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Abstract 
 Compositional generalization, the ability to infer and reason using novel combinations of 
previously encountered entities and structures, is a trait of great utility across a variety of deep 
learning tasks; it implies a certain ability to reason using consistent and therefore interpretable 
rules, to understand the constituent parts of its input at multiple levels of granularity, to be robust 
to spurious differences between semantically equivalent inputs, and more. We seek to 
understand the degree to which existing natural language models achieve or fall short of 
compositional generalization across a variety of tasks, whether there are distinct types of 
compositional generalization in practice, and to identify avenues of intervention through which 
we can improve models’ compositional generalization ability. After exploring these questions 
using an array of models, tasks, and potential interventions we see that large, pretrained 
language models have encountered sufficient training data to account for a variety of fine-
grained compositional behavior but still struggle to reason at the level of phrases or larger 
language structures. Non-intrusive, data-based interventions in the form of augmenting 
individual sequences with compressed versions of themselves or deriving new examples from 
induced grammars prove insufficient to encourage greater levels of compositional reasoning, 
indicating that future work might benefit most from focusing on changes to a model’s inductive 
bias at the architectural or loss level, or by integrating compositionality-boosting data 
interventions into the large-scale pretraining process itself. 
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1.0 Introduction 
 Compositional (sometimes called systematic) generalization is the ability to work with and 
understand new combinations of atoms, rules, or structures one has previously encountered. 
Such generalization is of great interest to machine learning practitioners because successful 
compositional generalization implies a number of other desirable properties: robustness to 
spurious variations of an input data distribution, rule-based behavior that can be used to identify 
a model’s understanding or gaps therein, and so on. Deep neural networks are a family of 
methods which have dramatically shifted the research landscape over the past decade. Despite 
the massive gains across many data modes and an even greater number of tasks, there is a 
mounting body of evidence that these models struggle to reason in compositional, systematic, 
and robust ways. This is acceptable for some problem spaces, namely those where lack of 
model explainability and failures due to spurious correlations bear minimal cost or ethical risk, 
but this limitation becomes more and more grating as deep learning becomes involved in an 
ever-greater roster of domains and problem spaces. Compositional generalization and the 
implied abilities of a model able to do it are then no longer desirable perks or possible upsides, 
but a practical goal or benchmark for a growing body of practitioners. We refer readers to (Lake 
and Baroni 2018) for an introduction to compositional generalization in general and its relevance 
to deep neural networks in particular. Given the degree of thought and effort that has gone into 
the study of compositionality in the realm of natural language, so too has most of the deep 
learning community’s research into the issue been motivated by natural language models and 
tasks. We follow suit to leverage these earlier insights and for the sake of continuity with prior 
work. 

 This work aims to answer the following questions: 

1. Is there evidence of multiple kinds of compositional generalization? If so, how does 
model performance vary across them? 

2. Much prior work has focused on synthetic datasets or on semantic parsing in 
particular as benchmarks for compositional generalization – are models and 
approaches designed for these tasks applicable to other, more naturalistic language 
tasks of interest? 

3. What avenues of intervention do we have for increasing the compositional 
generalization abilities of deep language models, ideally without requiring 
architectural or pretraining modifications that would necessitate throwing away 
existing, large-scale pretrained models? 
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2.0 Local and Non-Local Compositionality 
2.1. Initial Findings – COGS 

 We use the “Compositional Generalization Challenge based on Semantic Interpretation”, or 
COGS, dataset (Kim and Linzen 2020) as an initial testbed for understanding the compositional 
generalization behavior exhibited by existing transformer models of varying scales and training 
regimes. COGS is a synthetic, semantic parsing task which asks a model to take a natural 
language input sentence derived from an English Probabilistic Context-Free Grammar, or PCFG 
(Collins 2011), then return a parse of its semantic relationships. A simple example would be the 
input sentence “The cobra froze” and its corresponding parse “cobra(x1) AND 
freeze.theme(x2,x1)”. We see that the model must bind all entities and relations from the input 
sentence to variables of the form xi; the model must use these variables in an internally 
consistent fashion to produce a correct parse. COGS is a useful benchmark in our case 
because it provides a suite of test splits built specifically to test for compositional generalization 
with respect to its training split. For example, one split tests whether a model can parse nouns 
used only as subjects in training when they are used as objects in the generalization split. 
Another tests whether a model can successfully parse sentences built with recursive 
prepositional phrases (“I grabbed my pen on the notebook on my table in Tim’s house 
within…”). This diversity of train-test splits gives us an opportunity to see whether different types 
of transformer language models exhibit different strengths or weaknesses across various 
compositionally demanding problems, and whether patterns emerge among different types of 
generalization splits. 

 We present the most informative results from two of the transformers trained and evaluated 
on COGS: the first is the small, 4-layer, 4-attention head transformer used in (Kim and Linzen 
2020), hereafter referred to as the baseline model, while the second is a pretrained T5-Large 
model introduced in (Raffel et al. 2020). The baseline model was trained on COGS from a 
random initialization and has roughly 9.5 million parameters. In contrast, the T5-Large model 
was pretrained on a variety of supervised and unsupervised sequence-to-sequence language 
tasks and has approximately 770 million parameters. We use previously reported results for the 
baseline model and adhered to the training procedures outlined in (Kim and Linzen 2020) when 
finetuning the T5-Large model. Note that we are not inherently interested in a fair comparison – 
we are more interested in understanding whether larger, pretrained models used throughout 
much of the literature exhibit qualitatively different behavior from the small models typically 
trained from scratch in synthetic benchmark papers. We trained a finer gradient of model sizes 
(T5-Small, T5-Medium, and so on) both pretrained and randomly initialized, but omit them for 
brevity because their behaviors adhered strongly to the trends most clearly represented by 
these two models at opposite ends of our model suite. 

 Turning our attention to Table 1, we see that the T5-Large model exhibits dramatically 
improved generalization performance on a variety of COGS splits, namely those based on more 
“local” compositionality – shifting of noun parts-of-speech. This is not terribly surprising, given 
that T5 pretraining could have given the model access to language that violated the strict gaps 
between the COGS train and generalization splits (i.e., seeing a common proper noun used as 
both subject and object in the pretraining corpus). We see this as a useful insight; our primary 
interest is in a model’s ability to exhibit compositional generalization on practical tasks, not 
whether a model can do so without any of the benefits of pretraining or scale modern deep 
learning regimes provide us. It is reassuring that large models can handle these relatively 
simple forms of compositional generalization, though their utility as benchmarks may be limited 
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if they can be easily sidestepped by increased scale and standard pretraining. A more useful 
generalization split would be one that continues to fail despite these common measures. 

 Fortunately, Table 2 shows us that there are indeed such splits within COGS: those focused 
on the shifting grammatical role of prepositional phrases rather than simple nouns, as well as on 
recursion of either sentential complements or prepositional phrases. In all cases the T5-Large 
model sees negligible or even zero improvement over the far smaller, randomly initialized 
baseline. Compared to the “local” compositionality splits from Table 1, these are oriented 
around more “global” reasoning: understanding the independence of recursing phrases and 
being able to reason about phrasal semantics in a unified, cohesive manner. 

 We are left with multiple, useful insights. Increasing a transformer’s scale and the scope of 
its pretraining allows us to sidestep many issues of “local” compositionality, presumably so long 
as some critical mass of variations appear within the pretraining corpus. Given the sheer scale 
of modern pretraining text corpora, this diversity assumption seems likely to hold. However, 
there is no such benefit for compositionality based on more phrasal or structural components; 
further work is needed to pinpoint and resolve the bottlenecks around a model’s ability (or 
incentive) to learn more structural rules. 

 
Table 1. Local compositional generalization for randomly initialized and finetuned transformers 

on COGS generalization splits. The best performing model results are in bold. 
 

Local Tasks Noun Type 
Baseline Transformer 
(Kim and Linzen 2020) 

T5-Large 
(Raffel et al. 2020) 

Subject  Object Common 31% 99.3% 
 Proper 30% 73.5% 

Object  Subject Common 87% 99.6% 
 Proper 45% 99.6% 

Primitive  Subject Common 17% 99.3% 
 Proper 0% 99.9% 

 
Table 2. Global compositional generalization for randomly initialized and finetuned transformers 

on COGS generalization splits. The best performing model results are in bold. 
 

Global Tasks 
Baseline Transformer 

(Kim and Linden 2020) 
T5-Large 

(Raffel et al. 2020) 
Sentential Complement 

Recursion 
0% 0% 

Preposition Recursion 0% 10.1% 
Object Preposition  
Subject Preposition 

0% 0% 
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2.2. Recursive Decoding – gSCAN 

 Parallel to our preliminary work with COGS we also explored the Grounded SCAN (or 
gSCAN) dataset (Ruis et al. 2020), itself inspired by the earlier SCAN dataset (Lake and Baroni 
2018). gSCAN is a grounded navigation task wherein a model receives as input a simple grid 
world filled with representations of the model’s current position and a variety of other objects, as 
well as a natural language instruction the model is meant to carry out. The model must cross-
reference its instruction with the grid world representation and produce, in one shot, a 
navigation plan that satisfies the instruction’s request given the initial grid world state. The grid 
world entities, aside from the model agent, consist of single-cell shapes of various colors, sizes, 
and other properties: “big red square”, “little blue circle”, or “heavy yellow circle” are all 
examples of such entities. Examples of natural language instructions include “Push the small 
square”, “Walk to the circle while spinning”, or “Push the red small circle cautiously”.  The 
model’s navigation plan is simply a string of movement commands in one of the four cardinal 
directions. All instructions map to a single, golden navigation plan: adverbs such as “while 
spinning” or “cautiously” all map to discrete action sequences. Like COGS, gSCAN has a variety 
of generalization splits meant to test different types of compositionality: understanding a new 
type of primitive (red or yellow squares) built as an intersection of types encountered during 
training, navigating in a direction (southwest) that never came up during training, extrapolating 
to scenarios that require longer navigation plans than those produced during training, and so on. 
We refer readers to (Lake and Baroni 2018) for full details on the gSCAN dataset and to 
(Setzler, Howland and Phillips 2022) for more details on the methodology and analyses outlined 
below. 

 We begin by comparing the LSTM model introduced by (Ruis et al. 2020) with the previously 
state-of-the-art messaging passing model from (Kuo et al. 2020) and a small transformer of 
similar size to the baseline of our COGS experiments. We see in Figure 2 that the message-
passing and transformer architectures reliably outperform the LSTM baseline across most splits, 
though neither one of the message-passer or the transformer are better than the latter in all 
cases. Both of these higher-performing architectures do quite well on more “local” compositional 
splits: red squares, yellow squares, and class inference, though as with COGS both perform 
poorly on most splits built around more “global” compositionality. 

 To address this persistent problem with more globally-focused splits, we identified two key 
conceptual bottlenecks: the lack of diversity in the model’s initial position and orientation, as well 
as the need for the model to generate its entire navigation plan in a single shot. By default, the 
model always begins facing east during training; to eliminate the possibility that a model 
performs poorly due to overfitting surface-level statistics early on in its navigation, we 
experimented with randomizing the agent’s initial position and revising its target navigation 
plans accordingly. We refer to this as a Randomized condition. 

 To address the bottleneck of one-shot planning, we relax this requirement and instead allow 
the baseline LSTM model to “recursively decode” its navigation plan by taking a single step at a 
time, updating the world state, then querying the model with this new world state and the same 
language instruction as before. This makes some aspects of the problem easier – it bears 
repeating that we are more interested in understanding where challenges with compositional 
reasoning arise than we are on making strict one-to-one comparisons with prior art. However, 
we control for the increase in training sample diversity that this recursive approach introduces 
by training the baseline LSTM with an “intermediate state” version of the dataset. In this setting, 
the training set is expanded to include all intermediate world states produced by the ground 
truth navigation paths used to train our recursive decoding model. We saw no significant 
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differences between a non-recursive decoding model trained on the original split versus this 
intermediate state split. 

 We compare our recursive decoding LSTM, with and without a randomized initial orientation, 
to the baseline LSTM and message-passing models in Table 3. Recursive decoding leads to 
huge performance increases on the length extrapolation task, though only the combination of a 
randomized initial orientation and recursive decoding are enough to increase performance on 
the novel direction (southwest) split. We observe empirically that the randomized recursive 
decoding model navigates to the correct destination cell significantly more often than these 
results indicate. If we include “non-canonical solutions” which arrive at the correct destination, 
typically differing from the ground truth navigation plan by only one or two commands, this 
approach is successful 86.3% (±9.0) of the time – over 80 points of accuracy better than the 
prior state of the art. 

 The results on the novel direction split are particularly significant. While the length 
extrapolation task is made trivially more straightforward when adopting recursive decoding, 
novel direction has no analogous, intuitive benefit from breaking planning down into individual 
steps. Indeed, the control experiment using our intermediate state split shows that the increase 
in directional compositionality could only have come from treating every training example as a 
decomposed, but still cohesive, sequence. The baseline model needs to perform all state 
tracking and other forms of “bookkeeping” using the same machinery and state it needs to 
actually put together the rest of its navigation plan. Recursive decoding offloads all of this state 
tracking into the world state itself. This is a useful insight even for purely language tasks: 
introducing an explicit separation, or division of labor, between state tracking and problem-
specific reasoning could free up language models to reason more compositionally at the phrasal 
or structural level. 
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Figure 1. GSCAN generalization splits with exact match accuracies for prior art and our 
transformer model. The ‘Yellow Squares’, ‘Red Squares’, and ‘Class Inference’ tasks 

require local compositional generalization. All other tasks demand global 
compositionality. 

 
Table 3. Exact match accuracies for two key GSCAN splits requiring global compositional 

generalization. Best performing model results are in bold. 

Generalization Split 
Baseline 

(Ruis et al. 2020) 
Prior SotA 

(Kuo et al. 2020) 

Recursive 
Decoding 

(Ours) 

Recursive Decoding 
(Randomized) 

(Ours) 
Novel Direction 0.0% (±0.0) 5.7% (±0.0) 3.11% (±0.9) 43.6% (±6.1) 

Length 2.1% (±0.1) 2.1% (±0.1) 84.4% (±3.2) 79.3% (±0.4) 

 

 

0

10

20

30

40

50

60

70

80

90

100

Yellow
Squares

Red Squares Novel Direction Relativity Class
Inference

Adverb Adverb to Verb

Accuracy (%) on Test Splits

Baseline Message-Passing Transformer



PNNL-33551 

Data Interventions for Boosting Compositionality 7 
 

3.0 Data Interventions for Boosting Compositionality 
3.1. Input Sequence Compression 

 Our experiments with both COGS and gSCAN have illuminated a key limitation of existing 
large language models: they can reason compositionally in narrow terms, such as adapting part-
of-speech rules for nouns or interpolating class attributes for gSCAN entities, but consistently 
struggle to achieve similar behavior when reasoning at the phrasal or structural level. We 
hypothesize that this may be the case because task inputs are themselves strictly fine-grained 
and non-phrasal; models must build up phrasal representations through progressively deeper 
layers, with no additional memory or computational machinery to account for hierarchical 
representations of their input. Inspired by the use of feature pyramids in computer vision 
domains (Dollár et al. 2014), we augment COGS input sequences with a compressed (average 
pooled) version of the original sequence. Since transformer attention is capable of learning 
global-scale relations between tokens, we focus on learning spatially self-contained compressed 
tokens and produce the augmented input by applying a sliding window of length three to the 
input sequence. The compressed sequence is then concatenated to the original input, with the 
rest of the model architecture unchanged. The experimental methodology is otherwise identical 
to our baseline COGS experiments. 

 Table 4 presents our results, comparing T5-Tiny (a T5 built to be of similar size to the 
baseline presented in (Kim and Linden 2020)) trained from a random initialization with and 
without our augmented compression inputs. We also include results for finetuned T5-Small, the 
smallest pretrained model available from (Raffel et al. 2020), to account for any interactions 
between pretrained models and supplementary compression. We report various Rouge scores 
(Lin 2004) in lieu of exact match accuracy due to a collapse of model performance under the 
compression regime. A particularly interesting result is that we actually see a decrease in both 
train and generalization losses for models trained with compression despite a dramatic 
decrease in all Rouge scores. This is not explained by the simple inclusion of additional input 
tokens since the loss score is based entirely on the decoded output sequence. This low-
ROUGE, low-loss behavior would be consistent with compression-augmented models predicting 
output distributions that are on average closer to ground truth outputs, but which rarely have the 
correct output token as the single most likely prediction. In short, consistent with models which 
are consistently “close, yet no cigar”. 

 While we were unable to perform a deeper quantitative analysis of compression-augmented 
model behavior, the overall decrease in generalization loss is significant and we believe the 
compression approach, or an approach like it, is worth examining more carefully in future. It 
could be the case that transformers, whose attention mechanism is essentially a form of 
content-based matching, could be thrown off by learning to process input sequences directly 
side-by-side with what are essentially blurry downsamples of themselves; if these sequences 
are not well distinguished from each other, models need to learn such disentanglement 
themselves in order to effectively leverage the compressed inputs. This might be addressed by 
adding a “compression embedding” to our compressed inputs, indicating the degree to which 
they were pooled from the original sequence. Such an embedding also opens the door to 
multiple layers of compression for a given example: so long as the content for different 
compression levels is distinct in feature space, the transformer should have little difficulty 
interpreting what level of granularity an input token has. Our straightforward approach also has 
the compressed and original inputs densely interacting with each other at every step – 
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constraining the degree or frequency with which these different representations impact each 
other could alleviate confusion around repeated, blurred content in the sequence. 

 
Table 4. ROUGE scores on the COGS dataset for transformers with and without supplementary 

input compression. Best performing model results are in bold. Lower is better for all ROUGE 
scores. 

Architecture Compression Train Loss 
Gen. Loss 
(average) 

Rouge1 
(average) 

Rouge2 
(average) 

RougeL 
(average) 

T5-Tiny No 1.302 2.275 2.231 0.085 2.199 
T5-Tiny Yes 1.28 1.723 0.584 0.091 0.579 
T5-Small 
(Fine-tuned) 

Yes 1.268 1.731 0.0 0.0 0.0 

 

3.2. Data Augmentation via Induced Grammars 

 Architectural improvements are not the only way we can try to train models to improve 
compositional generalization ability; we can also examine techniques to build training datasets 
that demand, or at least encourage from an optimization perspective, compositionality. The 
Compositional Semantic Learner, or CSL (Qiu et al. 2021) is one such approach. The authors 
induce a quasi-synchronous context-free grammar (Smith and Eisner 2006) over a synthetic 
training split, in their case various semantic parsing tasks, then sample a number of additional 
training examples generated from the induced grammar to augment the original training split. 
This approach encourages compositionality in a number of ways: the grammar itself is 
regularized to learn small, highly reusable rules which are by definition composable, sampling 
from the grammar allows practitioners to bias the augmented examples to have increased 
length or other statistically rare properties, and the increased volume of examples derived from 
composable rules encourages models to memorize those rules and their exceptions rather than 
memorizing examples non-compositionally. This last observation is motivated by empirical 
evidence of the tolerance principle (Yang et al. 2017) (Schuler et al. 2021) in the linguistics 
literature. For additional background and implementation details for CSL and its underlying 
grammar, we refer interested readers to the relevant referenced works. 

 While the success of CSL is impressive, we ask an important follow-up question: are the 
gains of CSL transferable to non-synthetic, naturalistic language tasks? For a method to be 
broadly applicable we would like it to improve performance across a variety of tasks that should 
benefit from more compositional models, without requiring those tasks to be strictly synthetic or 
built around semantic parsing. A straightforward solution to this problem is challenging – if we 
could reliably fit such a grammar to a diverse array of naturalistic tasks, we would have already 
solved many core issues of language modeling! To work around this constraint, we ask a 
narrower question: are the gains of CSL-driven finetuning transferable to downstream, later-
stage finetuning on naturalistic tasks of interest? 

 All networks finetuned for our CSL experiments are T5-Base models from (Raffel et al. 
2020). We use the COGS (Kim and Linzen 2020) and GeoQuery (Zelle et al. 1996) semantic 
parsing benchmarks as our synthetic datasets and the CNN-Daily Mail (summarization) (See et 
al. 2017), PAWS (paraphrase identification) (Zhang et al. 2019), and SquAD (question 
answering) (Rajpurkar et al. 2016) as naturalistic, downstream datasets that should benefit from 
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improved compositional generalization ability. We use the standard train/test splits for all 
datasets except for GeoQuery, whose seven ‘length’, ‘template_[1,2,3]’, and ‘tmcd_[1,2,3]’ splits 
we use in lieu of a traditional training split. Keeping with prior literature using GeoQuery, we 
report ‘template’ and ‘tmcd’ results by averaging the results of their three constituent sub-splits. 

 As a simple baseline, we initially finetuned T5-Base models on each naturalistic dataset for 
20,000 steps. We also trained separate two-stage, ‘hybrid’ baselines by first finetuning a T5-
Base instance on a given synthetic dataset for 10,000 steps, then finetuning for an additional 
10,000 steps on a given naturalistic dataset. There were twenty-one such hybrid baselines, one 
for each synthetic-naturalistic dataset combination. 

 Our contribution comes from extending the hybrid condition above, by augmenting the 
synthetic dataset with examples derived from a corresponding CSL grammar. In all cases we 
sampled 100,000 additional examples from a CSL model fit to the synthetic dataset and 
combined them with the original synthetic training samples, upsampling the latter set as needed 
to achieve balance between CSL and non-CSL examples. Aside from the augmentation of the 
synthetic training set, training methodology is unchanged from the hybrid baseline condition. 

 Tables 5 and 6 depict results for all three of the above conditions for models using COGS 
and GeoQuery as their synthetic datasets, respectively. While average exact match 
performance accuracy varies across model conditions, with the single-stage and CSL two-stage 
models performing better than the non-CSL two-stage setting, large standard deviations make it 
difficult to draw strong conclusions. The dip in performance for the two-stage, non-CSL models 
could simply be due to overfitting on the (non-upsampled) synthetic training set. 

 Prior work, including (Qiu et al. 2022), indicates that models trained using CSL-augmented 
data are significantly more capable of compositional generalization, though our results indicate 
that this compositionality might only be directly applicable to the CSL-augmented task itself. 
This leaves us in a quandary. Applying a grammar-fitting method like CSL to the naturalistic 
tasks themselves would be the most desirable course of action, though as we discussed earlier 
this remains out of reach. It might be possible to use a more flexible grammar formulation to 
approximately fit a CSL-like model on such naturalistic tasks, but the algorithmic enhancements 
needed would be extensive and are beyond the scope of our work here. 

 Another avenue for future work would be finding ways to more firmly “bake in” the 
compositionality which models demonstrably learn from CSL-augmented tasks. If our results are 
due to some form of catastrophic forgetting (French 1999) wherein the model unlearns the 
knowledge gained from the first fine-tuning step, jointly fine-tuning over both tasks might be a 
sufficient remedy. The model might also have sufficient capacity to simply memorize 
compositional rules which apply only to the CSL-augmented task rather than learning rules 
applicable to language more broadly. If this is the case then, sticking within the realm of data-
based interventions, it may be necessary to integrate data augmentation or example mining to 
encourage compositional reasoning at the level of model pre-training itself, where the model 
develops its underlying behaviors independent of any particular downstream task. 
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Table 5. Exact match accuracies for various baselines and our CSL-based method, using 
COGS as an intermediate fine-tuning task. Joint finetuning splits are formatted (synthetic split + 

naturalistic split). 

Finetuning 
Scheme 

Finetuning 
Split(s) 

PAWS 
(Paraphrase 
Identification) 

SQUAD 
(Question 

Answering) 
CNN-DailyMail 

(Summarization) 

Single-stage 
(Baseline) 

N/A 93.5 (± 24.7) 67.7 (± 46.8) 0.02 (± 1.6) 

Two-stage 
(Baseline) 

Train 91.5 (± 27.9) 65.8 (± 47.5) 0.00 (± 0.93) 

Two-stage 
(CSL) 

Train 93.5 (± 24.7) 67.3 (± 46.9) 0.02 (± 1.6) 

 

 
Table 6. Exact match accuracies for various baselines and our CSL-based method using 

GeoQuery as an intermediate fine-tuning task. Joint finetuning splits are formatted (synthetic 
split + naturalistic split). 

Finetuning 
Scheme 

Finetuning 
Split(s) 

PAWS 
(Paraphrase 
Identification) 

SQUAD 
(Question 

Answering) 
CNN-DailyMail 

(Summarization) 

Single-stage 
(Baseline) 

N/A 93.5 (± 24.7) 67.7 (± 46.8) 0.02 (± 1.6) 

Two-stage 
(Baseline) 

Length 93.4 (± 24.9) 66.1 (± 47.3) 0.0 (± 1.9) 

 Template 93.3 (± 25.0) 66.3 (± 47.3) 0.0 (± 1.4) 

 TMCD 93.4 (± 24.9) 66.1 (± 47.3) 0.0 (± 1.2) 

Two-stage 
(CSL) 

Length 93.6 (± 24.5) 66.0 (± 47.4) 0.0 (± 1.6) 

 Template 93.6 (± 24.5) 66.2 (± 47.3) 0.0 (± 1.6) 

 TMCD 93.4 (± 24.8) 65.8 (± 47.4) 0.0 (± 1.3) 
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