
PNNL-33472

DeepDataProfiler

A Platform and Methodology for the Analysis

and Interpretation of Neural Networks

September, 2022

Brenda Praggastis 
Davis Brown
Emilie Purvine
Madelyn Shapiro
Bei Wang (U Utah)

Prepared for the U.S. Department of Energy

Under contract DE-AC05-76RL01830



Choose an item. 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility 
for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by 
the United States Government or any agency thereof, or Battelle Memorial 
Institute. The views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency thereof. 

PACIFIC NORTHWEST NATIONAL LABORATORY 
operated by 
BATTELLE 

for the 
UNITED STATES DEPARTMENT OF ENERGY 

under Contract DE-AC05-76RL01830 

Printed in the United States of America 

Available to DOE and DOE contractors from  
the Office of Scientific and Technical Information, 

P.O. Box 62, Oak Ridge, TN 37831-0062  
www.osti.gov  

ph: (865) 576-8401  
fox: (865) 576-5728  

email: reports@osti.gov  

Available to the public from the National Technical Information Service 
5301 Shawnee Rd., Alexandria, VA 22312  

ph: (800) 553-NTIS (6847)  
or (703) 605-6000  

email: info@ntis.gov  
Online ordering: http://www.ntis.gov 

http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/


PNNL-33472

DeepDataProfiler

A Platform and Methodology for the Analysis
and Interpretation of Neural Networks

September, 2022

 Brenda Praggastis
Davis Brown 
Emilie Purvine 
Madelyn Shapiro 
Bei Wang (U Utah)

Prepared for

the U.S. Department of Energy

Under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory

Richland, Washington 99352



PNNL-33472

Abstract

The DeepDataProfiler is a methodology and framework for providing interpretability to trained

neural networks. Its approach is to decompose a network into a weighted graph of neurons and

synapses and link the components of the graph to human identifiable concepts. By identifying

concepts important to the network and tracking the decision process employed by the network,

the network becomes more transparent and less like a black box. Spurious decisions and poor

generalization strategies can be identified and a measure of trustworthiness can be established.

The DeepDataProfiler project was funded by PNNL’s Mathematics for Artificial Reasoning in

Science (MARS) initiative. Its two year research objective was to apply techniques from

topological data analysis (TDA) and graph theory to the problem of interpretability of

convolutional neural networks (CNNs) used for the classification of images. This report will

highlight the project’s milestones, experiments, results, and transition strategy as well as its

vision for the future.
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Executive Summary

The process of training a deep neural network is often likened to the human development of

semantic knowledge, described as the acquisition, category extraction, and hierarchical

organization of experiences. Young children quickly identify trucks after their parents point and

say the word enough times for them to catch on. Then, after countless evenings reading Big

Trucks Do Work and looking at pictures of pickups, tractors, tow trucks, fire engines, cement

mixers, and tankers they learn to recognize the distinguishing characteristics of each, and name

them accordingly.1 Neuroscience uses deep neural networks (DNN) to model this learning

process and to develop explanations of how the synaptic connections, circuits, and neural

pathways developed within the brain organize such categorical concepts into semantic

knowledge [1]. The DeepDataProfiler (DDP) is a methodology and framework for understanding

the fundamental synaptic connections, circuits, and pathways used by trained DNNs for

classification tasks.

The DDP approach is to decompose a trained DNN into a weighted graph of representative

neurons (activations and/or groups of activations) and link them to human identifiable concepts,

providing both interpretability and trustworthiness for the network. Individual inputs are assigned

profile graphs, a weighted graph linking neurons by their mutual contribution and weighting both

neurons and their connections by their importance to the network’s classification ability. Profile

graphs are studied and compared using TDA and graph theory. Similarities in the structural

characteristics of the graphs correlate to similarities in the underlying data.

Activations are projections of the output tensors of the individual linear layers of a DNN. For

large activation values to persist through non-linear layers they must be highly correlated with

the left singular vectors of a matrization of the weight tensors [2]. Saxe et al [1] demonstrate

that these correlations reveal semantic distinctions in the hierarchy of classification and the

singular values are indicators of the strength of these distinctions in the data. More meaningful

than the Euclidean projections used for the profile graphs, the singular vectors can be ranked

by their associated singular values. Mahoney and Martin [3, 4] demonstrate empirically that it is

only when these singular values converge to a certain distribution that the network has been

adequately trained, implying that it is these very singular values which the network depends

upon to encode learned concepts.

By optimizing inputs to be highly correlated to specific projections of the weight tensors, DDP

exposes the features of the input the network is most interested in. For image classification

networks this optimization is called feature visualization (FV) [5]. Figure 1 illustrates both a

profile graph and feature visualizations for an eagle image classified by VGG-16 [6].

DDP has a working pipeline to generate, analyze, and visualize a variety of profiles based

on tensor slicing with multiple weighting schemes. DDP also produces profiles using singular

vectors which are based not on inter-layer graphs but by intra-layer hypergraphs. Experimental

evidence and the use of singular vectors in [3, 4, 1] indicate that these may offer better

interpretability.

MARS/DDP had three software releases [7]. Project code and tutorials are publicly available

on GitHub [8]. A lightweight proof-of-concept interactive feature visualization tool is available

through Streamlit [9]. A research article has been submitted for publication and is currently on

arXiv [10]. DDP’s TRL is between 3 and 4.

1Anecdotal experience of authors.
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Figure 1. Profiling the Imagenet dataset on pretrained VGG16 model from Torchvision.

A. The profile graph of an eagle image. B. Feature visualization of an eagle profile

graph. C. Feature visualization of three left singular vectors of the weight tensor

for the last convolutional layer, which are positively correlated with the eagle

image. To the right of each optimized image are other images which also

positively correlated with these vectors.

Acronyms and Abbreviations

CNN convolutional neural network

DDP DeepDataProfiler

DL deep learning

DNN deep neural network

FV feature visualization

MARS Mathematics for Artificial Reasoning in Science

PNNL Pacific Northwest National Laboratory

SVD singular value decomposition

TDA topological data analysis
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1.0 Background

There seems to be an inverse relationship between the accuracy of deep neural classification

networks (DNNs) and our human ability to understand how they make their decisions and verify

their reliability. The more reliable and generalizable a model, the more impenetrable its internal

black box seems to be. But acquiring the ability to interpret the reasoning of a DNN, to answer

the questions “Why does this work?” and “How did it know?” and to be able to unambiguously

explain to someone the causal connections made from input to classification is paramount if

DNNs are to be relied upon to inform our decisions To this end there are several methodologies

for obtaining interpretability of DNNs and extensive summaries of their inner workings and

success [13, 14, 15, 16, 17, 18]. At a very high level these approaches share a common goal:

identify the most important input features the model uses to make its classifications and if

possible trace their interrelationships and causal connections. Interpretability methods often

avoid the black box nature of the model by probing the inputs and activations, the layerwise

outputs [19, 18]. The idea is that the black box might be impenetrable but, by closely

approximating its behavior, interpretability can be achieved through proxy.

Convolutional neural networks (CNNs) used for image classification provide the most

accessible opportunities to derive semantic meaning from the activations because the features

of interest are visual objects. Influential activations are identified by probing the network with

image tensors and measuring their activations [5]. Strong responses in convolutional layers

indicate strong correlation (positive or negative) to the filters in the weight tensor, and in fully

connected layers to the rows of the weight matrix. In the remainder of this section, we

summarize some existing approaches to CNN interpretability and contrast with our approach.

Class activation maps [20] and Grad-CAM [21] use heat maps to identify the most influential

regions of images in image classification networks, the regions with strongest responses. These

tools are particularly powerful when the images are well understood and the identified regions

contain interpretable features. When the identified region contains multiple objects, textures,

shapes, colors, or other attributes, which are not separable or perhaps even human

interpretable, saliency maps narrow the scope of where to look for features influencing

classification. But saliency map methods have been shown to give misleading explanations,

perhaps most notably giving similar saliency outputs for models with random weights [22].

Concept activation vectors (CAVs) [18] are used to determine a model’s tendency to classify

to a specific class when that concept is present. Trained to separate output activations at a

certain layer by a specific concept, these vectors can validate the model’s sensitivity to the

concept by strength of response, allowing domain experts to determine if the features they

deem important are important to the model. This can be taken further by learning a basis of

class specific CAVs for the activation set [23, 24]. Activation vectors are then expressed as

linear combinations of class specific concept vectors.

LIME [16] emulates the behavior of a DNN. By creating a simple interpretable classifier to

match a model’s behavior in a small neighborhood of a single image it provides insight as to

what the model considers important for the image’s classification in terms of predefined human

identifiable concepts.

These interpretability tools are useful for verifying the model’s sensitivity to important

domain-centric concepts. Their disadvantage is that they introduce a prior of what concepts to

focus on and can miss potential influencers that cannot be humanly identified but are crucial for

the model’s accuracy. While they measure sensitivity to humanly understandable concepts, they

don’t explain the actual workings of the model.

We assert that interpretability research starting from the premise that latent representations

of trustworthy models must correspond to known domain-centric concepts assumes advance

knowledge of everything in the domain that is meaningful. This could produce bias and eliminate

Background 1
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the possibility that concepts used by the model to describe class distinctions could be very

different than what is expected and yet still be domain-centric and legitimate for classification.

As a consequence we took a different approach. Once a model is trained, its parameters are

known and it becomes a deterministic function composed of linear and non-linear functions.

Moreover, while the number of individual parameters may be huge, they are still seated within

affine linear transformations; and linear transformations have been well understood for

centuries. We extract and interpret the features identified by a trained model as important and

then look for semantic meaning. The subtle difference in discovering the semantics of the

network versus the sensitivity of the network to predefined concepts is discussed extensively in

Olah et al. [25, 26].

DDP was inspired by the work of Qiu, et al. [27]. They decompose a trained model into

functional blocks and extract an effective path linking the most influential neuron activations

used for an input’s classification by thier mutual contributions. Effective paths of inputs

belonging to the same class tend to share more neurons and synaptic links than those

belonging to different classes. Qiu, et al. use these paths to detect anomalous behaviors and

adversarial inputs. DDP repurposes their work to generate profile graphs similar to effective

paths but designed to make the model’s decision process more transparent [28]. DDP profiles

identify the indices of the influential neural activations, spatial activations, and channels used for

an input’s classification, then applies feature optimization techniques [5, 25] to link the

corresponding activations to semantically meaningful concepts in the input domain. Influential

activations are identified by the strength of their correlation with projections of the weight

tensors. But correlation does not imply causation. DDP takes the next step to ask what a

strong correlation really means for the linear layers.

The singular value decomposition (SVD) holds a special place in the heart of data science

and numerical linear algebra in general [29]. As a robust matrix factorization method it

facilitates data compression [30, 31] and network pruning [32]. For DDP the unitary nature of

the singular vectors make the SVD an ideal factorization for understanding the dynamics, and

hence the correlations measured by the weight tensors.

In the case of a multi-layer perceptron, domain concepts producing activations highly

correlated to a singular vector are scaled by the corresponding singular value. We claim these

basic correlations drive the success of the model so that interpretability rests largely on learning

what input features correlate most closely to the singular vectors with the largest singular

values. We give strong mathematical arguments for this assertion and evidence of how this

knowledge can be applied.

In summary, the MARS/DDP project used two approaches for the problem of interpretability.

For FY21 the goal was to represent the decision strategy for image classification as a profile

graph of influential activations and synaptic connections and explain its structural and

topological characteristics in terms of invariant structures used for classification. During FY22

the project widened its scope to a study of intra layer hypergraphs linking the singular vectors

associated with the weight tensors.

Background 2
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2.0 Project milestones FY21

The first year focused on generating profile graphs for two benchmark datasets: CIFAR-10 [11]

and ImageNet [12], and studying their topology. The data was classified using Torchvision [33]

models and pretrained weights, when available. DDP used both VGG and ResNet

architectures. We also explored data visualization methods to flesh out visual interpretations of

the profiles. We give highlights below.

2.1 Profile Graphs

A profile graph describes the dependency relationships between positions in the activations for

a specific input. Our construction builds upon ideas put forth by Qiu et al [27]. Every input for

the DNN generates a network of activation tensors. Each element and slice of an activation is

linked functionally to corresponding pieces of activation tensors coming from a predecessor

layer. We reference the pieces of the activations as neurons and their functional relationships

as synapses, and construct a profile graph with neurons represented by nodes and synapses

represented by edges weighted by contribution. To illustrate, let L be a single convolutional

layer composed of cross-correlation of an input tensor X with a weighted tensor W , followed by

the addition of a bias tensor B, followed by a nonlinear operation σ. Let L(X) represent the
tensor of activations generated by layer L for X so that

L(X) = σ(W ?X +B).2 (1)

We note the input X is the output of a predecessor layer to L.3 A profile graph will describe

the functional relationships between X and L(X) in terms of indices, not values. This is

important because it ties an input to the portion of the network most influential in its

classification and permits meaningful comparison. It is important to note that linking by

functional relationships depends upon the linking neurons, that are the projection of activations

onto the Euclidean basis, and the activation function, which operates independently on the

subspaces generated by each basis element. Let Y =W ?X.

Element to element profile graphs

An element of a d-tensor is a single number identified by its d-tuple index. Let a neuron

correspond to an element of an activation tensor and reference it by the layer of the activation

and its index. For example neuron (10, (5, 25, 13)) would reference the element in the activation

3-tensor from layer 10 with index (5, 25, 13). We will always assume the nonlinear function σ is

an element-wise operation so that once an index has been identified in L(X), it can be used as

a reference index in Y for computing functional dependencies with elements of X.

Synaptic connections are defined by the functional relationships between the receptive fields

in X and each element in Y . A single synapse exists between the neuron corresponding to Yh,i,j
and each neuron corresponding to each of the elements Xr,i+s,j+t found in the summands. The

synapse is referenced by the pair of corresponding neuron references and weighted by some

function of the proportional contribution the corresponding summand brings to Yh,i,j .

2We use the ? instead of ∗ here to remind us the operation happening inside a typical convolution layer is actually

cross-correlation.
3We treat concatenation of multiple layers as its own layer and will treat it separately.

Project milestones FY21 3
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A profile graph is created from the most influential of these neurons and synapses. This, of

course, is a subjective decision. By choosing too many, we could end up with unwieldy graphs

that can’t be distinguished from the original network. Choosing too few produces graphs that

can’t be distinguished from each other. The sweet spot is a graph that retains the smallest

number of influential neurons and synapses required to distinguish inputs by class.

The profile graph is constructed in two phases. First, identify the elements of each output

activation that pass some threshold value or are in the a top percentage of values; this defines

a set of influential neurons. Second, for each influential neuron with index (h, i, j), find the

functional relationship between Yh,i,j and the elements of X, where X is the output from a

predecessor layer. As long as the nonlinear function of the layer is monotonically increasing, it

is sufficient to order the summands {Wh,r,s,t ·Xr,i+s,j+t} in descending order and identify the

indices of the top contributors to Yh,i,j in X either by thresholding over the cumulative sums or

taking a top percentage. The profile graph takes as its nodes the chosen influential neurons

and their top contributors and takes as its edges the synaptic connections between them.

Here we should pause to remark on the assumption that only valid cross correlations are

allowed. If the input tensor X was padded then the index in the neuron reference would need

to reflect the index of the element in X before it was padded. For symmetric p-padding this

could be as simple as translating the spatial indices by the tuple (−p,−p).

Tensor slice to tensor slice profile graphs

A similar procedure as above is used when neurons are identified with tensor slices. In the

case of 1-dimensional spatial activations, a neuron is referenced by layer and spatial index. For

example the neuron corresponding to the spatial activation Y:,i,j
4 in layer k would be referenced

by (k, (i, j)). A spatial activation Y:,i,j is the result of cross correlation of W and a single

receptive field ψ
(m,k)
i,j (X), so the functional relationship between spatial activations is described

by the sum

Y:,i,j =
∑
s,t

(W ):,:,s,t · ψ(m,k)
i,j (X)s,t. (2)

The 1-dimensional summands in this equation are the result of matrix multiplication of a 2d-slice

of W times a 1d slice (or spatial activation) in ψ
(m,k)
i,j (X).

It isn’t obvious how to efficiently identify the most contributing neurons in this sum. One way

is to eliminate small contributors by focusing on the terms with highest correlation to Y:,i,j .
Define

zs,t = (W ):,:,s,t · ψ(m,k)
i,j (X)s,t

and order {zs,t} in descending order by ‖zs,t · Y:,i,j‖. Compute the partial sums of the zs,t at
each index in the ordering of zs,t and choose the first sum whose distance from Y:,i,j is less
than some threshold ε‖Y:,i,j‖. The terms zs,t in the chosen partial sum correspond to neurons

referenced by the indices i+ s, j + t. Weight the corresponding edge by its relative contribution

using

wi,j,s,t =
zs,t · Y:,i,j
‖Y:,i,j‖2

.

If X was padded a shift in the index reference may be required as it was for the element to

element profile graphs.

The case of 2-dimensional channel activations is handled similarly. Here each neuron

corresponds to a channel activation and the functional relationship is given by summing over

4The colon indicates the full range of indices in that dimension.

Project milestones FY21 4
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the Hadamard products

Yh,:,: =
∑
r

Wh,r,:,: �Xr,:,:. (3)

As before, the nodes in the profile graph will correspond to the index of each channel activations

and the edges will be defined by influential contributions between channels of adjacent layers.

2.2 Analysis of Profile Graphs

Jaccard Similarity Metrics

Using the Jaccard index between sets of influential neurons and/or synapses of two profiles, we

developed metrics to compute similarity between profiles and perform clustering. The Jaccard

index between two sets is a measure of their similarity based on the sizes of their intersection

and union:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

. (4)

We defined three Jaccard-based similarity metrics between profiles. These metrics can be

taken with respect to either influential neurons or synapses; from here on we will refer to the

influential neurons. For the set of influential neurons P in a profile of a model with layers L, let
Pi ⊆ P , where i ∈ L is the subset of influential neurons at layer i. The Jaccard index between

sets of influential neurons from two profiles X,Y is the profile Jaccard:

ProfileJaccard(X,Y ) := Jaccard(X,Y ). (5)

The average Jaccard between profiles is the average over the Jaccard at each layer:

AverageJaccard(X,Y ) := Ave
i∈L

(Jaccard(Xi, Yi)). (6)

The instance Jaccard is the fraction of influential neurons in X which were also found to be

influential in Y , typically used for comparing a single-input profile to an aggregated class profile

(i.e., |X| << |Y |):

InstanceJaccard(X,Y ) :=
|X ∩ Y |
|X|

. (7)

We used the profile Jaccard as a similarity metric to perform k-medoids clustering on

aggregated class profiles of all 1000 ImageNet1k classes. Figures 2 and 3 show conceptually

coherent clusters, providing further support for profile graphs as an interpretability tool.

Topological Data Analysis

Topological Data Analysis (TDA) is a powerful tool for the analysis of large metrizable spaces of

data. We explore the use of TDA to analyze the structure of profile graphs and uncover meaning

behind the interconnection of the synapses, independent of labels on nodes and synapses.

In a profile graph, edge weights are defined as a function of the influence weight assigned to

the corresponding synapse. To facilitate the construction of a meaningful metric space we have

explored two such functions, which we refer to as the original and inverted weighting schemes.

Under the original weighting scheme the weight of an edge is equal to the influence weight of

its corresponding synapse, so nodes connected by synapses with greater influence weights are

Project milestones FY21 5
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Figure 2. 3-medoids clustering by class profile Jaccard on ImageNet reveals broad groups

for objects, mammals, and non-mammals.

(a) 398 animal classes, appear to be clustered roughly

by species

(b) 602 object classes, appear to be clustered roughly by

features and context

Figure 3. 10-medoids clustering by class profile Jaccard on subsets of ImageNet (animal

classes vs object classes)

Figure 4. We define a metric space on the vertices of a profile graph, which we can then

analyze using persistent homology.
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further apart by shortest path distance. We define the inverted weighting scheme to assign a

weight of w−1
i to edge i, where wi is the influence weight of the corresponding synapse i.

Profile graphs that use the inverted weighting scheme are appropriate when our method of

analyzing the graph places greater importance on points that are close together.

The vertices of the profile graph can be represented in a metric space by constructing the

distance matrix using the shortest path distance. Optionally, some kernel function can then be

applied to the distances to produce a desired effect on the metric space. One example that we

have explored is the Gaussian kernel, given by g(x) = 1− e−x/2σ, where σ is the standard

deviation of the finite shortest path distances. The Gaussian kernel is an increasing function

that spreads out low distances and contracts high distances. When the edge weights of a

profile graph are defined according to an inverted weighting scheme, the low distances

correspond to the most influential connections. In this case, spreading out the low distances

can reveal more nuanced structures that emerge at those distance thresholds.

Persistent homology allows us to summarize the “shape” of profile graph data based on the

appearance of topological features at different distance thresholds. We calculate the persistent

homology of a metric space, and then study its persistence diagram to identify topological

features of the corresponding profile graph. Persistence diagrams allow us to visualize the

persistence of features by plotting a point for each topological feature, whose coordinates are

(birth, death). The birth of a feature, such as an open loop, represents the distance threshold

when the loop was formed, and the death represents the distance threshold when the loop was

closed or triangulated.

Persistence images are finite-dimensional vector representations of persistence diagrams

[34]. We have used persistence images as part of our initial exploration of the topological

features of profile graphs, since they provide alternative visualizations that can be compared by

Euclidean distances, a metric that is much more computationally efficient than the current

standard methods for comparing persistence diagrams.

Our TDA visualization tool allows persistence diagrams and persistence images to be viewed

alongside the input image from which their corresponding profile graph was generated by Deep

Data Profiler. The tool includes image and persistence data for 50 images from each class of

the ImageNet1k dataset, profiled using element-wise and channel-wise neuron definitions, on

both VGG-16 and ResNet-18 architectures. All persistence images were generated using the

same scale and parameters, so they can be visually compared between different input images

and classes.

(a) Class: volcano (b) Persistence diagram (c) Persistence image

Figure 5. Persistent homology for a profile graph (ImageNet on VGG-16).
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(a) original image (b) threshold = 0.3 (c) threshold = 0.003

(d) profile for 0.3 threshold (e) profile for 0.003 threshold

Figure 6. Feature visualizations optimizing neurons in profile graphs for a single image at

different thresholds. Graph is pictured aligning neurons by their layer, from early

layers on the left to later layers on the right. The example comes from VGG16

trained on Imagenet.

Feature Visualization

Feature Visualization (FV) is an optimization technique for generating images that highly

activate a neuron or collection of neurons in a CNN [25, 5]. FV measures a neuron’s response

to an image, akin to a neurologist measuring a the brain’s neural response to stimuli; then it

iteratively improves the image to increase the response, thereby creating a superstimulus. FV

can be used to establish causal understanding of the neuron(s), because every aspect of a

feature visualization is found via the optimization process and is not merely a correlate of the

activating characteristic. By coupling FV with the DDP profiles, we look for human interpretable

visualizations describing the sequence of classification decisions the network makes. Figure 7

shows feature visualizations optimized for profile graphs. We note along with [5, 26] that

interpretation of the images is often difficult in part due to their polysemantic nature of the

images; multiple features could stimulate the same set of neurons.

Spectral clustering is a graph theoretic tool for clustering the nodes of a graph [35]. Using

the adjacency matrix for a profile graph, we use the corresponding Laplacian matrix and apply

k-means clustering on a subset of the Eigen vectors to cluster the nodes across the profile. We

apply feature visualization optimizing for each node in a cluster separately and then together as

shown in Figure 7.
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(a) original image (b) threshold = 0.5

(c) optimized cluster neurons (d) optimized cluster

Figure 7. Nodes from profile graph in Figure 2.2 are clustered into 50 clusters. Choosing

one cluster, we optimize an image for each neuron in the cluster noting where

they occur in the profile and a single image optimizing for all neurons in the profile.
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3.0 Project milestones FY22

At the end of FY21 we shifted our focus away from profiling based on projections of the

activations onto the Euclidean basis to projections onto a basis which aligned to the linear

dynamics of the weight tensors. This involved developing a meaningful singular value

decomposition (SVD) for a matrization of these tensors, profiling tools to identify significant

singular vectors, and optimization methods for visualizations. We found the SVD profiles are

more meaningful and are clearly linked to the dynamics the model uses to move data around

for linear separability. We used hypergraph theory to study the intra-layer relationships between

singular vectors and feature visualizations to gain visual interpretations for groups of neurons.

The details of the research for FY22 are described in The SVD of Convolutional Weights:

A CNN Interpretability Framework [10], but we highlight them here.

3.1 The SVD

When a weight tensor W acts on an input tensor X, it linearly stretches, rotates, and contracts

the receptive fields in X giving increased importance to some features and decreased

importance to others. The SVD of W exposes the dynamics of this map by identifying directions

of stretch, contraction, and rotation. Since the weight 3-tensor acts independently on each

receptive field we unfold the weight tensor into a matrix and the input 3-tensor into a matrix with

receptive fields in the columns. Convolution is then completely described by matrix

multiplication. The output is a matrix of spatial activations, which can then be folded into the

3-tensor normally obtained from the convolution operation. This perspective recognizes that the

dynamics of convolution are best studied using the matrix form of a linear transformation from

the space of receptive fields to the space of spatial activations. The singular values are

indicators of the features most important to the network. These features are discovered by

projecting the spatial activations onto the left singular vectors.

The mathematics involved in transforming the weight matrix highlight a distinct difference

between our approach and previous work, which focuses on the effect of channels or filters on

the full activation space, capturing important elements of the activation tensor by using their

norm [25, 36, 37]. Our approach recognizes that while a large activation value means

something triggered the model, it doesn’t say what, nor how the model responded.

Since convolution acts independently on the receptive fields we look at the linear

transformation between the receptive field space of the inputs and the space of spatial

activations in the output. By using an SVD to study the transformation we identify the singular

vectors most highly correlated to each class. We optimize inputs, which are correlated to each

singular vector with the goal of identifying the features in the input domain triggering those

vectors.

The result is a hierarchy of the features, which are highly correlated to singular vectors and

are ranked by the corresponding singular values. We model this hierarchy using hypergraphs.

3.2 Hypergraph Profiles

Hypergraphs are generalizations of graphs, which model the many-to-many relationships within

data. Hypergraphs preserve the important mutual relationships that can be lost in ordinary

graphs [38]. A hypergraph H = (V, E) consists of a set of nodes V and a set of hyperedges E
such that each e ∈ E is a subset of V. While graph edges correspond to exactly two nodes,
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s0 = 5.27

s1 = 4.96

s12 = 1.73

s2 = 4.67 s8 = 2.7

s3 = 4.27

s5 = 3.7

s7 = 3.21

s13 = 1.68 
s6 = 3.48

s4 = 4 s15 = 1.6

Figure 8. Illustration of a hypergraph and its semantic hierarchy. Data comes from a

simple CNN trained on MNIST. Nodes in the hypergraph correspond to one or

more singular vectors in the first fully connected layer. Visualizations activating

each of these vectors are shown the diagram along with exemplary images, which

highly activate each singular vector [10].

hyperedges correspond to any number of nodes so that hypergraphs are often thought of as set

systems but with more structure [39].

We model the relationships between the target classes and the singular vectors significant

for each class using hypergraphs [40]. The size of the hypergraph depends on a threshold used

to determine if a particular singular vector has high correlation with the elements of a target

class. The diagrams in Figures 8 and 9 illustrate the bifurcation of target classes by the singular

vectors most significant for their classifications. The feature visualizations optimize images for

each singular vector or a group of singular vectors. Figure 10 illustrates how the singular

vectors activated by two dog images differ, possibly due to different perspectives. The feature

visualization is for a singular vector common to both images. The overlays highlight receptive

fields in the original image whose activations most correlate with this singular vector.

3.3 Application in Nuclear Forensics

We apply our methodology to two models used to classify the attribution of nuclear materials.

This use case of machine learning is important, in part, because it helps to determine the

provenance of nuclear materials. The synthetic pathway of a nuclear material, for example the

precipitating reagants and calcination conditions, can often be accurately inferred by the surface

morphology of the material [41]. The scanning electron microscopy (SEM) allows practitioners

to acquire images of the surface morphology. DL methods can be accurate and fast, as

opposed to labor intensive morphological analysis [42]. We investigate a supervised learning

approach [43] and an unsupervised DL approach [44].

Supervised nuclear forensics model

For the supervised model, we use a ResNet-34 network from [43] that accepts SEM images of

four different magnifications as input. [43] considers different parameterizations of the weights

of the ResNet-34 model with respect to the four inputs. We limit our analysis to the
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Figure 9. Exploration of VGG-16 [6] on CIFAR-10 [11] – Diagram for part of the semantic

hierarchy induced by a hypergraph for the 7th convolutional layer [10]

‘weight-sharing’ parameterization, where the same model is used to process each input

magnification in parallel.

We include some exploratory results for the MISO model. In Figure 11, we display a class

restricted hypergraph for the final convolutional layer in the ResNet-34. While we calculate the

relative singular value importance with the full set of classes, for convenience we restrict our

hypergraph analysis to display only 5 classes consisting of the synthetic route to UO2. We

focus on signal 16, which discriminates the class SDU → UO2 for the layer. Via the hypergraph

profiles, we note that positive signals corresponded to negative space for SDU → UO2 (as well

as AUC → UO2) in later layers. This feature was previously suspected in forensics literature

[42]. However, images of samples taken in the real world will likely be more dispersed. In these

cases, this will fail to be a useful signal.

Unsupervised nuclear forensics model

For the unsupervised model, we study a Vector Quantized Variational Autoencoder (VQ-VAE)

[45, 46] from [44]. The VQ-VAE most prominently differs from a standard variational

autoencoder in its use of a discrete, rather than continuous, latent bottleneck layer, or

‘codebook,’ between the encoder and decoder. The models were trained on a dataset of SEM

images of materials with different precipitating reagents [47]. The initial unsupervised training

for the VQ-VAE used a standard image reconstruction task with this dataset along with VQ-VAE

specific loss terms to help with optimization and condition the discrete latent space to be

well-behaved.

After the unsupervised training Girard et al. discard the decoder and use the VQ-VAE

codebook as a feature vector for a simple supervised classification model. The VQ-VAE

encoder is not updated during the further supervsied training. The authors test three models for

downstream supervised tasks: a random forest, a support vector machine, and a shallow

Project milestones FY22 12



PNNL-33472

Figure 10. Exploration of VGG-16 [6] on ImageNet [12] – Significant features shared by

two images. The hypergraph models the relationship between singular vectors

highly significant for two dog images from the 11th convolutional layer. Exemplary

images and feature visualization are for the singular vector v7. Similarity overlays
highlight cosine similarity between the latent representations of the three images

[10]

multi-layer perceptron. All models achieve about the same performance. We focus on the

VQ-VAE encoder layers for our hypergraph and feature visualization workflow. We give a result

comparing the VQ-VAE to the supervised model MISO model in Figure 12. The full model

feature visualizations are created using the methodology shown in Figure 7, now using the

singular vector. We found a sharp distinction in the way these respective models classified

materials; namely, the VQ-VAE model relied heavily on texture features, whereas the

supervised MISO model used large-scale shape structures.
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Figure 11. MISO Signal, (final convolution on 3rd block). A feature visualization optimized

for singular vector 16 as well as exemplary images included with their projected

activations. Positive signals corresponded to negative space for SDU → UO2 in

later layers.

Figure 12. Comparing the unsupervised VQ-VAE with the supervised MISO model.
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4.0 Conclusion

The DDP project’s initial goal was to tackle the problem of CNN interpretability using topological

and graph theoretic techniques applied against attribution graphs, which we call profiles.

Profiles link neurons and groups of neurons from the activations generated by the CNN. They

provide a graph summarizing the decision sequence used by the model for classification.

During FY21 our analysis showed that profile graphs give good class separation and hence

provide classification summaries that might be used for anomaly detection. The TDA and graph

analysis confirmed the separation and produced some interesting features in the persistence

diagrams, but did not provide the hoped-for topological features, which might explain the

model’s decision process. This led us to question whether the basic neurons we were using for

profiling should be the traditional elements, spatial activations, and channel activations used in

the literature.

For FY22 we shifted our focus to apply basic linear algebra tools to analyze the linear layers

in terms of the dynamics of their map. We used a simple unfolding of the weight tensors into

matrices in order to apply SVD theory and study the singular vectors. We discovered a deep

relationship between the features persisting through the layers and the singular vectors and

modeled these using hypergraphs.

Our research offers a promising new perspective into interpretability theory. By recognizing

that convolution as a matrix transformation on the space of receptive fields to the space of

spatial activations, we are able to apply traditional numerical linear algebra to understand the

stable and unstable subspaces of the feature space. Singular values rank features by how the

model responds to their discovery. Optimization techniques link those features to recognizable

inputs.

We applied our research to nuclear forensics to interpret the decision process of two models

used to classify processing pathways. We were able to distinguish the models by their decision

strategy and gained some insights as to what features the models were focusing on.

We are expanding our work into vision and NLP transformer models as we transition from an

LDRD project to external funding for FY23.
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