Optimization and Commercialization of the Juvenile Eel/Lamprey Acoustic Transmitter and Micro-battery (Abstract)

CRADA 477 (PNNL 75971/78761)

November 2022

Daniel Deng

InnovaSea Systems
Advanced Telemetry Systems
Yakama Nation Fisheries
California Department of Water Resources

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <https://www.ntis.gov/about>
Online ordering: http://www.ntis.gov
Optimization and Commercialization of the Juvenile Eel/Lamprey Acoustic Transmitter and Micro-battery (Abstract)

CRADA 477 (PNNL 75971/78761)

November 2022

Daniel Deng

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354
Abstract

Enhance studies to track in 3D and sub-meter accuracy the movements of sensitive species and early life stages of fish to advance understanding of migration timing and behaviors, habitat use, and survival rates, resulting in more informed management decisions regarding new and existing hydroelectric facilities and better designs of new hydropower systems that minimize or avoid environmental impacts.