSC		S.L.	2	48	22.24
Yankee Rowe	NAC-MPC	Yankee-MPC	1025	1(8)/5	15	533	127.13
GE Trojan	HI-STORM TranStor	MPC-24E (TranStor)	005C MINS	S.L.	29	674	306.51
GE Trojan	HI-STORM TranStor	MPC-24EF (TranStor)	2007-TAINE	S.L	5	116	52.75
Maine Yankee	NAC-UMS	UMS-PWR	1015	2/5	09	1,434	542.26
Connecticut Yankee	NAC-MPC	CY-MPC, 26 Assy	1025	3(26)/5	40	1,019	413.53
Big Rock Point	FuelSolutions ⁵	W74T	1026	2	7	441	57.92
Zion	NAC- MAGNASTOR	TSC4 (PWR)	1031	3/6	61	2,226	1019.41
Crystal River	Standardized NUHOMS	NUHOMS 32PTH1 Type 2-W	1004	14	39	1,243	582.00

Table B-7 (continued)

Reactor	Cask System ¹	Canister ²	License or CoC	Amendment ³	Canisters Loaded 4	Assemblies ⁴	MTiHM ⁴
Кемяпрее	Standardized NUHOMS	NUHOMS 32PT-S100	1004	9(4)/9R1 10(10)/10R1	14	448	174.17
	NAC- MAGNASTOR	TSC2 (PWR)	1031	9/9	24	887	344.83
	Advanced NUHOMS	NUHOMS 24PT1	1029	0/4	17	368	164.87
SONGS	Advanced NUHOMS	NUHOMS 24PT4	1029	1/4	33	792	330.56
	HI-STORM UMAX	MPC-37	1040	2	73	2668	1113.57
	HI-STORM 100	MPC-68	1014	2(13)	23	1564	284 66
Vermont Yankee	HI-STORM 100 S-B	MPC-68	1014	10(10)			
	HI-STORM 100 S-B	MPC-68M	1014	10(35)	35	2315	421.34
	÷			8(4)			
Fort Calhoun	Standardized NUHOMS	NUHOMS 32PT-S100	1004	(9)6	40	1,264	466.00
				15(30)			

Spent Nuclear Fuel and Reprocessing Waste Inventory

Reactor	Cask System 1	Canister ²	License or CoC	Amendment ³	Canisters Loaded 4	Assemblies 4	MTiHM ⁴
	Standardized NUHOMS	NUHOMS 61BT	1004	4(11) 7(7) 9(1)	19	1159	205.09
Oyster Creek	Standardized NUHOMS	NUHOMS 61BTH	1004	10	4	244	43.18
	Standardized NUHOMS	NUHOMS 61BTH Type 1	1004	10	11	671	118.74
	HI-STORM FW	MPC-89	1032	5	33	2,430	430.00
Three Mile Island	NAC- MAGNASTOR	TSC4 (PWR)	1031	6	4	148	69.95
Pilgrim	HI-STORM 100	MPC-68	1014	7(17)/14 12(11)/14 14(27)	62	4,113	731.00
				Unknown (7)			
	Standardized NUHOMS	NUHOMS 61BT	1004	4(10)	20	1220	220.72
Dualle Atilolu	Standardized NUHOMS	NUHOMS 61BTH	1004	15(10)	13	793	143.47
Indian Point 1	HI-STORM 100	MPC-32	1014	4	5	160	31.00
				unknown (3) 2(11)			
Indian Point 2/3	HI-STORM 100	MPC-32	1014	6(23)	53	1696	770.00
				9R1(12)			
				15(4)			

Table B-7 (continued)

Reactor	Cask System ¹	Canister 2	License or CoC	Amendment ³	Canisters Loaded ⁴	Assemblies ⁴	MTiHM ⁴
	VSC-24	MSB- Standard	1001	uwouyun	18	432	178.22
Palisades	Standardized NUHOMS	NUHOMS 24PTH-S	1004	9(13)9R1	13	312	128.71
	Standardized NUHOMS	NUHOMS 32PT-S125	1004	7(11)/7R1	11	352	145.22
	HI-STORM FW	MPC-37	1032	1R1	7	259	106.85
Diablo Canyon	HI-STORM 100 (anchored)	MPC-32 (Diablo)	SNM-2511	S.L.	58	1,856	00'L6L
Ginna	Standardized NUHOMS	NUHOMS 32PT-S125	1004	unknown (4) 10(6)	10	320	119.29
	HI-STORM 100	MPC-32	1014	13R1	4	128	47.71
	NUHOMS 0708	NUHOMS 07P		Unknown	8	56	24.23
Robinson	Standardized NUHOMS	NUHOMS 24PTH-L	1004	8(4)/8R1 9(4)/9R1 10(10)/10R1	28	672	290.77
				13(5)/13R1 13R1(5)			
	Standardized NUHOMS	NUHOMS 61BT	1004	6	10	610	106.00
Montrcello	Standardized NUHOMS	NUHOMS 61BTH	1004	10(6) 10R1(14)	20	1220	212.00

681.29

35.86

27.72

MTiHM⁴

November 2022

Spent Nuclear Fuel and Reprocessing Waste Inventory

	Assemblies ⁴	272	3876	204	408	1224	2652	1564	384	1088	222
	Canisters Loaded ⁴	4	57	3	9	18	39	23	16	34	9
ontinued)	Amendment ³	Unknown (1) 2(3)	unknown(9) 2(47) 8R1(1)	Unknown (1) 2(2)	8(3)/8R1 8R1(3)	8R1(15)	unknown(5) 2(4) 3(28) 8(2)	8(2) 8R1(21)	Unknown	unknown(14) 10(9) 13(5) 14(6)	3
Table B-7 (continued)	License or CoC	1008	1014	1014	1014	1014	1014	1014	1007	1004	1032
	Canister ²	MPC-68F	MPC-68	MPC-68F	MPC-68M	MPC-68M	MPC-68	MPC-68M	MSB-Short	NUHOMS 32PT	MPC-37
	Cask System ¹	HI-STAR 100	HI-STORM 100	HI-STORM 100	HI-STORM 100	HI-STORM 100S	HI-STORM 100 S-B	HI-STORM 100 S-B	VSC-24	Standardized NUHOMS	HI-STORM FW
	Reactor			Dresden			Quad Cities			Point Beach	

215.14

71.71

469.89

277.11

147.57

418.12

85.31

Table B-7 (continued)

Reactor	Cask System ¹	Canister ²	License or CoC	Amendment ³	Canisters Loaded 4	Assemblies ⁴	MTiHM ⁴
	Standardized NUHOMS	NUHOMS 61BT	1004	9(8)/9R1	8	488	88.00
Cooper	Standardized	NUHOMS	100	Unknown (4)	CC	0701	00.000
	NUHOMS	61BTH	1004	10(10)10R1 10(8)/13R1	77	1342	747.00
				unknown(36)			
				3(3)			
	Standardized	NUHOMS	500	4(2)	0	2000	37. 440
	NUHOMS	24P	1004	6(1)	48	2010	944.73
				7(2)			
				S.L.(40)			
Oconee				(9)8			
	Standardized	NUHOMS	1004	9(42)	64	1536	719.81
	NUHOMS	24PHBL		13(14)			10:71
				Unknown(2)			
	Standardized NUHOMS	NUHOMS 24PTH	1004	unknown(1) 13R1(17)	18	432	202.45
	HI-STORM 100	MPC-68	1014	unknown(13) 5(8)	21	1428	259.22
FIIZpatrick	HI-STORM 100	MPC-68 M	1014	unknown(5) 8R1(6)	11	748	135.78
	:-	NUHOMS		unknown (5)			
Brunswick	Standardized NUHOMS	61BTH Type	1004	10(27)	46	2806	551.00
		2		13R1(14)			

Spent Nuclear Fuel and Reprocessing Waste Inventory

Ŧ
\sim
\cong
=
.≒
+1
Ā
0
୍ଠ
9
2) (c
ì.
B-7 (c
ì.
ole B-
ble B-
ble B-

Reactor	Cask System ¹	Canister ²	License or CoC	Amendment ³	Canisters Loaded 4	Assemblies ⁴	MTiHM ⁴
	HI-STOPM 100	89-JdN	1017	unknown (3)	72	0908	79 155
1			101	5(39)	7		10.100
Browns Ferry				unknown (6)			
	HI-STORM FW	MPC-89	1014	0(19)/0R1	53	4717	850.36
				0R1(28)			
	Standardized NUHOMS	NUHOMS 24P	1004	Unknown	48	1152	453.22
Calvert Cliffs	Standardized NUHOMS	NUHOMS 32P	1004	Unknown	30	096	377.68
	Standardized NUHOMS	NUHOMS 32PHB	1004	Unknown	16	512	201.43
	HI-STORM FW	MPC-37	1032	Unknown	3	111	43.67
	Standardized NUHOMS	NUHOMS 24P	1004	0(3)/0R1	3	7.2	34.26
Davis-Besse	Standardized NUHOMS	NUHOMS 32PH1	1004	13R1	4	128	06'09
	Standardized NUHOMS	NUHOMS 37PTH	1004	0	8	762	140.84
	A COTTO THE			5(28)			
D. C. Cook	HI-STORM 100S	MPC-32	1014	9(3)/9R1	57	1824	799.00
				9R1(26)			

Table B-7 (continued)

Reactor	Cask System ¹	Canister ²	License or CoC	Amendment ³	Canisters Loaded ⁴	Assemblies 4	MTiHM ⁴
	HI-STAR 100	MPC-68 (HI-STAR)	1008	unknown	3	204	36.74
Hatch	HI-STORM 100	MPC-68 (HI- STORM)	1014	unknown (14) 2(17) 3(27) 9(2)/9R1	09	4080	734.83
	HI-STORM 100	MPC-68M	1014	9(3)/9R1 9R1(19) 11(4)	26	1768	318.43
	VSC-24	MSB-Long	1001	unknown	24	576	255.35
	HI-STORM 100	MPC-24	1014	1(9) 2(8) 5(17) 13(4)	38	912	404.31
ONA O	HI-STORM 100	MPC-32		1(4) 2(8) Unknown (5) 5(13) 13(4)	34	1088	482.34
Salem	HI-STORM 100	MPC-32	1014	5	40	1280	587.00
North Anna	NUHOMS HD	МРС-32РТН	1030	unknown(3) 0(10) 1(27)	40	1280	593.44
	NUHOMS EOS	37PTH	1042	1(3)	3	111	51.46

Spent Nuclear Fuel and Reprocessing Waste Inventory

Reactor	Cask System ¹	Canister ²	License or CoC	Amendment ³	Canisters Loaded 4	Assemblies ⁴	MTiHM ⁴
Farley	HI-STORM 100	MPC-32	1014	unknown (8) 3(21) 9(8)/9R1 9R1(16)	53	1696	742.00
	HI-STORM 100-S-B	MPC-32	1014	11	4	128	56.00
Sequovah	HI-STORM 100	MPC-32	1014	unknown(3) 1(5) 2(12) 5(24)	44	1408	643.69
	HI-STORM FW	MPC-37	1032	0(5)/0R1 0R1(10) 3(5)	20	740	338.31
V. C. Summer	HI-STORM FW	MPC-37	1032	0(4)/0R1 0R1(4)	∞	296	126.00
	NAC-UMS	UMS-PWR	1015	3(5)/4	28	672	303.61
McGuire	NAC- MAGNASTOR	TSC4 (PWR)	1031	2(10)/7 2R1(6)/7 7(14)	30	1110	501.49
St. Lucie	NUHOMS HD	NUHOMS 32PTH	1030	unknown(3) 0(6) 1(17) 2(15)	41	1312	511.00

Table B-7 (continued)

Reactor	Cask System 1	Canister 2	License or CoC	Amendment ³	Canisters Loaded ⁴	Assemblies ⁴	MTiHM ⁴
	NAC-UMS	UMS-PWR	1015	4	24	576	258.26
Catawba	NAC- MAGNASTOR	TSC4 (PWR)	1031	2(6)/7 2R1(9)/7 7(10)	25	925	414.74
LaSalle	HI-STORM 100	MPC-68 MPC-68 M	1014	3 8R1(25)	24	1632	304 59
Columbia	HI-STORM 100	MPC-68	1014	1(15)	36	2448	432.80
	HI-STORM 100	MPC-68M	1014	9R1	6	612	108.20
	Standardized NUHOMS	NUHOMS 52B	1004	Unknown	27	1404	248.03
	Standardized NUHOMS	NUHOMS 61BT	1004	unknown(22) 9(26)	48	2928	517.26
Susquehanna	Standardized NUHOMS	NUHOMS 61BTH	1004	10(15)	15	915	161.64
	NUHOMS HSM 102	NUHOMS 61BTH	1004	unknown(3) 10(6) 10R1(6) 14(16)	31	1891	334.06
Callaway	HI-STORM UMAX	MPC-37	1040	0	30	1110	470.00

Spent Nuclear Fuel and Reprocessing Waste Inventory

Reactor	Cask System ¹	Canister ²	License or CoC	Amendment ³	Canisters Loaded ⁴	Assemblies ⁴	MTiHM ⁴
Grand Gulf	HI-STORM 100	MPC-68	1014	2(7) unknown(6) 5(21)	34	2312	411.86
	HI-STORM 100	MPC-68 M	1014	unknown(2) 9R1(8)	10	089	121.14
	HI-STORM 100	MPC-32	1014	5(23)	31	665	419.00
W ateriord	NUHOMS Matrix MX HSM	NUHOMS EOS	1042		0	0	00'0
	HI-STORM 100	MPC-68	1014	5	12	816	144.52
rermi	HI-STORM 100	MPC-68 M	1014	11	11	748	132.48
River Bend	HI-STORM 100	MPC-68	1014	unknown(7) 5(24)	31	2108	376.00
				unknown (3)			
	Standardized NUHOMS	NUHOMS 32PT-S100	1004	7(2)/9	18	576	244.34
Millstone				9(10)			
				13(13)			
	Standardized NUHOMS	NUHOMS 32PT-L125	1004	14(3)	29	928	393.66
				15(13)			
				unknown (11)			
Hope Creek	HI-STORM 100	MPC-68	1014	3(3)	34	2312	416.00
				5(20)			

Table B-7 (continued)

Reactor	Cask System 1	Canister 2	License or CoC	Amendment ³	Canisters Loaded 4	Assemblies ⁴	MTiHM ⁴
Clinton	HI-STORM FW	MPC-89	1032	unknown (1) 0R1(10)	11	616	177.00
	Standardized NUHOMS	NUHOMS 61BT	1004	10	16	926	172.87
Nine Mile Point	Standardized NUHOMS	NUHOMS 61BTH	1004	10(13) 10R1(6) 14(5)	24	1464	259.31
	HI-STORM FW	MPC-89	1032	3	5	445	78.82
£	HI-STORM 100S	MPC-32	1014	3(5)	20		
Byron				9(6)/9R1		640	269.30
	HI-STORM 100S-B	MPC-32	1014	9R1	23	736	309.70
Perry	HI-STORM 100	MPC-68	1014	5	25	1700	306.00
Beaver Vallev	Standardized NUHOMS	NUHOMS 37PTH-S	1004	13(4)/13R1 13R1(6)	10	370	170.71
	NUHOMS EOS	NUHOMS 37PTH	1042	1	4	148	68.29
				2(16)/5			
Dolo Verde	NAC-UMS	UMS-PWR	1015	3(18)/5	152	3648	1571.65
ו מוס ע כותכ				5(94)			
	NAC MAGNASTOR	TSC2 (PWR)	1031	7	11	407	175.35

Spent Nuclear Fuel and Reprocessing Waste Inventory

-						
Cask System ¹	Canister ²	License or CoC	Amendment ³	Canisters Loaded 4	Assemblies ⁴	MTiHM ⁴
HI-STORM 100	MPC-32	1014	unknown (2) 3(7) 9(11)/9R1 9R1(15)	35	1120	470.00
HI-STORM FW	MPC-37	1032	2	12	444	238.00
Standardized NUHOMS HSM 202	NUHOMS 61BT	1004	6	16	976	174.59
Standardized NUHOMS HSM 202	NUHOMS 61BTH	1004	9(3)	∞	488	87.30
Standardized NUHOMS HSM H	NUHOMS 61BTH	1004	10(22)	31	1891	338.27
HI-STORM FW	MPC-89	1032	1R1	2	178	31.84
NUHOMS HD	NUHOMS 32PTH	1030	0(6)/1 1(8) 2(8)	22	704	322.00
NUHOMS HD	NUHOMS 32PTH	1030	0(12)	40	1280	586.70
HI-STORM 100	MPC-32	1014	7	48	1536	647.00
NUHOMS HD	NUHOMS 32PTH	1030	1(18) unknown(2) 2(18)	38	1216	553.00
HI-STORM FW	MPC-89	1027	1R1(7)	7	623	113.10
	TORM FW landized loMS landized loMS landized loMS ltH TORM FW loMS HD loMS HD loMS HD TORM 100 TORM 100	HD 3	ed NUHOMS ed NUHOMS ed NUHOMS ed NUHOMS 61BTH 61BTH 61BTH 61BTH 61BTH 71PW MPC-89 HD 32PTH HD 32PTH HD 32PTH HD 32PTH HD 32PTH A100 MPC-32 HD 32PTH A100 MPC-89	SELICIS	4FW MPC-37 1032 2 cd NUHOMS 1004 9 cd NUHOMS 1004 9(3) cd NUHOMS 1004 10(22) cd NUHOMS 1032 1R1 HD NUHOMS 1030 1(8) HD NUHOMS 1030 1(28) HD NUHOMS 1014 7 HD 32PTH 7 NUHOMS 1030 unknown(2) HD 32PTH 1(18) HD 32PTH 1(18) T 2(18)	AFW MPC-37 1032 2 12 cd NUHOMS 1004 9(3) 8 cd IBTH 1004 9(3) 8 cd IBTH 1004 10(5) 8 cd IBTH 1004 10(5) 31 1 HD NUHOMS 1032 1R1 2 2 HD NUHOMS 1030 0(12) 40 1 A100 MPC-32 1014 7 48 1 HD NUHOMS 1030 unknown(2) 38 1 AFW MPC-89 1027 1R1(7) 7 7

Table B-7 (continued)

Reactor	Cask System ¹	Canister ²	License or CoC	Amendment ³	Canisters Loaded 4	Assemblies 4	MTiHM ⁴
Watts Bar	HI-STORM FW MPC-37	MPC-37	1032	unknown (2) 0(6)/0R1 0R1(12)	20	740	341.00
Vogtle	HI-STORM 100	MPC-32	1014	7(6) 9(10)/9R1 9R1(31)	47	1504	647.00
Total Vertical					2,197	99,536	28,415
Total Horizontal					1,134	44,559	13,280
Grand Total					3,331	144,095	41,694

- Some Cask Systems are listed twice for a given reactor since more than one canister type is used for a given system. ;
- The specific Canister variant is listed where known, otherwise a more generic canister description is provided. Horizontal storage systems are shaded. 7
- number of same type canisters are loaded; A2 is the current amendment the canisters are managed under, if different from A. For example, "0(6)/0R1" A(Z)/A2 where: A=Amendment number at the time of canister loading; Z = number of canisters loaded under amendment A if different from the total indicates 6 canisters were loaded under amendment 0 and are currently managed under amendment 0 Rev 1. 3
- S.L is used for canisters loaded under a specific license requirement.
- Unknown amendment number indicates either the information is not supplied in the cask registration letter send to the NRC or the cask registration letter could not be found in the ADAMS database.
- 4. The inventory is current to December 31, 2021 as described in the report.
- 5. Now Westinghouse.

Appendix C

Reference Scenario: No Replacement Nuclear Generation Forecast – Discharged SNF by Reactor THIS PAGE INTENTIONALLY LEFT BLANK

Table C-1. No Replacement Nuclear Generation SNF Forecast: Discharges by Operating Reactor

Table C-1. No	Keplacemei	it Nuclear (seneration	1 SNF Forec	east: Discha	arges by Op	erating Rea	ictor	
	SNF Discharges as of 12/31/2017		1/1/2	Forecast Discharges 1/1/2018 to 12/31/2021		Forecast Future Discharges 1/1/2022 to 12/31/2075		Total Projected Discharged SNF	
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	
Arkansas Nuclear One, Unit 1	1,576	737	174	86	641	315	2,391	1,138	
Arkansas Nuclear One, Unit 2	1,900	799	264	114	1,057	454	3,221	1,367	
Beaver Valley Power Station, Unit 1	1,495	690	186	85	715	329	2,396	1,104	
Beaver Valley Power Station, Unit 2	1,195	552	189	88	1,165	541	2,549	1,181	
Braidwood Station, Unit 1	1,603	675	273	114	1,649	688	3,525	1,477	
Braidwood Station, Unit 2	1,663	699	270	112	1,723	716	3,656	1,527	
Browns Ferry Nuclear Plant, Unit 1	3,032	554	580	103	2,504	447	6,116	1,104	
Browns Ferry Nuclear Plant, Unit 2	5,306	956	562	100	2,450	436	8,318	1,492	
Browns Ferry Nuclear Plant, Unit 3	4,222	758	584	104	2,808	500	7,614	1,362	
Brunswick Steam Electric Plant, Unit 1	4,044	727	478	86	2,233	401	6,755	1,214	
Brunswick Steam Electric Plant, Unit 2	4,233	763	454	82	1,922	346	6,609	1,191	
Byron Station, Unit 1	1,819	766	273	114	1,558	648	3,650	1,528	
Byron Station, Unit 2	1,741	733	180	75	1,723	720	3,644	1,528	

			(continued)	ea)				
		arges as of /2017	of Forecast Discharges 1/1/2018 to 12/31/2021 Forecast Future Discharges 1/1/2022 to 12/31/2075 Total Projection of Discharged		Discharges 1/1/2022 to			
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Callaway Plant	1,998	846	174	73	1,498	625	3,670	1,544
								,
Calvert Cliffs Nuclear Power Plant, Unit 1	1,904	746	196	79	805	327	2,905	1,152
Fower Flam, Omit 1	1,904	/40	190	19	803	321	2,903	1,132
Calvert Cliffs Nuclear								
Power Plant, Unit 2	1,835	719	194	79	896	365	2,925	1,163
Catawba Nuclear								
Station, Unit 1	1,677	751	231	106	1,271	582	3,179	1,439
Catarril Nicolar								
Catawba Nuclear Station, Unit 2	1,585	708	231	105	1,271	577	3,087	1,390
Clinton Power Station, Unit 1	3,592	650	480	87	3,184	578	7,256	1,315
Oint 1	3,372	030	700	07	3,104	370	7,230	1,313
Columbia Generating								
Station, Unit 2	4,344	767	496	88	3,244	578	8,084	1,433
Comanche Peak Steam								
Electric Station, Unit 1	1,651	700	184	78	1,941	819	3,776	1,597
Comanche Peak Steam								
Electric Station, Unit 2	1,438	601	276	116	2,033	854	3,747	1,571
Cooper Nuclear Station	3,964	722	330	59	1,538	278	5,832	1,059
-F	2,201	,	223		1,000	2,3	-,002	1,007
Davis-Besse Nuclear	1 272	605	154	7.5	702	200	2 220	1.070
Power Station, Unit 1	1,273	605	154	75	793	388	2,220	1,068
Diablo Canyon Nuclear								
Power Plant, Unit 1	1,680	723	279	118	286	121	2,245	962
Diablo Canyon Nuclear								
Power Plant, Unit 2	1,608	692	282	119	381	162	2,271	973

			(continued	u)				
		arges as of /2017			Discharges 1/1/2022 to		Projected ged SNF	
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Donald C. Cook Nuclear Power Plant, Unit 1	2,075	936	174	79	976	441	3,225	1,456
Donald C. Cook Nuclear Power Plant, Unit 2	1,849	785	249	104	1,023	427	3,121	1,316
Dresden Nuclear Power Station, Unit 2	5,729	1,021	496	86	1,468	253	7,693	1,360
Dresden Nuclear Power Station, Unit 3	4,708	830	498	86	1,720	297	6,926	1,213
Edwin I. Hatch Nuclear Plant, Unit 1	4,658	841	454	82	1,922	345	7,034	1,268
Edwin I. Hatch Nuclear Plant, Unit 2	4,566	821	448	80	2,352	422	7,366	1,323
Fermi, Unit 2	3,580	632	561	100	3,569	640	7,710	1,372
Grand Gulf Nuclear Station, Unit 1	5,452	969	648	118	4,688	854	10,788	1,941
H. B. Robinson Steam Electric Plant, Unit 2	1,687	732	128	56	413	178	2,228	966
Hope Creek Generating Station, Unit 1	4,488	807	657	118	4,268	766	9,413	1,691
James A. FitzPatrick Nuclear Power Plant	4,028	731	398	71	1,754	315	6,180	1,117
Joseph M. Farley Nuclear Plant, Unit 1	1,715	755	198	84	817	345	2,730	1,184
Joseph M. Farley Nuclear Plant, Unit 2	1,626	711	132	56	1,015	429	2,773	1,196

		arges as of /2017	1/1/2	recast Discharges Forecast Future Discharges 1/1/2018 to 12/31/2021 1/1/2022 to 12/31/2075		Total Projected Discharged SNF		
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
LaSalle County Station, Unit 1	4,264	765	600	107	3,764	672	8,628	1,544
LaSalle County Station, Unit 2	4,360	781	590	105	4,009	715	8,959	1,601
Limerick Generating Station, Unit 1	4,510	804	556	100	3,822	684	8,888	1,588
Limerick Generating Station, Unit 2	4,193	750	544	99	4,300	780	9,037	1,629
McGuire Nuclear Station, Unit 1	1,803	811	144	66	1,129	517	3,076	1,394
McGuire Nuclear Station, Unit 2	1,750	786	216	99	1,129	517	3,095	1,402
Millstone Power Station, Unit 2	1,717	679	222	89	809	324	2,748	1,092
Millstone Power Station, Unit 3	1,462	669	170	77	1,553	706	3,185	1,452
Monticello Nuclear Generating Plant, Unit 1	3,612	642	310	54	1,104	192	5,026	888
Nine Mile Point Nuclear Station, Unit 1	3,768	671	296	51	976	167	5,040	889
Nine Mile Point Nuclear Station, Unit 2	4,052	716	624	112	4,508	807	9,184	1,635
North Anna Power Station, Unit 1	1,561	723	195	90	872	403	2,628	1,216
North Anna Power Station, Unit 2	1,615	749	132	62	949	442	2,696	1,253

			Table C-1	(continued)				
		narges as of /2017	1/1/2	Forecast Discharges 1/1/2018 to 12/31/2021 Forecast Future Discharges 1/1/2022 to 12/31/2075 Total Projection Discharged		Discharges 1/1/2022 to 12/31/2075		
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Oconee Nuclear Station, Unit 1	1,775	829	136	64	517	244	2,428	1,137
Oconee Nuclear Station, Unit 2	1,741	816	140	67	527	251	2,408	1,134
Oconee Nuclear Station, Unit 3	1,699	795	148	71	621	295	2,468	1,161
Palisades Nuclear Plant	1,701	699	192	82	204	88	2,097	869
Palo Verde Nuclear Generating Station, Unit 1	1,958	841	210	92	1,921	840	4,089	1,773
Palo Verde Nuclear Generating Station, Unit 2	1,974	848	315	138	1,921	840	4,210	1,826
Palo Verde Nuclear Generating Station, Unit 3	1,893	815	330	145	2,111	926	4,334	1,886
Peach Bottom Atomic Power Station, Unit 2	5,600	1,009	576	104	5,372	974	11,548	2,087
Peach Bottom Atomic Power Station, Unit 3	5,636	1,017	570	104	5,324	966	11,530	2,087
Perry Nuclear Power Plant, Unit 1	4,344	783	562	101	4,120	736	9,026	1,620
Point Beach Nuclear Plant, Unit 1	1,336	513	94	37	403	158	1,833	708
Point Beach Nuclear Plant, Unit 2	1,222	468	141	56	450	178	1,813	702
Prairie Island Nuclear Generating Plant, Unit 1	1,307	482	104	39	433	162	1,844	683

			(continued)					
		arges as of /2017	1/1/2	Discharges 018 to 1/2021	Forecast Future Discharges 1/1/2022 to 12/31/2075		Total Projected Discharged SNF	
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Prairie Island Nuclear Generating Plant, Unit 2	1,365	503	106	40	439	165	1,910	708
Quad Cities Nuclear Power Station, Unit 1	5,087	902	498	86	1,969	340	7,554	1,328
Quad Cities Nuclear Power Station, Unit 2	4,664	830	494	85	2,206	381	7,364	1,296
River Bend Station, Unit 1	4,152	738	450	82	3,099	563	7,701	1,383
R.E. Ginna Nuclear Power Plant	1,458	541	135	54	301	120	1,894	715
St. Lucie Plant, Unit 1	2,069	803	258	102	991	393	3,318	1,298
St. Lucie Plant, Unit 2	1,700	662	264	105	1,449	578	3,413	1,345
Salem Nuclear Generating Station, Unit 1	1,743	801	150	69	943	431	2,836	1,301
Salem Nuclear Generating Station, Unit 2	1,568	720	225	103	1,093	497	2,886	1,320
Seabrook Station, Unit	1,450	664	240	110	1,633	748	3,323	1,522
Sequoyah Nuclear Plant, Unit 1	1,638	749	252	115	1,201	546	3,091	1,410
Sequoyah Nuclear Plant, Unit 2	1,713	784	243	111	1,165	532	3,121	1,427
Shearon Harris Nuclear Power Plant, Unit 1	1,250	566	204	93	1,245	565	2,699	1,224

			(continued	,				
		narges as of /2017	Forecast Discharges 1/1/2018 to 12/31/2021 Forecast Future Discharges 1/1/2022 to 12/31/2075 Total Project Discharged S		Discharges 1/1/2022 to			
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
South Texas Project, Unit 1	1,393	747	228	121	1,409	746	3,030	1,614
South Texas Project, Unit 2	1,301	697	231	123	1,579	841	3,111	1,661
Surry Nuclear Power Station, Unit 1	1,620	743	192	88	1,437	662	3,249	1,493
Surry Nuclear Power Station, Unit 2	1,659	761	198	90	1,477	673	3,334	1,524
Susquehanna Steam Electric Station, Unit 1	5,075	896	628	112	3,904	693	9,607	1,701
Susquehanna Steam Electric Station, Unit 2	5,001	883	622	110	4,185	743	9,808	1,736
Turkey Point Nuclear Generating, Unit 3	1,524	694	198	89	1,477	665	3,199	1,448
Turkey Point Nuclear Generating, Unit 4	1,548	705	136	61	1,585	715	3,269	1,481
Virgil C. Summer Nuclear Station, Unit 1	1,506	644	201	84	1,028	432	2,735	1,160
Vogtle Electric Generating Plant, Unit	1,805	780	273	116	1,649	700	3,727	1,596
Vogtle Electric Generating Plant, Unit 2	1,607	691	180	76	1,813	763	3,600	1,530
Waterford Steam Electric Station, Unit 3	1,958	825	297	128	1,702	733	3,957	1,686
Watts Bar Nuclear Plant, Unit 1	1,145	527	258	119	2,085	958	3,488	1,604

	SNF Discharges as of 12/31/2017		Forecast Discharges 1/1/2018 to 12/31/2021		Forecast Future Discharges 1/1/2022 to 12/31/2075		Total Projected Discharged SNF	
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Watts Bar Nuclear Plant, Unit 2	72	33	144	67	2,785	1,291	3,001	1,391
Wolf Creek Generating Station, Unit 1	1,682	773	246	112	1,423	649	3,351	1,534
Totals	238,145	68,327	28,683	8,423	167,394	49,222	434,222	125,972

^{*}Note: This table **does not** reflect SNF transfers.

Table C-2. No Replacement Nuclear Generation SNF Discharges by Reactor (Group A Sites Shutdown before 2000)

		harges as of 1/2017	Forecast Discharges 1/1/2018 to 12/31/2021		Discl	st Future narges 0 12/31/2075	Total Projected Discharged SNF		
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	
Big Rock Point	526	69.40	-	-	-	-	526	69.40	
Haddam Neck	1,102	448.42	-	-	-	-	1,102	448.42	
Humboldt Bay	390	28.94	-	-	-	-	390	28.94	
La Crosse	334	38.09	-	-	-	-	334	38.09	
Maine Yankee	1,434	542.26	-	-	-	-	1,434	542.26	
Rancho Seco	493	228.38	-	-	-	-	493	228.38	
Trojan	790	359.26	-	-	-	-	790	359.26	
Yankee Rowe	533	127.13	-	-	-	-	533	127.13	
Zion 1	1,143	523.94	-	-	-	-	1,143	523.94	
Zion 2	1,083	495.47	-	-	-	-	1,083	495.47	
Totals	7,828	2,861.28	-	-	-	-	7,828	2,861.28	

^{*}Note: This table **does not** reflect SNF transfers.

Table C-3. No Replacement Nuclear Generation SNF Discharges by Reactor (Shutdown Reactors at Group B Sites)

		harges as of 1/2017	Forecast Discharges 1/1/2018 to 12/31/2021		Discl	st Future narges 0 12/31/2075	Total Projected Discharged SNF		
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	
Dresden 1	892	90.87	-	1	-	-	892	90.87	
Millstone 1	2,884	525.62	-	-	-	-	2,884	525.62	
Totals	3,776	616.49	-	-	-	-	3,776	616.49	

^{*}Note: This table **does not** reflect SNF transfers.

November 2022 133

Table C-4. No Replacement Nuclear Generation SNF Discharges by Reactor Site (Group A Sites Shutdown Post 2000)

		harges as of 1/2017	Forecast 1/1/2	Discharges 018 to 1/2021	Forecas Discl	st Future narges o 12/31/2075		Projected rged SNF
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Vermont Yankee	3,879	705.93	-	-	-	-	3,879	705.93
Crystal River 3	1,243	582.23	-	-	-	-	1,243	582.23
Kewaunee	1,335	518.70	-	-	-	-	1,335	518.70
Fort Calhoun	1,264	465.98	-	-	-	-	1,264	465.98
Oyster Creek Nuclear Generating Station	3,944	701.04	560	96.23	-	-	4,504	797.27
Pilgrim Nuclear Power Station	3,533	629.65	580	101.32	-	-	4,113	730.97
San Onofre	4,125	1,707.76	-	-	-	-	4,125	1,707.76
Duane Arnold	3,128	566.31	520	93.58	-	-	3,648	659.89
Three Mile Island	1,486	700.32	177	85.29	-	-	1,663	785.60
Indian Point	3,426	1,515.42	569	257.44	-	-	3,995	1,772.87
Totals	27,363	8,093.35	2,406	633.86	-	-	29,769	8,727.21

^{*}Note: This table **does not** reflect SNF transfers.

Table C-5. No Replacement Nuclear Generation SNF Discharges by Reactor Site (Totals)

		harges as of 1/2017	1/1/2	Discharges 018 to /20121	Forecas Disch	at Future narges 12/31/2075		Projected rged SNF
Reactor [Unit]	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Initial Uranium (MT)
Operating Reactors	238,145	68,327	28,683	8,423	167,394	49,222	434,222	125,972
Group A Pre-2000	7,828	2,861	-	-	-	-	7,828	2,861
Shutdown Group B	3,776	616	-	-	-	-	3,776	616
Group A Post-2000	27,363	8,093	2,406	634	-	-	29,769	8,727
Grand Total	277,112	79,898	31,089	9,057	167,394	49,222	475,595	138,177

^{*}Note: This table **does not** reflect SNF transfers.

November 2022 135

Appendix D

Reference Scenario: No Replacement Nuclear Generation Forecast – Discharged SNF by State

THIS PAGE INTENTIONALLY LEFT BLANK

Table D-1. Estimated and Projected Inventory at NPR Sites and Morris Site by State

Forecast Discharges Forecast Future Forecast Future Foremat Discharges Total Project 12/31/2017 12/31/2021 12/31/2025 Total Project 12/31/2017 12/31/2021 Total Project 12/31/2021 12/31/2025 Total Project 12/31/2017 12/31/2015 Postantated 12/31/2017 12/31/2015 Postantated 12/31/2017 12/31/2015 Postantated 12/31/2017 12/31/2015 Postantated 12/31/2017 12/31/2017 Postantated 1/325 447 9/594 2,157 2,503 855 375 5,953 2,608 1,535 438 199 1,698 771 5,612 3,446 856 358 5,502 2,350 14,442 3,548 9,762 4,652 1,057 24,973 6,007 71,973 1,553 1,423 2,544 2,646 3,548 5,666 1,574 2,4973 6,017 1,434			Table I)-l. Estin	Table D-1. Estimated and Projected Inventory at	olected In	ventory at	NFK Sites	NPR Sites and Morris Site by State	Site by St	ate		
Prior to 1231/2017 12/31/2021 12/31/2045 Discharged Estimated Lutital Uranium Ur		SNF Die	scharged	Forecast 1/1/2	Discharges 2018 to	Forecas Discl	st Future harges 022 to	Total P	rojected	Past In Tra	Past Inter-State Transfer	State's I	State's Forecasted
Parimated Pari		Prior to 1	12/31/2017	12/3	1/2021	12/3	1/2075	Dischar	ged SNF	Adju	Adjustments	Remainin	Remaining Inventory
a Asy. CMTI Assy.			Initial		Estimated Initial		Estimated Initial		Estimated Initial		Initial		Estimated Initial
a 15,901 3,734 2,056 447 9,594 2,157 27,551 at 5,825 2,503 855 375 5,953 2,608 12,633 at 8 3,476 1,535 438 199 1,698 771 5,612 at 8,296 3,380 561 2,37 667 2,82 9,524 at 8 8,084 3,446 856 3,133 1,355 354 7,736 2,230 21,727 at 8,084 3,128 5,62 1,057 24,973 6,007 71,973 at 8,084 3,128 5,62 1,057 24,973 6,007 71,973 at 1,682 773 246 112 1,423 6,90 1,1658 at 1,434 542 at 1,62 3,00 1,01 1,434 2,144 2,144 3,144	State	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)
ticut 5,825 2,503 855 375 5,953 2,608 12,633 lis 3,476 1,535 438 199 1,698 771 5,612 liuja 8,296 3,380 561 237 667 282 9,524 lictut 7,165 2,323 392 166 2,362 1,030 9,919 21,682 2,323 3446 856 358 5,502 2,350 14,442 21,248 9,762 4,622 1,057 24,973 6,007 71,973 and 6,110 1,563 747 210 4,801 1,296 11,638 and 6,110 1,563 747 210 4,801 1,296 11,638 and 6,110 1,563 739 11,465 390 154	Alabama	15,901	3,734	2,056	447	9,594	2,157	27,551	6,338	-	1	27,551	6,338
ticut 3,476 1,535 438 199 1,698 771 5,612 1,110 1,536 1,380 5,61 2,37 667 2,82 9,524 1,110 1,563 2,323 392 166 2,362 1,030 9,919 1,081 2,123 3,133 1,355 3,54 7,736 2,230 21,727 2,132 2,138 2,128 2,607 71,973 2,138 2,128 2,66 520 94 3,648 2,138 2,128 2,1057 24,973 6,007 71,973 1,148 2	Arizona	5,825	2,503	855	375	5,953	2,608	12,633	5,485	1	1	12,633	5,485
ticut 7,165 2,323 392 166 2,362 1,030 9,919 ticut 7,165 2,323 392 166 2,362 1,030 9,919 168 8,084 3,446 856 358 5,502 2,350 14,442 17,136 12,036 3,133 1,355 354 7,736 2,230 21,727 1,032 1,038 1,138 5,602 1,057 24,973 6,007 71,973 1,082 1,08	Arkansas	3,476	1,535	438	199	1,698	771	5,612	2,505	_	ı	5,612	2,505
ticut 7,165 2,323 392 166 2,362 1,030 9,919 8,084 3,446 856 358 5,502 2,350 14,442 12,636 3,133 1,355 354 7,736 2,230 21,727 42,348 9,762 4,652 1,057 24,973 6,007 71,973 a 3,128 566 520 94 3,648 a 6,110 1,563 747 210 4,801 1,296 11,658 a 6,110 1,563 747 210 4,801 1,296 11,658 a 6,110 1,563 390 158 1,701 691 5,830 busetts 4,066 757 580 101 1,434 a 9,731 3,121 1,176 365 5,772 1,595 16,679 ota 6,284 1,627 520 133 1,976 520 8,780 ippi 5,452 969 648 118 4,688 854 10,788 i 1,998 846 174 73 1,498 625 3,670 a 5,228 1,188 330 59 1,533 748 3,323 mpshire 1,450 664 240 110 1,633 748 3,323	California	8,296	3,380	561	237	299	282	9,524	3,900	-270	86-	9,254	3,801
8,084 3,446 856 358 5,502 2,350 14,442 12,636 3,133 1,355 354 7,736 2,230 21,727 42,348 9,762 4,652 1,057 24,973 6,007 71,973 1,682 773 246 112 1,423 6,007 71,973 na 6,110 1,563 747 210 4,801 1,296 11,658 na 6,110 1,563 747 210 4,801 1,296 11,658 nd 3,739 1,465 390 158 1,701 691 5,830 nn 9,731 1,176 365 5,772 1,595 16,679 ota 6,284 1,627 520 133 1,976 8,780 ippi 5,452 969 648 118 4,688 854 10,788 ii 1,998 846 174 73 1,498 527 7,096 <	Connecticut	7,165	2,323	392	166	2,362	1,030	9,919	3,518	-83	-35	9,836	3,484
gia 12,636 3,133 1,355 354 7,736 2,230 21,727 is 42,348 9,762 4,652 1,057 24,973 6,007 71,973 as 3,128 566 520 94 - - 3,648 as 1,682 773 246 112 1,423 649 3,351 iana 6,110 1,563 747 210 4,801 1,296 11,658 e 1,434 542 - - - 1,434 land 3,739 1,465 390 158 1,701 691 5,830 achusetts 4,066 757 580 101 - - 4,646 igan 9,731 3,121 1,176 365 5,772 1,595 16,679 esota 6,284 1,627 520 133 1,976 520 8,780 ssippi 5,452 969 648 174 </td <td>Florida</td> <td>8,084</td> <td>3,446</td> <td>856</td> <td>358</td> <td>5,502</td> <td>2,350</td> <td>14,442</td> <td>6,154</td> <td>-18</td> <td>8-</td> <td>14,424</td> <td>6,146</td>	Florida	8,084	3,446	856	358	5,502	2,350	14,442	6,154	-18	8-	14,424	6,146
is 42,348 9,762 4,652 1,057 24,973 6,007 71,973 as 1,682 773 246 112 1,423 649 3,351 aina 6,110 1,563 747 210 4,801 1,296 11,658 and land 3,739 1,465 390 158 1,701 691 5,830 achusetts 4,066 757 580 101 4,646 acota 6,284 1,627 520 133 1,976 520 8,780 achuri 1,998 846 174 73 1,498 625 3,670 and sign 5,228 1,188 330 59 1,538 748 3,323 Hampshire 1,450 664 240 110 1,633 748 3,323	Georgia	12,636	3,133	1,355	354	7,736	2,230	21,727	5,716	1	ı	21,727	5,716
as 1,128 566 520 94	Illinois	42,348	9,762	4,652	1,057	24,973	6,007	71,973	16,826	2,461	529	74,434	17,355
1,682 773 246 112 1,423 649 6,110 1,563 747 210 4,801 1,296 1 1,434 542 - - - - - - - 3,739 1,465 390 158 1,701 691 -	Iowa	3,128	999	520	94	1	'	3,648	099	1	ı	3,648	099
6,110 1,563 747 210 4,801 1,296 1 1,434 542 - <t< td=""><td>Kansas</td><td>1,682</td><td>773</td><td>246</td><td>112</td><td>1,423</td><td>649</td><td>3,351</td><td>1,534</td><td>1</td><td>ı</td><td>3,351</td><td>1,534</td></t<>	Kansas	1,682	773	246	112	1,423	649	3,351	1,534	1	ı	3,351	1,534
1,434 542 - </td <td>Louisiana</td> <td>6,110</td> <td>1,563</td> <td>747</td> <td>210</td> <td>4,801</td> <td>1,296</td> <td>11,658</td> <td>3,068</td> <td>1</td> <td>1</td> <td>11,658</td> <td>3,068</td>	Louisiana	6,110	1,563	747	210	4,801	1,296	11,658	3,068	1	1	11,658	3,068
3,739 1,465 390 158 1,701 691 4,066 757 580 101 - - - 9,731 3,121 1,176 365 5,772 1,595 1 6,284 1,627 520 133 1,976 520 1 5,452 969 648 118 4,688 854 1 1,998 846 174 73 1,498 625 2,228 1,188 330 59 1,538 277 1,450 664 240 110 1,633 748	Maine	1,434	542	ı	1	1	'	1,434	542	1	ı	1,434	542
4,066 757 580 101 - - - 9,731 3,121 1,176 365 5,772 1,595 1 6,284 1,627 520 133 1,976 520 1 5,452 969 648 118 4,688 854 1 1,998 846 174 73 1,498 625 5,228 1,188 330 59 1,538 277 1,450 664 240 110 1,633 748	Maryland	3,739	1,465	390	158	1,701	691	5,830	2,315	-2	-1	5,828	2,314
9,731 3,121 1,176 365 5,772 1,595 1 6,284 1,627 520 133 1,976 520 5,452 969 648 118 4,688 854 1 1,998 846 174 73 1,498 625 2 5,228 1,188 330 59 1,538 277 48 1,450 664 240 110 1,633 748 88	Massachusetts	4,066	757	580	101	1	1	4,646	858	_	ı	4,646	858
6,284 1,627 520 133 1,976 520 5,452 969 648 118 4,688 854 1 1,998 846 174 73 1,498 625 5,228 1,188 330 59 1,538 277 1,450 664 240 110 1,633 748	Michigan	9,731	3,121	1,176	365	5,772	1,595	16,679	5,082	-85	-11	16,594	5,070
5,452 969 648 118 4,688 854 1 1,998 846 174 73 1,498 625 5,228 1,188 330 59 1,538 277 1,450 664 240 110 1,633 748	Minnesota	6,284	1,627	520	133	1,976	520	8,780	2,279	-1,058	-198	7,722	2,081
1,998 846 174 73 1,498 625 5,228 1,188 330 59 1,538 277 1,498 240 110 1,633 748	Mississippi	5,452	696	648	118	4,688	854	10,788	1,941	ı	ı	10,788	1,941
5,228 1,188 330 59 1,538 277 1,450 664 240 110 1,633 748	Missouri	1,998	846	174	73	1,498	625	3,670	1,544	I	ı	3,670	1,544
1.450 664 240 110 1.633 748	Nebraska	5,228	1,188	330	59	1,538	277	7,096	1,525	-1,056	-198	6,040	1,327
	New Hampshire	1,450	664	240	110	1,633	748	3,323	1,522	I	ı	3,323	1,522
New Jersey 11,743 3,028 1,592 385 6,304 1,696 19,639	New Jersey	11,743	3,028	1,592	385	6,304	1,696	19,639	5,109	1	1	19,639	5,109

Table D-1 (continued)

	SNF Dis	SNF Discharged Prior to 12/31/2017	Forecast 1/1/2 12/3	Forecast Discharges 1/1/2018 to 12/31/2021	Foreca: Discl 1/1/2 12/3]	Forecast Future Discharges 1/1/2022 to 12/31/2075	Total P Dischary	Total Projected Discharged SNF	Past In Tra Adjus	Past Inter-State Transfer Adjustments	State's F Remaining	State's Forecasted Remaining Inventory
State	Assy.	Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)
New York	16,732	4,174	2,022	545	7,539	1,410	26,293	6,129	-40	-15	26,253	6,114
North Carolina	13,080	3,652	1,496	425	7,658	2,347	22,234	6,424	1,108	491	23,342	6,915
Ohio	5,617	1,387	716	176	4,913	1,125	11,246	2,688	1	1	11,246	2,688
Oregon	790	359	ı	1	ı	ı	790	359	ı	-	790	359
Pennsylvania	34,191	7,302	4,048	988	28,787	5,710	67,026	13,898	-2	1	67,024	13,897
South Carolina	11,670	5,273	1,215	552	5,648	2,562	18,533	8,388	-1,109	-495	17,425	7,896
Tennessee	4,568	2,094	268	411	7,236	3,328	12,701	5,832	ı	1	12,701	5,832
Texas	5,783	2,745	919	437	6,962	3,261	13,664	6,444	ı	1	13,664	6,444
Vermont	3,879	200	ı	1	1	1	3,879	902	1	1	3,879	706
Virginia	6,455	2,976	717	330	4,735	2,181	11,907	5,487	69-	-31	11,838	5,455
Washington	4,344	792	496	88	3,244	578	8,084	1,433	ı	1	8,084	1,433
Wisconsin	4,227	1,538	235	93	853	336	5,315	1,967	-10	4	5,305	1,963
Totals	277,112	79,898	31,089	9,057	167,394	49,223	475,595	138,177	-233	-74	475,363	138,105

* Total Interstate Transfer reflects the amount of SNF reported in GC-859 as being transferred to DOE, this is not the total quantity of NPR SNF in DOE possession, see Section 3.1.2.. SNF mass in MT has been rounded to the nearest MT, totals are rounded sums of pre-rounded quantities.

November 2022 139

Table D-2. Estimated Inventory at NPR Sites and Morris Site by State and by Storage Configuration at the end of 2021

				onfiguration a			ontowy
	1	Ory Inventor	y	Pool Inv	Ĭ	Site Inv	·
		Estimated			Estimated		Estimated
		Initial Uranium	SNF		Initial Uranium		Initial Uranium
State	Assy.	(MT)	Casks	Assy.	(MT)	Assy.	(MT)
Alabama	9,601	2,200	155	8,356	1,981	17,957	4,181
Arizona	4,055	1,747	163	2,625	1,131	6,680	2,878
Arkansas	2,576	1,142	96	1,338	593	3,914	1,734
California	6,594	2,664	207	1,993	856	8,587	3,519
Connecticut	2,523	1,052	87	4,951	1,402	7,474	2,454
Florida	3,771	1,647	118	5,151	2,149	8,922	3,796
Georgia	7,556	1,737	136	6,435	1,749	13,991	3,486
Illinois	19,233	4,622	349	30,228	6,726	49,461	11,348
Iowa	2,013	364	33	1,635	296	3,648	660
Kansas	- 2,013	-	-	1,928	885	1,928	885
Louisiana	3,100	795	62	3,757	978	6,857	1,772
Maine	1,434	542	60	-	-	1,434	542
Maryland	2,735	1,076	97	1,392	547	4,127	1,623
Massachusetts	4,646	858	77	-	-	4,646	858
Michigan	5,184	1,693	136	5,638	1,783	10,822	3,475
Minnesota	3,710	1,012	77	2,036	550	5,746	1,562
Mississippi	2,992	533	44	3,108	554	6,100	1,087
Missouri	1,110	470	30	1,062	449	2,172	919
Nebraska	3,094	796	70	1,408	254	4,502	1,050
New Hampshire	704	322	22	986	452	1,690	774
New Jersey	8,096	1,800	141	5,239	1,613	13,335	3,414
New York	7,365	1,874	149	11,349	2,830	18,714	4,704
North Carolina	4,908	1,491	114	10,776	3,077	15,684	4,568
Ohio	2,196	542	40	4,137	1,021	6,333	1,563
Oregon	790	359	34	ı	ı	790	359
Pennsylvania	18,216	3,443	295	20,021	4,745	38,237	8,188
South Carolina	6,509	2,981	259	5,268	2,353	11,777	5,334
Tennessee	2,888	1,323	84	2,577	1,181	5,465	2,505
Texas	1,980	884	60	4,722	2,298	6,702	3,182
Vermont	3,879	706	58	-	-	3,879	706
Virginia	5,037	2,321	166	2,066	953	7,103	3,274
Washington	3,060	541	45	1,787	317	4,847	857
Wisconsin	3,362	1,208	99	1,090	419	4,452	1,627
Totals	154,917	44,741	3,563	153,059	44,143	307,976	88,884

Excludes SNF from TMI Unit 2 (in ID) and Fort St. Vrain (in ID and CO).

d by State at the nt Cr ر

		Table D-3. Estimated Pool Inventory by Current Group and by State at the end of 2021	timated Poo	I Inventory	by Current G	roup and by	State at the	end of 2021		
	,	A	B	*	C]	F	Totals	als
		Estimated Initial		Estimated Initial		Estimated Initial Uranium		Estimated Initial Uranium		Estimated Initial
State	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)
Alabama	-	1	1	-	8,356	1,981	-	-	8,356	1,981
Arizona	-	1	1	1	2,625	1,131	1	1	2,625	1,131
Arkansas	-	-	1	-	1,338	593	-	-	1,338	593
California	-	1	-	-	1,993	958	-	1	1,993	856
Connecticut	-	-	4,951	1,402	ı	-	-	-	4,951	1,402
Florida	-	1	1	-	5,151	2,149	-	-	5,151	2,149
Georgia	-	I	ı	-	6,435	1,749	1	-	6,435	1,749
Illinois	-	-	5,583	936	21,428	5,116	3,217	674	30,228	6,726
Iowa	1,635	296	1	_	_	1	1	1	1,635	296
Kansas	1	1	ı	ı	1,928	885	ı	1	1,928	885
Louisiana	-	-	1	_	3,757	826	-	-	3,757	826
Maryland	-	1	1	-	1,392	547	-	1	1,392	547
Michigan	-	1	ı	-	5,638	1,783	-	-	5,638	1,783
Minnesota	-	I	I	-	2,036	550	-	-	2,036	550
Mississippi	ı	ı	ı	ı	3,108	554	ı	ı	3,108	554
Missouri	-	I	1	-	1,062	449	1	I	1,062	449
Nebraska	1	I	ı	1	1,408	254	1	I	1,408	254
New Hamnshire	-	1	1	1	986	<i>C</i> 57	1	1	986	757
New Jersey	1	1	I	1	5,239	1,613	1	ı	5,239	1,613
New York	2,139	972	1	-	9,210	1,858	-	-	11,349	2,830
North Carolina	0	0	0	0	10,776	3,077	ı	1	10,776	3,077
Ohio	0	0	0	0	4,137	1,021	1	-	4,137	1,021

Table D-3 (continued)

		A	В	~	C			F	Tot	Totals
State	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)
Pennsylvania	1,515	716	1	. 1	18,506	4,030	1	ı	20,021	4,745
South Carolina	ı	1	1	1	5,267	2,353	ı	1	5,267	2,353
Tennessee	1	ı	1	1	2,577	1,181	-	1	2,577	1,181
Texas	-	-	-	-	4,722	2,298	-	1	4,722	2,298
Virginia	-	1	1	-	2,066	953	-	1	2,066	953
Washington	-	1	1	ı	1,780	314	-	1	1,780	314
Wisconsin	ı	ı	ı	ı	1,090	419	1	ı	1,090	419
Totals	5,289	1,983	10,534	2,338	134,011	39,144	3,217	674	153,051	44,140

142

Table D-4. Estimated Dry Inventory by Current Group and by State at the end of 2021

		i adie D-4. Estillated	4. Estill		IIIVEIIUU y D	y Culle	Diffine the child of 2021	I Dy State at	ine end of	7707		
		A			В			C			Totals	
State	Assy.	Estimated Initial Uranium (MT)	SNF Casks	Assy.	Estimated Initial Uranium (MT)	SNF	Assy.	Estimated Initial Uranium (MT)	SNF	Assy.	Estimated Initial Uranium (MT)	SNF
Alabama		. 1	ı	1	1	1	9,601	2,200	155	9,601	2,200	155
Arizona	-	1	ı	-	-	1	4,055	1,747	163	4,055	1,747	163
Arkansas	-	-	-	_	-	1	2,576	1,142	96	2,576	1,142	96
California	4,738	1,867	149	_	1	-	1,856	L6L	58	6,594	2,664	207
Connecticut	1,019	414	40	1,504	638	47	1	ı	1	2,523	1,052	87
Florida	1,243	582	39	ı	ı	I	2,528	1,064	79	3,771	1,647	118
Georgia	_	1	1	_	-	-	7,556	1,737	136	7,556	1,737	136
Illinois	2,226	1,019	61	5,984	1,032	88	11,023	2,570	200	19,233	4,622	349
Iowa	2,013	364	33	_	1	-	I	ı	1	2,013	364	33
Louisiana	_	1	1	_	-	-	3,100	795	62	3,100	795	62
Maine	1,434	542	60	_	-	-	•	1	-	1,434	542	09
Maryland	_	1	1	_	-	-	2,735	1,076	6	2,735	1,076	97
Massachusetts	4,646	858	77	ı	I	ı	1	1	ı	4,646	858	77
Michigan	441	58	7	_	-	-	4,743	1,635	129	5,184	1,693	136
Minnesota	ı	ı	I	ı	ı	I	3,710	1,012	77	3,710	1,012	77
Mississippi	_	1	-	_	-	-	2,992	533	44	2,992	533	44
Missouri	ı	ı	I	ı	ı	I	1,110	470	30	1,110	470	30
Nebraska	1,264	466	40	ı	ı	I	1,830	330	30	3,094	962	70
New Hampshire	1	I	ı	-	I	I	704	322	22	704	322	22
New Jersey	4,504	797	67	ı	ı	I	3,592	1,003	74	8,096	1,800	141
New York	1,856	801	58	1	1	1	5,509	1,073	91	7,365	1,874	149

	Totals	Estimated Initial SNF	(TTAT)	4,908 1,491 114	2,196 542 40	790 359 34	3,443 295		6,509 2,981 259	2,888 1,323 84	1,980 884 60	3,879 706 58	5,037 2,321 166	3,060 541 45	3,362 1,208 99	117 44,741 3,563
			S. C.	4,5	2,1	7	18,2		6,5	2,8	1,5	3,8	5,0	3,0		154,917
		SNF	Cashs	114	40	-	291		259	84	09	-	166	45	56	2,658
	C	Estimated Initial Uranium	(1111)	1,491	542	1	3,373		2,981	1,323	884	1	2,321	541	651	33,611
Table D-4 (continued)		V 6697	ASS Y.	4,908	2,196	1	18,068		6,509	2,888	1,980	ı	5,037	3,060	1,694	115,560
D-4 (co		SNF	Cashs	1	1	1	ı	1		ı	ı	1	1	ı	1	135
Table	В	Estimated Initial Uranium	(111)	ı	ı	-	1	1		ı	ı	1	ı	ı	1	1,670
		A 6.687	ASS y.	ı	1	1	1	•		1	ı	1	1	ı	1	7,488
		SNF	Cashs	1	ı	34	4	1		ı	ı	58	1	ı	43	770
	A	Estimated Initial Uranium		1	1	359	70	-		1	ı	902	1	1	557	9,460
		V 2007	ASSY.	ı	-	790	148	1		ı	ı	3,879	1	ı	1,668	31,869
		Chato	North	Carolina	Ohio	Oregon	Pennsylvania	South	Carolina	Tennessee	Texas	Vermont	Virginia	Washington	Wisconsin	Totals

Excludes SNF from TMI Unit 2 (in ID) and Fort St. Vrain (in ID and CO).

SNF mass in MT has been rounded to the nearest MT, totals are rounded sums of pre-rounded quantities.

Table D-5. Estimated Total Inventory of Group A Sites by State at the end of 2021

	A1		·	A2		A3		4
State	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)
California	4,738	1,867	-	-	-	-	4,738	1,867
Connecticut	1,019	414	-	-	-	-	1,019	414
Florida	1,243	582	ı	-	ı	-	1,243	582
Illinois	2,226	1,019	1	-	1	-	2,226	1,019
Iowa	-	-	3,648	660	-	-	3,648	660
Maine	1,434	542	-	-	-	-	1,434	542
Massachusetts	4,646	858	_	-	-	-	4,646	858
Michigan	441	58	-	-	-	-	441	58
Nebraska	1,264	466	-	-	-	-	1,264	466
New Jersey	4,504	797	_	-	-	-	4,504	797
New York	-	-	3,995	1,773			3,995	1,773
Oregon	790	359	-	-	-	-	790	359
Pennsylvania	-	-	1,663	786	-	-	1,663	786
Vermont	3,879	706	-	-	-	-	3,879	706
Wisconsin	1,668	557	-	-	1	-	1,668	557
Totals	27,852	8,225	9,306	3,218	-	-	37,158	11,444

Excludes SNF from Fort St. Vrain at DOE-Managed ISFSI in Colorado.

SNF mass in MT has been rounded to the nearest MT, totals are rounded sums of pre-rounded quantities.

Table D-6. Estimated Total Inventory of Group B Sites by State at the end of 2021

	B	2]	B3		В
State	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)
Connecticut	6,455	2,040	0	0	6,455	2,040
Illinois	11,567	1,968	0	0	11,567	1,968
Totals	18,022	4,008	0	0	18,022	4,008

November 2022 145

Table D-7. Estimated Total Inventory of Group C Sites by State at the end of 2021

Table D-7. Estillat		C 2	•	C 3		C
State	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)
Alabama	17,957	4,181	-	-	17,957	4,181
Arizona	6,680	2,878	-	-	6,680	2,878
Arkansas	3,914	1,734	-	1	3,914	1,734
California	3,849	1,652	-	-	3,849	1,652
Florida	7,679	3,214	-	-	7,679	3,214
Georgia	13,991	3,486	-	1	13,991	3,486
Illinois	32,451	7,686	-	-	32,451	7,686
Kansas	-	-	1,928	885	1,928	885
Louisiana	6,857	1,772	-	-	6,857	1,772
Maryland	4,127	1,623	-	-	4,127	1,623
Michigan	10,381	3,417	-	-	10,381	3,417
Minnesota	5,746	1,562	-	-	5,746	1,562
Mississippi	6,100	1,087	-	-	6,100	1,087
Missouri	2,172	919	-	-	2,172	919
Nebraska	3,238	584	-	-	3,238	584
New Hampshire	1,690	774	-	-	1,690	774
New Jersey	8,831	2,616	-	-	8,831	2,616
New York	14,719	2,931	-	-	14,719	2,931
North Carolina	9,329	2,890	6,349	1,678	15,684	4,568
Ohio	6,333	1,563	-	-	6,333	1,563
Pennsylvania	36,574	7,402	-	-	36,574	7,402
South Carolina	11,776	5,334	-	-	11,776	5,334
Tennessee	5,465	2,505	-	-	5,465	2,505
Texas	6,702	3,182	-	-	6,702	3,182
Virginia	7,103	3,274	-	-	7,103	3,274
Washington	4,840	855	-	-	4,840	855
Wisconsin	2,784	1,070	-	-	2,784	1,070
Totals	241,288	70,192	8,283	2,563	249,571	72,755

Table D-8. Estimated Total Inventory of Group F Site by State at the end of 2021

		F
State	Assy.	Estimated Initial Uranium (MT)
Illinois	3,217	674
Totals	3,217	674

Table D-9. Estimated Total Inventory by Current Group and by State at the end of 2021

	1	i adie D-7. Esuinateu	- 1	I TIIVEIITOI Y	Total Inventory by Current Group and by State at the end of 2021	oup and by E	ומוב מו וווב	1707 IO DII		
	A		B		C			Ŧ	Totals	lls
		Estimated Initial Uranium		Estimated Initial Uranium		Estimated Initial Uranium		Estimated Initial Uranium		Estimated Initial Uranium
State	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)
Alabama	1	ı	-	-	17,957	4,181	1	•	17,957	4,181
Arizona	-	ı	1	1	6,680	2,878	ı	1	6,680	2,878
Arkansas	1	ı	1	-	3,914	1,734	1	1	3,914	1,734
California	4,738	1,867	ı	1	3,849	1,652	ı	ı	8,587	3,519
Connecticut	1,019	414	6,455	2,040	-	1	1	1	7,474	2,454
Florida	1,243	582	1	1	7,679	3,214	1	1	8,922	3,796
Georgia	ı	1	1	1	13,991	3,486	-	1	13,991	3,486
Illinois	2,226	1,019	11,567	1,968	32,451	7,686	3,217	674	49,461	11,348
Iowa	3,648	099	1	1	1	ı	1	1	3,648	099
Kansas	-	1	ı	1	1,928	885	ı	ı	1,928	885
Louisiana	1	ı	1	1	6,857	1,772	1	1	6,857	1,772
Maine	1,434	542	1	1	1	ı	1	1	1,434	542
Maryland	1	1	1	1	4,127	1,623	-	1	4,127	1,623
Massachusetts	4,646	858	1	1	1	1	1	1	4,646	858

Table D-9 (continued)

						,				
	A		B		C]	F	Totals	IS
		Estimated Initial		Estimated Initial		Estimated Initial		Estimated Initial		Estimated Initial
State	Assy.		Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)
Michigan	441	58	ı	1	10,381	3,417	1	ı	10,822	3,475
Minnesota	1	1	1	1	5,746	1,562	1	1	5,746	1,562
Mississippi	-	-	1	-	6,100	1,087	-	1	6,100	1,087
Missouri	-	-	•	ı	2,172	616	1	1	2,172	919
Nebraska	1,264	466	ı	-	3,238	584	1	ı	4,502	1,050
New Hampshire	l	1	ı	1	1,690	774	1.	I	1,690	774
New Jersey	4,504	197	-	-	8,831	2,616	-	-	13,335	3,414
New York	3,995	1,773	1	1	14,719	2,931	1	1	18,714	4,704
North Carolina	-	1	1	1	15,684	4,568	-	1	15,684	4,568
Ohio	-	1	1	ı	6,333	1,563	-	ı	6,333	1,563
Oregon	190	359	•	1	1	1	-	1	790	359
Pennsylvania	1,663	786	ı	ı	36,574	7,402	1	1	38,237	8,188
South Carolina	-	-	1	ı	11,776	5,334	ı	1	11,776	5,334
Tennessee	-	1	1	1	5,465	2,505	-	1	5,465	2,505
Texas	-	'	1	1	6,702	3,182	-	1	6,702	3,182
Vermont	3,879	902	1	ı	1	I	1	1	3,879	706
Virginia	1	ı	1	1	7,103	3,274	1	1	7,103	3,274
Washington	1	1	1	ı	4,840	855	1	1	4,840	855
Wisconsin	1,668	557	1	1	2,784	1,070	1	1	4,452	1,627
Totals	37,158	11,444	18,022	4,008	249,571	72,755	3,217	674	307,968	88,882

Excludes SNF from TMI Unit 2 (in ID) and Fort St. Vrain (in ID and CO).

Table D-10. Projected Inventory by Current Group and by State through 2075

		I anie D	-10. I I 0Jecte	d Illvelltory	Table D-10. Holected Inventory by Current Group and by State through 20/3	n oup and by	state till ot	1811 2013		
	A	Δ.	В	•	C			F	Totals	als
		Estimated Initial Uranium		Estimated Initial Uranium		Estimated Initial Uranium		Estimated Initial Uranium		Estimated Initial Uranium
State	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)
Alabama	1	1	-	1	27,551	6,338	1	1	27,551	6,338
Arizona	-	1	_	1	12,633	5,485	-	1	12,633	5,485
Arkansas	-	1	_	1	5,612	2,505	-	1	5,612	2,505
California	4,738	1,867	_	-	4,516	1,935	-	-	9,254	3,801
Connecticut	1,019	414	8,817	3,070	1	-	-	-	9,836	3,484
Florida	1,243	582	_	1	13,181	5,564	-	1	14,424	6,146
Georgia	-	1	_	-	21,727	5,716	-	1	21,727	5,716
Illinois	2,226	1,019	14,755	2,519	54,236	13,142	3,217	674	74,434	17,355
Iowa	3,648	099	-	1	1	ı	1	1	3,648	099
Kansas	1	1	1	1	3,351	1,534	1	1	3,351	1,534
Louisiana	-	1	_	1	11,658	3,068	-	-	11,658	3,068
Maine	1,434	542	-	1	1	ı	1	1	1,434	542
Maryland	1	1	-	1	5,828	2,314	1	1	5,828	2,314
Massachusetts	4,646	858	-	1	1	ı	ı	1	4,646	858
Michigan	441	58	-	1	16,153	5,012	ı	1	16,594	5,070
Minnesota	1	1	-	1	7,722	2,081	1	1	7,722	2,081
Mississippi	1	ı	-	1	10,788	1,941	1	1	10,788	1,941
Missouri	1	ı	-	1	3,670	1,544	ı	1	3,670	1,544
Nebraska	1,264	466	-	1	4,776	861	1	1	6,040	1,327
New Hampshire	1	1	ı	1	3,323	1,522	1	1	3,323	1,522
New Jersey	4,504	797	1	1	15,135	4,312	1	1	19,639	5,109
New York	3,995	1,773	1	1	22,258	4,341	ı	1	26,253	6,114

				Tabi	Table D-10 (continued)	(ned)				
	A		B		O	,]	F	Totals	als
		Estimated Initial Uranium		Estimated Initial Uranium		Estimated Initial Uranium		Estimated Initial Uranium		Estimated Initial Uranium
State	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)
North Carolina	ı	1	ı	1	23,342	6,915	1	ı	23,342	6,915
Ohio	1	1	1	1	11,246	2,688	1		11,246	2,688
Oregon	062	359	-	1	1	1	-	1	190	359
Pennsylvania	1,663	982	-	1	65,361	13,112	-	•	67,024	13,897
South	1	1	ı	1	17 424	988 2	ı	1	17 424	968 2
Tennessee	1	1	1	1	12,701	5,832	1	1	12,701	5,832
Texas	1	ı	1	1	13,664	6,444	1	1	13,664	6,444
Vermont	3,879	902	1	1	I	I	1		3,879	902
Virginia	1	ı	1	1	11,838	5,455	1	1	11,838	5,455
Washington	-	1	-	1	8,084	1,433	-	-	8,084	1,433
Wisconsin	1,668	557	-	-	3,637	1,406	-	1	5,305	1,963
Totals	37,158	11,444	23,572	5,589	411,415	120,397	3,217	674	475,362	138,104

Excludes SNF from TMI Unit 2 (in ID) and Fort St. Vrain (in ID and CO).

November 2022 151

Appendix E

Reference Scenario: No Replacement Nuclear Generation Forecast – Discharged SNF by NRC Region

THIS PAGE INTENTIONALLY LEFT BLANK

Table E-1. Estimated and Projected Inventory by NRC Region

			1 anie	E-I. ESIIIIS	ited alld r	Table E-1. Estimated and Frojected Inventory by INKC Region	entory by	NEC RESID				
	SNF Dis	SNF Discharged Prior to 12/31/2017	Forecast 1/1/2 12/3	Forecast Discharges 1/1/2018 to 12/31/2021	Forecas Disch 1/1/2 12/31	Forecast Future Discharges 1/1/2022 to 12/31/2075	Total P Dischar	Total Projected Discharged SNF	Past Into Tra Adjus	Past Inter-Region Transfer Adjustments	Region's Remaining	Region's Forecasted Remaining Inventory
		Initial Uranium		Estimated Initial Uranium		Estimated Initial Uranium		Estimated Initial Uranium		Initial Uranium		Estimated Initial Uranium
NRC Region	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)	Assy.	(MT)
	84,399	20,961	9,264	2,353	48,326	11,284	141,989	34,598	-127	-51	141,862	34,547
2	72,394	24,307	8,592	2,877	48,109	17,155	129,095	44,339	-88	-40	129,007	44,299
3	71,335	18,002	7,819	1,917	38,487	9,583	117,641	29,502	1,308	315	118,949	29,817
4	48,984	16,628	5,414	1,909	32,472	11,201	86,870	29,738	-1,326	-297	85,544	29,441
Totals*	277,112	79,898	31,089	9,057	167,394	49,223	475,595	138,177	-233	-73	475,362	138,104
,	,	,										

^{*} Total Interstate Transfer reflects the amount of SNF reported in GC-859 as being transferred to DOE, this is not the total quantity of NPR SNF in DOE possession, see Section 3.1.2.. SNF mass in MT has been rounded to the nearest MT, totals are rounded sums of pre-rounded quantities.

Table E-2. Estimated Inventory by NRC Region and by Storage Configuration at the end of 2021

]	Dry Inventory		Pool I	iventory	Site In	ventory
NRC Region	Assy.	Estimated Initial Uranium (MT)	SNF Casks	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)
1	49,598	11,673	986	43,938	11,590	93,536	23,262
2	40,270	13,699	1,032	40,628	13,445	80,898	27,144
3	35,698	9,441	734	44,764	10,794	80,462	20,235
4	29,351	9,929	811	23,721	8,311	53,072	18,240
Totals	154,917	44,741	3,563	153,051	44,140	307,968	88,882

Table E-3. Estimated Pool Inventory by Current Group and by NRC Region at the end of 2021

В		C		Ŧ –		Totals	S
Sstimated Esti Initial Uranium Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)
1,687 4,951	1,402	35,333	8,500	ı	ı	43,938	11,590
1	ı	40,628	13,445	ı	1	40,628	13,445
296 5,583	936	34,329	8,888	3,217	674	44,764	10,794
1	ı	23,721	8,311	ı	ı	23,721	8,311
1,983 10,534	2,338	134,011	39,144	3,217	674	153,051	44,140

SNF mass in MT has been rounded to the nearest MT, totals are rounded sums of pre-rounded quantities.

Table E-4 Estimated Dry Inventory by Current Group and by NRC Region at the end of 2021

		I and I		lated Diy	lable E-4. Estimated Dig Inventory by		r Group an	Cultent Group and by INNC Neglon at the end of 2021	וחוו שו נווכ כו	1707 IO DI		
		A			B			C			Totals	
		Estimated Initial			Estimated Initial			Estimated Initial			Estimated Initial	
NRC Region	Assy.	Uranium (MT)	SNF Casks	Assy.	Uranium (MT)	SNF Casks	Assy.	Uranium (MT)	SNF Casks	Assy.	Uranium (MT)	SNF Casks
1	17,486	4,188	364	1,504	638	47	30,608	6,847	575	49,598	11,673	986
2	1,243	582	39	1	ı	ı	39,027	13,117	993	40,270	13,699	1,032
3	6,348	1,998	144	5,984	1,032	88	23,366	6,410	502	35,698	9,441	734
4	6,792	2,692	223	_	1	ı	22,559	7,237	588	29,351	9,929	811
Totals	31,869	9,460	770	7,488	1,670	135	115,560	33,611	2,658	154,917	44,741	3,563

Table E-5. Estimated Total Inventory by Current Group and by NRC Region at the end of 2021

	A		В		C		F		To	Totals
NRC Region	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)	Assy.	Estimated Initial Uranium (MT)
1	21,140	5,876	6,455	2,040	65,941	15,346	1	ı	93,536	23,262
2	1,243	582	-	1	79,655	26,562	1	ı	80,898	27,144
3	7,983	2,294	11,567	1,968	57,695	15,298	3,217	674	80,462	20,235
4	6,792	2,692	I	1	46,280	15,548	ı	1	53,072	18,240
Totals	37,158	11,444	18,022	4,008	249,571	72,755	3,217	674	307,968	88,882

SNF mass in MT has been rounded to the nearest MT, totals are rounded sums of pre-rounded quantities.

Table E-6. Projected Inventory by Current Group and by NRC Region through 2075

		I and			of current of	chair by current group and by the program and and	INCEIN UII	ongin 7010		
	A		В)	<i>F</i>)	Ŧ	r	Totals	als
Ş		Estimated Initial		Estimated Initial		Estimated		Estimated Initial		Estimated
NRC Region	Assy.	Uranium (MT)	Assy.	Uranium (MT)	Assy.	Initial Uranium (MT)	Assy.	Uranium (MT)	Assy.	Initial Uranium (MT)
1	21,140	5,876	8,817	3,070	111,905	25,601	1	1	141,862	34,547
2	1,243	582	I	1	127,764	43,717	ı	1	129,007	44,299
3	7,983	2,294	14,755	2,519	92,994	24,330	3,217	674	118,949	29,817
4	6,792	2,692	ı	1	78,752	26,749	1	1	85,544	29,441
Totals*	37,158	11,444	23,572	5,589	411,415	120,397	3,217	674	475,362	138,104

November 2022 157

Appendix F

Reference Scenario: No Replacement Nuclear Generation Forecast – Inventory by Congressional District

THIS PAGE INTENTIONALLY LEFT BLANK

November 2022

		Table F-1 Estima	ted Inventory by S	Table F-1 Estimated Inventory by State and Congressional District as of December 31, 2021	il District as of D	ecember 31,	2021		
State	Congressional District	Representative	Senators	Facility Name (Bold = Shutdown)	Type of Facility	SNF at NPR/ISFSI Sites (MTHM)	SNF at DOE Sites (MTHM)	Reprocessing Waste (Equivalent MTHM)**	TOTAL (MTHM)
Alabama (AL)	2	Barry Moore (R)	Richard Shelby (R)	Joseph M. Farley Nuclear Plant	Comm Reactor	1,606	-	-	1,606
Alabama (AL)	5	Mo Brooks (R)	Tommy Tuberville (R)	Browns Ferry Nuclear Plant	Comm Reactor	2,575	1	-	2,575
Arizona (AZ)	3	Raul Grijalva (D)	Mark Kelly (D) Kyrsten Sinema (D)	Palo Verde Nuclear Generating Station	Comm Reactor	2,878	•	-	2,878
Arkansas (AR)	3	Steve Womack (R)	John Boozman (R) Tom Cotton (R)	Arkansas Nuclear One	Comm Reactor	1,734	•	-	1,734
California (CA)	2	Jared Huffman (D)	Dianne Feinstein (D)	Humboldt Bay	Comm Reactor	29	-	1	29
California (CA)	9	Doris O. Matsui (D)	Alex Padilla (D)	UC Davis/McClellan Nuclear Research Center	University Reactor	-	-	-	а
California (CA)	7	Ami Bera (D)		Rancho Seco	Comm Reactor	228	-	-	228
California (CA)	13	Barbara Lee (D)		Lawrence Berkeley National Laboratory	DOE National Lab	-	-	-	Р
California (CA)	15	Eric Swalwell (D)		Aerotest Research ARRR	Non DOE Res Reactor	1	ı	1	а
California (CA)	15	Eric Swalwell (D)		General Electric NTR	Non DOE Res Reactor	1	1	1	а
California (CA)	15	Eric Swalwell (D)		Lawrence Livermore National Laboratory	DOE National Lab	-	1	1	Р
California (CA)	18	Anna G. Eshoo (D)		SLAC National Accelerator Laboratory	DOE National Lab	1	1	1	Р
California (CA)	24	Salud Carbajal (D)		Diablo Canyon Nuclear Power Plant	Comm Reactor	1,652	ı	1	1,652
California (CA)	45	Katie Porter (D)		University of California Irvine	University Reactor	1	1	ı	а
California (CA)	49	Mike Levin (D)		San Onofre	Comm Reactor	1,609	1	1	1,609

159

				Table F-1 (continued)					
State	Congressional District	Representative	Senators	Facility Name (Bold = Shutdown)	Type of Facility	SNF at NPR/ISFSI Sites (MTHM)	SNF at DOE Sites (MTHM)	Reprocessing Waste (Equivalent MTHM)***	TOTAL (MTHM)
Colorado (CO)	4	Ken Buck (R)	Michael Bennet (D)	Fort St. Vrain	DOE Site	,	15	,	15
Colorado (CO)	7	Ed Perlmutter (D)	John Hickenlooper (D)	National Renewable Energy Laboratory	DOE National Lab	I	ı	1	q
Colorado (CO)	7	Ed Perlmutter (D)		U.S. Geological Survey GSTR	Non DOE Res Reactor	-	1	-	a
Connecticut (CT)	2	Joe Courtney (D)	Richard Blumenthal (D)	Haddam Neck	Comm Reactor	414	-	-	414
Connecticut (CT)	2	Joe Courtney (D)	Chris Murphy (D)	Millstone Power Station	Comm Reactor	2,040	1	1	2,040
Florida (FL)	3	Kat Cammack (R)	Rick Scott (R)	University of Florida UFTR	University Reactor	-	-	-	a
Florida (FL)	11	Daniel Webster (R)	Marco Rubio (R)	Crystal River	Comm Reactor	582	-	-	582
Florida (FL)	18	Brian Mast (R)		St. Lucie Plant	Comm Reactor	1,673	1	-	1,673
Florida (FL)	27	Maria Salazar (R)		Turkey Point Nuclear Generating	Comm Reactor	1,541	ı	1	1,541
Georgia (GA)	1	Buddy Carter (R)	Raphael Warnock (D)	Edwin I. Hatch Nuclear Plant	Comm Reactor	1,824	ı	1	1,824
Georgia (GA)	12	Rick Allen (R)	Jon Ossoff (D)	Vogtle Electric Generating Plant	Comm Reactor	1,663	ı	-	1,663
Idaho (ID)	2	Mike Simpson (R)	Mike Crapo (R)	Idaho National Laboratory	DOE National Lab w/ Reactor	-	270	1,900	2,170
Idaho (ID)	2	Mike Simpson (R)	James Risch (R)	Idaho State University AGN-201	University Reactor	-	ı	-	а
Idaho (ID)	2	Mike Simpson (R)		Naval Reactors Storage Facility	DOE National Lab	1	39	1	39

November 2022

	TOTAL (MTHM)	q	1,019	738	P	1,600	1,688	1,968	674	1,758	1,903	a	099	q	а	885
	Reprocessing Waste (Equivalent MTHM)**	1	-	-	-	-	ı	-	-	I	-	-	I	I	-	I
	SNF at DOE Sites (MTHM)	1	-	-	-	-	1	-	-	1	-	-	1	-	-	1
	SNF at NPR/ISFSI Sites (MTHM)	-	1,019	738	-	1,600	1,688	1,968	674	1,758	1,903	-	099	-	-	885
	Type of Facility	DOE National Lab	Comm Reactor	Comm Reactor	DOE National Lab	Comm Reactor	Comm Reactor	Comm Reactor	Comm Reactor	Comm Reactor	Comm Reactor	University Reactor	Comm Reactor	DOE National Lab	University Reactor	Comm Reactor
Table F-1 (continued)	Facility Name (Bold = Shutdown)	Argonne National Laboratory	Zion	Clinton Power Station	Fermi National Accelerator National Laboratory	Braidwood Station	Byron Station	Dresden Nuclear Power Station	GE Morris	LaSalle County Station	Quad Cities Nuclear Power Station	Purdue University PUR-1	Duane Arnold Energy Center	Ames Laboratory (DOE Site)	Kansas State University TRIGA II	Wolf Creek Generating Station
	Senators	Richard Durbin (D)	Tammy Duckworth (D)									Todd Young (R) Mike Braun (R)	Charles Grassley (R)	Joni Ernst (R)	Roger Marshall (R)	Jerry Moran (R)
	Representative	Daniel Lipinski (D)	Bradley Schneider (D)	Rodney Davis (R)	Lauren Underwood (D)	Adam Kinzinger (R)	Adam Kinzinger (R)	Adam Kinzinger (R)	Adam Kinzinger (R)	Adam Kinzinger (R)	Cheri Bustos (D)	James Baird (R)	Abby Finkenauer (D)	Randy Feenstra (R)	Tracy Mann (R)	Steve Watkins (R)
	Congressional District	3	10	13	14	16	16	16	16	16	17	4	1	4	1	2
	State	Illinois (IL)	Illinois (IL)	Illinois (IL)	Illinois (IL)	Illinois (IL)	Illinois (IL)	Illinois (IL)	Illinois (IL)	Illinois (IL)	Illinois (IL)	Indiana (IN)	Iowa (IA)	Iowa (IA)	Kansas (KS)	Kansas (KS)

161

	TOTAL (MTHM)	953	820	542	1,623	а	а	а	127	а	а	731	58	а	1,903	782	732
	Reprocessing Waste (Equivalent MTHM)**	-	-	1	-	-	-	-	-	-	-	-	-	-	-	•	'
	SNF at DOE Sites (MTHM)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
	SNF at NPR/ISFSI Sites (MTHM)	953	820	542	1,623	-	1	1	127	-	-	731	58	-	1,903	782	732
	Type of Facility	Comm Reactor	Comm Reactor	Comm Reactor	Comm Reactor	University Reactor	Non DOE Res Reactor	Non DOE Res Reactor	Comm Reactor	University Reactor	University Reactor	Comm Reactor	Comm Reactor	Non DOE Res Reactor	Comm Reactor	Comm Reactor	Comm Reactor
Table F-1 (continued)	Facility Name (Bold = Shutdown)	Waterford Steam Electric Station	River Bend Station	Maine Yankee	Calvert Cliffs Nuclear Power Plant	University of Maryland MUTR	National Institute of Standards and Technology	Armed Forces Radiobiology Research Institute TRIGA	Yankee-Rowe	University of Lowell UMLRR	Massachusetts Institute of Technology MITR-II	Pilgrim Nuclear Power Station	Big Rock Point	DOW Chemical TRIGA	Donald C. Cook Nuclear Power Plant	Palisades Nuclear Plant	Fermi
	Senators	John Kennedy (R)	Bill Cassidy (R)	Susan Collins (R) Angus King (I)	Chris Van Hollen (D)	Ben Cardin (D)			Elizabeth Warren (D)	Ed Markey (D)			Debbie Stabenow (D)	Gary Peters (D)			
	Representative	Cedric Richmond (D)	Ralph Abraham (R)	Chellie Pingree (D)	Steny H. Hoyer (D)	Steny H. Hoyer (D)	David Trone (D)	Jamie Raskin (D)	Richard E. Neal (D)	Lori Trahan (D)	Ayanna Pressley (D)	William Keating (D)	Jack Bergman (R)	John Moolenaar (R)	Fred Upton (R)	Fred Upton (R)	Debbie Dingell (D)
	Congressional District	2	5	П	5	5	9	8	1	3	7	6	1	4	9	9	12
	State	Louisiana (LA)	Louisiana (LA)	Maine (ME)	Maryland (MD)	Maryland (MD)	Maryland (MD)	Maryland (MD)	Massachusetts (MA)	Massachusetts (MA)	Massachusetts (MA)	Massachusetts (MA)	Michigan (MI)	Michigan (MI)	Michigan (MI)	Michigan (MI)	Michigan (MI)

November 2022

	TOTAL (MTHM)	1,064	498	1,087	919	а	а	466	584	၁	1	774	925	1,691	797	b
	Reprocessing Waste (Equivalent MTHM)**	-	-	-	-	-	-	-	-	ı	1	1	1	-	-	,
	SNF at DOE Sites (MTHM)	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
	SNF at NPR/ISFSI Sites (MTHM)	1,064	498	1,087	616	-	-	466	584	ı	-	774	928	1,691	797	1
	Type of Facility	Comm Reactor	Comm Reactor	Comm Reactor	Comm Reactor	University Reactor	University Reactor	Comm Reactor	Comm Reactor	DOE Site	DOE Site	Comm Reactor	Comm Reactor	Comm Reactor	Comm Reactor	DOE National Lab
Table F-1 (continued)	Facility Name (Bold = Shutdown)	Prairie Island Nuclear Generating Plant	Monticello Nuclear Generating Plant	Grand Gulf Nuclear Station	Callaway Plant	University of Missouri at Columbia	Missouri University of Science and Technology	Fort Calhoun Station	Cooper Nuclear Station	Nevada National Security Site	Yucca Mountain	Seabrook Station	Hope Creek Generating Station	Salem Nuclear Generating Station	Oyster Creek Nuclear Generating Station	Princeton Plasma Physics Laboratory
1	Senators	Amy Klobuchar (D)	Tina Smith (D)	Cindy Hyde-Smith (R) Roger Wicker (R)	Joshua Hawley (R)	Roy Blunt (R)		Deb Fischer (R)	Benjamin Sasse (R)	Catherine Cortez- Masto (D)	Jacky Rosen (D)	Jeanne Shaheen (D) Maggie Hassan (D)	Bob Menendez (D)	Cory Booker (D)		
	Representative	Angie Craig (D)	Tom Emmer (R)	Bennie G. Thompson (D)	Blaine Luetkemeyer (R)	Vicky Hartzler (R)	Jason Smith (R)	Jeff Fortenberry (R)	Adrian Smith (R)	Steven Horsford (D)	Steven Horsford (D)	Chris Pappas (D)	Jefferson Van Drew (D)	Jefferson Van Drew (D)	Andy Kim (D)	Bonnie Watson Coleman (D)
	Congressional District	2	9	2	3	4	8	1	3	4	4	1	2	2	3	12
	State	Minnesota (MN)	Minnesota (MN)	Mississippi (MS)	Missouri (MO)	Missouri (MO)	Missouri (MO)	Nebraska (NE)	Nebraska (NE)	Nevada (NV)	Nevada (NV)	New Hampshire (NH)	New Jersey (NJ)	New Jersey (NJ)	New Jersey (NJ)	New Jersey (NJ)

163

	TOTAL (MTHM)	а	-	а	၁	q	q	1,773	а	а	640	802	1,549	579	1,678	а	686	1,901
	Reprocessing Waste (Equivalent MTHM)**	-	-	-	-	-	-	-	-	-	640	-	-	-	-	-	-	-
	SNF at DOE Sites (MTHM)	-	-	-	-	-	-	,	-	-	-	-	-	1	-	-	-	-
	SNF at NPR/ISFSI Sites (MTHM)	-	-	-	-	•	•	1,773	•	-	-	802	1,549	579	1,678	•	686	1,901
	Type of Facility	University Reactor	Potential SNF Storage Site	DOE National Lab w/ Reactor	DOE Site	DOE National Lab	DOE National Lab	Comm Reactor	University Reactor	Naval Training Reactor	DOE Managed Comm HLW Site	Comm Reactor	Comm Reactor	Comm Reactor	Comm Reactor	University Reactor	Comm Reactor	Comm Reactor
Table F-1 (continued)	Facility Name (Bold = Shutdown)	University of New Mexico AGN-201	Eddy-Lea Energy Alliance LLC	Sandia National Laboratory	White Sands Missile Range	Los Alamos National Laboratory	Brookhaven National Laboratory	Indian Point Nuclear Generating	Rensselaer Polytechnic Institute	MARF and S8G Submarine Prototypes	West Valley Site	James A. FitzPatrick Nuclear Power Plant	Nine Mile Point Nuclear Station	R.E. Ginna Nuclear Power Plant	Shearon Harris Nuclear Power Plant	North Carolina State University PULSTAR	Brunswick Steam Electric Plant	McGuire Nuclear Station
	Senators	Martin Heinrich (D)	Ben Ray Luján (D)				Chuck Schumer (D)	Kirsten Gillibrand (D)							Richard Burr (R)	Thom Tillis (R)		
	Representative	Melanie Stansbury (D)	Xochitl Torres Small (D)	Xochitl Torres Small (D)	Xochitl Torres Small (D)	Teresa Fernandez (D)	Lee Zeldin (R)	Nita Lowey (D)	Paul D. Tonko (D)	Elise Stefanik (R)	Tom Reed (R)	John Katko (R)	John Katko (R)	John Katko (R)	David Price (D)	David Price (D)	David Rouzer (R)	Dan Bishop (R)
	Congressional District	1	2	2	2	3	1	17	20	21	23	24	24	24	4	4	L	6
	State	New Mexico (NM)	New Mexico (NM)	New Mexico (NM)	New Mexico (NM)	New Mexico (NM)	New York (NY)	New York (NY)	New York (NY)	New York (NY)	New York (NY)	New York (NY)	New York (NY)	New York (NY)	North Carolina (NC)	North Carolina (NC)	North Carolina (NC)	North Carolina (NC)

165

	TOTAL (MTHM)	а	089	883	359	а	а	2,233	а	1,753	2,001	1,416	q	786	а
	Reprocessing Waste (Equivalent MTHM)**	1	1	-	1	-	-	1	-	1	-	1	-	1	1
	SNF at DOE Sites (MTHM)	1	1	1	1	•	•	1	-	1	-	1	•	1	•
	SNF at NPR/ISFSI Sites (MTHM)	1	089	883	658	-	-	2,233	-	1,753	2,001	1,416	-	982	1
	Type of Facility	University Reactor	Comm Reactor	Comm Reactor	Comm Reactor	University Reactor	Non DOE Res Reactor	Comm Reactor	University Reactor	Comm Reactor	Comm Reactor	Comm Reactor	DOE National Lab	Comm Reactor	Non DOE Res Reactor
Table F-1 (continued)	Facility Name (Bold = Shutdown)	Ohio State University OSURR	Davis-Besse Nuclear Power Station	Perry Nuclear Power Plant	Trojan	Reed College RRR	Oregon State University OSTR	Peach Bottom	Pennsylvania State University	Limerick Generating Station	Susquehanna Steam Electric Station	Beaver Valley Power Station	National Energy Technology Laboratory	Three Mile Island Nuclear Station	Rhode Island Atomic Energy Commission Nuclear Science Center
1	Senators	Sherrod Brown (D)	Rob Portman (R)		Ron Wyden (D)	Jeff Merkley (D)		Bob Casey Jr (D)	Pat Toomey (R)						Jack Reed (D) Sheldon Whitehouse (D)
	Representative	Joyce Beatty (D)	Marcy Kaptur (D)	David Joyce (R)	Suzanne Bonamici (D)	Earl Blumenauer (D)	Peter DeFazio (D)	Madeleine Dean (D)	Mary Gay Scanlon (D)	Chrissy Houlahan (D)	Lloyd Smucker (R)	Fred Keller (R)	Guy Reschenthaler (R)	Glenn Thompson (R)	Jim Langevin (D)
	Congressional District	3	6	14	1	3	4	4	5	9	11	12	14	15	2
	State	Ohio (OH)	Ohio (OH)	Ohio (OH)	Oregon (OR)	Oregon (OR)	Oregon (OR)	Pennsylvania (PA)	Pennsylvania (PA)	Pennsylvania (PA)	Pennsylvania (PA)	Pennsylvania (PA)	Pennsylvania (PA)	Pennsylvania (PA)	Rhode Island (RI)

	TOTAL (MTHM)	၁	4,087	2,502	1,669	728	435	а	1,759	746	а	-	а	а	1,494	1,688	а	206
	Reprocessing Waste (Equivalent MTHM)**	•	4,060	ı	ı	ı	ı	-	ı	1	-	-	-	-	I	ı	-	-
	SNF at DOE Sites (MTHM)	-	27	-		ı	ı	-	-	-	-	-	-	-	-	-	-	1
	SNF at NPR/ISFSI Sites (MTHM)	-	-	2,502	1,669	728	435	-	1,759	746	-	-	-	-	1,494	1,688	-	902
	Type of Facility	Naval Training Reactor	DOE National Lab	Comm Reactor	Comm Reactor	Comm Reactor	Comm Reactor	DOE National Lab w/ Reactor	Comm Reactor	Comm Reactor	University Reactor	Potential SNF Storage Site	University Reactor	University Reactor	Comm Reactor	Comm Reactor	University Reactor	Comm Reactor
Table F-1 (continued)	Facility Name (Bold = Shutdown)	Moored Training Ship - Unit #1 and Unit 2	Savannah River National Laboratory	Oconee Nuclear Station	Catawba Nuclear Station	Virgil C. Summer Nuclear Station	H. B. Robinson Steam Electric Plant	Oak Ridge National Laboratory	Sequoyah Nuclear Plant	Watts Bar Nuclear Plant	University of Texas TRIGA II	Interim Storage Partners	Texas A&M University AGN-201	Texas A&M University NSCR	Comanche Peak Steam Electric Station	South Texas Project	University of Utah TRIGA	Vermont Yankee Nuclear Power Plant
	Senators	Lindsey Graham (R)	Tim Scott (R)					Bill Hagerty (R)	Marsha Blackburn (R)		John Comyn (R)	Ted Cruz (R)					Mitt Romney (R) Mike Lee (R)	Patrick Leahy (D) Bernie Sanders (I)
	Representative	Joe Cunningham (D)	Joe Wilson (R)	Jeff Duncan (R)	Ralph Norman (R)	Ralph Norman (R)	Tom Rice (R)	Chuck Fleischmann (R)	Chuck Fleischmann (R)	Scott DesJarlais (R)	Michael T. McCaul (R)	K. Michael Conaway (R)	Pete Sessions (R)	Pete Sessions (R)	Roger Williams (R)	Michael Cloud (R)	Chris Stewart (R)	Peter Welch (D)
	Congressional District	1	2	3	5	5	7	3	3	4	10	11	17	17	25	27	2	1
	State	South Carolina (SC)	South Carolina (SC)	South Carolina (SC)	South Carolina (SC)	South Carolina (SC)	South Carolina (SC)	Tennessee (TN)	Tennessee (TN)	Tennessee (TN)	Texas (TX)	Texas (TX)	Texas (TX)	Texas (TX)	Texas (TX)	Texas (TX)	Utah (UT)	Vermont (VT)

	TOTAL (MTHM)	1,651	P	Р	1,624	855	6,028	b	а	а	38	1,070	519	101,863
	Reprocessing Waste (Equivalent MTHM)**	1	1	1	1	1	3,900	-	-	1	1	1	1	10,500
	SNF at DOE Sites (MTHM)	1	-	-	1	-	2,128	-	-	-	1	-	-	2,480€
	SNF at NPR/ISFSI Sites (MTHM)	1,651	-	-	1,624	858	1	-	1	ı	38	1,070	519	88,883
	Type of Facility	Comm Reactor	DOE National Lab	Comm SNF R&D Center	Comm Reactor	Comm Reactor	DOE Site	DOE National Lab	University Reactor	University Reactor	Comm Reactor	Comm Reactor	Comm Reactor	
Table F-1 (continued)	Facility Name (Bold = Shutdown)	Surry Nuclear Power Station	Thomas Jefferson National Accelerator Facility	BWXT Technologies	North Anna Power Station	Columbia Generating Station	Hanford Site	Pacific Northwest	Washington State University WSUR	University of Wisconsin UWNR	La Crosse	Point Beach Nuclear Plant	Kewaunee Power Station	
	Senators	Mark Warner (D)	Tim Kaine (D)			Patty Murray (D)	Maria Cantwell (D)			Ron Johnson (R)	Tammy Baldwin (D)			
	Representative	Robert C. Scott (D)	Robert C. Scott (D)	Ben Cline (R)	Abigail Spanberger (D)	Dan Newhouse (R)	Dan Newhouse (R)	Dan Newhouse (R)	Cathy McMorris Rodgers (R)	Mark Pocan (D)	Ron Kind (D)	Glenn Grothman (R)	Mike Gallagher (R)	
	Congressional District	3	3	9	L	4	4	4	5	2	3	9	8	
	State	Virginia (VA)	Virginia (VA)	Virginia (VA)	Virginia (VA)	Washington (WA)	Washington (WA)	Washington (WA)	Washington (WA)	Wisconsin (WI)	Wisconsin (WI)	Wisconsin (WI)	Wisconsin (WI)	$\mathbf{Total}^{\mathrm{d}}$

^{**} Equivalent MTHM determined by using the nominal canister counts in Tables 2-8 and 3-7 and applying the historical factors of 2.3 and 0.5 MTU per canister for commercial and defense reprocessing waste respectively from DOE/DP 0020/1 "An Evaluation of Commercial Repository Capacity for the Disposal of Defense High-Level Waste" (DOE 1985). Applying the total radioactivity method for determining equivalent MTHM would result in much lower quantities (INEEL 1999)."

^a SNF from research reactors primarily used for radiography, testing, training, isotope production or other non-power generating commercial services are not included

⁶ Small quantities of SNF or reprocessing waste used for R&D purposes, if any, are not included, e.g. for laboratory analysis work
^c Nuclear material for critical assembly machines or naval prototypes or moored training ships are not included in this table.
^d Totals for SNF in MTHM represents rounded sums of pre-rounded site values.
^e Total includes approximately 1 MTHM for small quantities at multiple facilities at the Oak Ridge Reservation in TN and Sandia National Laboratory in NM.

THIS PAGE INTENTIONALLY LEFT BLANK

November 2022 169

Appendix G

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

November 2022 171

A general description of the changes made to this document with each revision is provided in this appendix. Some of these revisions were only issued as drafts.

Revision 0 contains a single projection for NPR SNF future inventory based on 1) the discharged SNF at shutdown reactors and 2) on the currently operating reactors all obtaining a license extension and operating for 60 years (Section 2).

Revision 1 constitutes a significant revision with respect to the terminology used to identify site groups and with the respect to the addition of four new projection scenarios for NPR SNF. The new scenarios include: Alternative Scenario 1 – The incorporation of 6 new reactors that are currently under construction at four sites in addition to the assumptions of the Reference Scenario that was developed in Revision 0; Alternative Scenario 2 – The shutdown of all reactors at the end of their respective current operating license; Alternative Scenario 3 – The incorporation of the shutdown of 7 "Most Challenging" reactors as a modification to the Reference Scenario; and Alternative Scenario 4 – The incorporation of the shutdown of 14 "Most Challenging" reactors as a modification to the Reference Scenario. The "Most Challenging" reactors are determined from a number of recent publications indicating reactors with significant fiscal and political challenges. Finally, Revision 1 includes an update to current storage locations for SNF through 2013.

Revision 2 contains some corrections and updates to inventory data with regard to current storage locations for SNF discharged through 2013. The updated inventory is primarily due to the commencement of dry storage operations at Fermi 2, as well ongoing transitions at multiple reactor sites of SNF from wet storage to dry storage. The dry storage inventory data are current as of September 1, 2014.

Revision 3 contains some corrections and updates to inventory data with regard to current storage locations for SNF discharged through 2015. The updated inventory is primarily due to implementation the new spent SNF projection tool [Vinson, 2015]. Also, the current revision reflects commencement of dry storage operations at Pilgrim and Beaver Valley, as well as ongoing transitions at multiple reactor sites of SNF from wet storage to dry storage. The dry storage inventory data are current as of May 5, 2015.

Revision 4 updates the inventory data with regard to current storage locations for SNF discharged through 2016. Revision 4 reflects nine reactors which have had shutdown dates announced by their utilities since the issuance of Revision 3. The updated inventory reflects the new GC-859 utility provided historical inventory thru June 2013 and the new spent nuclear fuel projection tool [Vinson, 2015]. Also, commencement of dry storage operations at Calloway, in Missouri, and V.C. Summer, in South Carolina, is reflected in the current revision. The dry storage inventory data are current as of May 3, 2016.

Revision 5 updates the inventory data with regard to current storage locations for SNF discharged through 2017. This revision reflects commencement of operation of Watts Bar, Unit 2. Revision 5 reflects six reactors which have had shutdown dates announced by their utilities since the issuance of Revision 4. The updated inventory reflects the new GC-859 utility provided historical inventory thru June 2013 and the new spent nuclear fuel projection tool [Vinson, 2015]. Also, commencement of dry storage operations at Clinton, in Illinois, and Watts Bar, in Tennessee, is reflected in the current revision. The dry storage inventory data are current as of May 2, 2017.

Revision 6 updates the inventory data with regard to current storage locations for SNF discharged through 2018. This revision reflects Oyster Creek moving to a shutdown status. Revision 6 reflects seven reactors which have had shutdown dates announced by their utilities. The updated inventory reflects the GC-859 utility provided historical inventory thru June 2013 and the spent nuclear fuel projection tool [Vinson, 2015].

Revision 7 updates the inventory data with regard to current storage locations for SNF discharged through 2019. This revision reflects Three Mile Island Unit 1 and Pilgrim moving to a shutdown status. Revision 7 reflects six reactors which have had shutdown dates announced by their utilities. The updated inventory

172 November 2022

reflects the GC-859 utility provided historical inventory thru June 2013 and the spent nuclear fuel projection tool [Vinson, 2015].

Revision 8 incorporates the latest GC-859 utility survey data collected through the end of 2017. The revision updates the inventory data with regard to current storage locations for SNF discharged through 2020. This revision reflects Indian Point Unit 2 and Duane Arnold moving to a shutdown status. Revision 8 reflects four reactors which have had shutdown dates announced by their utilities and six reactors which have an approved subsequent license application for an additional 20 years of operations.

Revision 9 updates the inventory data with regard to current storage locations for SNF discharged through 2021. This revision reflects Indian Point moving to a shutdown status. Revision 9 reflects three reactors which have had shutdown dates announced by their utilities.

November 2022 173

Appendix H

Reference Scenario: No Replacement Nuclear Generation Forecast – State Inventory Data

THIS PAGE INTENTIONALLY LEFT BLANK

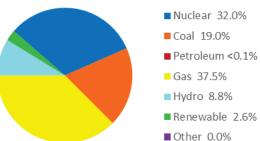
ALABAMA

Browns Ferry 1, 2, 3

Elected Officials as of January 2022^{1,2}

Governor: Kay Ivey (R)

Senators: Richard Shelby (R)

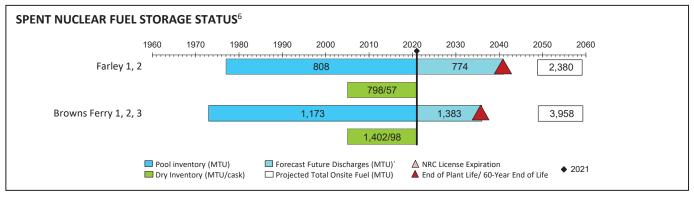

Tommy Tuberville (R)

Representatives:

District 2: Barry Moore (R)
District 5: Mo Brooks (R)

Alabama: 2021 Electricity Generation Mix³ (includes utilities and independent power producers)

includes dilities and independent power producers,



Operating Reactors (5 at 2 sites)
Commercial Dry Storage Sites (2 sites)

CONG. DIST.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED ⁴
2	Farley 1	Southern Nuclear	Dorm, Moore (D)	1977-2037	PWR/Operating	2005/GL	1,184
2	Farley 2	Operating Co.	Barry Moore (R)	1981-2041	PWR/Operating	2005/GL	1,196
	Browns Ferry 1			1973-2033	BWR/Operating		1,104
5	Browns Ferry 2	Tennessee Valley Authority	Mo Brooks (R)	1974-2034	BWR/Operating	2005/GL	1,492
	Browns Ferry 3	, iddionly		1976-2036	BWR/Operating		1,362

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

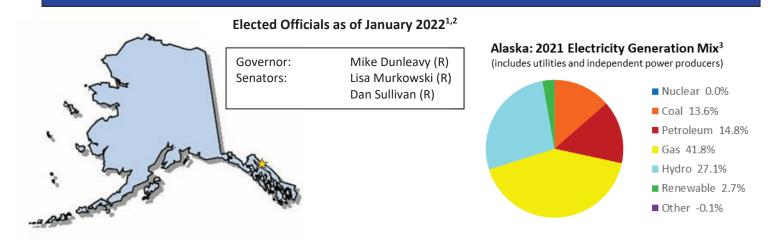
Dry: 2,200 MTU in 155casks Pool: 1,981 MTU Total: 4,181 MTU

NUCLEAR WASTE FUND⁷
\$948.9 million paid \$0.0 million one-time fee owed

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.


⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

ALASKA

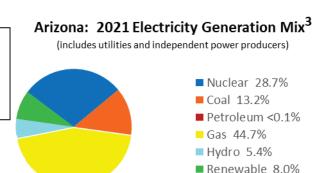
Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

ARIZONA

Elected Officials as of January 2022^{1,2}

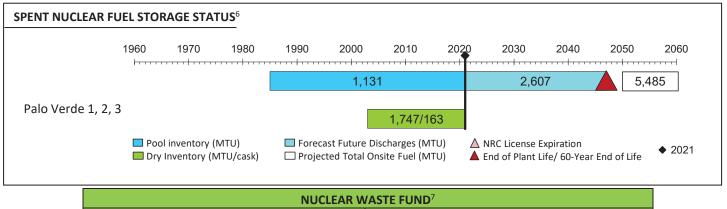

Governor: Doug Ducey (R)
Senators: Mark Kelly (D)
Kyrsten Sinema (D)

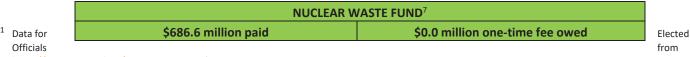
Representative:

District 3: Raúl Grijalva (D)

Operating Reactors (3 at 1 site)

Commercial Dry Storage Site (1 site)

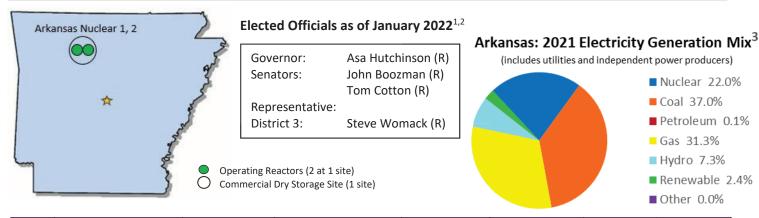



■ Other 0.0%

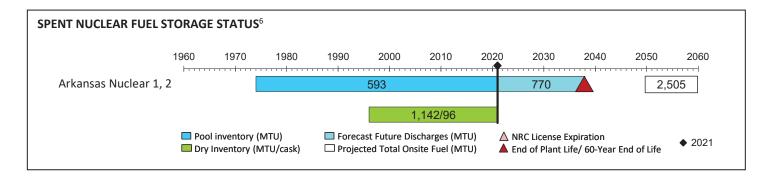
Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
	Palo Verde 1			1985-2045	PWR/Operating		1,773
3	Palo Verde 2	Arizona Public Service Co.	Raúl Grijalva (D)	1986-2046	PWR/Operating	2003/GL	1,826
	Palo Verde 3	3		1987-2047	PWR/Operating		1,886

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 1,747 MTU in 163 casks Pool: 1,131 MTU Total: 2,878 MTU



https://www.govtrack.us/congress, Accessed January 31, 2022.


- ² Governor from https://www.nga.org/governors, Accessed January 31, 2022.
- ³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.
- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

ARKANSAS

	Cong. Dist.	FACILITY	NRC LICENSEE		OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
	3	Arkansas Nuclear 1	Entergy		1974-2034	PWR/Operating	1000/01	1,138
		Arkansas Nuclear 2	Nuclear Operations, Inc.	Steve Womack (R)	1978-2038	PWR/Operating	1996/GL	1,367

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 in Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

CALIFORNIA

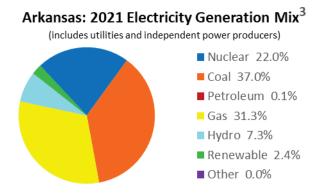
Gavin Newsom (D)

Humboldt Bay U of CA Davis ARRR Nuclear Center Diablo Canyon 1, 2 San Onofre U of CA Irvine 1, 2, 3 General Atomics 1, 2

Elected Officials as of January 2022^{1,2}

Governor:

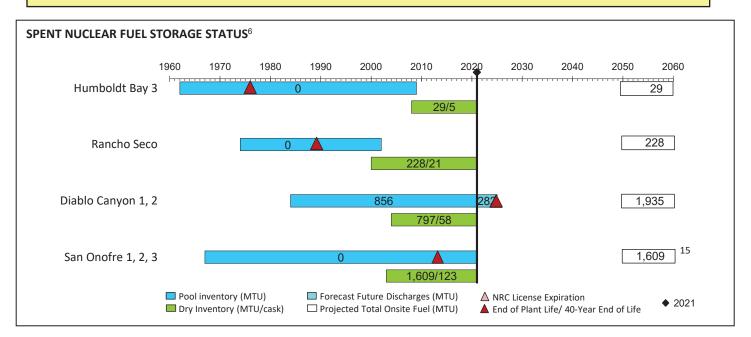
Senators: Dianne Feinstein (D) Alejandro Padilla (D) Representatives: District 2: Jared Huffman (D) District 6: Doris O. Matsui (D) District 7: Ami Bera (D) Eric Swalwell (D) District 15: District 24: Salud Carbajal (D) District 45: Katie Porter (D) District 49: Mike Levin (D) District 52: Scott Peters (D)


Shutdown Reactors (5 at 3 sites)

Operating Reactors (2 at 1 site)

Commercial Dry Storage Site (4 sites)

Operating Research Reactors (4 at 4 sites)


Shutdown Research Reactors (5 at 2 sites)
 *no fuel on-site at General Atomics facilities

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
2	Humboldt Bay 3	Pacific Gas & Electric Company	Jared Huffman (D)	1963-1976/ DECON in progress	BWR/ Shutdown	2005/SL	29
6	University of California - Davis	University of California	Doris O. Matsui (D)	1998- License R-130	R&TRF TRIGA Mark II, 2,300kW / Operating		
7	Rancho Seco	Sacramento Municipal Utility District	Ami Bera (D)	1974-1989/ DECON completed	PWR/ Shutdown	2000/SL	228
	Aerotest Radiography and Research Reactor (ARRR)	Nuclear Labrinith Aerotest ⁸		1965- License R-98	R&TRF TRIGA Mark I, 250kW / Operating ⁸		
	Vallecitos Boiling Water Reactor (VBWR)			1957-1963 / SAFSTOR ⁹ possession only License DPR-1	BWR/ Shutdown		
15	General Electric Test Reactor (GETR)	GE Hitachi Nuclear Energy/	Eric Swalwell (D)	1986-2016/ SAFSTOR ¹⁰ possession only License TR-1	R&TRF/ Shutdown ¹¹		
	Vallecitos Experimental Superheat Reactor (VESR)	Vallecitos Nuclear Center ¹²		1970-2016/ SAFSTOR ¹⁰ possession only License DR-10	R&TRF/ Shutdown ¹¹		
	Nuclear Test Reactor (NTR)			1957-2021 License R-33	R&TRF Nuclear Test, 100kW/ Operating		

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
24	Diablo Canyon 1	Pacific Gas & Electric	Salud Carbajal (D)	1984-2024 ¹³	PWR/ Operating	2004/SL	962
24	Diablo Canyon 2	Company	Saluu Calbajal (D)	1985-2025 ¹³	PWR/ Operating	2004/3L	973
45	University of California - Irvine	University of California	Katie Porter (D)	1969- License R-116	R&TRF TRIGA Mark 1, 250kW/ Operating		
	San Onofre 1			1968-1992/ DECON SAFSTOR	PWR/ Early Shutdown		245 ¹⁴
49	San Onofre 2	Southern California Edison Co.	Mike Levin (D)	1982-2013/ DECON in Progress	PWR/ Early Shutdown	2003/GL	730
	San Onofre 3			1983-2013/ DECON in Progress	PWR/ Early Shutdown		733
52	General Atomics	General Atomics	South Dators (D)	1957-1997/ SAFSTOR	R&TRF TRIGA Mark I/ Shutdown		
52	General Atomics	General Atomics	Scott Peters (D)	1960-1995/ DECON	R&TRF TRIGA Mark F/ Shutdown		

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

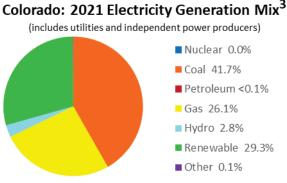
Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- Ownership issues have been resolved and Nuclear Labyrinth is now the parent company of ARRR, the possession only license was renewed. Source: ADAMS ML21242A463.
- ⁹ No fuel on site. The licensee plans to maintain the facility in SAFSTOR until ongoing site nuclear activities are terminated and the entire site can be decommissioned in an integrated fashion. Estimated date of closure is 2025.
- ¹⁰ NRC issued a possession-only license for GETR and VESR on February 5, 1986. The license was renewed on September 30, 1992; licensee requested continuation of their current license 12/15/15.
- ¹¹ Expected closure in 2025.
- ¹² There are also hot cells that are used for power reactor fuel post irradiation examination.
- ¹³ Shutdown announced for the end of initial license period.
- ¹⁴ Includes 98 MTU transferred to Morris, Illinois.
- 15 Does not include 98 MTU from San Onofre 1 transferred to Morris, Illinois.
- ¹⁶ Includes one-time fee paid by GE for Vallecitos.
- ¹⁷ Includes one-time fee owed by Aerotest.

COLORADO

Fort St. Vrain O U.S. Geological A

Elected Officials as of January 2022^{1,2}

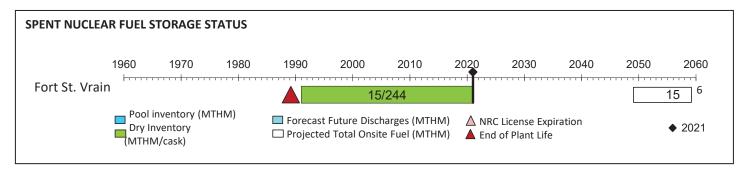

Governor: Jared Polis(D)
Senators: Michael Bennet (D)

John Hickenlooper (D)

Representatives:

District 4: Ken Buck (R)

District 7: Ed Perlmutter (D)


\triangle	Operating	Research	Reactor	(1 at 1 site)
_				

ODE owned SNF (1 site)

CONG. DIST.	FACILITY	NRC Licensee	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED ⁴
4	Fort St. Vrain	DOE	Ken Buck (R)	1973-1989/ DECON completed	HTGR/ Shutdown	1991-2031/ SL	24
7	US Geological Survey (USGS)	USGS	Ed Perlmutter (D)	1969- License R-113	R&TRF TRIGA Mark I, 1,000kW/ Operating		

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 15 MTHM in 244 canisters (vault) Pool: 0 MTHM Total: 15 MTHM

NUCLEAR WASTE FUND ⁷					
\$0.2 million paid	\$0.0 million one-time fee owed				

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Actual SNF discharges Includes 8.6 MTU transferred to INL.

State total SNF in dry a storage as of December 31, 2021. Spent Nuclear Fuel and High-Level Radioactive Waste Inventory Report [FCRD-NFST-2013-000263, Rev 7]. This quantities excludes 8.6 MTU transferred to INL.

State total SNF in dry a storage as of December 31, 2021. Spent Nuclear Fuel and High-Level Radioactive Waste Inventory Report [FCRD-NFST-2013-000263, Rev 7]. This quantities excludes 8.6 MTU transferred to INL.

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and

amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.	Paid amounts are net of

CONNECTICUT

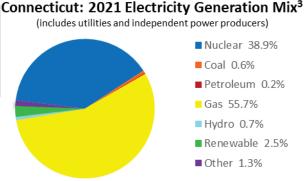
Elected Officials as of January 2022^{1,2}

Governor: Ned Lamont (D) Senators: Richard Blument

Richard Blumenthal (D) Christopher Murphy (D)

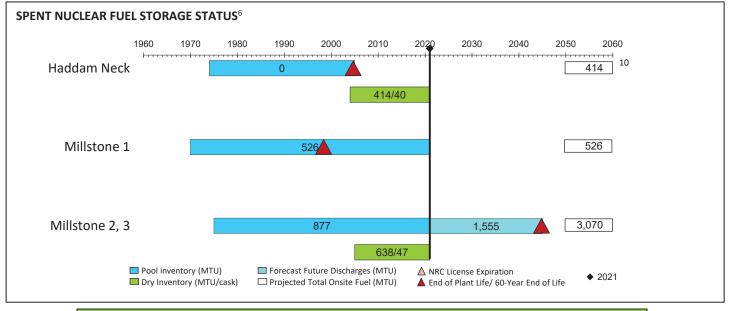
Representative:

Millstone


Shutdown Reactors (2 at 2 sites)

Operating Reactors (2 at 1 site)

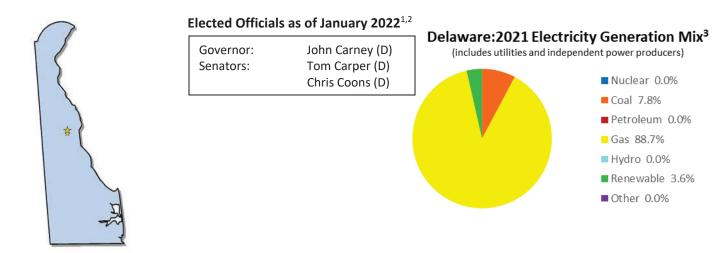
Commercial Dry Storage Sites (2 sites)


Haddam Neck (

District 2: Joe Courtney (D)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED ⁴
2	Haddam Neck	Connecticut Yankee Atomic Power		1967-1996 DECON completed	PWR/Shutdown	2004/GL	448 ⁸⁻⁹
	Millstone 1	Dominion Energy	Joe Courtney (D)	1970-1998 SAFSTOR	BWR/Shutdown		526
	Millstone 2	Nuclear Connecticut,		1975-2035	PWR/Operating	2005/GL	1,092
	Millstone 3			1986-2045	PWR/Operating		1,452

COMMERCIAL SPENT FUEL ONSITE INVENTORY5



Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

- Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.
- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- 8 Total reactor discharges includes 34 MTU transferred to Morris, Illinois.
- ⁹ Total reactor discharges includes 0.41 MTU transferred to Idaho National Laboratory.
- 10 SNF in storage does not include 34 MTU transferred to Morris, Illinois.

DELAWARE

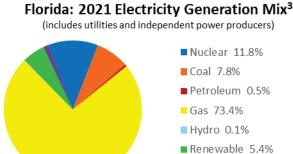
Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

FLORIDA

Crystal River


Elected Officials as of January 2022^{1,2}

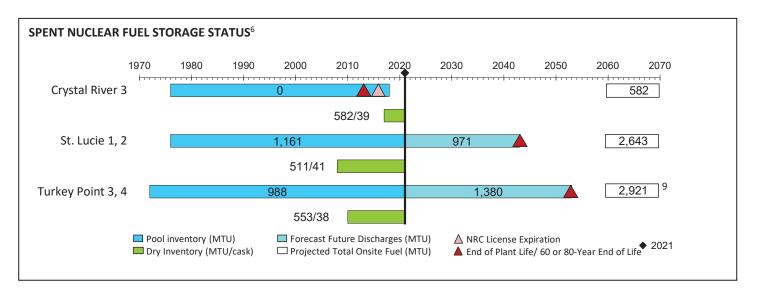
Governor: Ron Desantis (R) Senators: Rick Scott (R)

Marco Rubio (R)

Representatives:

District 3: Katherine Cammack (R) Daniel Webster (R) District 11: District 18: Brian Mast (R) District 27: Maria Salazar (R)

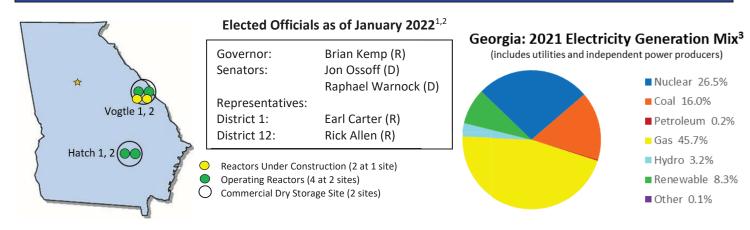
Other 1.1%


Shutdown Reactor (1 at 1 site) Operating Reactors (4 at 2 sites) Commercial Dry Storage Sites (2 sites)

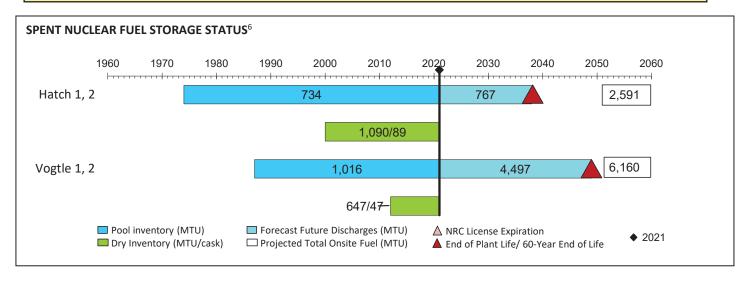
Operating Research Reactor (1 at 1 site)

Cong. DIST.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED ⁴
3	University of Florida	University of Florida	Katherine Cammack (R)	1959- License R-56	R&TRF Argonaut, 100Kw/ Operating		
11	Crystal River 3	Accelerated Decommissioning Partners.	Daniel Webster (R)	1977-2013 ⁷ SAFSTOR in progress	PWR/ Early Shutdown	2017/GL	582
18	St. Lucie 1		Drian Most (D)	1976-2036	PWR/Operating	2000/CI	1,298
10	St. Lucie 2	Florida Power &	Brian Mast (R)	1983-2043	PWR/Operating	2008/GL	1,345
27	Turkey Point 3	Light Co.11	Maria Salazar (R)	1972-2052 ¹⁰	PWR/Operating	2010/GL	1,4488
	Turkey Point 4		Maria Salazai (R)	1973-2053 ¹⁰	PWR/Operating	2010/GL	1,4818

COMMERCIAL SPENT FUEL ONSITE INVENTORY5


Dry: 1,646 MTU in 118 casks Pool: 2,149 MTU **Total: 3,795 MTU**

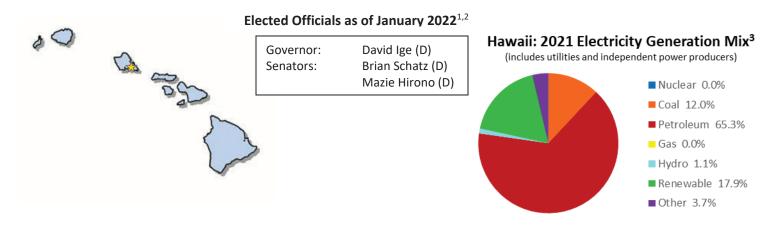
- Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.
- ² Governor from https://www.nga.org/governors, Accessed January 31, 2022.
- Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.
- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- ⁸ Discharges includes 8 MTU transferred to Idaho National Lab.
- ⁹ SNF in storage does not include 8 MTU transferred to Idaho National Lab.
- ¹⁰ Turkey Point Units 3 and 4 were the first reactors in the United States to receive a subsequent (or second) 20 year operating license extension. These units are now licensed to operate a total of 80 years. This operational period is reflected in the reference scenario and this table.
- ¹¹ A subsidiary of NextEra.


GEORGIA

CONG. DIST.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED ⁴
4	Hatch 1		Forl Cortor (D)	1974-2034	BWR/Operating	2000/GL	1,268
'	Hatch 2		Earl Carter (R)	1978-2038	BWR/Operating	2000/GL	1,323
	Vogtle 1			1987-2047	PWR/Operating	2012/GL	1,596
	Vogtle 2	Southern Nuclear Operating Co.		1989-2049	PWR/Operating	2012/GL	1,530
12	Vogtle 3	Operating Co.	Rick Allen (R)	2022/Planned	PWR/Under Construction		
	Vogtle 4			2023/Planned	PWR/Under Construction		

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 1,737 MTU in 136 casks Pool: 1,750 MTU Total: 3,487 MTU



¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

- Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.
- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- ⁷ The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

HAWAII

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

IDAHO

Elected Officials as of January 2022^{1,2}

Governor: Brad Little (R)
Senators: Mike Crapo (R)

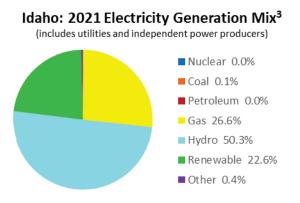
James Risch (R)

Representative:

District 2: Mike Simpson (R)

Operating Reactor (1 at 1 site)

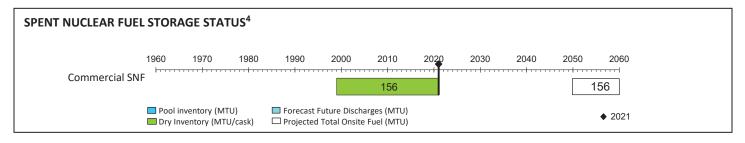
DOE owned ISFSI at INL, licensed but not constructed


DOE owned TMI-2 ISFSI at INL

DOE owned SNF and Reprocessing Waste at INL

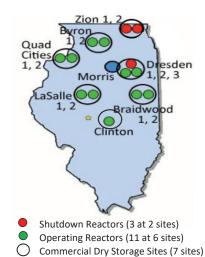
Surplus Plutonium at INL

▼ Naval SNF


DOE Research Reactor

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/ STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED ⁴
	Idaho State Univ.	Idaho State Univ.		1967- License R-110	AGN-201 #103, 0.005kW/ Operating		
	Idaho National Laboratory (INL) ⁵⁻⁷			1948-	National Laboratory		
	Advanced Test Reactor Critical Facility			1964-	Test reactor		
	Neutron Radiography Facility			mid-1970s	R&TRF TRIGA		
	INL: Advanced Test Reactor (ATR) ⁸	DOE ¹⁶	Mike Simpson (R)	1967-	Test reactor		
	Transient Test Reactor (TREAT)			1959-	Test Reactor		
2	INL: Materials and Fuels Complex ⁹					See Note 11	See Note 10
	INL: CPP-603, Irradiated Fuel Storage Basins			1974-2035 ¹¹	Dry storage	See Note 11	See Note ¹²
	INL: CPP-666 Fuel Storage Basins			1984-2035 ¹¹	Pool storage	See Note 11	See Note 8
	INL: CPP-749, Underground Storage Vaults			1971-2035 ¹¹	Dry storage	See Note 11	
	INL: CPP-2707, Cask Pad and Rail Car			2003-203511	Dry storage	See Note 11	See note ¹³
	INL TMI-2			1999-2019 ¹³	Dry storage	1999/SL	See Note ¹⁴
	INL Idaho Spent Fuel Facility (ISFF)			Licensed, but not yet constructed ¹⁵	Dry storage	2004/SL	
	Naval Reactors Facility	NNSA ¹⁶	1		Various		

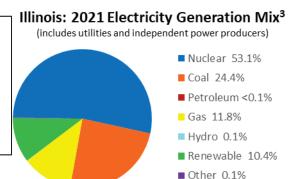
COMMERCIAL SPENT FUEL ONSITE INVENTORY⁴


Dry: 156 MTU Pool: 0 MTU Total: 156 MTU

- Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.
- ² Governor from https://www.nga.org/governors, Accessed January 31, 2022.
- Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.
- ⁴ Values are for commercial SNF as identified in Section 2.1.2 of *Spent Nuclear Fuel and High-Level Radioactive Waste Inventory Report* [FCRD-NFST-2013-000263, Rev 7]. Commercial SNF at INL includes 81.6 MTHM from TMI-2 core debris, 8.6 MTHM transferred from Ft. St. Vrain, and the balance from various R&D programs. INL also has approximately 114 MTHM of SNF from DOE and other sources for a total of 271 MTHM of DOE-Managed SNF, excluding Navy SNF.
- Since 1951, 52 reactors have been built on the grounds of what was originally the Atomic Energy Commission's National Reactor Testing Station, currently the location of Idaho National Laboratory. Only 3 reactors continue to operate. The 49 other experimental test reactors have been decommissioned.
- ⁶ The INL received SNF and debris from Three Mile Island 2 (Pennsylvania).
- ⁷ The INL receives SNF from foreign research reactors (FRR) and domestic research reactors (DRR).
- 8 SNF removed from ATR is temporarily maintained in the reactor canal before it is transferred to CPP-666 (basins) for storage.
- 9 Materials and Fuels Complex, formerly Argonne West, was part of Argonne National Laboratory (Illinois) until 2004 when it was incorporated into the INL.
- ¹⁰ SNF from Experimental Breeder Reactor-II (EBR-2) is stored in cylinders in the Radioactive Scrap and Waste Facility. SNF from the Hanford Fast Flux Test Facility (HFFTF) is stored in the Hot Fuel Examination Facility.
- ¹¹ DOE regulated facility. The DOE Authorization Basis for all DOE-regulated SNF facilities assumes operations through 2035.
- 12 Receipt of approximately 14 MTU of Foreign Research Reactor (FRR) and Domestic Research Reactor (DRR) SNF is expected through 2035.
- 13 Includes 6 casks containing fuel from the Test Area North Fuel Examination Facility plus a rail car holding 2 casks from West Valley (New York) containing SNF of commercial origin.
- ¹⁴ Contains Three Mile Island 2 fuel debris.
- ¹⁵ Not yet constructed. Purpose is to receive INL SNF.
- ¹⁶ DOE Regulated Facilities.
- ¹⁷ The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

ILLINOIS

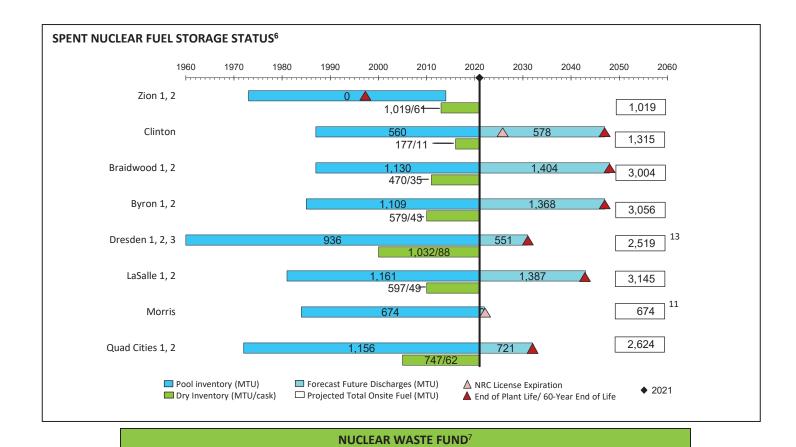
Commercial Pool Storage Site (1 site)


Elected Officials as of January 2022^{1,2}

Governor: J. B. Pritzker (R)
Senators: Richard Durbin (D)

Tammy Duckworth (D)

Representatives:


District 10: Bradley Schneider (D)
District 13: Rodney Davis (R)
District 16: Adam Kinzinger (R)
District 17: Cheri Bustos (D)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
10	Zion 1	Evolon	Bradley Schneider (D)	1973-1997/ DECON in progress	PWR/Shutdown ⁸	2014/GL	524
10	Zion 2	Exelon	Diauley Schilletter (D)	1973-1996/ DECON in progress	PWR/Shutdown ⁸	2014/GL	495
13	Clinton		Rodney Davis (R)	1987-2027 ¹⁵	BWR/Operating	2016/GL	1,315
	Braidwood 1	Exelon Generation Co., LLC	Adam Kinzinger (R)	1987-2046	PWR/Operating	2011/GL	1,477
	Braidwood 2			1988-2047	PWR/Operating		1,527
	Byron 1			1985-2044	PWR/Operating	2010/GL 2000/GL 2010/GL	1,528
	Byron 2			1987-2046	PWR/Operating		1,528
	Dresden 1			1959-1978 SAFSTOR	BWR/Shutdown		91 ⁹
16	Dresden 2			1991-2029	BWR/Operating		1,360 ¹⁰
	Dresden 3			1971-2031	BWR/Operating		1,213
	LaSalle 1			1982-2042	BWR/Operating		1,544
	LaSalle 2			1983-2043	BWR/Operating		1,601
	Morris	GE-Hitachi Nuclear Energy Americas LLC		1984-2022	SNF Storage	1982/SL	674 ^{11,12}
	Quad Cities 1	Exelon Generation		1972-2032	BWR/Operating		1,328
17	Quad Cities 2	Co., LLC	Cheri Bustos (D)	1972-2032	BWR/Operating	2005/GL	1,296

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 4,621 MTU in 349 casks Pool: 6,726 MTU Total: 11,347 MTU

\$2,261.2 million paid14

\$1,082.2 million one-time fee owed

 $^{^{11}}$ Morris received SNF from the following facilities.

State	Facility	MTU to Morris
California	San Onofre 1	98.41
Connecticut	Haddam Neck	34.48
Illinois	Dresden 2	145.19
Minnesota	Monticello	198.19
Nebraska	Cooper	198.02
	Total	674.29

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

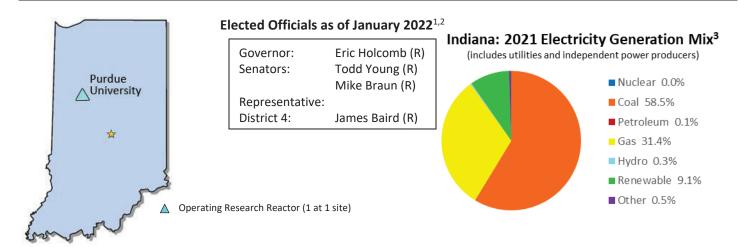
⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

⁸ Permanently shutdown February 13, 1998.

⁹ Discharges includes 0.26 MTU transferred to Idaho National Laboratory.

¹⁰ Discharges includes 145 MTU transferred to Morris.

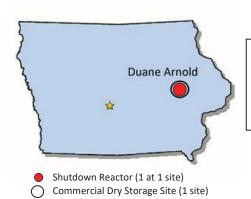

¹² On this table, the Total Projected SNF at Morris includes all SNF transferred from other facilities to Morris, including 145 MTU transferred from Dresden 2 to Morris. The Total Projected SNF from Dresden 2 also includes this 145 MTU which is consistent with how quantities are reported in this column. The result is that 145 MTU from Dresden 2 shows up twice on this Table, whereas on the Commercial Nuclear Fuel Onsite Inventory Figure, it shows up only once – in the Morris onsite inventory.

 $^{^{13}}$ Does not include 145 MTU transferred to Morris or 0.26 MTU transferred to Idaho National Laboratory.

¹⁴ Includes one-time fee paid by GE for Morris.

 $^{^{15}}$ Clinton has not applied for an operating license extension.

INDIANA

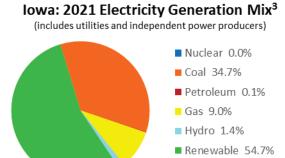

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED
4	Purdue University	Purdue University	James Baird (R)	1962- License R-87	R&TRF Lockheed, 1kW/ Operating		

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021 Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

IOWA

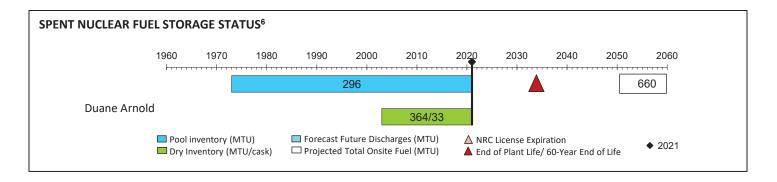

Elected Officials as of January 2022^{1,2}

Governor: Kim Reynolds (R) Senators: Charles Grassley (R)

Joni Ernst (R)

Representative:

District 1: Ashley Hinson (R)



■ Other 0.1%

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
1	Duane Arnold	NextEra Energy Duane Arnold, LLC	Ashley Hinson (R)	1974-2020	BWR/ Early Shutdown	2003/GL	660

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

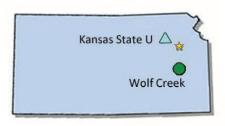
Dry: 364 MTU in 33 casks Pool: 296 MTU Total: 660 MTU

NUCLEAR WASTE FUND ⁷				
\$137.1 million paid	\$0.0 million one-time fee owed			

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.


⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

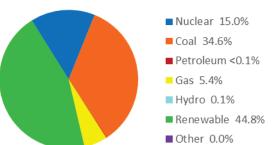
The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

KANSAS

Operating Reactor (1 at 1 site)Operating Research Reactor (1 at 1 site)

Elected Officials as of January 2022^{1,2}

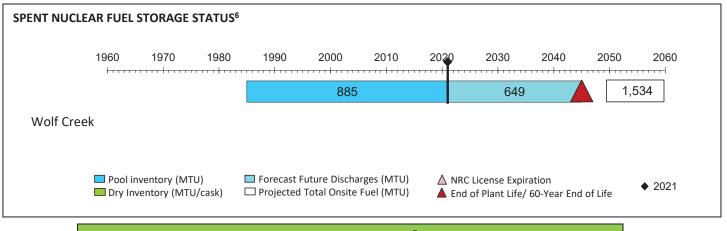
Governor: Laura Kelly (D) Senators: Roger Marshall (R)


Jerry Moran (R)

Representatives:

District 1: Tracey Mann (R)
District 2: Jacob LaTurner (R)

Kansas: 2021 Electricity Generation Mix³


(includes utilities and independent power producers)

CONG. DIST.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
1	Kansas State University	Kansas State University	Tracey Mann (R)	1962- License R-88	R&TRF TRIGA Mark II, 1,250kW/ Operating		
2	Wolf Creek	Wolf Creek Nuclear Operating Co.	Jacob LaTurner (R)	1985-2045	PWR/Operating		1,534

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

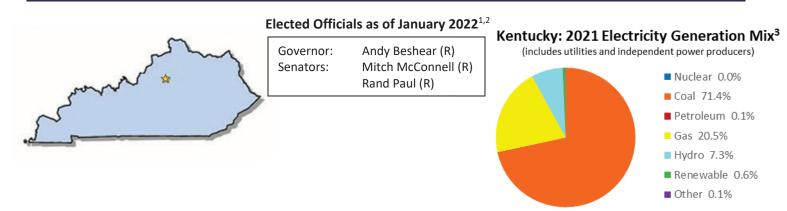
Dry: 0 MTU Pool: 885 MTU Total: 885 MTU

NUCLEAR WASTE FUND⁷
\$225.3 million paid \$0.0 million one-time fee owed

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.


⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

KENTUCKY

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

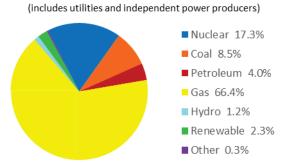
² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

LOUISIANA

River Bend 1

Elected Officials as of January 2022^{1,2}

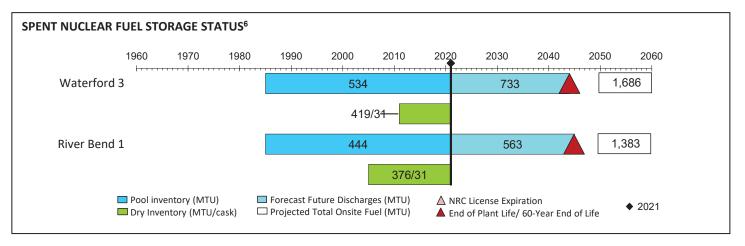

Governor: John Edwards (D) Senators: John N. Kennedy (R)

Bill Cassidy (R)

Representatives:

District 2: Troy A. Carter (D)
District 5: Julia Letlow (R)

Operating Reactors (2 at 2 sites)
Commercial Dry Storage Sites (2 sites)



Louisiana: 2021 Electricity Generation Mix³

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
2	Waterford 3	Entergy Nuclear	Troy A. Carter (D)	1985-2044	PWR/Operating	2011/GL	1,686
5	River Bend 1	Operations, Inc.	Julia Letlow (R)	1985-2045	BWR/Operating	2005/GL	1,383

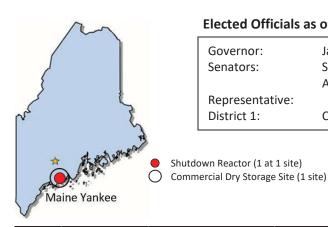
COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 795 MTU in 62 casks Pool: 978 MTU Total: 1,773 MTU

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.


⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

MAINE

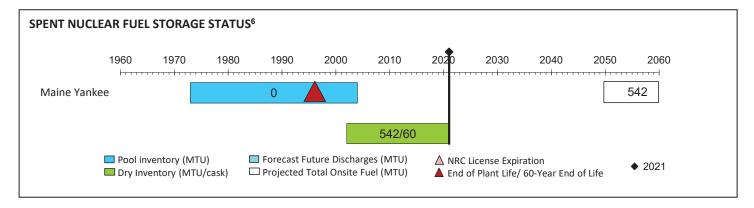
Elected Officials as of January 2022^{1,2}

Governor: Janet Mills (D) Senators: Susan Collins (R)

Angus King (I)

Representative:

District 1: Chellie Pingree (D)



Maine: 2021 Electricity Generation Mix³

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY Type/Status	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
1	Maine Yankee	Maine Yankee Atomic Power Co.	Chellie Pingree (D)	1973-1996/ DECON completed	PWR/Shutdown	2002/GL	542

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Pool: 0 MTU Dry: 542 MTU in 60 casks Total: 542 MTU

NUCLEAR W	/ASTE FUND ⁷
\$251.9 million paid	\$0.0 million one-time fee owed

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and highlevel radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and

amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.	data. Paid amounts are net of

MARYLAND

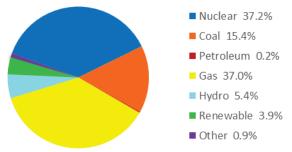
Calvert Cliffs 1,2

Operating Reactors (2 at 1 site)

Commercial Dry Storage Site (1 site)
Operating Research Reactors (3 at 3 sites)

Elected Officials as of January 2022^{1,2}

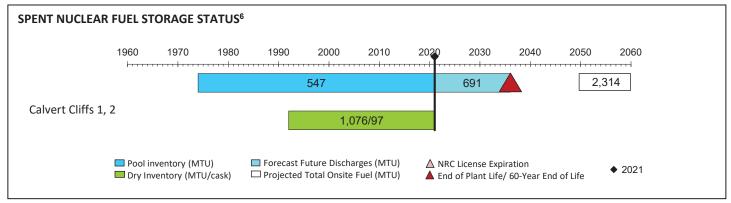
Governor: Larry Hogan (R)
Senators: Chris Van Hollen Jr. (D)


Benjamin Cardin (D)

Representatives:

District 5: Steny H. Hoyer (D)
District 6: David Trone (D)
District 8: Jamie Raskin (D)

Maryland: 2021 Electricity Generation Mix³


(includes utilities and independent power producers)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
	Calvert Cliffs 1	Calvert Cliffs		1974-2034	PWR/Operating		1,152
_	Calvert Cliffs 2	Nuclear Power Plant inc. ⁸	Steny H. Hoyer (D)	1976-2036	PWR/Operating	1992/SL	1,163
5	University of Maryland	University of Maryland		1960- License R-70	R&TRF TRIGA Mark 1, 250kW / Operating		
6	National Institute of Standards and Technology (NIST)	Commerce Department	David Trone (D)	1970- License TR-5	R&TRF Nuclear Test, 20,000kW / Operating		
8	Armed Forces Radiobiology Research Institute (AFRRI)	DOD	Jamie Raskin (D)	1962- License R-84	R&TRF TRIGA Mark F, 1,100kW/ Operating		

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 1,076 MTU in 97 casks Pool: 547 MTU Total: 1,623 MTU

¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

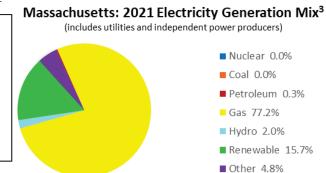
Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- ⁸ A subsidiary of Exelon.

MASSACHUSETTS

Yankee Rowe U of A


Elected Officials as of January 2022^{1,2}

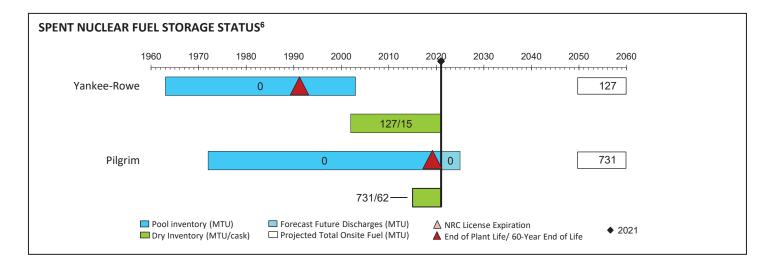
Governor: Charlie Baker (R) Senators: Elizabeth Warren (D)

Edward Markey (D)

Representatives:

District 1: Richard E. Neal (D)
District 3: Lori Trahan (D)
District 7: Ayanna Pressley (D)
District 9: William Keating (D)

Operating Research Reactors (2 at 2 sites)


Shutdown Reactor (2 at 2 site)

Commercial Dry Storage Site (2 sites)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
1	Yankee-Rowe	Yankee Atomic Electric Co.	Richard E. Neal (D)	1960-1991/ DECON completed	PWR/Shutdown	2002/GL	127
3	Univ. of Mass Lowell	Univ. of Mass Lowell	Lori Trahan (D)	1974- License R-125	R&TRF GE Pool, 1,000kW/ Operating		
7	Massachusetts Institute of Technology	Massachusetts Institute of Technology	Ayanna Pressley (D)	1958- License R-37	R&TRF HWR Reflected, 6,000kW/ Operating		
9	Pilgrim	Holtec Pilgrim, LLC ⁹	William Keating (D)	1972-2019 ⁸ SAFSTOR	BWR/Early Shutdown	2015/GL	731

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 858 MTU in 77 casks Pool: 0 MTU Total: 858 MTU

NUCLEAR W	VASTE FUND ⁷
\$188.4 million paid	\$0.0 million one-time fee owed

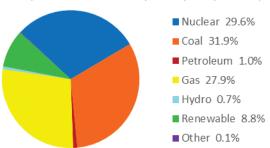
- ¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.
- ² Governor from https://www.nga.org/governors, Accessed January 31, 2022.
- ³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.
- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- Pilgrim ceased operations on May 31, 2019 prior to the end of the extended license.
- 9 Ownership changed to Holtec Pilgrim, LLC with Holtec Decommissioning International, LLC as the decommissioning operator. Both are Holtec International subsidiaries.

MICHIGAN

Palisades Cook Fermi 1, 2

Elected Officials as of January 2022^{1,2}

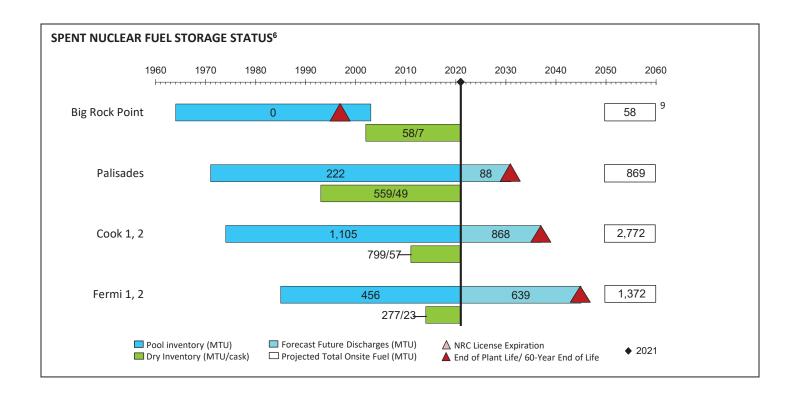
Governor: Gretchen Whitmer (D) Senators: Debbie Stabenow (D)


Gary Peters (D) Representatives:

District 1: Jack Bergman(R)
District 4: John Moolenaar (R)
District 6: Fred Upton (R)
District 12: Debbie Dingell (D)

Shutdown Reactor (1 at 1 site)
 Operating Reactors (4 at 3 sites)
 Commercial Dry Storage Sites (4 sites)
 Operating Research Reactor (1 at 1 site)

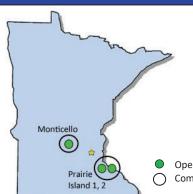
Michigan: 2021 Electricity Generation Mix³


(includes utilities and independent power producers)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
1	Big Rock Point	Entergy Nuclear Operations, Inc.	Jack Bergman (R)	1962-1997/ DECON completed	BWR/Shutdown	2002/GL	69 ⁸
4	Dow Chemical Co.	Dow Chemical Co.	John Moolenaar (R)	1967- License R-108	R&TRF TRIGA Mark 1, 300kW/ Operating		
	Palisades	Entergy Nuclear Operations, Inc.		1971-2031	PWR/Operating	1993/GL	869
6	Cook 1	Indiana Michigan	Fred Upton (R)	1974-2034	PWR/Operating	2044/01	1,456
	Cook 2	Power Co.		1977-2037	PWR/Operating	2011/GL	1,316
12	Fermi 1	DTE Electric Co.	Debbie Dingell (D)	1963-1972 SAFSTOR	Fast Breeder Reactor/ Shutdown	No SNF on site	See Note 11
	Fermi 2			1985-2045	BWR/ Operating	2016/GL	1,372

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 1,693 MTU in 136 casks Pool: 1,783 MTU Total: 3,476 MTU


¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- ⁸ Discharges includes 11 MTU transferred to Idaho National Laboratory.
- ⁹ SNF in storage does not include 11 MTU transferred to Idaho National Laboratory.
- ¹¹ Remaining Fermi Unit 1 SNF has been transferred to DOE.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

MINNESOTA

Elected Officials as of January 2022^{1,2}

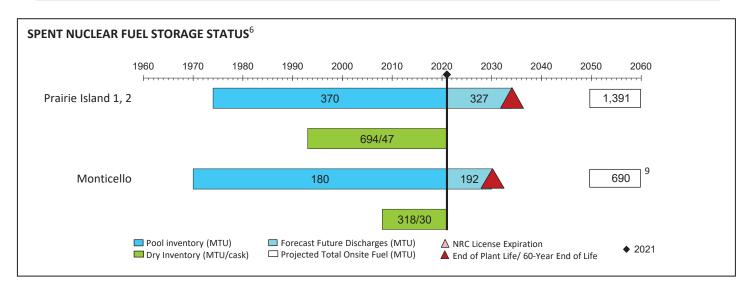
Governor: Tim Walz (D)

Senators: Amy Klobuchar (D)

Tina Smith (D)

Representatives:

District 2: Angie Craig (D)
District 6: Tom Emmer (R)


Operating Reactors (3 at 2 sites)
Commercial Dry Storage Sites (2 at 2 sites)

Minnesota: 2021 Electricity Generation Mix³ (includes utilities and independent power producers) ■ Nuclear 23.7% ■ Coal 26.8% ■ Petroleum <0.1% ■ Gas 21.0% ■ Hydro 1.5% ■ Renewable 26.9% ■ Other 0.0%

	Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴	
	2	Prairie Island 1	Northern States Power Co. Minnesota ¹⁰	0 0 ()	1974-2033	PWR/Operating	1993/SL	683	
		Prairie Island 2				Power Co.	Angle Craig (D)	1974-2034	PWR/Operating
	6	Monticello		Tom Emmer (R)	1970-2030	BWR/Operating	2008/GL	888 ⁸	

COMMERCIAL SPENT FUEL ONSITE INVENTORY5

Dry: 1,012 MTU in 77 casks Pool: 550 MTU Total: 1,562 MTU

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

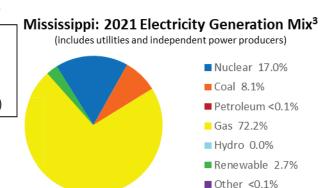
² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- ⁷ The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- ⁸ Discharges includes 198 MTU transferred to Morris (Illinois).
- ⁹ SNF in storage does not include 198 MTU transferred to Morris (Illinois).
- ¹⁰ A subsidiary of Xcel Energy

MISSISSIPPI

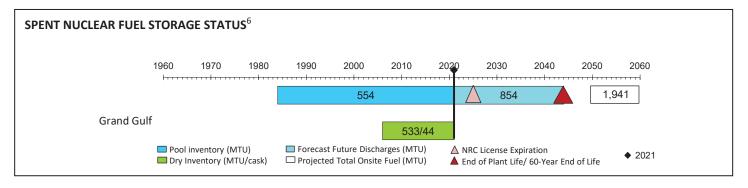
Elected Officials as of January 2022^{1,2}


Governor: Tate Reeves (R)
Senators: Cindy Hyde-Smith (R)

Roger Wicker (R)

Representative:

District 2: Bennie Thompson (D)


Operating Reactor (1 at 1 site)Commercial Dry Storage Site (1 site)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
2	Grand Gulf	Entergy Operations, Inc.	Bennie Thompson (D)	1984-2044	BWR/Operating	2006/GL	1,941

COMMERCIAL SPENT FUEL ONSITE INVENTORY5

Dry: 533 MTU in 44 casks Pool: 554 MTU Total: 1,087 MTU

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

MISSOURI

Elected Officials as of January 2022^{1,2}

Governor: Mike Parson (R) Senators: Joshua Hawley (R)

Roy Blunt (R)

Representatives:

District 3: Blaine Luetkemeyer (R)
District 4: Vicky Hartzler (R)

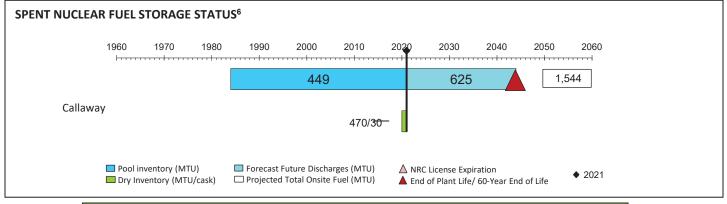
District 8: Jason Smith (R)

Commercial Dry Storage Site (1 at 1 site)
Operating Reactor (1 at 1 site)

Operating Research Reactors (2 at 2 sites)

Missouri: 2021 Electricity Generation Mix³ (includes utilities and independent power producers) Nuclear 4.7% Coal 75.4%

■ Hydro 2.4%


■ Other <0.1%

■ Renewable 8.4%

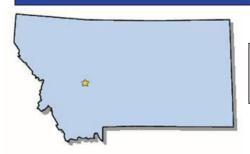
Cong. DIST.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
3	Callaway	Ameren Corp.	Blaine Luetkemeyer (R)	1984-2044	PWR/Operating	2015/GL	1,544
4	University of Missouri - Columbia	University of Missouri System	Vicky Hartzler (R)	1966- License R-103	R&TRF Tank, 10,000kW/ Operating		
8	Missouri University of Science and Technology	University of Missouri	Jason Smith (R)	1961- License R-79	R&TRF Pool, 200kW/ Operating		

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 470 MTU in 30 casks Pool: 449 MTU Total: 919 MTU

NUCLEAR WASTE FUND⁷
\$243.1 million paid \$0.0 million one-time fee owed

¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

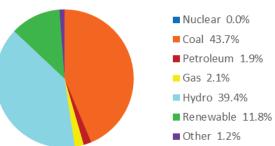

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

MONTANA



Elected Officials as of January 2022^{1,2}

Governor: Greg Gianforte (R)
Senators: Jon Tester (D)
Steve Daines (R)

Montana: 2021 Electricity Generation Mix³

(includes utilities and independent power producers)

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed J January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

NEBRASKA

Fort Calhoun Cooper Shutdown Reactor (1 at 1 site) Operating Reactors (1 at 1 site)

Commercial Dry Storage Sites (2 sites)

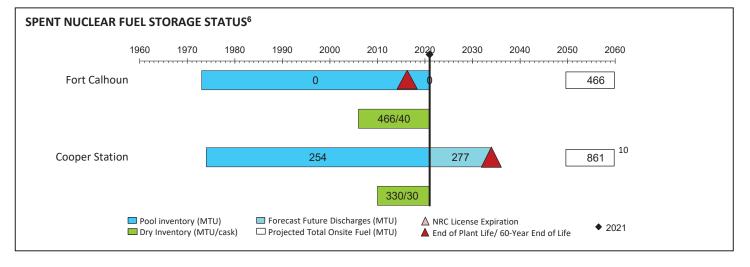
Elected Officials as of January 2022^{1,2}

Governor: Pete Ricketts (R) Senators: Deb Fischer (R)

Benjamin Sasse (R)

Representatives:

District 1: Jeff Fortenberry (R)
District 3: Adrian Smith (R)


Nebraska: 2021 Electricity Generation Mix³ (includes utilities and independent power producers) ■ Nuclear 17.9% ■ Coal 49.7% ■ Petroleum < 0.1% ■ Gas 4.4% ■ Hydro 3.2%

■ Renewable 24.8% ■ Other 0.0%

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED ⁴
1	Fort Calhoun	Omaha Public Power District	Jeff Fortenberry (R)	1973-2016 Shutdown	SAFSTORE/Early Shutdown	2006/GL	466
3	Cooper Station	Nebraska Public Power District	Adrian Smith (R)	1974-2034	BWR/Operating	2010/GL	1,059 ⁹

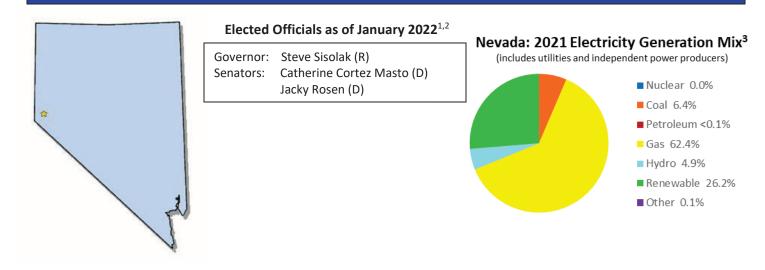
COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 796 MTU in 70 casks Pool: 254 MTU Total: 1,050 MTU

¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.


⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

- ⁷ The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- ⁸ Footnote number reserved
- ⁹ Support services provided by Entergy Nuclear Nebraska through 2029.
- ⁹ Discharges includes 198 MTU transferred to Morris (Illinois).
- 10 SNF in storage does not include 198 MTU transferred to Morris (Illinois).

NEVADA

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

NEW HAMPSHIRE

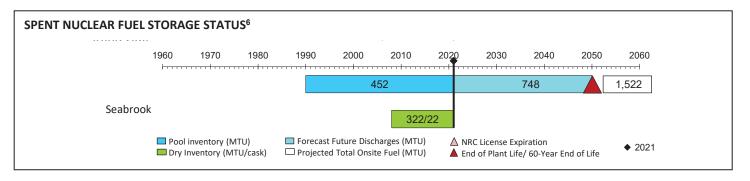
Seabrook

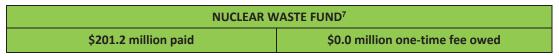
Elected Officials as of January 2022^{1,2}

Governor: Chris Sununu (R)
Senators: Jeanne Shaheen (D)
Margaret Hassan (D)

Representative:

District 1: Chris Pappas (D)


New Hampshire: 2021 Electricity Generation Mix³ (includes utilities and independent power producers) ■ Nuclear 55.7% ■ Coal 1.7% ■ Petroleum 0.3% ■ Gas 26.7% ■ Hydro 6.7% ■ Renewable 8.6% ■ Other 0.3%


	Operating Reactor (1 at 1 site)
\bigcirc	Commercial Dry Storage Site (1 site)

CONG. DIST.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED ⁴
1	Seabrook	NextEra Energy Seabrook, LLC	Chris Pappas (D)	1990-2050	PWR/Operating	2008/GL	1,522

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

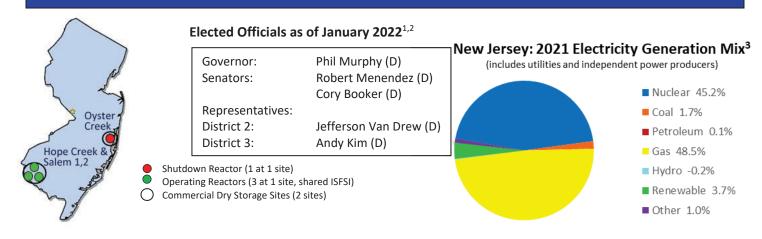
Dry: 322 MTU in 22 casks Pool: 452 MTU Total: 774 MTU

¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

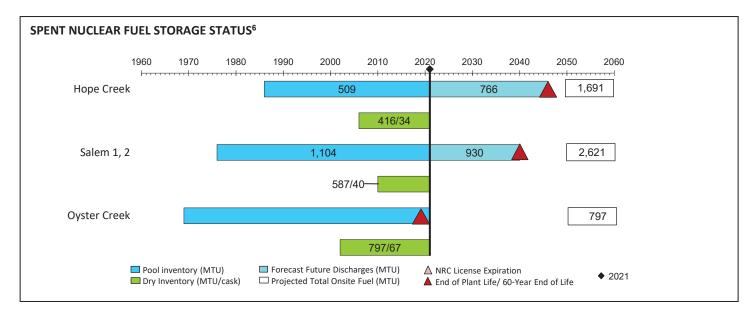
⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.


State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and

amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (Consolidated Accounting & Investment System) (Consolidated Accounting System) (Consol	CAIS) data. Paid amounts are net of


NEW JERSEY

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
	Hope Creek		Jefferson Van Drew (D)	1986-2046	BWR/Operating	2006/GL	1,691
2	Salem 1	PSEG Nuclear LLC		1976-2036	PWR/Operating	2010/GL	1,301
	Salem 2			1981-2040	PWR/Operating		1,320
3	Oyster Creek	Oyster Creek Environmental Protection ⁸ .	Andy Kim (D)	1991-2018 SAFSTOR	BWR/ Early Shutdown⁵	2002/GL	797

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

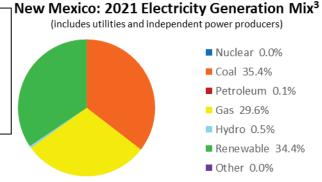
Dry: 1,800 MTU in 141 casks Pool: 1,613 MTU Total: 3,413 MTU

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

- ² Governor from https://www.nga.org/governors, Accessed January 31, 2022.
- ³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.
- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- ⁷ The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- ⁸ A Holtec subsidiary.

NEW MEXICO

Elected Officials as of January 2022^{1,2}


Los Alamos Sandia
U of Sandia
New Mexico

Governor: Michelle Lujan Grisham (D) Senators: Martin Heinrich (D)

Ben R. Luján (D) Representatives:

District 1: Melanie Stansbury (D)
District 2: Yvette Herrell (R)

District 3: Teresa Leger Fernandez (D)

△ Operating Research Reactors (2 at 2 sites)

▼ Sandia National Laboratory

▼ Surplus Plutonium at Los Alamos National Laboratory

△ DOE Research Reactor

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED
	University of New Mexico	Univ. of New Mexico	Melanie Stansbury (D)	1966- License R-102	R&TRF AGN-201M #112, 0.005kW/ Operating		
1	Sandia National Lab			None	Various		
	SNL: Annular Core Research Reactor (ACRR)	DOE ⁴		1979-	Test reactor		
2	White Sands Missile Range	U.S. Air Force ⁴	Yvette Herrell (R)	None	R&TRF FBR/ Operating		
3	Los Alamos National Lab	DOE ⁴	Teresa Leger Fernandez (D)	None	Various		

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

DOE Regulated Facilities.

NEW YORK

Elected Officials as of September 2022^{1,2}

Governor: Kathy Hochul (D) Senators: Chuck Schumer (D)

Kirsten Gillibrand (D)

Representatives:

Fitzpatrick

Ginna

West Valley

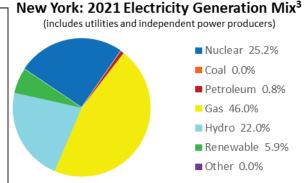
HLW at West Valley

Nine Mile

Point 1, 2

Indian Point

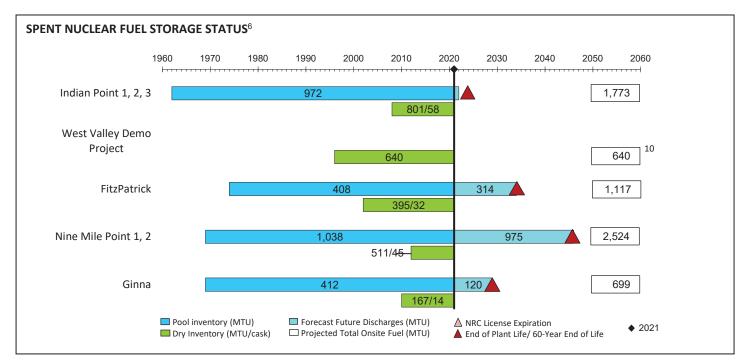
Shutdown Reactor (3 at 1 site)
Operating Reactors (5 at 4 sites)
Commercial Dry Storage Sites (4 sites)
Operating Research Reactor (1 at 1 site)


Brookhaven National Laboratory

RRIA

Brookhaven

National Lab


District 1: Lee Zeldin (R)
District 17: Mondaire Jones (D)
District 20: Paul D. Tonko (D)
District 23: Tom Reed (R)
District 24: John Katko (R)
District 26: Brian Higgins (D)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
1	Brookhaven National Lab	DOE ⁸	Lee Zeldin (R)	None	Various		
	Indian Point 1			1962-1974/ SAFSTOR	PWR/ Early Shutdown		31
17	Indian Point 2	Holtec Decommissioning	Mondaire Jones (D)	1973-2020	PWR/Early Shutdown	2008/GL	899
	Indian Point 3	International		1975-2021	PWR/ Early Shutdown ¹⁵		843
20	Rensselaer Polytechnic Institute (RPI)	Rensselaer Polytechnic Institute	Paul D. Tonko (D)	1964- License CX-22	R&TRF Critical Assembly, 0.1kW / Operating		
23	West Valley Demonstration Project	New York State Energy Research and Development Authority (NYSERDA)	Tom Reed II (R)	1966-1972/ DECON	Reprocessing Plant/Shutdown		See Note ¹⁰
	Fitzpatrick	Exelon Generation Company, LLC		1974-2034	BWR/Operating	2002/GL	1,117
24	Nine Mile Point 1	Nine Mile Point Nuclear	John Katko (P)	1974-2029	BWR/Operating	2012/GL	889
24	Nine Mile Point 2	Station, LLC ¹⁴	John Katko (R)	1987-2046	BWR/Operating	2012/GL	1,635
	Ginna	R. E. Ginna Nuclear Power plant., LLC ¹⁴		1969-2029	PWR/Operating	2010/GL	715 ¹¹

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 1,874 MTU in 149 casks Pool: 2,830 MTU Total: 4,704 MTU

NUCLEAR WASTE FUND ⁷				
\$1,011.8 million paid ¹³	\$536.8 million one-time fee owed			

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed September 11, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

⁸ DOE Regulated Facility.

⁹ Footnote number reserved

About 640 MTU were reprocessed producing about 2,500 m³ of liquid high-level waste (HLW). The liquid was vitrified between 1996 and 2001 producing 278 HLW canisters. These canisters have been moved to 56 canisters in concrete vented overpacks, similar to SNF storage, to allow facility decommissioning to continue.

¹¹ Discharges includes 15 MTU transferred to the Idaho National Lab.

 $^{^{12}}$ SNF in storage does not include 15 MTU transferred to the Idaho National Lab.

¹³ Includes One-Time fee paid by Nuclear Fuel Services (NFS) for West Valley.

¹⁴ An Exelon subsidiary.

¹⁵ Indian Point Unit 3 shutdown on 4/30/2021.

NORTH CAROLINA

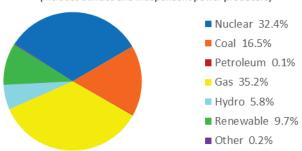
Elected Officials as of January 2022^{1,2}

McGuire 1, 2 NC State U Brunswick 1, 2

Operating Reactors (5 at 3 sites)

Commercial Dry Storage Sites (2 sites)

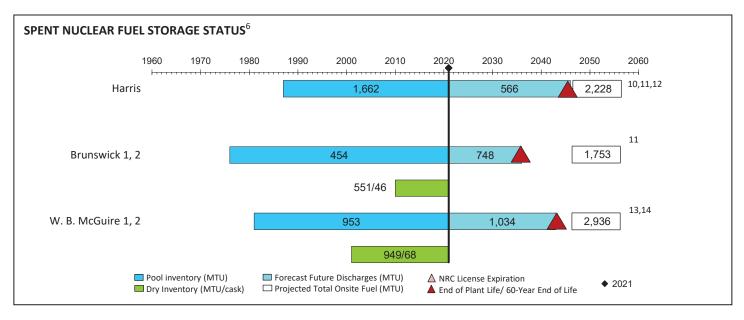
Operating Research Reactor (1 at 1 site)


Governor: Roy Cooper (D) Senators: Richard Burr (R) Thom Tillis (R)

Representatives:

District 4: David Price (D) David Rouzer (R) District 7: District 9: Dan Bishop (R)

North Carolina: 2021 Electricity Generation Mix³


(includes utilities and independent power producers)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
4	Harris		David Price (D)	1986-2046	PWR/Operating		1,224 ⁸
7	Brunswick 1	Duke Energy Progress, LLC	David Rouzer (R)	1976-2036	BWR/Operating	2010/GL	1,214 ⁹
,	Brunswick 2			1974-2034	BWR/Operating		1,191
4	North Carolina State University	North Carolina State University	David Price (R)	1972- License R-120	R&TRF Pulstar, 1,000kW/ Operating		
	W. B. McGuire 1	Duke Energy		1981-2041	PWR/ Operating	2001/GL	1,394 ¹⁰
9	W. B. McGuire 2	Carolinas, LLC	Dan Bishop (R)	1983-2043	PWR/Operating		1,402

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 1,500 MTU in 114 casks Pool: 3,069 MTU Total: 4,569 MTU

NUCLEAR WASTE FUND ⁷				
\$1,034.6 million paid	\$0.0 million one-time fee owed			

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

¹² SNF was transferred between Harris, Brunswick, and Robinson (South Carolina). The following table provides the SNF inventories at Harris and Brunswick, including transfers. Forecasted future discharges are not included. Transfer data is from Table 2-4.

Onsite SNF at Harris (MTU) as of 12/31/2021	Onsite SNF at Brunswick (MTU) as of 12/31/2021		
Fuel discharges onsite as of 12/31/2017	566	Fuel discharges onsite as of 12/31/2017	1490
Forecast fuel discharges, 1/1/2018 to 12/31/2021	93	Forecast fuel discharges, 1/1/2018 to 12/31/2021	168
SNF transferred in from Robinson 2	219	SNF transferred in from Robinson 2	132
SNF transferred in from Brunswick	784	SNF transferred out to Harris	-784
Total Forecasted SNF Onsite	1,662	Total Forecasted SNF Onsite	1,006

¹³ Reflects the transfer of 784 MTU out to Harris and 132 MTU in from Robinson 2 (South Carolina).

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

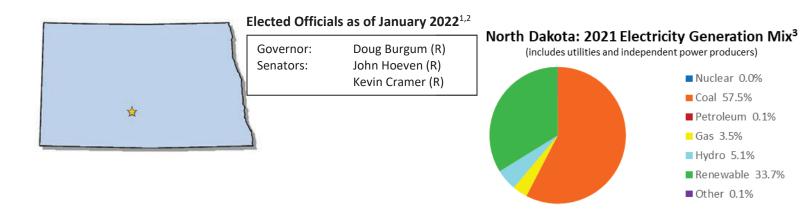
⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

Total Harris Discharges excludes 784 MTU transferred from Brunswick and 219 MTU transferred from Robinson (South Carolina)

⁹ Total Brunswick 1 and 2 projected discharged fuel includes 784 MTU that was transferred from Brunswick to Harris and is no longer at the site.

 $^{^{10}}$ Total McGuire 1 and 2 projected discharged fuel excludes 140 MTU that was transferred from Oconee (South Carolina).


¹¹ SNF in storage includes the transfer of 784 MTU in from Brunswick and 219 MTU in from Robinson 2 (South Carolina).

¹⁴ Reflects the transfer of 140 MTU in from Oconee (South Carolina).

¹⁵ SNF was transferred between W. B. McGuire (North Carolina) and Oconee (South Carolina). The following table provides the SNF inventories at McGuire, including transfers. Forecasted future discharges are not included. Transfer data is from Table 2-4.

Onsite SNF at McGuire as of 12/31/2021	
Fuel discharges onsite as of 12/31/2017	1597
Forecast fuel discharges, 1/1/2018 to 12/31/2021	165
SNF transferred in from Oconee	140
Total Forecasted SNF Onsite	1.902

NORTH DAKOTA

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

OHIO

Davis-Besse Ohio State University

Elected Officials as of January 2022^{1,2}

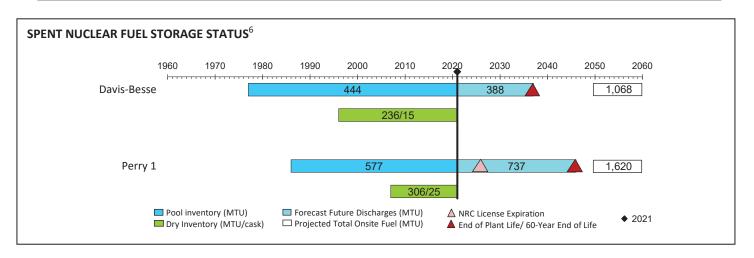
Governor: Mike DeWine (R) Senators: Sherrod Brown (D)

Robert Portman (R)

Representatives:

District 3: Joyce Beatty (D)
District 9: Marcy Kaptur (D)
District 14: David Joyce (R)

Operating Reactors (2 at 2 sites)
Commercial Dry Storage Sites (2 sites)
Operating Research Reactor (1 at 1 site)


Ohio: 2021 Electricity Generation Mix³ (includes utilities and independent power producers) Nuclear 14.1% Coal 38.1% Petroleum 0.8% Gas 43.6% Hydro 0.3% Renewable 3.1%

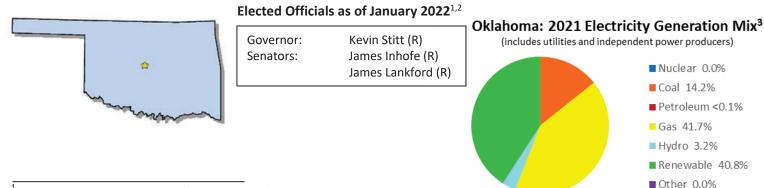
■ Other < 0.1%

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
3	Ohio State University	Ohio State University	Joyce Beatty (D)	1961- License R-75	R&TRF Pool, 500kW/ Operating		
9	Davis-Besse	Energy Harbor Nuclear Corp.	Marcy Kaptur (D)	1977-2037	PWR/Operating	1996/GL	1,068
14	Perry 1		David Joyce (R)	1986-2026	BWR/Operating	2007/GL	1,620

COMMERCIAL SPENT FUEL ONSITE INVENTORY5

Dry: 542 MTU in 40 casks Pool: 1,021 MTU Total: 1,563 MTU

¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.


² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario in Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 in Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

OKLAHOMA

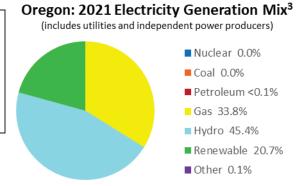
Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

OREGON

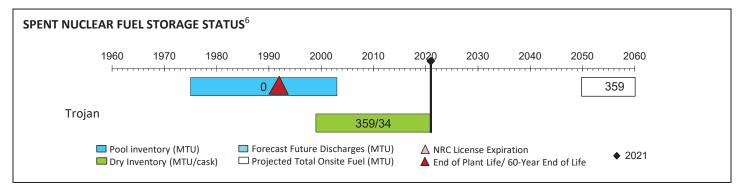
Elected Officials as of January 2022^{1,2}


Governor: Kate Brown (D) Senators: Ron Wyden (D)

Jeff Merkley (D)

Representatives:

District 1: Suzanne Bonamici (D)
District 3: Earl Blumenauer (D)
District 4: Peter DeFazio (D)


Shutdown Reactor (1 at 1 site)
 Commercial Dry Storage Site (1 site)
 Operating Research Reactors (2 at 2 sites)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
1	Trojan	Portland General Electric Corp.	Suzanne Bonamici (D)	1975-1992 DECON Completed	PWR/ DECON Completed	1999/SL	359
3	Reed College	Reed College	Earl Blumenauer (D)	1968- License R-112	R&TRF TRIGA Mark I, 250kW/ Operating		
4	Oregon State University	Oregon State University	Peter DeFazio (D)	1967- License R-106	R&TRF TRIGA Mark II, 1,100kW/ Operating		

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 359 MTU in 34 casks Pool: 0 MTU Total: 359 MTU

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario in Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

- 5 State total estimated SNF in dry and pool storage as of December 31, 2021 in Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- ⁷ The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

PENNSYLVANIA

Susquehanna Penn State U Beaver Valley 1, 2 Three Mile Island 1. 200 Peach Bottom 2, 3

Shutdown Reactor (2 at 1 site) Operating Reactors (8 at 4 sites)

Commercial Dry Storage Sites (4 sites)

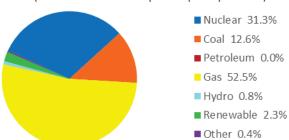
Operating Research Reactor (1 at 1 site)

Elected Officials as of January 2022^{1,2}

Governor: Tom Wolf (D) Senators:

Robert Casey, Jr. (D) Patrick Toomey (R)

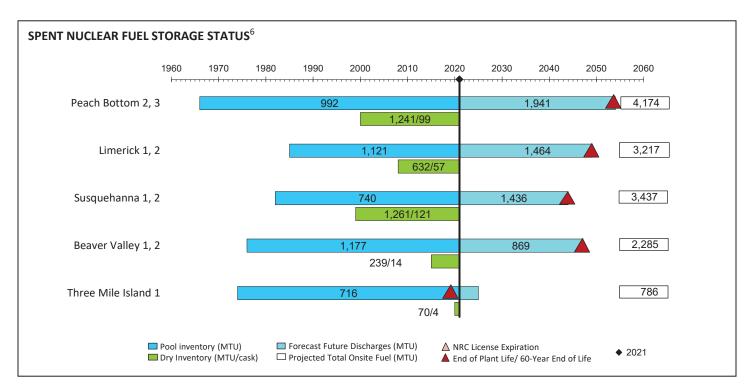
Representatives:


Madeleine Dean (D) District 4: District 5: Mary Scanlon (D) Chrissy Houlahan (D) District 6:

Lloyd Smucker (R) District 11: District 12: Fred Keller (R)

District 15: Glenn Thompson (R)

Pennsylvania: 2021 Electricity Generation Mix³


(includes utilities and independent power producers)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED ⁴
4	Peach Bottom 1	Exelon Generation Co., LLC	Madeleine Dean (D)	1967-1974/ SAFSTOR	BWR/Shutdown	No SNF on Site	
	Peach Bottom 2			1973-2053 ¹¹	BWR/Operating	. 2000/GL	2,087 ⁸
	Peach Bottom 3			1974-2054 ¹¹	BWR/Operating		2,087
5	Pennsylvania State University	Pennsylvania State University	Mary Scanlon (D)	1955- License R-2	R&TRF TRIGA BNR/ Operating		
6	Limerick 1	Exelon Generation Co., LLC	Chrissy Houlahan (D)	1985-2044	BWR/Operating	2008/GL	1,588
	Limerick 2			1989-2049	BWR/Operating		1,629
11	Susquehanna 1	Susquehanna Nuclear, LLC ¹²	Lloyd Smucker (R)	1982-2042	BWR/Operating	1999/GL	1,701
	Susquehanna 2			1984-2044	BWR/Operating		1,736
12	Beaver Valley 1	Energy Harbor Nuclear Corp.	Fred Keller (R)	1976-2036	PWR/Operating	- 2015/GL	1,104
	Beaver Valley 2			1987-2047	PWR/Operating		1,181
15	Three Mile Island 1	Exelon Generation Co., LLC	Glenn Thompson (R)	1974-2019	PWR/Shutdown		786
	Three Mile Island 2	TMI-2 Solutions	Cicim manipuon (it)	1978-1979 ⁹ SAFSTORE	PWR//Shutdown		See Note ¹⁰

COMMERCIAL SPENT FUEL ONSITE INVENTORY5

Dry: 3,443 MTU in 295 casks Pool: 4,746 MTU Total: 8,189 MTU

NUCLEAR WASTE FUND ⁷				
\$1,946.9 million paid	\$94.8 million one-time fee owed			

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

Forecast SNF discharges from individual reactors from the Reference Scenario in Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 in Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

⁸ Includes 0.38 MTU transferred to Idaho National Laboratory.

⁹ Unit 2 in post-defueling monitored storage mode until both units are ready for decommissioning.

¹⁰ Most of the Three Mile Island Unit 2 fuel shipped to Idaho National Laboratory, a small quantity (~1.125MT) remains to be removed during decommissioning.

 $^{^{\}rm 11}$ Date include the "subsequent" or second 20 year license renewal granted March 5, 2020.

¹² A subsidiary of Talen Energy.

RHODE ISLAND

R.I. Atomic Energy Commission

Elected Officials as of January 2022^{1,2}

Governor: Dan McKee (D) Senators: John Reed (D)

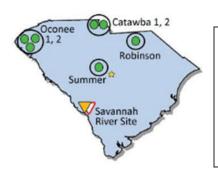
Sheldon Whitehouse (D)

Representative:

District 2: James Langevin (D)

Operating Research Reactor (1 at 1 site)

Rhode Island: 2021 Electricity Generation Mix³ (includes utilities and independent power producers) ■ Nuclear 0.0% ■ Coal 0.0% ■ Petroleum 0.0% ■ Gas 91.0% ■ Hydro 0.1% ■ Renewable 8.9% ■ Other 0.0%

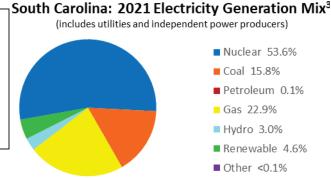

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED
2	RI Atomic Energy Commission	RI Atomic Energy Commission	James Langevin (D)	1964- License R-95	R&TRF GE Pool, 2,000kW / Operating		

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

SOUTH CAROLINA

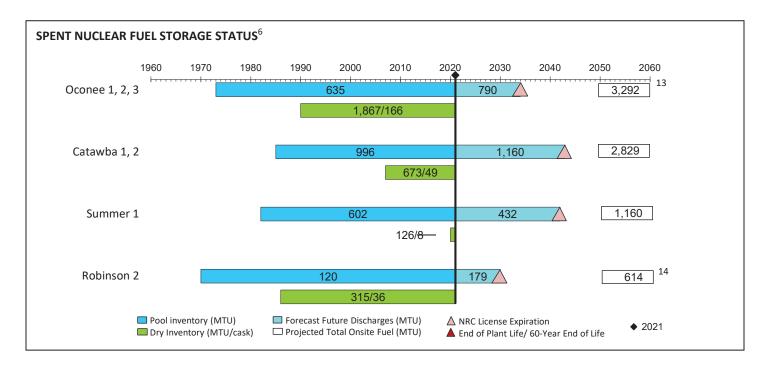


Elected Officials as of January 2022^{1,2}

Governor: Henry McMaster (R)
Senators: Lindsey Graham (R)
Tim Scott (R)

Representatives:

District 2: Joe Wilson (R)
District 3: Jeff Duncan (R)
District 5: Ralph Norman (R)
District 7: Tom Rice (R)

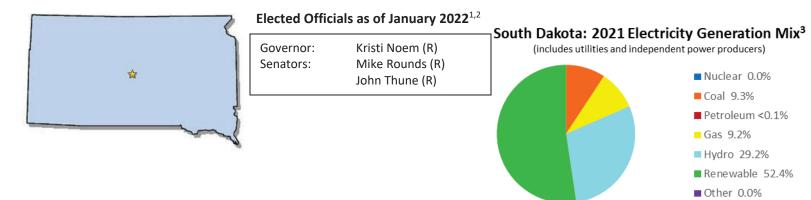


- Operating Reactors (7 at 4 sites)
- Commercial Dry Storage Sites (4 sites)
- ▼ DOE owned SNF and Reprocessing Waste at Savannah River Site
- ∇ Surplus Plutonium at Savannah River Site

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
2	Savannah River Site	DOE ⁸	Joe Wilson (R)		Various		See Note 15
	Oconee 1			1973-2033	PWR/Operating		1,137 ⁹
3	Oconee 2	Jeff Duncan (R)	1973-2033	PWR/Operating	1990/SL 1999/GL	1,134 ⁹	
	Oconee 3	Duke Energy Carolinas		1974-2034	PWR/Operating		1,161 ⁹
	Catawba 1			1985-2043	PWR/Operating	2007/01	1,439
5	Catawba 2		Ralph Norman (R)	1986-2043	PWR/Operating	2007/GL	1,390
,	Summer 1	Dominion Energy South Carolina	,	1982-2042	PWR/Operating	2016/GL	1,160
7	Robinson 2	Duke Energy Progress, LLC	Tom Rice (R)	1970-2030	PWR/Operating	1986/SL 2005/GL	966 ¹⁰⁻¹²

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 2,981 MTU in 259 casks Pool: 2,353 MTU Total: 5,334 MTU


Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- ⁸ DOE Regulated Facility.
- ⁹ Total Oconee 1,2, and 3 total projected discharged fuel includes 140 MT transferred to McGuire and is no longer at the site.
- ¹⁰ Discharges includes 0.44 MTU transferred to Idaho National Laboratory.
- 11 Discharges includes 132 MTU transferred to Brunswick (North Carolina).
- ¹² Discharges includes 219 MTU transferred to Harris (North Carolina).
- ¹³ SNF in storage reflects the transfer of 140 MTU to McGuire (North Carolina).
- ¹⁴ SNF in storage reflects the transfer of 132 MTU to Brunswick (North Carolina) and 219 MTU to Harris (North Carolina).
- ¹⁵ SRS has approximately 29 MT from DOE sources.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

SOUTH DAKOTA

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

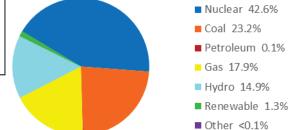
³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

TENNESSEE

Elected Officials as of January 2022^{1,2}

Oak Ridge National Lab Watts Bar 1, 2 Sequoyah 1, 2

Operating Reactors (4 at 2 sites) Commercial Dry Storage Site (1 site) DOE owned SNF at Oak Ridge

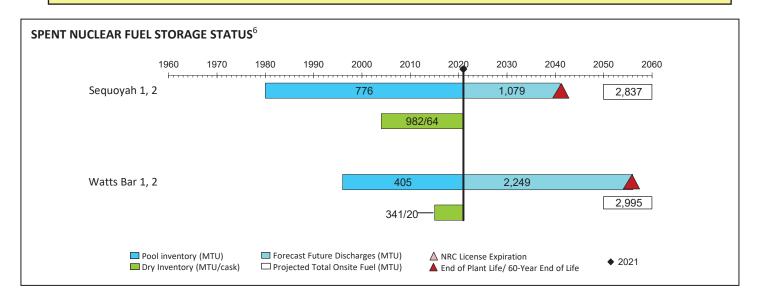

DOE Research Reactor

Governor: Bill Lee (R) Senators: Bill Hagerty (R)

Marsha Blackburn (R)

Representatives:

Chuck Fleischmann (R) District 3: District 4: Scott DesJarlais (R)




Tennessee: 2021 Electricity Generation Mix³ (includes utilities and independent power producers)

CONG. DIST.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED ⁴
	Sequoyah 1	Tennessee Valley		1980-2040	PWR/Operating	2004/GL	1,410
	Sequoyah 2	Authority		1981-2041	PWR/Operating	2004/GL	1,427
3	Oak Ridge National Lab		Chuck Fleischmann (R)	None	Various		
	ORNL: High Flux Isotope Reactor (HFIR)	DOE ⁸		mid-1960s	Test reactor		See Note ⁹
4	Watts Bar 1	Tennessee Valley	Coott Doo londois (D)	1996-2035	PWR/Operating	0040/01	1,604
4	Watts Bar 2 Authority		Scott DesJarlais (R)	2015-2055	PWR/Operating	2016/GL	1,391

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 1,323 MTU in 84 casks Total: 2,504 MTU Pool: 1,181 MTU

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

- ² Governor from https://www.nga.org/governors, Accessed January 31, 2022.
- ³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.
- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- ⁷ The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- ⁸ DOE Regulated Facility.
- 9 DOE Operates the High-Flux Isotope Reactor (HFIR) at ORNL, some of the SNF is stored on-site awaiting transfer to SRS in South Carolina.

TEXAS

Elected Officials as of January 2022^{1,2}

Representatives:

District 10: Michael McCaul (R)
District 13: Ronny Jackson (R)
District 17: Pete Sessions (R)
District 25: Roger Williams (R)
District 27: Michael Cloud (R)

Operating Reactors (4 at 2 sites)
Commercial Dry Storage Site (1 site)

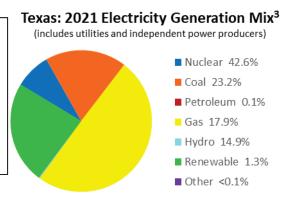
Operating Research Reactors (3 at 2 sites)

▼ Surplus Plutonium at Pantex

Pantex

Comanche

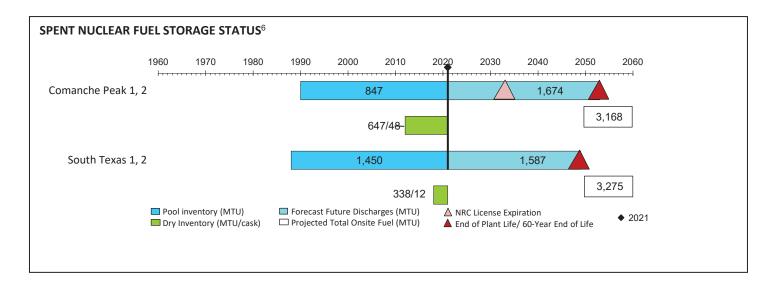
Peak 1, 2 (


U of Texas 1, 2

South

Texas

1, 2


Texas A&M

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
10	University of Texas	University of Texas	Michael McCaul (R)	1992- License R-129	R&TRF TRIGA Mark II, 1,100kW/ Operating		
13	Pantex Plant	DOE-NNSA ⁸	Ronny Jackson (R)		Operating		
17	Texas A&M 1	Taura A 9 M	Data Cassiana (D)	1957- License R-23	R&TRF AGN-201M #106, 0.005kW/ Operating		
17	Texas A&M 2	Texas A&M	Pete Sessions (R)	1961- License R-83	R&TRF TRIGA Mark I, 1,000kW/Operating		
25	Comanche Peak 1	TEX Operations	Dana Milliana (D)	1990-2030	PWR/Operating	2042/01	1,597
25	Comanche Peak 2	Company, LLC	Roger Williams (R)	1993-2033	PWR/Operating	2012/GL	1,571
27	South Texas 1	STP Nuclear	Michael Cloud (D)	1988-2047	PWR/Operating	2010/CI	1,614
21	South Texas 2	Operating Co.	Michael Cloud (R)	1989-2048	PWR/Operating	2019/GL	1,661

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 885 MTU in 60 casks Pool: 2,297 MTU Total: 3,182 MTU

NUCLEAR W	/ASTE FUND ⁷
\$812.3 million paid	\$0.0 million one-time fee owed

¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

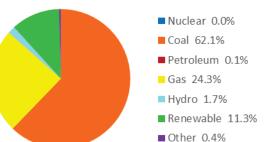
⁸ DOE regulated facility.

UTAH

Elected Officials as of January 2022^{1,2}

Governor: Spencer Cox (R)
Senators: Mitt Romney (R)

Mike Lee (R)

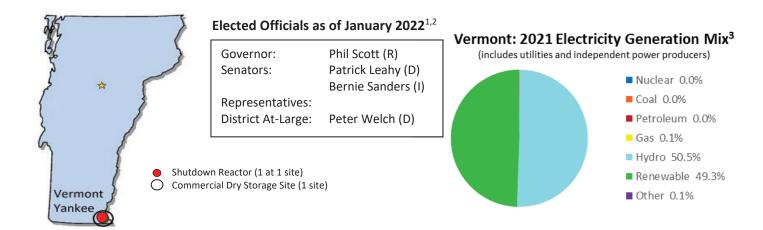

Representative:

District 2: Chris Stewart (R)

△ Operating Research Reactor (1 at 1 site)

Commercial Dry Storage Site, permitted but not constructed

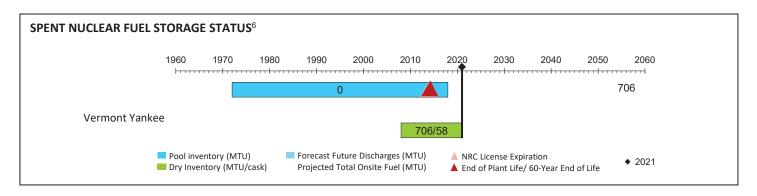
Utah: 2021 Electricity Generation Mix³ (includes utilities and independent power producers)


Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED
2	University of Utah	University of Utah	Chris Stewart (R)	1975- License R-126	R&TRF TRIGA Mark I, 100kW/ Operating		

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.


VERMONT

I	Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
	1	Vermont Yankee	NorthStar Vermont Yankee	Peter Welch (D)	1973-2014 DECON in Progress	BWR/ Early Shutdown	2008/GL	706

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Dry: 706 MTU in 58 casks Pool: 0 MTU Total: 706 MTU

¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

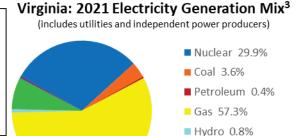
⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

VIRGINIA

North Anna 1, 2 BWXT Surry 1, 2

Operating Reactors (4 at 2 sites)

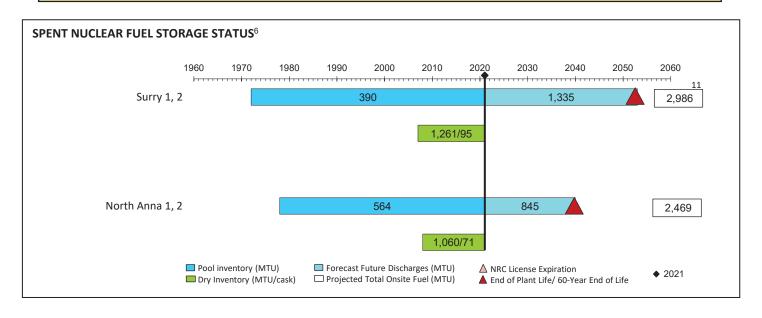

Elected Officials as of January 2022^{1,2}

Governor: Glenn Youngkin (R)
Senators: Mark Warner (D)
Timothy Kaine (D)

Representatives:

District 3: Robert C. Scott (D)
District 6: Ben Cline (R)

District 7: Abigail Spanberger (D)



■ Renewable 7.4% ■ Other 0.6%

)	Commercial Dry Storage Sites (2 sites)	
	Commercial Research and Development	Site (1 site)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
3	Surry 1	Virginia Electric &	Robert C. Scott (D)	1972-2052 ¹³	PWR/Operating	1986/SL	1,493 ⁸
3	Surry 2	Power Company		1973-2053 ¹³	PWR/Operating	2007/GL	1,524 ⁸
6	BWX Technologies	BWX Technologies	Ben Cline (R)	SNM-42 ⁹	Dry and pool storage/ Operating ¹⁰	See Note ⁹	
7	North Anna 1 Virginia Electric &	Abigail Spanberger	1978-2038	PWR/Operating	1998/SL	1,216	
/	North Anna 2	Power Company	(D)	1980-2040	PWR/Operating	2008/GL	1,253

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

- ³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.
- ⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.
- 5 State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- ⁸ Surry 1 and Surry 2 discharges includes 31 MTU transferred to Idaho National Laboratory for examination and testing.
- ⁹ [Federal Register Volume 72, Number 235 [Notices] Pages 69234-69236] Renewed license for Mt. Athos facility in Lynchburg, Virginia was issued on March 29, 2007.
- 10 Facility manufactures nuclear fuel elements. Dry and wet storage of SNF is included in the operating license.
- ¹¹ SNF in storage does not include 31 MTU transferred to Idaho National Laboratory.
- ¹² Includes one-time fee paid by B&W.
- ¹³ Reflects subsequent operating license approval.

WASHINGTON

Washington State U

Elected Officials as of January 2022^{1,2}

Governor: Jay Inslee (D) Senators: Patty Murray (D)

Maria Cantwell (D)

Representatives:

District 4: Dan Newhouse (R)

District 5: Cathy McMorris Rodgers (R)

(includes utilities and independent power producers)

Nuclear 8.0%

Coal 3.1%

Petroleum <0.1%

Gas 14.9%

Hydro 63.8%

Renewable 10.1%

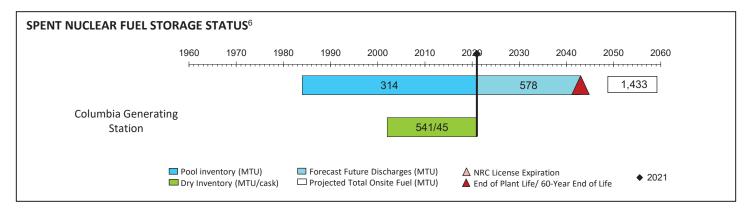
Other 0.1%

Washington: 2021 Electricity Generation Mix³

 Operating Reactors (1 a 	at 1	site)
---	------	-------

Commercial Dry Storage Site (1 site)

Operating Research Reactor (1 at 1 site)


DOE owned SNF and Reprocessing Waste at Hanford

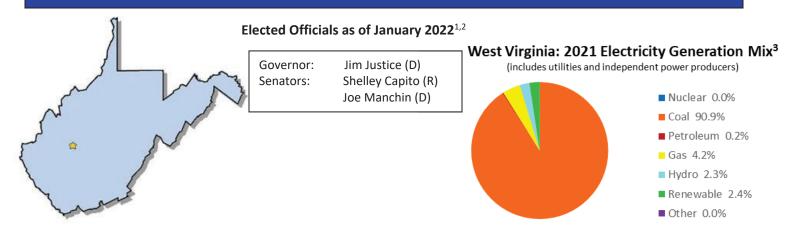
7 Surplus Plutonium at Hanford

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI LICENSE YEAR/TYPE	SNF (MTU) TOTAL PROJECTED ⁴
4	Columbia Generating Station	Energy Northwest	Dan Nawhayaa (D)	1984-2043	BWR/ Operating	2002/GL	1,433
4	Hanford Reservation	DOE ⁸	Dan Newhouse (R)	None	Various/ Shutdown		
5	Washington State University	Washington State University	Cathy McMorris Rodgers (R)	1961- License R-76	R&TRF TRIGA, 1,000kW/ Operating		

COMMERCIAL SPENT FUEL ONSITE INVENTORY5

Dry: 541 MTU in 45 casks Pool: 314 MTU Total: 855 MTU

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.


Governor from https://www.nga.org/governors, Accessed January 31, 2022.

Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly – January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

- ⁵ State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.
- ⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.
- The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.
- 8 DOE Regulated Facility

WEST VIRGINIA

Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

Governor from https://www.nga.org/governors, Accessed January 31, 2022.

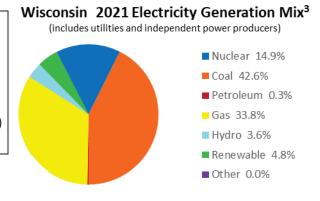
³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

WISCONSIN

Kewaunee Pt. Beach 1, 2 La Crosse U of Wisconsin

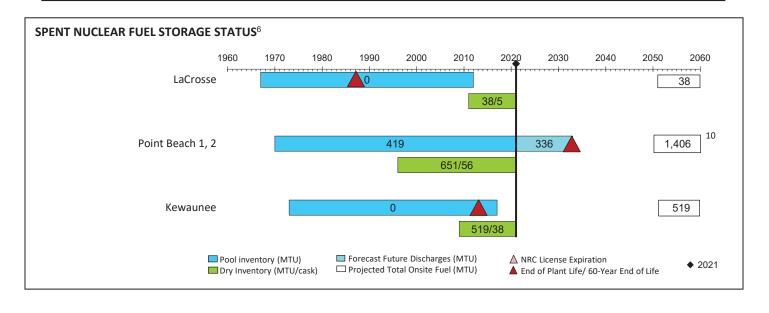
Elected Officials as of January 2022^{1,2}

Governor: Tony Evers (D) Senators: Ron Johnson (R)


Tammy Baldwin (D)

Representatives:

District 2: Marc Pocan (D)
District 3: Ron Kind (D)
District 6: Glenn Grothman (R)
District 8: Mike Gallagher (R)


Shutdown Reactor (2 at 2 sites)
Operating Reactors (2 at 1 site)

Commercial Dry Storage Sites (3 sites)
Operating Research Reactor (1 at 1 site)

Cong. Dist.	FACILITY	NRC LICENSEE	REPRESENTATIVE	OPERATING LICENSE PERIOD/STATUS	FACILITY TYPE/STATUS	ISFSI License Year/Type	SNF (MTU) TOTAL PROJECTED ⁴
2	University. of Wisconsin	University of Wisconsin	Marc Pocan (D)	1960- License R-74	R&TRF TRIGA Mark 1, 1,000kW/ Operating		
3	LaCrosse	Dairyland Power Cooperative	Ron Kind (D)	1967-1987/ DECON in progress	BWR/Shutdown	2011/GL	38 ⁸
-	Point Beach 1	NextEra Energy	Glenn Grothman (R)	1970-2030	PWR/Operating	4000/01	708 ⁹
6	Point Beach 2	Point Beach LLC		1973-2033	PWR/Operating	1996/GL	702
8	Kewaunee	Dominion Generation	Mike Gallagher (R)	1973-2013 ⁹ SAFSTOR	PWR/ Early Shutdown	2009/GL	519

COMMERCIAL SPENT FUEL ONSITE INVENTORY⁵

NUCLEAR WASTE FUND ⁷
\$0.0 million one-time fee owed

¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

\$416.4 million paid

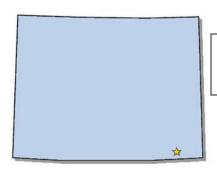
² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Date Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases..

⁴ Forecast SNF discharges from individual reactors from the Reference Scenario from Appendix C and does not include any applicable transfers. Totals may vary slightly due to rounding.

State total estimated SNF in dry and pool storage as of December 31, 2021 from Appendix D. These quantities includes applicable SNF transfers. Totals may vary slightly due to rounding.

⁶ Current quantities of SNF in dry and pool storage as of December 31, 2021 and forecast SNF discharges from individual reactors from the Reference Scenario in Appendix B and C. Current storage quantities includes applicable transfers. Totals may vary slightly due to rounding.

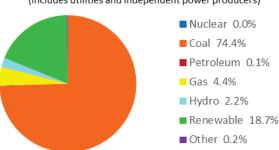

The Nuclear Waste Policy Act established the Federal Government's responsibility to provide permanent disposal of commercial spent nuclear fuel (SNF) and high-level radioactive waste (HLW), and the Nuclear Waste Fund, composed of payments made by the generators and owners of SNF (primarily nuclear utilities) and HLW, to ensure that the costs of carrying out activities relating to the disposal be borne by the generators and owners of the SNF and HLW. A "one-time fee" was established for SNF created before April 7, 1983, and an ongoing quarterly fee based on electricity generated and sold from April 7, 1983 forward. Payments and amounts owed are as of December 31, 2021 using the Department of Energy Consolidated Accounting & Investment System (CAIS) data. Paid amounts are net of fee and interest credits/refunds. One-time fee owed includes both fees and interest on fees.

⁸ Discharges includes 0.12 MTU transferred to Savannah River Site.

⁹ Discharges includes 2 MTU transferred to Idaho National Laboratory.

¹⁰ SNF in storage does not include 2 MTU transferred to Idaho National Laboratory.

WYOMING

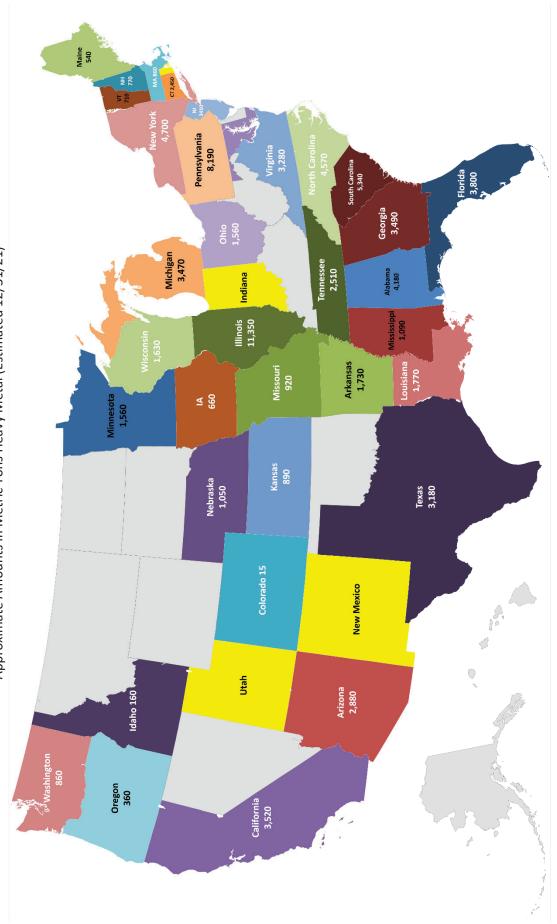


Elected Officials as of January 2022^{1,2}

Governor: Mark Gordon (R)
Senators: Cynthia Lummis (R)
John Barrasso (R)

Wyoming: 2021 Electricity Generation Mix³

(includes utilities and independent power producers)

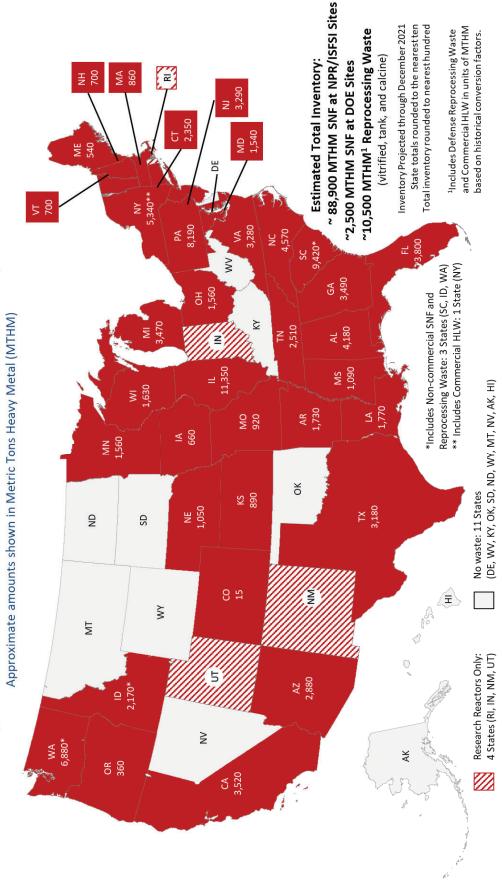

¹ Data for Elected Officials from https://www.govtrack.us/congress, Accessed January 31, 2022.

² Governor from https://www.nga.org/governors, Accessed January 31, 2022.

³ Data for Electricity Generation Mix from Tables 1.4.B-1.13.B, Electric Power Monthly - January 2022. Year-to-Data through November 2021. Petroleum includes both liquid and coke. Gas includes both natural gas and other gases. Hydro includes both conventional and pumped storage. Renewable includes wind, biomass, geothermal, and solar. Other includes manufactured, supplemental gaseous fuel, propane, and waste gases.

35 States with SNF from Nuclear Power Reactors 4 States with Research Reactors Only

Approximate Amounts in Metric Tons Heavy Metal (Estimated 12/31/21)



SNF at DOE-Managed Sites (CO, ID)

Research reactors only (IN, NM, RI, UT)

Note: Quantities of SNF from research and defense programs and additional commercial-origin SNF stored under DOE authority are not included.

39 States with SNF/Reprocessing Waste

