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Summary 
Variable renewable energy resources (VREs) are zero marginal cost resources that displace 
more expensive, emissions intensive generators in electricity dispatch, which can affect price 
formation, revenue sufficiency, reliability, market power mitigation, as well as market design and 
incentives for participation from other resources. In the literature that analyzes variable 
renewable energy resources (VRE) impacts on price formation processes, most studies focus 
on VRE impacts to short-term energy revenues through their locational marginal price effects in 
electricity markets. While the impacts of VREs on energy prices is a piece of the puzzle, it does 
not provide the whole picture. In well-functioning electricity markets, low energy prices could 
signal adequate capacity, or low energy prices could fail to accurately reflect the long-run 
scarcity value of electricity, affecting investment incentives for needed investment in new 
generation or maintenance of existing generation. Because of the nuances of low energy prices, 
in this review we provide an in-depth analysis of VRE impacts on revenue streams from energy, 
flexibility, and capacity markets, as well as other long-term contract mechanisms to provide a 
complete assessment of how VREs affect revenue sufficiency in electricity markets. 

We identify several avenues through which VREs can impact price formation, including VRE 
impacts on short-term energy prices (day-ahead or real-time market price impacts), price 
volatility, ancillary service prices, and capacity or other long-term energy prices (capacity market 
prices or the impact of increasing VRE capacity on energy prices over time), all of which affect 
revenue sufficiency. Because VREs impact more than just prices in electricity markets, we also 
consider their impact on reliability, market power monitoring and mitigation, as well as state-
level incentives, other economic trends and market design that both encourage and are 
adapting to increasing levels of VREs. Last, we consider how distributed energy resources 
(DERs) including demand response and storage technologies affect the integration of VREs and 
moderate their impacts. For each avenue, we examine recent electricity market trends and 
perform an in-depth survey of the literature to fully understand VRE impacts. We recommend 
several empirical models as well as questions for future research. 

We find that increasing levels of VREs cause short-term energy prices, on average, to decline, 
which will be discussed in detail in Section 2.2.1. Zero marginal cost power producers displace 
power producers with higher fuel costs, reducing energy prices for all market participants. 
However, price declines vary temporally, geographically, and by the underlying resource 
portfolio, as the marginal generator displaced by the zero marginal cost resource and underlying 
market conditions determine the magnitude of price effects. Although short-term energy price 
impacts are well documented, we identify a need for additional research on the causal effect1 of 
VREs, using more recent data from a broader selection of electricity markets, as VREs continue 
to increase across the United States; we recommend an empirical model to address this need. 
We also identify future research questions to further analyze the impact of VREs on short-term 
energy prices considering the impacts of generator outages, out-of-market actions, and 
transmission congestion. As a caveat, although our analysis of short-term energy prices in this 
review focuses on VRE impacts on wholesale market prices, emerging research has found that 
declines in wholesale prices due to VREs may not necessarily lead to declines in retail prices 
due to the allocation of fixed charges to retail customers (Borenstein et al. 2021), signifying VRE 
impacts on retail prices as an important area for future research. 

 
1 In this research, the term causal effect implies we are determining the cause-and-effect relationship of 
VREs on electricity prices, controlling for all other confounding factors, using econometric models. 
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Although the literature on how VREs impact short-term energy prices consistently finds average 
wholesale price declines during each studied period,1 the literature on how VREs impact price 
volatility is less conclusive, as will be discussed in detail in Section 2.2.2. Some studies find 
increasing penetration of VREs increases temporal price volatility, while other studies are 
unable to show any significant evidence that the increasing share of VREs leads to high price 
volatility. Further, many factors may influence price volatility, including demand patterns, 
weather, and the availability of flexible generation. To parse out these effects, we identify future 
research questions and recommend an empirical model to better understand the impacts of 
VREs on price volatility. 

Changes to price volatility due to VREs can create more periods with high prices as well as 
more periods with negative prices (Karandikar 2007; Schulueter 2010). Under these conditions, 
resources need to be aligned with where they are needed most to address short-term 
imbalances, a service typically accomplished with pricing of operating reserves or other ancillary 
services to incentivize resources to produce and sell power when and where it is needed most. 
The literature on price effects from VREs in ancillary service markets is less robust and nuanced 
than that on short-term energy price impacts, as will be discussed in more detail in Section 
2.2.3; some research finds increasing levels of VREs reduce ancillary service prices through 
their price-reducing effect on energy market prices (Hirth and Ziegenhagen 2015; Gianfreda et 
al. 2016; Zarnikau et al. 2019), while other research finds that increasing levels of VREs 
increase ancillary service prices through raising demand for these services (Batalla-Bejerano 
and Trujillo-Baute 2016; Wiser et al. 2017; Di Cosmo and Valeri 2018). We identify future 
research questions and recommend an empirical model to parse out the demand- and supply-
side effects of this problem, to determine the true impact of VREs on ancillary service prices. 

Capacity market price impacts of VREs are also less well documented than short-term energy 
price impacts. Differences in market designs and mechanisms lead to large differences in 
capacity market clearing prices; however, limited research exists to understand how VREs 
impact capacity prices and payments, which will be discussed in detail in Section 2.2.4. 
Empirical analysis of long-term energy price impacts (the impact of increasing levels of VRE 
capacity on energy prices over time) in California points to increasing levels of VRE capacity 
decreasing daily prices, on average, but creating substantial decreases in midday prices while 
increasing shoulder hour prices. These findings imply that the economic viability of some 
resources may be undermined by VRE expansion. We recommend an empirical model to 
determine the impact of VREs on long-term energy prices and identify the need for further 
research into market-specific models to understand the impact of VREs on capacity market 
prices. 

Because a resource’s total revenues (and revenue sufficiency) consist of short-term revenues 
from wholesale energy and ancillary service markets, as well as long-term revenues from 
capacity payments, including from power purchase agreements (PPAs), we also examine the 
impact of PPAs for VREs on revenue sufficiency in Section 3.0. Because PPA data is limited in 
its availability, we conduct a case study on Sempra Energy, owner of San Diego Gas and 
Electric (SDG&E), to examine the impacts of PPAs, as well as other streams of revenue, to 
obtain a complete assessment of revenue sufficiency. We find that despite massive 
deployments of VREs in the California energy market, Sempra has been financially stable. 
However, some of Sempra’s renewables plants have been extremely profitable, while others 

 
1 For example, (Owolabi et al. 2021) shows the negative impact of renewables on wholesale prices from 
2014 to 2020. The wholesale price decline due to VREs has been documented in the literature from 2000 
to 2020. 



PNNL-33470 

Summary iv 
 

have operated at a loss, likely due to the prevailing prices at which PPAs were signed as well as 
corporate strategy. We point out a need for further research to understand how increasing levels 
of VREs affect PPAs and revenue sufficiency. 

With respect to VRE impacts on market power monitoring and mitigation, we find consensus in 
the literature that although VREs tend to decrease average market prices, conventional 
generators can raise market prices in periods when little power from VREs is available, as will 
be discussed in detail in Section 4.0. Further, VREs can also affect congestion, creating 
opportunities for exercising market power. The ability to exercise market power can also affect 
long-term investment incentives. We identify a need for further research on the impacts of VREs 
on market power, as opportunities to exercise market power vary temporally and spatially with 
VRE production. 

Various federal- and state-level policies encourage additional VRE investment. Empirical 
research on state-level renewable resource policies has found mixed results on their effect of 
encouraging deployment of VRE generation and emissions impacts, but generally concludes 
that these policies raise electricity prices, as will be discussed in detail in Section 5.0. Less 
empirical work has focused on state-by-state impacts of regional climate policies or regime 
changes, where we characterize regime changes as policies requiring significant changes to the 
underlying resource mix (e.g., Washington state will eliminate coal generation by December 31, 
2025, as a requirement of the Washington Clean Energy Transformation Act—SB 5116 
(2019)—we would consider such a change a regime change). We recommend an empirical 
methodology to examine state-level climate-related policies and regime changes to understand 
their impact on price formation and revenue sufficiency. As the ultimate goal of climate-related 
policies is to reduce greenhouse gas emissions, we also review the literature on actual 
emissions offsets from VREs, finding that emissions reductions depend on the marginal 
generator displaced by the VRE resource. We recommend an empirical model to understand 
how continued increases in VREs affect emissions across electricity markets. 

Market designs are changing to accommodate the operational and financial challenges of 
increasing levels of VREs. As market designs continue to evolve to integrate VREs, climate 
impacts will be determined by the effective resource mix incentivized to participate in the 
market. However, as we transition to a zero marginal cost future with increasing amounts of 
VREs, emissions impacts may become less of a concern, replaced by new challenges in price 
formation, revenue sufficiency, reliability, and market power mitigation. The extent to which 
flexible demand will ameliorate these concerns remains open question. We survey the literature 
to understand how DERs, including demand response and energy storage technologies, can 
address or are already addressing the challenges introduced by VREs in Section 6.0. We find 
that most of these resources remain limited in their deployment due to barriers to adoption, 
economics, and other reasons, but theoretical research and case studies point to the ability of 
these resources to reduce energy prices, price volatility, and peak load, as well as mitigate 
market power. 
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1.0 Introduction 
Increasing amounts of variable renewable energy resources (VREs) impact electricity markets 
and their operation. VREs are intermittent, zero marginal cost resources that tend to displace 
emissions-intensive generators in electricity dispatch, reducing emissions but impacting price 
formation, revenue sufficiency, reliability, and market power mitigation processes of electricity 
markets. However, VREs are not the only factor that affects operational and financial challenges 
in electricity markets. Changing fuel prices, changing resource mixes, and different electricity 
market designs and regulatory policies all factor into the challenges both electricity market 
participants and operators face in today’s electricity markets. 

With this in-depth examination of electricity markets and related literature review, we aim to 
provide information on key challenges of market design and operation for successful integration 
of large amounts of zero marginal cost resources. We have identified several areas, including 
the impact of VREs on price formation, revenue sufficiency, reliability, market power monitoring, 
and mitigation, as well as how state-level incentives and market design impact VREs and these 
challenges, and how increased participation from distributed energy resources (DERs), 
including demand response and energy storage technologies could affect these challenges. 

With each key challenge, we examine recent trends in electricity markets and survey the 
literature to answer the following question: What is the extent of the challenge and how has it 
evolved over time? We first conduct a thorough review of ongoing challenges in electricity 
markets to understand the problem and review the empirical literature to capture important 
findings on how VREs, specifically, impact the problem. From this review, we highlight metrics 
that are important to understanding VRE integration and how market designs and outcomes are 
evolving with increasing levels of VREs. We recommend several empirical models for future 
research to determine the impact of VREs on these identified challenges with the continuing 
increase in VRE penetration.  

Our approach to understanding each challenge (price formation, revenue sufficiency, reliability, 
market power monitoring and mitigation, state-level incentives, other economic trends and 
market design, and the impact of DERs, including demand response and storage technologies) 
follows a general structure of examining the wholesale markets and existing literature to 
understand relevant trends. Because there are other factors aside from VREs that contribute to 
these challenges, we conduct an empirical evaluation or case study to understand how VREs 
specifically contribute to each challenge we have identified. We develop empirical models and 
questions for future research to determine the effect of increasing levels of VREs on electricity 
markets. In summary, our identified challenges from increasing levels of VREs, approach to 
address each of these challenges, and roadmap to the rest of the paper is detailed in Table 1. 

Table 1. Approach to Address Each Challenge 

Identified Challenge Approach Developed to Address Challenge 

VRE Impacts on Price 
Formation (Section 2.0) 

Conduct an examination of relevant price formation trends from wholesale 
markets and related literature (Section 2.1) 
 
Because price formation also impacts reliability, conduct an examination 
of relevant reliability trends from wholesale markets and related literature 
(Section 2.1.1) 
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Identified Challenge Approach Developed to Address Challenge 
Review the empirical literature to understand VRE impacts on price 
formation (Section 2.2) 
• Short-term energy price impacts (Section 2.2.1) 

- Literature review (Section 2.2.1.1) 
- Recommend modeling approach and identify questions for 

future research (Section 2.2.1.2) 
• Volatility price impacts (Section 2.2.2) 

- Literature review (Section 2.2.2.1) 
- Identify common determinants of volatility in electricity 

markets (Section 2.2.2.2) 
- Review volatility modeling approaches (Section 2.2.2.3) 
- Recommend modeling approach and identify questions for 

future research (Section 2.2.2.4) 
• Ancillary service price impacts (Section 2.2.3) 

- Literature review (Section 2.2.3.1) 
- Recommend modeling approach and identify questions for 

future research (Section 2.2.3.2) 
• Capacity price impacts (Section 2.2.4) 

- Literature review (Section 2.2.4.1) 
- Recommend modeling approach and identify questions for 

future research (Section 2.2.4.2) 

VRE Impacts on Revenue 
Sufficiency (Section 3.0) 

Conduct an examination of relevant revenue sufficiency trends from 
wholesale markets and related literature (Section 3.1) 
 
Conduct a case study on Sempra Energy to under VRE impacts on 
revenue sufficiency, which includes an examination of VRE PPA 
revenues (Section 3.2) 
• Provide an overview of common electricity generator ownership 

models (Section 3.2.1) 
• Summarize methods for examining changes to revenue for utilities to 

form an annual picture of revenue stemming from generators (Section 
3.2.2) 

• Conduct case study on Sempra Energy (Section 3.2.3) 

Market Power Monitoring 
and Mitigation (Section 
4.0) 

Conduct an examination of market power trends from wholesale markets 
and related literature (Section 4.1) 
 
Review the empirical literature to understand VRE impacts on market 
power (Section 4.2) 

Impact of Incentives, 
Economic Trends, and 
Other Designs (Section 
5.0) 

Conduct an examination of state-level incentives, other economic trends, 
and market design from wholesale markets (Section 5.1) 
 
Review the empirical literature to understand VRE impacts on state-level 
incentives (Section 5.2.1), emissions (Section 5.2.2), and market design 
(Section 5.2.3) 

Impact of DERs, Demand 
Response and Storage 
Technologies (Section 
6.0) 

Conduct an examination of market trends and empirical literature for 
demand response (Section 6.1), energy storage (Section 6.2), and 
consider what these technologies mean for the future of the electric grid 
(Section 6.3)   
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2.0 Price Formation 
2.1 Background and Relevant Trends  

While increasing amounts of electricity production from wind and solar resources are beneficial 
to the environment, they create specific challenges for price formation in electricity markets. 
When the wind blows or the sun shines, these resources can produce power at zero marginal 
cost—wind or sun are freely available. In today’s electricity markets, electricity resources are 
dispatched in merit order. When resources are bid into an electricity market, their supply offers 
are stacked in ascending order by marginal cost (the biggest component of which is fuel cost). 
Figure 1 displays the merit-order dispatch curve for the New York Independent System Operator 
(NYISO) portfolio of resources from 2020. Zero marginal cost resources, such as wind power in 
NYISO, are dispatched first, with more expensive fossil-fuel-fired resources dispatched 
according to their increasing marginal cost to meet electricity demand. 

 
Figure 1. Market Supply Curve for NYISO. Source: FERC 2020. 

The effect of increasing amounts of zero marginal cost VREs is to shift the dispatch curve to the 
right, lowering wholesale electricity prices, as shown in Figure 2 from 2010 to 2016 for PJM 
Interconnection’s (PJM’s) average supply curve by offer price. This is known as the merit-order 
effect (Sensfuß et al. 2008). The merit-order effect for PJM is particularly noticeable from 
120,000 MW to 150,000 MW of load, the range in which peak load levels typically occur in the 
summer and winter.  
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Figure 2. Supply Curve for PJM (2010, 2011, 2015, 2016). Source: PJM 2017. 

Due in part to increasing amounts of VREs, declining natural gas prices from 2008 until the end 
of 2020 (after which we start to see an uptick), as shown in Figure 3, and other factors, 
wholesale electricity prices generally exhibit a downward trend over time.  

 
Figure 3. Monthly Henry Hub Natural Gas Spot Prices. Source: EIA 2022a. 

Figure 4 depicts average wholesale electricity prices across ISOs in the United States from 
2012 to 2020. 
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Figure 4. Average ISO Wholesale Electricity Prices. Source: Lawrence Berkeley National Lab 

2022. 

When demand levels are relatively low, or there is transmission congestion, high power 
production from VREs can even create negative prices, meaning power producers must pay 
load serving entities to consume more power. Renewable generators can earn renewable 
energy credits or tax credits that enable negative bids, while for other generator types, limited 
ramping flexibility and self-scheduled out-of-market commitments may also make negative bids 
optimal (Seel et al. 2021). As an example, as shown in Figure 5, which displays the hourly 
frequency of negative 5-minute prices by year in California Independent System Operator 
(CAISO), the high frequency of negative prices in 2017 was attributed to additional installed 
renewable capacity and additional generation from hydro resources, with negative prices 
occurring between February through mid-June during the midday hours when solar generation 
was greatest and demand was seasonally mild (CAISO 2017). The frequency of negative prices 
in 2019 was higher than in 2018 due to increased hydroelectric generation and lower demand in 
2019, with most negative prices occurring due to solar resources bidding negative between 
February and June when hydroelectric generation peaked (CAISO 2019). Both 2019 and 2020 
experienced a similar frequency of negative prices, with most negative pricing events occurring 
during midday when solar generation was high, and demand was low. However, 2020 had more 
negative pricing events between 9:00 a.m. and 11:00 a.m., likely due to decreases in demand 
from COVID-19 (CAISO 2020). It is clear from Figure 5 that the frequency of negative pricing 
occurs when solar power production is online in CAISO, but exactly how much VREs contribute 
to negative pricing needs to be disentangled from other factors, such as demand, hydroelectric 
production, transmission congestion, and the footprint of the market for addressing energy 
imbalances. 
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Figure 5. Hourly Frequency of Negative 5-Minute Prices by Year. Source: CAISO (2020). 

Figure 6 shows the frequency of negative real-time wholesale electricity prices at the seven 
organized wholesale markets in the United States in 2020. Negative real-time hourly wholesale 
prices occurred in about 4% of all hours and wholesale market nodes (out of >50,000 nodes) 
across the United States. Negative prices are not distributed evenly across space. For example, 
negative prices are relatively frequent across much of the Southwest Power Pool (SPP). 
Another cluster of negative prices can be found in the Permian basin in western Texas, a region 
with not only many oil and gas wells, but also wind turbines and, increasingly, solar plants, but 
with limited transmission capacity. These two negative price clusters illustrate two different 
drivers of negative prices, geographically isolated hotspots driven by transmission constraints 
(e.g., the Permian basin), and region-wide negative prices driven by the high penetration of wind 
power (e.g., SPP) (Seel et al. 2021).  

 
Figure 6. Frequency of Negative LMPs at Nodes in the Seven Organized Wholesale Markets in 

the United States. Source: Seel et al. 2021. 
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In addition to the locational features of negative locational marginal pricing (LMP) in the United 
States in 2020, Figure 7 shows the average prices and the frequency of negative prices at all 
LMPs from 2006 through 2020. The continued increase of negative price frequency and the 
decline of wholesale prices was not exceptional in 2020 compared to the historical trends, even 
though COVID demand shocks may have exacerbated both (Seel et al. 2021). 

 
Figure 7. Average Wholesale Prices and Average Frequency of Negative LMP at Nodes in the 

Seven Organized Wholesale Markets in the U.S. Source: Seel et al. 2021. 

In addition to the increasing frequency of negative price spikes, some markets are also 
experiencing an increasing frequency of positive price spikes, though the relation of these price 
spikes to increasing penetration of VREs is ambiguous. Figure 8 shows the frequency of price 
spikes above $250/MWh in major electricity market hubs. There is some indication of an 
increasing trend in price spikes in the major hubs of SPP, Midcontinent Independent System 
Operator (MISO), PJM, NYISO, and ISO-NE; however, while CAISO and Electric Reliability 
Council of Texas (ERCOT) have a larger share of price spikes than other markets, there is no 
obvious correlation between increases or decreases in price spikes with increasing penetration 
of VREs. 

 
Figure 8. Positive Price Spike (>$250/mwh) Shares. Source: Wiser et al. (2017). 

Increases in positive and negative prices point to VREs also potentially affecting price volatility, 
though the literature on the direction of the impact (an increase or decrease in volatility) is 
inconclusive. Woo et al. (2011), Astaneh et al. (2013), Clò et al. (2015), Seel et al. (2018), 
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Johnson and Oliver (2019), and Mwampashi et al. (2020), among others, found VREs increase 
volatility, whereas Rintamaki et al. (2017) and Pereira da Silva and Horta (2019), among others, 
found evidence of the opposite effect, as will be discussed in more detail in Section 2.2.1 and 
Section 2.2.2). Adjusting power supply to address forecasting errors from VREs can lead to 
periods of high or negative prices, which affects the energy sales for all other resources, as well 
as increases investor risk. The volatility of electricity prices, measured as its standard deviation, 
is shown in Figure 9. There is some evidence of an increasing trend in price volatilities in most 
of the hubs. However, the causal relationship between VRE penetration and the trends in price 
volatilities needs further investigation, as there are many other major factors, such as weather 
events, causing the price spikes.  

 
Figure 9. Annual Standard Deviation of Electricity Prices. Source: Wiser et al. 2017. 

Although federal- and state-level subsidies for producing clean energy can allow zero marginal 
cost resources to earn revenue from policy subsidies even when energy prices are negative, in 
some cases, VRE plants are forced to curtail their output due to two main reasons: system-wide 
oversupply and local transmission constraints. Curtailment due to system-wide oversupply 
occurs when, on a large scale, there is simply not enough demand for all the renewable 
electricity that is available. As shown in Figure 10, which shows the monthly wind and solar 
curtailments in CAISO, curtailments happen most frequently in spring months. Curtailments due 
to local transmission constraints occur when there is so much renewable electricity in a local 
area that there is insufficient transmission infrastructure to deliver that electricity to a place 
where it could be used. Handleeman (2015) shows that the wind energy curtailment fell from 
17% to 0.5% in 2014 mostly due to construction of additional transmission lines to move that 
wind energy out of local pockets to places where it could be used. Disentangling the effect of 
VREs from policy incentives and curtailments on electricity prices is another challenge to 
uncover the true contribution of VREs. 
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Figure 10. CAISO Wind and Solar Monthly Curtailment. Source: CAISO. 

To summarize existing trends affecting price formation processes, zero marginal cost resources 
not only displace more expensive resources, but through their contribution to low wholesale 
electricity prices, and even negative electricity prices, also reduce energy sales from other 
resources. Further, they can potentially increase price volatility, which increases price risk for all 
market participants and investors. While low prices are great for consumers—if they are realized 
in the retail prices—these issues can lead to revenue sufficiency problems for power 
producers.1  

2.1.1 Price Formation and Reliability – Background and Relevant Trends 

In wholesale electricity markets, energy prices are largely determined by the intersection of 
electricity supply—as determined by the dispatch curve—and demand. However, some unique 
characteristics of electricity introduce challenges—many consumers are not price-sensitive due 
to a lack of real-time metering and billing, making demand very inelastic, and there is a lack of 
large-scale economical storage. Because grid operators must ensure that supply meets demand 
every second of the day, situations can arise where electricity supply is not sufficient to meet 
inelastic consumer demand, resulting in a supply shortage. For these reasons, regulatory 
policies to ensure reliability (i.e., ensuring sufficient power plants are available to safely produce 
the power demanded by consumers) are currently necessary. Further, reliability is intricately 
linked to price formation and revenue sufficiency as power plants need to collect most of their 

 
1 As an example of how retail prices are affected by factors other than the cost of generation, Borenstein 
et al. (2021) point out that, despite increasing amounts of zero marginal cost renewable resources, the 
average price of residential electricity in California is 45 – 80% higher than the national average, they 
attribute this cost to the high fixed costs levied through volumetric charges. The fixed charges are driven 
by past purchases of renewable electricity at above-market costs, fixed costs of transmission and 
distribution (including wildfire-related charges), and energy efficiency and other public program 
expenditures. The fixed charges are double to triple the marginal cost of producing electricity. 
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revenues during these periods of supply shortages, which may be difficult if administratively set 
shortage or scarcity prices are too low (Zhou et al. 2021). 

To administratively set shortage pricing, markets typically use value-of-lost-load (VOLL) pricing, 
which sets the price equal to customers’ willingness-to-pay to avoid losing power (the duration 
that the shortage price will last is also set administratively) (Stoft 2002). In the United States, 
this is typically accomplished by requiring operating reserves for a fixed percentage of demand.1 
When operating reserves fall below the required level, shortage pricing is used to bring more 
resources online.  

However, operating reserve pricing can be divorced from energy market outcomes if there is not 
a reliability component including in the pricing mechanism (Cramton et al. 2013). For example, 
PJM previously had two types of operating reserves: Tier I for online units that had available 
capacity and could respond voluntarily to events within 10 minutes, and Tier 2 reserves for 
resources that cleared the Synchronized Reserve Market and were obligated to respond to 
declared events (PJM 2018). Tier 2 resources operated at a lower point than their economic 
dispatch and were compensated according to their opportunity costs, but subject to a penalty if 
they did not respond to an event. Tier 1 resources, on the other hand, were procured through 
the energy market, paid for their services if they responded, but not subject to a penalty if they 
did not. Further, pricing in PJM for operating reserves was based on penalty factors (up to 
$850/MWh in 2019) when reserves fell below required levels, which was far less than the VOLL. 
This difference in pricing and participation requirements lead to reliability issues as Tier 1 
resources only responded to reliability events 60.1% of the time, whereas Tier 2 resources 
responded 87.6% of the time (Hogan and Pope 2019).  

Linking operating reserve pricing with energy market outcomes becomes even more important 
with increasing penetration of VREs, as better scarcity pricing can incentivize supply and 
responsive load to respond where and when it is needed (Hogan and Pope 2019). This can be 
achieved through communicating the value of additional capacity during scarcity situations 
through the energy and reserve prices paid to all resources and all loads to incentivize price-
response. 

Some recent developments have aimed to improve shortage pricing mechanisms, such as the 
operating reserve demand curve (ORDC) in ERCOT and PJM, to better align price incentives to 
reflect the value of operating reserves under different operating conditions and geographic 
locations (Hogan and Pope 2019). The value, or shortage price, of the ORDC is the loss of load 
probability (LOLP)2 at a particular reserve level, multiplied by the VOLL. For example, in PJM’s 
ORDC design, maximum reserve clearing prices were supposed to increase up to 
$14,000/MWh when the ORDC was fully implemented in May 2022, to better align the value of 
reserves with operating requirements (PJM 2021a).3 However, elements of the ORDC design in 
PJM are still being determined after a series of recent decisions from the Federal Energy 

 
1 For example, for WECC the NERC standard is the greater of either 1) the loss of the most severe single 
contingency, or 2) the sum of 3% of hourly integrated load plus 3% of hourly integrated generation 
(WECC 2021). 
2 The LOLP is based on the mean and standard deviation of the error from forecasted system reserves 
compared to reserves available in real time. LOLP is the probability of a loss of load event compared to a 
risk-based cutoff value for each reserve level. See Hogan and Pope (2019) for further details. 
3 PJM clarifies that $ 12,000/MWh is the sum of energy price cap of $2,000/MWh plus the stacking of five 
$2,000/MWh Reserve Penalty Factors, noting that the $12,000/MWh figure could rise to $14,000/MWh if 
PJM models a subzone for the 30-minute requirement (Monitoring Analytics 2021). 
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Regulatory Commission (FERC), reversing approval of some elements PJM’s ORDC redesign, 
and penalty factors currently remain at $850/MWh.1  

Other markets, such as NYISO, ISO-NE, and MISO, have also implemented alternative pricing 
for fast start units or extended locational marginal price formation, which allows for no-load or 
start-up costs to be included in resources’ supply bid, helping to cover the true cost of operating 
that resource (Sun et al. 2021). While these pricing mechanisms aim to better align resource 
value with operating requirements, they do not eliminate the uncertainty and risk from scarcity 
events. Infrequent scarcity events that result in high price spikes increase uncertainty and price 
risk, discouraging investment, whereas regulatory policies that encourage low and long duration 
price spikes reduce uncertainty and price risk (Stoft 2002). Uncertainty and risk affect both 
investors and customers, as experienced in Texas’ extreme winter weather event in February 
2021: 

 
The Public Utilities Commission of Texas (PUCT) implemented an ORDC Curve in 2014 to 
improve scarcity pricing. The value of the ORDC “price adder” curve at any given level of 
operating reserves is determined by the LOLP at that reserve level, multiplied by the VOLL. 
The VOLL, or high-system-wide-offer cap (HCAP), was capped at $9,000/MWh. In February 
2021, an extreme winter weather event led to severe energy infrastructure failure and 
blackouts, leaving 4.5 million homes without power for several days, causing loss of life. 
Although the power system failure did not have one single cause, risk to both market 
participants and consumers of the current ORDC design was judged to be too great. 
Following the event, the PUCT lowered the HCAP to $5,000/MWh and redesigned the 
ORDC to provide a lower but longer duration price spike (ERCOT 2014; PUCT 2021; King et 
al. 2021). 

While the PUCT changed the parameters of the ORDC to reduce risk to market participants, to 
ensure adequate capacity is available, most markets use some form of capacity procurement 
mechanism. Two dominant forms are capacity payments and capacity markets.2 Capacity 
payments are used to pay power producers regular amounts to cover their capital costs, 
addressing the missing money problem (from power producers missing out on scarcity revenues 
due to price caps or low average energy prices) and properly signaling investment. Capacity 
markets, on the other hand, set a resource adequacy target and then determine the amount of 
capacity needed to achieve the target (Kirschen and Strbac 2018). Compared to the ORDC 
approach, capacity mechanisms provide a lower payment on a $/MWh basis (PJM’s 2022/2023 
Base Residual Auction (BRA) cleared at $50/MW-day, equivalent to $2.08 $/MWh) but the 
payment is provided with regularity. However, due to the intermittent nature of VREs, higher 
reliability targets may be needed as wind and solar become a larger part of the generation 
portfolio, leading to excess capacity (Frew et al. 2016). For example, PJM found that serving 
50% renewable penetration required “…an additional 78% nameplate capacity on top of the 
forecasted peak load … to satisfy the 1-in-10-year loss of load expectation (LOLE)” (PJM 
2021b). Excess capacity in systems with high amounts of renewable energy means that these 
systems could be expensive. 

 
1 See PJM Interconnection, L.L.C., 171 FERC ¶ 61,153 (May 2020 Order); PJM Interconnection, L.L.C., 
177 FERC ¶ 61,209 (2021) (Remand Order); PJM Interconnection, L.L.C. 180 FERC ¶ 61,051 (2022) 
(July 2022 Order) 
2 PJM, ISO-NE, MISO, and NYISO have centralized capacity markets. CAISO and SPP have resource 
adequacy requirements for load-serving entities. ERCOT has an energy-only market with high price caps 
and the ORDC price adder to reflect the value of operating reserves (Byers et al. 2018). 
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As a case in point, CAISO’s duck curve, shown in Figure 11, demonstrates the reliability 
challenges from increasing amounts of VREs. The duck curve is CAISO’s net demand (demand 
or forecasted demand less actual or forecasted renewables production). What it shows is the 
shape of demand that CAISO must meet with dispatchable resources—typically, natural gas 
and hydropower plants. In the daylight hours—because California has a lot of solar capacity—
the belly of the duck forms, and this is when CAISO is at risk of overgeneration, or electricity 
supply exceeding demand. When solar power production tapers off for the day, the neck of the 
duck forms, creating a ramp that needs to be met with flexible resources that can produce a lot 
of power in a short amount of time.  

 
Figure 11. California's Duck Curve. Source: CAISO. 

These operating conditions—including short, steep ramps, potential for overgeneration, as well 
as decreased frequency response—drive changes in electricity grid operations (CAISO 2016). 
These operational challenges require flexible resources to respond to short and steep ramps as 
well as react quickly to changing grid conditions. Frequent stops and starts make ensuring 
reliability expensive and emissions intensive for flexible fossil-fuel-fired generators (Lew et al. 
2013; Bloom et al. 2016). Additionally, periods of oversupply (overgeneration) can create very 
low, or even negative, wholesale prices, compounding revenue sufficiency challenges. To 
address these and other challenges, CAISO has created the Western Energy Imbalance Market 
(EIM) to make surplus renewable energy available to a larger geographic area (as well as have 
access to a larger pool of flexible resources), improving renewables integration (CAISO 2018). 
In addition, California has promoted increasing amounts of energy storage with its energy 
storage mandate.  

The impact of VREs on reliability are addressed in a few ways. The first is through 
understanding the impacts of VREs on price formation processes (including energy, flexibility, 
and capacity prices) that influence reliability, discussed in the next section. The second is 
through understanding the impact on revenue sufficiency, as discussed in Section 3.0. The third 
is through changes in market design, such as the EIM, discussed in Section 5.0.  

2.2 Empirical Evaluation of VRE Impacts on Price Formation 

Market trends indicate that increasing amounts of VREs could impact price formation 
processes, but price formation challenges in electricity markets today are not solely due to 
VREs. Declining natural gas prices; changing resource mixes; different electricity market 
designs and mechanisms to manage energy, ancillary service, and capacity markets; and 
regulatory policies all factor into the challenges faced by electricity market operators and 
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participants today. Parsing out these varied drivers of electricity market challenges is necessary 
to understand the true impact of VREs. Understanding this impact on average, over time, and 
by geographic location will help to determine how future market and grid processes need to 
change to better accommodate resource mixes with high levels of VREs. 

In the related literature, there are typically two approaches to evaluate the impact of increasing 
amounts of VREs on wholesale market prices and other electricity market outcomes: ex ante 
simulations and ex-post empirical analyses (e.g., ex ante simulations could be used to model 
potential future impacts of VREs on energy prices, based on a set of assumptions, whereas ex-
post empirical analyses examine actual outcomes of VREs on energy prices, using market 
data). Simulations can be used to model electricity markets, but they tend to be non-transparent 
and resource intensive (Callaway and Fowlie 2009) as well as sensitive to underlying 
assumptions (Cullen 2013). Ex-post empirical analyses (regression analyses) can simplify 
estimation strategies as they are more transparent and less resource intensive as they use 
publicly available data and standard statistical packages, but they are conditional on the quality 
of the underlying data (Callaway and Fowlie 2009). Further, ex-post empirical analyses are 
typically limited to estimating short-term merit-order effects (Cludius et al. 2014), although the 
more recent literature has provided some ways forward in estimating long-term effects from 
historical data by focusing on estimating the impacts of increasing levels of VRE capacity over 
time on long-term energy prices (Bushnell and Novan 2018). As will be discussed in this 
literature review, a substantial amount of research has been devoted to determining the actual 
impact of VREs on short-term energy prices. However, VRE price impacts on ancillary service, 
capacity, and PPA markets are less well known. 

2.2.1 Short-Term Energy Price Impacts 

Through ordinary least squares (OLS), time series, or panel data regressions,1 most of the 
related literature finds that increasing amounts of VREs cause short-term energy prices to 
decline.2 As current electricity prices are likely correlated with past values, many studies use 
autoregressive model structures (which include a lagged price variable to account for time 
dependency between prices), first-differences, or logged price data3 and adjust standard errors 
for autocorrelation using a number of techniques, including Newey-West standard errors, 
Driscoll-Kraay standard errors, cluster robust standard errors, or other feasible generalized least 
squares estimators, such as the Prais-Winston estimator, depending on the data and 
autocorrelation structure.4 By controlling for exogenous energy price determinants from supply 

 
1 They key difference with time series regressions is that they focus on a single unit at multiple time 
intervals, whereas panel data regressions focus on multiple units at multiple time intervals, where a unit 
may be ISO-level or intra-ISO-level locational marginal prices.  
2 For a survey of other approaches in the literature, see Cludius et al. 2014.  
3 These data transformations are done to make the time series stationary as a non-stationary time series 
could lead to spurious results. Stationarity in the data can be tested with a unit root test such as the 
Augmented Dickey-Fuller test. Lags of variables are also included to address the time-dependent nature 
of price variables. 
4 Autocorrelation occurs when error terms are correlated over time, violating a basic assumption of the 
ordinary least squares model, creating bias. Autocorrelation is dealt with by adjusting standard errors to 
be robust to autocorrelation and heteroskedasticity (for example, with Newey-West standard errors for 
time series data or Driscoll-Kraay or cluster robust standard errors for panel data), or by transforming the 
data and using generalized least squares (GLS) or using feasible generalized least squares (FGLS) to 
model the autocorrelation. With GLS or FGLS, the econometrician must know enough about the 
autocorrelation process in the data to model it specifically, which allows for a more efficient estimator and 
smaller standard errors. 
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and demand factors as well as for observed and unobserved energy price determinants through 
a set of fixed effects,1 common findings are that price effects vary temporally and 
geographically, by market size and market conditions, as well as by the underlying resource 
portfolio, as the marginal generator displaced by the VRE has a significant impact on price 
effects. Owolabi et al. (2021) point out that because of the inherent distributional changes of 
electricity prices due to VREs, more robust modeling methods may be needed.2 

2.2.1.1 Literature Review on Short-Term Energy Price Impacts 

Early literature on price impacts in U.S. markets tend to focus on a single market using time 
series regressions to predict3 the impact of increasing levels of wind or solar generation on 
energy prices (and volatility, in limited studies) based on observed historical data.4 Woo et al. 
(2011) found that increasing amounts of wind generation (from 500 MW to over 7,500 MW from 
2007 to 2010) led to declines in 15-minute balancing market prices in the ERCOT market. Price 
declines ranged from $3.2/MWh to $15.3/MWh for 1 gigawatt hour (GWh) of wind production,5 
depending on the market zone (and its transmission constraints), with the greatest price 
declines occurring in the West, where the wind energy resources were located but there was 
limited transmission for exporting power to other zones.6 The findings echoed those of 
Nicholson et al. (2010), where a 1 GWh increase of wind generation in Texas caused 15-minute 
balancing market prices to decrease from $0.67–$16.4/MWh depending on the ERCOT zone, 
with the largest decrease again occurring in the Western zone. But estimates of energy price 
declines due to VREs also depend on the underlying resource mix. In Texas, the marginal 
generator displaced by a wind resource is a natural gas generator, which can result in 
significant price declines. Woo et al. (2013) examined the hydropower-rich Pacific Northwest for 
price declines from wind resources. They found that there were small but statistically significant 
wholesale price declines from $0.72–0.96 /MWh for 1 GWh of wind generation due to readily 
available hydropower capacity and limited transmission constraints in the region. Although the 
costs of integrating wind into the hydro-rich system were lower, so were benefits from investing 
in wind power, as prices were not reduced as much as in markets dominated by thermal 
generation.  

Woo et al. (2016) explored the merit-order effects of both solar and wind energy as well as how 
much prices diverge from day-ahead to real-time markets due to forecast errors in renewable 
energy production in California from 2012 to 2015. They found that a 1 GWh increase in solar 

 
1 Fixed effects are commonly used in econometric analyses of data with a time or cohort dimension to 
control for unobserved but fixed omitted variables (Angrist and Pischke 2009) 
2 Owolabi et al. (2021) highlight that this is especially true for simulation approaches, which tend to 
assume a linear relationship between electricity prices and VREs with a constant variance. 
3 Although the models used in the early literature are primarily autoregressive models that use historical 
observations to predict future LMP values, these models also incorporate a variety of controls to parse 
out the effect of increasing wind generation. As such, results are included in this review. 
4 The literature uses the wind or solar generation data to estimate the impact of renewables on electricity 
prices. The price impacts are estimated for hourly, 15 minute, or daily average price data. The specific 
price data and time periods are detailed in Table 1, Table 2, and Table 3. 
5 Price effects have been converted to show the effect per 1 GWh of wind or solar production for 
comparability purposes. 
6 Woo et al. (2011) estimated price effects at the zonal level, noting (in Woo et al. 2013) that ERCOT’s 
Houston, North, and South zones have little wind generation and interzonal transmission congestion, 
whereas ERCOT’s West zone has most of the wind generation capacity and limited transmission for 
exporting wind power to other zones. Transmission constraints (or curtailment) were not explicitly 
controlled for in the analysis. 
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energy reduced day-ahead market prices by $1.0–$5.3/MWh, depending on the location of solar 
resource. They found a similarly sized increase in wind generation decreased day-ahead market 
prices by $1.4–$3.4/MWh. Real-time market price effects were slightly lower for solar ($1.0–
$3.7/MWh decrease for a 1 GWh increase), and slightly higher for wind ($1.5–$11.4/MWh 
decrease for a 1 GWh increase) compared to day-ahead market prices, a difference attributed 
to forecast errors. However, energy price impacts from natural gas prices were much more 
substantial than the merit-order effect from wind and solar—a $1/MMBtu increase in natural gas 
prices raised day-ahead market prices by $7.5/MWh and real-time market prices by up to 
$8.7/MWh. Using a simulation approach, Wiser et al. (2017) found similar results to Woo et al. 
(2016); natural gas price declines explained 85–90% of wholesale market price declines. These 
results point to the importance of parsing out price effects due to renewable energy from other 
factors, especially natural gas prices. More recent literature in the United States has focused on 
determining the causal effect of wind or solar resources on energy prices by using linear or 
nonlinear regression methods and adjusting standard errors to be robust to autocorrelation and 
heteroskedasticity. Further, panel data methods are also used by combining data from multiple 
ISOs/RTOs, as in Owolabi et al. (2021), or by using more granular (nodal) data, as in Tsai and 
Eryilmaz (2018). In this literature, VREs are found to consistently decrease short-term energy 
prices, although magnitudes tend to be smaller than those found in the early literature. 
Additionally, Owolabi et al. (2021) found that the price-reducing effect of increased VRE 
penetration is nonlinear, with the greatest impact observed in the reductions of extremely high 
system electricity prices. However, correlation between negative electricity prices and VRE 
penetration was inconclusive across the seven ISOs in their study (ISO-NE, NYISO, PJM, 
MISO, SPP, ERCOT and CAISO). 

Outside of the United States, research from Europe and Australia has found similar 
conclusions—that increasing levels of VREs cause wholesale price declines, but the decline 
depends on the type of resource (wind or solar), the regional resource mix (and what type of 
power producer is on the margin), and the window of time for which the energy price effect is 
analyzed (on average, by season, or by hour of day). Different from predominant approaches in 
the U.S. literature, several studies have also focused on merit-order effects over time, finding 
that VREs cause short-term energy prices to decrease, but with a diminishing magnitude over 
time. 

Gelabert et al. (2011) analyzed wholesale price effects from renewables and energy-efficient 
cogeneration in Spain from 2005 to 2010 and found a 2€ reduction in wholesale prices for a 
1 GWh increase in renewables and cogeneration technologies. With a similar approach, Cló et 
al. (2015) found that an increase of 1 GWh of wind and solar in Italy reduced electricity prices by 
2.3€/MWh and 4.2€/MWh, respectively, from 2005–2013. O’Mahoney and Denney (2011) 
examined the impact of increased levels of wind generation on wholesale prices in Ireland in 
2009, finding the wholesale price significantly decreased by nearly 10€/MWh due to increased 
wind generation, likely due to the share of wind generation relative to the market size in Ireland. 
Further, O’Mahoney and Denney (2011) considered the effects of wind over time on prices and 
found that wholesale price declines increased significantly in the evening hours, when wind was 
a larger share of the generation mix. 

Würzburg et al. (2013) quantified renewable energy’s impact on wholesale prices in Germany 
and Austria from 2010 to 2012. Using a range of assessment methods, they found an increase 
of 1 GWh of renewable energy caused price declines of roughly 1€/MWh; further, wind and 
solar had roughly equivalent price impacts. In a more recent analysis, Cludius et al. (2014) 
found even larger price effects for the German market, with wind and solar photovoltaic (PV) 
reducing market prices in Germany by 6€/MWh in 2010, rising to 10€/MWh in 2012. Gürtler and 
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Paulsen (2018) found negative, but smaller effects of wind and solar on German electricity 
prices, with 1 GWh of wind or solar decreasing prices by 0.6€/MWh from 2010 to 2016; they 
concluded that declining fuel prices reduced the price-dampening effect of wind and solar since 
2013. Maciejowska (2020) also found that increasing levels of wind and solar had roughly 
equivalent impacts on the price level in the German market from 2015 to 2018; however, when 
considering the distribution of prices, wind generation tended to reduce prices more than solar 
during low price periods, whereas solar tended to reduce prices more during high price periods. 
Jónnson et al. (2010) found the opposite effect when examining the impact of VREs on the 
distribution of prices in Denmark from 2006–2007; wind power’s greatest reduction of energy 
prices occurred during high demand periods. 

In more recent European literature, Hirth (2018) used an ex-post factor decomposition analysis 
to explain the determinants of electricity price declines in Germany and Sweden, which dropped 
by nearly two-thirds from 2008 through 2015. Although this paper used a simulation approach, it 
was performed on ex-post data and had similar outcomes to the real world. Hirth (2018) found 
that—although the two markets studies were markedly different—the expansion of renewable 
energy was the single largest factor depressing prices in both markets. In Germany, renewable 
energy was responsible for 24% of the price decline and in Sweden, 35%. 

Researchers have also investigated the merit-order effect over time, including Gelabert et al. 
(2011), Cludius et al. (2014), Cló et al. (2015), and Gürtler and Paulsen (2018). Table 2 
provides a summary of the marginal price effects over time from these papers. These studies 
focus on the European countries and have found somewhat consistent results. The estimated 
magnitude of the marginal effect of VREs on short-term energy price, in general, decreases 
over time.  

Table 2. Marginal Price Impacts from VREs Over Time 

Paper Method Country VRE-Type Period 

Price Impact 
(Price decrease 
per additional 
1GWh of VRE) 

Price 
Data 

Gelabert 
et al. 

(2011) 

Multivariate regression 
model (OLS 
regression with first-
differenced data and 
Newey-West standard 
errors) 

Spain Renewables 

2005-2010 2 €/MWh 

Daily 
average 
of hourly 

prices 

2005 3.8 €/MWh 
2006 3.4 €/MWh 
2007 1.7 €/MWh 
2008 1.5 €/MWh 
2009 1.1 €/MWh 
2010 1.7 €/MWh 

Cludius 
et al. 

(2014) 

OLS regression on 
time series data with 
Newey-West standard 
errors 

Germany Wind 

2008 2.27 €/MWh 

Day-
ahead 
hourly 
prices 

2009 1.72 €/MWh 
2010 (2nd 

half) 1.15 €/MWh 

2011 0.97 €/MWh 
2012 0.97 €/MWh 

2010-2012 1.07 €/MWh 
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Paper Method Country VRE-Type Period 

Price Impact 
(Price decrease 
per additional 
1GWh of VRE) 

Price 
Data 

Solar 

2010 (2nd 
half) 0.84 €/MWh 

2011 0.90 €/MWh 
2012 1.37 €/MWh 

2010-2012 1.14 €/MWh 

Cló et al. 
(2015) 

Generalized least 
squares regression 
with the Prais-Winston 
estimator to model 
serially correlated, 
first-order 
autoregressive errors 

Italy 

Solar 

2005-2013 2.3 €/MWh 

Daily 
average 
of hourly 

prices 
from day-

ahead 
market 

 

2011 4.64 €/MWh 
2012 3.47 €/MWh 
2013 3.45 €/MWh 

Wind 

2005-2013 4.2 €/MWh 
2008 9.59 €/MWh 
2009 7.25 €/MWh 
2010 5.07 €/MWh 
2011 5.77 €/MWh 
2012 4.38 €/MWh 

2013 2.86 €/MWh 
  

Gürtler 
and 

Paulsen 
(2018) 

Fixed effect regression 
with hourly fixed 
effects and Driscoll-
Kraay standard errors 

Germany 
and 

Austria 

Wind 

2010 1.2 €/MWh 

Day-
ahead 
and 

intraday 
hourly 
prices 

2011 1.2 €/MWh 
2012 1 €/MWh 
2013 1.2 €/MWh 
2014 1 €/MWh 
2015 0.8 €/MWh 
2016 0.6 €/MWh 

Solar 

2010 0.3 €/MWh 
2011 0.8 €/MWh 
2012 0.9 €/MWh 
2013 1.1 €/MWh 
2014 1.0 €/MWh 
2015 0.9 €/MWh 
2016 0.6 €/MWh 
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Table 3 provides a comprehensive summary of the different empirical approaches and some commonly cited simulations that have 
quantified the effects of renewable production on short-term electricity prices in different regions in the United States, and Table 4 
provides a similar summary for other countries. The studies that have investigated the impact of renewable generation on electricity 
price volatilities are also summarized in Section 2.2.2.1.  

Table 3. Literature on Short-Term Price Effects of Renewable Generation in the USA 

Paper Methodology Region VRE-Type Period 
Reported Price 

Change1 

Impact on 
Price 

Volatility2 
Price Data 

Utilized 

Nicholson et al. 
(2010) 

ARMAX (see Section A.1.2 for a 
detailed description of this 
model) 

ERCOT Wind 2007–2009 $0.67-$16.4 /MWh  
Hourly zonal 

balancing-energy 
market prices 

Woo et al. (2011) 

Autoregressive model: linear 
AR(1) partial adjustment model 
estimated by maximum likelihood 
estimation. The adjustment is 
from the lagged price variable3 

ERCOT Wind 2007-2010 $3.2-$15.3 /MWh 

Volatility is 
defined as 
variances 
of spot 
prices. 
Wind 
generation 
enlarges 
the price 
volatility 

15-min zonal 
balancing-energy 

market prices 

 
1 This column provides the reported price decrease due to additional 1 GWh of corresponding renewable resources. 
2 This column provides a summary of the measurement and modeling of price volatilities and the impact of renewables on price volatilities in the 
paper, if it has been investigated in the paper. 
3 Note that autoregressive models as described above are typically used for forecasting rather than causal analysis. With this paper, the intent was 
to enable a direct prediction of the effect of an increase in wind generation on spot prices and variance. 
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Paper Methodology Region VRE-Type Period 
Reported Price 

Change1 

Impact on 
Price 

Volatility2 
Price Data 

Utilized 

Woo et al. (2013) 

Autoregressive model: linear 
autoregressive (AR(1)) partial 
adjustment model estimated by 
maximum likelihood estimation. 
The adjustment is from the 
lagged price variable 

Pacific 
Northwest Wind 2007-2012 $0.72-0.96 /MWh  

Day-ahead daily 
prices averaged 
from hourly data 

Woo et al. (2016) 

Seemingly unrelated regression 
to estimate a system of four price 
regressions with errors assumed 
to follow a stationary AR (4) 
process 

CAISO 

Solar 

2012-2015 

$ 1.0-$5.3 /MWh  Day-ahead hourly 
prices 

$1.0-$3.7 /MWh  Real-time hourly 
prices 

Wind 
$1.4-$3.4 /MWh  Day-ahead hourly 

prices 
$1.5 - $11.4 /MWh  Real-time hourly 

prices 

Wiser et al. (2016) Simulation (AVERT Tool) Various 
regions 

Renewable 
generation used to 

meet 2013 renewable 
portfolio standard 
(RPS) compliance 

obligations 

2013 $0 to $ 4.6/MWh  Simulated hourly 
wholesale prices 

Zarnikau et al. 
(2016) 

Seemingly unrelated regression 
to estimate a system of eight 
price regressions with errors 
assumed to follow a stationary 
AR (n) process 

ERCOT Wind 2011-May 
2015 

$0.043 - $ 6.08 
/MWh (forecasted 
wind generation on 
Day-Ahead Market 

[DAM]) 

 
Hourly DAM and 
real-time market 

(RTM) prices. 
(Zonal prices are 

load-weighted 
average prices of 
intrazonal nodes) 

$1.42 - $7.2 /MWh 
(actual wind 

generation on RTM) 
 

Wiser et al. (2017) Simulation 

ERCOT 
Wind 2008-2016 $0.7 /MWh  

Simulated hourly 
wholesale prices 

Solar 2008-2016 $0/MWh  

CAISO 
Wind 2008-2016 $0.4/ MWh  

Solar 2008-2016 $1.9/ MWh  

Jenkins (2017) Time series linear regression 
with time fixed effects PJM Wind 2008-2016 $1 -$2.5/MWh  

Daily average 
LMP (average 

over hourly data, 
prices are logged) 
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Paper Methodology Region VRE-Type Period 
Reported Price 

Change1 

Impact on 
Price 

Volatility2 
Price Data 

Utilized 

Haratyk (2017) Simulation 
Midwest Wind 2008-2015 $4.6 / MWh  

Simulated hourly 
prices Mid-

Atlantic Wind 2008-2015 $ 0/MWh  

Tsai and Eryilmaz 
(2018) 

Fixed effect regression with 
month by year and date fixed 
effects and cluster robust 
standard errors 

ERCOT Wind 2014-2016 $1.45-$4.45 /MWh  15-minute nodal 
real-time prices 

Craig et al. (2018) 

OLS regression on time series 
data with Newey-West standard 
errors and block bootstrapped 
standard errors 

CAISO DG Solar 2013-2015 $2.7–3.1/MWh  
Day-ahead 

average hourly 
prices 

Zarnikau et al. 
(2019) 

Seemingly unrelated regression 
to estimate a system of six 
energy price and ancillary service 
price regressions with errors 
assumed to follow a stationary 
AR(3) process 

ERCOT Wind 2011-2017 

$1.64 /MWh (1 GWh 
increase of Wind 
Forecast on DA 
hourly prices) 

 Day-ahead hourly 
prices 

$2.3/MWh (1 GWh 
increase in wind 

generation forecast 
error on RTM hourly 

prices) 

 Real-time hourly 
prices 
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Paper Methodology Region VRE-Type Period 
Reported Price 

Change1 

Impact on 
Price 

Volatility2 
Price Data 

Utilized 

Quint and Dahlke 
(2019) 

Four different econometric 
models: (1) Cross-sectional 
multivariate regression (assumes 
intertemporal independence of 
prices) (2) Prais-Winsten model 
to allow for autocorrelated and 
autoregressive prices (3) 
Seasonal Autoregressive Moving 
Average with Exogenous 
Regressors (SARMAX) Model 
(see Section A.1), and (4) Cross-
sectional multivariate model with 
quadratic terms to allow for non-
linearity in exogenous supply and 
demand control variables 

MISO Wind 2008-2016 $1.4 - $ 3.4 /MWh  Real-time hourly 
prices 

Mills et al. (2021) Simulation Various 
Regions Wind and Solar 2008-2017 

< $ 1.3 /MWh (other 
regions)  Real-time hourly 

prices 
$2.2/ MWh (CAISO)  

Owolabi et al. 
(2021) 

Quantile regression and skew t-
distribution regression 

Various 
Regions Wind and Solar 2014-2020 

$0.37 - $ 6.96 /MWh 
detrended system 

prices 
 Real-time hourly 

prices 
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Table 4. Literature on Short-Term Price Effects of Renewable Generation in Other Countries 

Paper Method Country VRE-type Period Reported Price Change1 Impact on Price 
Volatility Price Data 

O'Mahoney and 
Denney (2011) 

Time series OLS 
regression with robust 
standard errors 

Ireland Wind 2009 10 €/MWh  Real-time 
hourly prices 

Würzburg et al. 
(2013) 

Multivariate regression 
model (OLS regression 
with first-differenced data 
and Newey-West standard 
errors) 

Germany 
and 

Austria 
Wind and 

Solar 2010-2012 1 €/MWh  
Day-ahead 
daily price 

averaged from 
hourly prices 

Forrest and 
MacGill (2013) 

Autoregressive model: 
linear AR(1) partial 
adjustment model 
estimated by both OLS 
with Newey-West 
standard errors and a 
Tobit model due to 
truncated price data. The 
adjustment is from the 
lagged price variable 

Australia Wind 2009-2011 

8.05 AUD /MWh for SA 
(South Australia)  

30-minute 
prices 

averaged from 
five-minute 
prices. Data 

was truncated 
between an 

upper bound of 
$415/MWh and 
a lower bound 

of $1/MWh. 

2.73 AUD/MWh for VIC 
(Victorian)  

Keles et al. 
(2013) 

Combined model of 
simulation of energy 
prices and wind feed in 
and an autoregressive 
linear regression to 
determine price-reducing 
effect of wind 

Germany Wind 2006-2009 
Average prices reduced by 
5.90€/MWh for an average 
wind power factor of about 

4670 MW. 

 
Day-ahead 

hourly prices 
are simulated 

 
1 This column provides the reported price decrease due to additional 1 GWh of corresponding renewable resources. 
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Paper Method Country VRE-type Period Reported Price Change1 Impact on Price 
Volatility Price Data 

Ketterer (2014) 

Generalized 
autoregressive conditional 
heteroskedasticity 
(GARCH) model with 
number of autoregressive 
lags which minimize the 
Bayesian information 
criterion (see Section 
8.0A.1.5A.1.5) and a 3-
year rolling window 

Germany Wind Jan 2006-
Jan 2012 

When the share of wind 
rises by one percentage 
point, the electricity price 

decreases by 1.46% 

Price volatility is 
modeled using the 

variance equation in 
the GARCH system. 
Variable wind power 

increases price 
volatility 

Daily data 
averaged from 

hourly day-
ahead data. 

Extreme 
outliers are 

replaced with 
the value of 

three times the 
standard 

deviation for 
the respective 

weekday 

Paraschiv et al. 
(2014) 

State space model (time-
varying regression model 
with lagged electricity 
prices included to reduce 
autocorrelation in the 
data). The model is 
estimated with the Kalman 
Filter and maximum 
likelihood. 

Germany Wind and 
Solar 

Jan 2010-
Feb 2013 

Day-ahead prices partially 
decreased due to 

renewable energy, but price 
effects varied over time, 

particularly for wind in the 
afternoon, evening, and 

night hours, and during the 
peak noon hours for solar. 

 Hourly day-
ahead prices 
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Paper Method Country VRE-type Period Reported Price Change1 Impact on Price 
Volatility Price Data 

Ballester and 
Furio (2015) 

OLS model with Newey-
West standard errors Spain 

Renewables 
(mainly 
wind) 

2010-2013 

They find a statistically 
negative relationship 

between renewable energy 
share and day-ahead 

market prices 

The price volatility is 
modeled by a 

stochastic process with 
mean reversion that 
includes a discrete 

jump process (a 
diffusion model). 

Renewables 
significantly increase 

price volatility. 
However, the result is 

nuanced, for years 
2002-2009 price 

volatility is higher, and 
jumps are more 

frequent during peak 
hours, from 2010 – 

2013 when renewable 
generation is more 
relevant, just the 
opposite occurs. 

Daily data 
averaged from 

hourly day-
ahead data 

Ederer (2015) Simulation Germany Offshore 
wind 2006-2014 

Short run -0.56 €/MWh for 
onshore, -0.75 €/MWh for 

offshore 
 

Hourly spot 
market prices 

simulated 
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Paper Method Country VRE-type Period Reported Price Change1 Impact on Price 
Volatility Price Data 

Gulli and Balbo 
(2015) 

Hybrid analysis of 
simulation and ex-post 
empirical analysis (ex-post 
empirical analysis used to 
determine real impact on 
prices, simulation to 
determine merit-order and 
market power effects) 

Italy Solar 2010-2013 

The impact of renewable 
energy sources on prices 
depends on market power 
as price decreases due to 

PV generation may be 
offset by firms pushing 

prices up when solar power 
is not available. Under 

market power, an increase 
in PV production can still 

provide benefits in terms of 
a wholesale price decrease 
by eroding residual market 

power for strategic 
conventional power firms. 

However, the average spot 
price during these periods 
(when firms exert market 

power) does not 
necessarily decrease. 

 

Average hourly 
spot market 

prices 
weighted by 

zonal 
demands. 

Swinand and 
O'Mahoney 

(2015) 

Prais-Winsten regressions 
to correct for first-order 
serial correlation of the 
errors (AR1) 

Ireland Wind 
2008- 

autumn 
2012 

1% increase in wind 
reduces system marginal 

price by about 0.06%, while 
each 1% wind forecast 
error increases system 

marginal price about 0.02% 

 
30-min real-
time system 

marginal price 
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Paper Method Country VRE-type Period Reported Price Change1 Impact on Price 
Volatility Price Data 

Lunackova et al. 
(2017) 

Prais-Winsten regression 
to correct for serial 
correlation in the errors 
and instrumental variables 
to correct for endogeneity 
due to supply of 
conventional resources 
(instrumenting for 
conventional generators’ 
production with total 
production) 

Czech 
Republic 

Solar 2010-2015 Non-negative merit-order 
effect of solar  

Hourly, daily, 
and weekly 
Day-ahead 

prices 
Other 

renewables 2010-2015 
10% increase in other 

renewables (mainly water 
and wind) will decrease 

daily prices by 2.2% 

 

Janda (2018) 

Multivariate regression 
estimated with both 
Newey-West standard 
errors and the Prais-
Winsten estimator as a 
robustness check 

Slovakia Solar 2011-2016 
A 1% increase in solar will 
decrease spot prices from 

0.016% to 0.067% 
 Hourly day-

ahead prices 

de Lagarde and 
Lantz (2018) 

Two-regime Markov 
switching model (see 
Section 8.0A.1.3A.1.3) 

Germany 

Wind 

2014-2015 

Decrease 0.77 EUD/MWh  Day-ahead 
hourly prices. 

Prices are 
transformed by 

applying the 
inverse of the 

hyperbolic sine 
function prior 
to analysis to 

compress 
extreme values 

Solar Decrease 0.73 EUD/MWh  

Di Cosmo and 
Valeri (2018) 

System of seemingly 
unrelated regressions 
where regressions are for 
each hour of the day 

Ireland Wind 2008-2012 

0.018€/MWh when wind 
increases by 1 MWh 

(equivalent to 18€ per 
GWh) 

 Day-ahead 
hourly prices 
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Paper Method Country VRE-type Period Reported Price Change1 Impact on Price 
Volatility Price Data 

Mountain et al. 
(2018) Linear regression1 Australia 

Wind July 2012- 
June 2018 

It shows that increasing the 
average wind generation by 
100 MW would reduce the 
wholesale price by around 
$8.6/MWh throughout the 
year, though the precise 
value varies around the 
day, with summer price 
impacts most significant 
(but also most variable) 

around 3–6 p.m. 

 

30-min spot 
prices 

Solar July 2012- 
June 2018 

It shows that a 100 MW 
increase in average PV 
production would reduce 

prices by around $11/MWh 
in summer and around 

$31/MWh in winter. 

 

Csereklyei et al. 
(2019) 

Autoregressive distributed 
lag regression model Australia 

Wind 2010-2018 

An extra GW of dispatched 
wind capacity decreases 
prices by 11 AUD/MWh 

An extra GWh of daily wind 
generation decreases daily 

average prices by 1 
AUD/MWh 

 
30-min and 

daily average 
prices 

Utility-scale 
solar 2010-2018 

An extra GW of dispatched 
solar capacity decreases 
prices by 14 AUD/MWh 

 
An extra GWh of daily solar 
generation decreases daily 

average prices by 2.7 
AUD/MWh  

 

 
1 Note that Percy et al. (2018) extended the model of Bushnell and Novan (2018) which is intended to uncover long-term price effects of increasing 
amounts of VREs. However, the model (which was modified to add seasonal effects) was used to uncover short-term price impacts. The model did 
not include typical fixed effects that control for long-run trends (see our discussion of Bushnell and Novan 2018 for further information). The 
authors also did not discuss if any correlation was corrected for in the standard errors. We report the results but make note of these discrepancies. 
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Paper Method Country VRE-type Period Reported Price Change1 Impact on Price 
Volatility Price Data 

Macedo et al. 
(2020) 

A combination of 
Seasonal Autoregressive 
Moving Average with 
Exogenous Regressors 
(SARMAX) and GARCH 
and exponential GARCH 
methods (see Section A.1 
for further detail) 

Portugal 

Wind 2017-2019 
A 1% increase in wind 

decreases the wholesale 
prices by around 0.0568% Significant positive 

impact on volatility 
(increase) 

Day-ahead 
daily prices 

averaged over 
hourly data 

Wind 2011-2019 
A 1% increase in wind 

decreases the wholesale 
prices by around 0.0598% 

Solar 2017-2019 No significant impact 
Significant negative 
impact on volatility 

(decrease) Solar 2011-2019 
A 1% increase in solar PV 
increases the whole sale 

prices by around 0.0001% 

Maciejowska 
(2020) 

Quantile regression with 
autoregressive models 
(Models the distribution of 
prices, with a regression 
for each quantile of the 
distribution that includes 
exogenous and lagged 
price variables) 

Germany Wind and 
solar 2015-2018 

Significant negative impact 
on the prices. The 

magnitude depends on time 
of day and load levels. 

Volatility is quantified 
as inter-quantile range. 

Impact of renewable 
energy sources on 

daily volatility depends 
on the load levels. In 

peak hours, both wind 
and solar significantly 

reduce the price 
volatility, except for low 

load. On off-peaks 
hours, the impact is 

diversified. 

Day-ahead 
daily prices 

averaged over 
hourly and 

peak and off-
peak hours 
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Paper Method Country VRE-type Period Reported Price Change1 Impact on Price 
Volatility Price Data 

Sirin and Yilmaz 
(2020) 

Quantile regression with 
autoregressive models 
(Models the distribution of 
prices, with a regression 
for each quantile of the 
distribution that includes 
exogenous and lagged 
price variables) 

Turkey Wind May 2016 - 
May 2019 

1% increase in wind 
reduces market clearing 
prices by 0.01% - 0.15%, 
the strength of merit-order 

effect declines at the higher 
quantiles – which means as 

the day-ahead market 
clearing price increases, 

the merit-order effect from 
wind declines. 

 

Hourly day-
ahead prices 

(natural 
logarithms of 

prices are used 
to represent 

coefficients as 
elasticities) 
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2.2.1.2 Recommended Modeling Approach to Estimate VRE Impacts on Short-Term 
Energy Prices 

Based on our review of the literature, we recommend a modeling approach to estimate the price 
impacts of VREs that both builds on and differs from the literature in important ways. First, the 
dominant modeling approach for U.S. markets is to include a lagged price variable as an 
explanatory variable to address the time-dependent nature of electricity price data. We 
recommend following this approach as we find past hourly prices an important predicator of 
current prices. A key difference in our recommended approach from much of the existing 
literature is that we recommend using panel data to incorporate fixed effects (time invariant 
unobserved variables) when controlling for observed and unobserved heterogeneity when 
estimating price effects from U.S. electricity markets. We also recommend that the effect of 
VREs on prices be evaluated over space and time to understand heterogeneous impacts. Last, 
we recommend the use of more recent electricity data to provide energy price impacts for 
markets in which solar and wind power have become a larger share of the generation mix than 
in previous studies.  

To estimate the short-term impacts of increased levels of solar or wind resources on wholesale 
energy prices (the merit-order effect), we recommend that the modeling approach incorporate 
several variables to control for factors other than VREs that impact energy prices. Explanatory 
variables included in the model should be exogenously determined (i.e., not determined by the 
electricity market) to establish causality. As an example, because wind or solar power output 
generally depends on if the wind is blowing or the sun is shining, these variables are plausibly 
exogenous and should be included in the model.1 Although power generation from other 
traditionally dispatchable resources (hydropower, gas, coal, and other fossil fuels) can cause 
price impacts because their dispatch can change in response to renewable energy production, 
including these variables can cause endogeneity concerns (see Woo et al. 2011). Instead, price 
impacts from shifts in the supply curve can be controlled for with the inclusion of a natural gas 
price variable, as a natural gas generator is typically the price-setting marginal generator in 
electricity markets, and natural gas prices are established in separate markets. Nuclear 
generation, as a baseload resource that typically does not respond to renewable energy 
production, can also be included. Other factors, such as the weather, are not determined by the 
electricity market, and therefore are plausibly exogenous and can be included in the model, 
although the effect of weather is typically included by controlling for electricity market demand, 
which historically, is plausibly exogenous due to its inelasticity.  

A recommended model to determine the short-term impact of wind or solar generation on spot 
market prices is: 

𝑃!,#   =  𝛼!  +  𝛽%𝑃!&',# +  𝛽(𝑆𝑜𝑙𝑎𝑟!,#   +  𝛽)𝑊𝑖𝑛𝑑!,#   +  𝛽*𝑁𝐺!   +  𝛽+𝑁𝑢𝑐𝑙𝑒𝑎𝑟!,#   +  𝜃𝑋!,#  +  𝜀!,# (1) 

Where t is the time index representing hour of day (ℎ), day of month (𝑑), or month of year (𝑚). 
The ISO of the observation is indexed by 𝑖. 𝑃!,# 	is the average hourly real-time market price ($) 
in the relevant ISO. 𝑃!$%is the lagged average hourly real-time market price of the previous hour 
for each ISO. 𝑆𝑜𝑙𝑎𝑟!,# and 𝑊𝑖𝑛𝑑!,# 	are hourly levels of wind or solar production (in MWh) for each 

 
1 Curtailment, on the other hand, could be endogenous and may need to be addressed through robustness checks to 
determine its impact on results. One possible method to address curtailment is an instrumental variable approach 
with curtailment and observed generation as instruments for wind or solar generation, as in (Bushnell and Novan 
2018).  
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ISO. 𝑁𝐺! is the daily Henry Hub natural gas price to control for supply-related shifts from 
conventional generation that may be correlated with renewable production and demand. 
𝑁𝑢𝑐𝑙𝑒𝑎𝑟!,# is the hourly nuclear generation for each ISO. 𝑋!,# includes hourly ISO load to control 
for price effects due to demand levels and other fixed effects. Hourly correlation between wind 
or solar output and demand that varies throughout the day is accounted for with hourly fixed 
effects. Differences in prices that may vary due to load variation by weekday or weekends is 
controlled for with day-of-week fixed effects. Long-run trends, such as changes in the 
generating resource portfolio over time and seasonality, are controlled for with month-by-year 
fixed effects. However, care must be taken in estimating this equation as it includes both a 
lagged variable (price) and fixed effects. Consistent estimation may require appropriate dynamic 
panel methods, depending on the panel structure. 

We recommend the model in equation (1), when properly treated for consistent estimation, be 
estimated three ways: (1) as a pooled regression across all ISOs and hours to understand how 
VREs impact average real-time market price across all ISOs, (2) as a separate regression for 
each hour of the day to examine how VREs impact real-time market prices over time, and (3) by 
ISO to understand how VREs impact real-time market prices over space. Fixed effects should 
be updated as necessary to estimate each recommended model. Further, we recommend that 
additional analyses be performed to examine the robustness of results to the impact of outliers 
in individual ISOs (e.g., the sensitivity of results to transmission congestion, generator outages, 
out-of-market actions, and extreme weather events). Future work could also expand our 
recommended modeling approach to a more granular level within ISOs, examining nodal price 
impacts, to understand the local impacts of VREs.  

2.2.2 Volatility Impacts from VREs 

2.2.2.1 Literature Review 

Though literature on the average behavior of electricity price and VRE penetration has been 
fairly consistent, its price volatility effects with respect to time (temporal price volatility) has been 
a topic of controversy. While some studies find evidence of an increase in temporal price 
volatility as VRE penetration increases (Woo et al. 2011; Astaneh and Chen 2013; Clò et al. 
2015; Seel et al. 2018; Johnson and Oliver 2019; Mwampashi et al. 2020), others were unable 
to show any significant evidence that increasing the share of VRE leads to high temporal price 
volatility (Rai and Nunn 2020; Mulder and Scholtens 2013).  

Rintamaki et al. (2017) found that, for the case of Germany and Denmark, increasing 
penetration of VRE could either increase or decrease the temporal price volatility. 
Shcherbakova et al. (2014) concludes in a wind energy study done for South Korea that 
temporal price volatility decreases as wind penetration increases up to 10% since the wind 
profile matches the demand patterns at this penetration. In a similar vein, many studies have 
found that solar energy penetration has abated temporal price volatility (Rintamaki et al. 2017; 
Pereira da Silva and Horta 2019). Further, there is evidence to suggest that the relationship 
between temporal price volatility and VRE penetration can vary widely as a result of a 
confluence of several factors, including (but not limited to) patterns of demand (Shcherbakova et 
al. 2014; Hirth 2018; Maciejowska 2020), weather (Mwampashi et al. 2020), and the availability 
of flexible generation (Rintamaki et al. 2017). Owolabi et al. (2021), also found that for five of the 
seven ISOs in their study (ISO-NE, NYISO,PJM, MISO, SPP, ERCOT and CAISO), the system 
temporal price volatility decreased as the penetration of VRE increased across all quantiles. 
These results are consistent with the modern portfolio theory that posits that the portfolio of 
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diverse and uncorrelated (or low correlated) assets leads to price volatility reduction (Markowitz 
1952). 

2.2.2.2 Determinants of Volatility in Electricity Markets 

When modeling the impact of VREs on electricity price volatility, there is a need to first 
understand (a) the importance of quantifying volatility in electricity markets and (b) what drives 
price volatility in electricity markets.  

Since the first decade of the 21st century, with the electricity industry evolving in to a more 
distributed and competitive industry, researchers have been paying more attention to the 
volatility of asset and energy prices (Cifter 2013). In the emerging competitive environment, 
producers and buyers not only need to forecast future electricity prices, but also need to assess 
the risks of electricity prices; the most accurate way to quantify risks in electricity prices over a 
period is by simulating electricity price volatility (Deb et al. 2000). 

According to Li et al. (2019), there are two approaches in the literature when it comes to 
explaining volatility in electricity markets. One approach involves attributing volatility to the 
occurrence of extremely high price records (i.e., spike prices, which indicate an increase in 
demand). In Hadsell and Shawky (2006), the focus is on high prices during peak hours, with the 
intent of examining the volatility characteristics of NYISO electricity markets. They find evidence 
to link the occurrence of spike prices with market price volatility. Joskow and Wolfram (2012) 
and Dutta and Mitra (2017) discuss candidate technologies that could dampen spike prices and 
control volatility. 

Another approach in the literature is to focus on negative pricing (a distinctive feature of 
electricity markets) as a source of price volatility in electricity markets. Negative pricing arises 
because certain types of generators (e.g., nuclear, hydroelectric, and wind energy) pay load 
serving providers to take power instead of lowering their output due to technical and economic 
factors during a shortfall in demand (EIA 2017). Genoese et al. (2010) found evidence that 
suggests that negative pricing has an upward (increasing) trend and an unbalanced distribution 
for the case of the German markets, and it increases price volatility. Barbour (2014) highlights 
the role of negative pricing in the development of technologies like energy storage.  

Using a principal components analysis, Li et al. (2019) concluded that components with the 
largest explanatory power (to the variation of prices) are highly related to spike LMPs and the 
position and the extent of concentration of the overall LMPs. Further, using a nonlinear 
autoregressive distributed lags model (NARDL), they concluded that negative prices have a 
larger potential effect on both the real-time market and the forward market. An implication of this 
finding is the potentially stabilizing role of renewable energy on the energy demand.  

In the literature, different metrics have been used to measure price volatility in the market for 
electricity. Table 5 documents a few of these. 
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Table 5. Electricity Market Price Volatility Indicators1 

Author Name of Indicator Equation 

Assessment 
of value 
indicator 

Danilenko (2007) Dispersion 𝜎, =
1

𝑛 − 1Σ#-'
. (𝑥# − 𝑥), 

The higher 
the value, 
the more 
volatile the 
electricity 
price is 

Wolak (1998) Standard Deviation 𝜎 = √𝜎, 
Lucia and 
Schwartz (2002) Standard Volatility 𝑉 = 𝜎√365 

Munoz and 
Dickey 
(2009) 

Square of difference 
of two neighboring 
values 

𝑉 = (𝑥! − 𝑥!&'), 

Paulavičius 
(2010) 

Coefficient of 
oscillation 𝐾/ =

𝑥012 − 𝑥034
𝑥 ∗ 100% 

Bobinaite 
(2011) 

Coefficient of 
variation 𝑉 =

𝜎
𝑥 ∗ 100% 

Up to 10%: 
low variation 
10%-20%: 
medium 
variation 
20%-30%: 
high 
variation 
>30%: very 
high 
variation 

Li and Flynn 
(2004); Zareipour 
et al. (2007) 

Daily velocity 
indicator, calculated 
under the average 
price of electricity 
during a day 

𝐷𝑉𝑂𝐴#5 =
1
𝑀 LΣ6-'7&'M𝑃#,68' − 𝑃#6M + M𝑃#&',0 − 𝑃#')MN

O1𝑀PΣ:-'
7 		P;:

 
The higher 
the value, 
the more 
volatile 
electricity 
price is 

Daily velocity 
indicator, calculated 
under the average 
price of electricity 
during a certain time 
period 

𝐷𝑉𝑂𝐴#5 =
1
𝑀 LΣ6-'7&'M𝑃#,68' − 𝑃#6M + M𝑃#&',0 − 𝑃#')MN

O 1
𝑀 ∗ 𝑁PΣ;-'

< Σ:-'7 		P;:
 

 

2.2.2.3 Volatility Modeling Approaches 

In this section, we will provide a brief background on volatility models that are typically used to 
assess the impact of VREs on price volatility. Before we delve in the to the model related 
technicalities, we will first discuss stylized facts that need to be considered for the commodity 
under consideration when modeling volatility. 

According to Engle and Patton (2007), although a volatility model is generally used to forecast 
the absolute magnitude of returns, it may also be used to predict quantiles or, in fact, the entire 
density of the distribution of returns. In the financial domain, such forecasts are used in risk 
management, derivative pricing, and many other financial activities. For each of these 

 
1 This table is reproduced from Bobinaite et al. (2012). 
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applications, it is the predictability of volatility that is of paramount importance. A risk manager 
needs to know today what the likelihood is of their portfolio declining in the future. And in order 
to hedge this risk, they will need information on the volatility of this forecast.  

There are two general classes of volatility models in widespread use. The first of these 
formulates the conditional variance directly as a function of observables. Examples include the 
autoregressive conditional heteroskedasticity (ARCH) and generalized autoregressive 
conditional heteroskedasticity (GARCH) models. The second (latent volatility or (misleadingly) 
stochastic volatility models) involves models of volatility that are not functions purely of the 
observables. While such models can typically be simulated, they are difficult to estimate and 
forecast. 

A number of stylized facts about the volatility of electricity prices have been documented in the 
literature. According to Engle and Patton (2007), a good volatility model must be able to capture 
and reflect these stylized facts. These stylized facts include the following. Electricity is 
characterized by a high volatility due to current storage limitations; this is attributed in part to the 
fact that deployment of storage technology remains limited. In the context of renewables, the 
intermittent nature of output from VREs will be transferred to electricity prices, resulting 
in increased uncertainty and, hence, greater price volatility and price risk (Ballester and 
Furió 2015), although this may be mitigated with future deployments of storage technologies. 
According to Masoumzadeh et al. (2017), storage technologies, their forms notwithstanding 
(pump-storage hydro, large-scale, or distributed batteries), are capable of alleviating the 
extreme price volatility levels on account of their energy usage time shifting, fast-ramping, and 
price arbitrage capabilities.  

Additionally, the intermittency of VRE generation, when compared to conventional power 
sources such as nuclear or fossil fuels, is one of the main arguments proffered to explain why 
prices should become even less predictable, and hence even more volatile, as long as 
generation from VREs increases. In addition, it is this intermittency that may lead to 
increases in both the number and magnitude of the so-called price jumps (Ballester and 
Furió 2015). Byström (2005) applied conditional extreme value theory to investigate the hourly 
spot price volatility of the Nordic electric power market and concluded that not only are price 
changes highly volatile, but their empirical distribution is highly non-normal (pointing to the 
usefulness of conditional volatility models for price volatility forecasts). Electricity prices also 
exhibit asymmetric characteristics, where positive shocks to the price series have less effect on 
the conditional variance compared to negative shocks1 (Schulueter 2010; Karandikar et al. 
2009). 

As an example, Ballester and Furió (2015), using a model adapted from Cartea and Figueroa 
(2005), set out to measure the extent to which VRE generation may be behind price volatility 
and how the share of renewable energy volatility contributes to the presence of price jumps for 
the Spanish market find the following: 

The price volatility is higher for off-peak than for peak hours (0.15 versus 0.9). In addition, the 
frequency of price jumps is also notably higher for off-peak hours, whereas the mean reversion 
is not much lower, as indicated by the value of the α coefficient (Figure 12 and Figure 13). 
Figure 12 shows the evolution of jumps (note: Y is a diffusion process with jumps and mean 

 
1 This asymmetric effect is frequently referred to as the “leverage effect.” Conditional variances are the 
characteristics of variability of conditional distributions (i.e., the variance of prices given the values of one 
or more other variables). 
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reversion of the spot prices) throughout the years in the sample. The large jumps (between 
January and May in 2010 and in 2013) in Figure 12 correspond to increasing volatility during 
these two periods (Figure 13); this was even more noticeable during off-peak hours.  

In Figure 14, for the two periods with the greatest price volatility—from January to May 2010 
and from January to May 2013—volatility peaks in HI (hydraulic), NUC (nuclear), and BG 
(pumped hydro) generation match marginal price volatility peaks better than renewable energy. 
This seems to imply that (for this study) the volatility of the electricity produced by the different 
generation technologies has been transferred to prices. 

Negative jumps are much more frequent than positive for baseload (62 versus 33), peak (38 
versus 16), and off-peak (75 versus 40) hours. 

 
Figure 12. Price without Seasonal Component (Y) in Returns and Jumps Detected (2008–2013) 
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Figure 13. RE Share Volatility and Base Load Marginal Price without Seasonal Component (y) 

Volatility 

 
Figure 14. Base Load Marginal Price without Seasonal Component (y) Volatility, Hydraulic 

Share (HI) Volatility, and Pumping Hydroposer Share (BG) Volatility 

In the context of the Australian market, however, Rai and Nunn (2020) concluded that higher 
penetration by VRE generation may not result in more extreme price jumps or higher market 
price caps. They cite the following reasons in support of their conclusions: (1) greater 
investment in volatility-dampening, reliability-enhancing technologies like storage and 
interconnectors, (2) increased contract cover, (3) more price-responsive demand, and (4) 
emergence of additional ancillary service revenues.  

In Appendix A, we have provided detail on the different approaches that are used to model 
volatility along with example applications to the electricity markets. 
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2.2.2.4 Recommended Modeling Approach for Modeling VRE Impacts on Electricity 
Price Volatility 

Many approaches have been used in the literature to model volatility in electricity prices. 
However, given that (a) electricity price changes are highly regime dependent1 and (b) price 
changes follow a non-normal distribution, we propose a combination of a Markov switching and 
a GARCH model to determine volatility impacts from VREs.  

Cifter (2013) used a Markov switching (MS) GARCH model to forecast volatility for the Nordic 
electric power market. Electric prices are not only highly volatile but also regime dependent (i.e., 
they are prone to extreme jumps). Additionally, they are also known to exhibit asymmetries; 
positive shocks to the price series have a lesser effect on the conditional variance compared 
with negative shocks (Schlueter 2010; Karandikar et al. 2009). While both time series (e.g., 
autoregressive integrated moving average (ARIMA), GARCH) (Contreras et al. 2003; Garcia-
Martos et al. 2007; Garcia et al. 2005) and artificial models (e.g., neural networks, fuzzy neural 
networks) (Wang and Ramsay 1998; Cataloa et al. 2007; Vahidinasab and Kazemi 2008; Hong 
and Lee 2005; Amjady 2006) have been used to forecast short-term electricity prices, one major 
drawback of all of these approaches is their inability to capture extreme jumps or ‘regime 
changes’ as prices increase/decrease sharply in the short run. This, in turn, calls for models that 
are capable of capturing regime changes and asymmetries, thus making the case for an MS-
GARCH type model. The parameter changes between a low and high regime that is allowed for 
in this modeling approach enables more accurate forecasting. 

Following Cifter (2013), our proposed approach is as follows: 

I. The GARCH model: 

To account for the asymmetries in the observed prices, we propose to estimate a Glosten-
Jagannathan-Runkle (GJR)-GARCH model (which has demonstrated superior forecasting 
performance than the exponential generalized autoregressive conditional heteroskedasticity 
(EGARCH) model for longer horizons). The model may be expressed as follows: 

 ℎ! = 𝛼= + 𝛼'𝜖!&', + 𝛾𝛼'𝜖!&', 𝐼!&' + 𝛽'ℎ!&' (2) 

where 𝛼& is the constant term, '!
(!"#

~𝑁80,:ℎ!; denotes the conditional volatility of √ℎ! with the 
conditions of 𝜖! and 𝛼, 𝛽 > 1, 𝛼& > 1, 𝛾2 is a dummy variable that takes on the following values: 
𝐼!$% = 1, 𝑖𝑓	𝜖!$% < 0, 𝐼!$% = 0, otherwise. In the GJR model, negative lagged shocks have an 
impact of 𝛼% + 𝛾 while positive lagged shocks have an impact of 𝛼%, implying that the former 
have a bigger influence on conditional variance.  

II. The Markov switching model 

The realization of a two regime Markov chain can be expressed as follows: 

 
1 Time series models typically have ’a‘ set of model parameters that can be used to describe the behavior 
of the data over time. This assumption is not valid in the real world, however, since real world time series 
data may have different characteristics (such as means and variances) across different time periods (or 
“regimes”). Electricity price changes are highly dependent on the underlying model parameters that 
characterize the regime in operation – hence the term, ‘regime dependent’.  
2 The electricity price return, 𝑟!, refers to continuously compounded return of the assets. 
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 𝑃{𝑠> = 𝑗|𝑠>&' = 𝑖, 𝑠>&, = 𝑘,… } = 𝑃{𝑠> = 𝑗|𝑠>&' = 𝑖} = 𝑝#6 (3) 

Where 𝑝#) 	denotes the probability of moving from regime 𝑖 to regime 𝑗. If 𝑠* follows a two regime 
Markov chain with transition probabilities, this can be defined as follows: 

 Pr[𝑠> = 0|𝑠>&' = 0] = 𝑝,	 

Pr[𝑠> = 1|𝑠>&' = 0] = 1 − 𝑝	, 

Pr[𝑠> = 1|𝑠>&' = 1] = 𝑞,	 

Pr[𝑠> = 0|𝑠>&' = 0] = 1 − 𝑞 (4) 

Where 𝑠* = 0 represents the normal (low) volatility regime and 𝑠* = 1 represents the jump 
regime. 

III. The Markov switching-GARCH model 

The MS-GARCH model can then be represented as follows: 

 ℎ! = d𝛼= + 𝛼'((!)𝜖!&'
, + 𝛽'((!)ℎ!&'e𝐼[𝑠! = 0] + [𝛼= + 𝛼'((!)𝜖!&'

,

+ 𝛽'((!)ℎ!&']𝐼[𝑠! = 1] (5) 

Where 𝑠! = 0 represents the low volatility regime and 𝑠! = 1 represents the high volatility 
regime.  

The MS-GARCH approach entails the estimation of the high and low volatility structures of 
electricity prices, while also accounting for the observed asymmetries. Given that electricity 
prices are highly regime dependent, some form of a Markov switching model that allows for 
regime changes needs to be deployed. Additionally, GARCH type models are known to be 
capable of addressing asymmetries1 in the observed data. Under the circumstances, some 
combination of an MS-GARCH type model that has the ability to capture both regime changes 
and asymmetries needs to be adopted to model volatility in electricity prices. 

2.2.3 Ancillary Service Price Impacts 

Increased price volatility translates to more periods with high prices and more periods with 
negative prices in electricity markets with higher penetrations of VREs. Under these conditions, 
pricing becomes more important to align resources with where they are valued most, based on 
the operating conditions. As was described in Section 2.1.1, in U.S. markets this is typically 
accomplished with shortage pricing on operating reserves, to incentivize resources to produce 
and sell power when it is needed most. Some markets—ERCOT and PJM—have implemented 
ORDC approaches to better align price incentives with the value of operating reserves under 

 
1 In the context of electricity prices, as mentioned before, asymmetries of the following form are known to 
exist - positive shocks to the price series have lesser effect on the conditional variance compared with 
negative shocks (Schlueter 2010; Karandikar et al. 2009). 
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different operating conditions. Papavasiliou (2020) points out that increasing levels of VREs 
require electricity markets to increasingly rely on operating reserves.1  

Ancillary services encompass several reliability resources needed for addressing supply and 
demand imbalances in real-time, including regulation of frequency, energy imbalance, spinning 
operating reserve, and supplemental operating reserve, as well as voltage control and system 
restoration services (Stoft 2002; Creti and Fontini 2019). In the United States, markets differ in 
their nomenclature for these services as well as remuneration of these services. However, all 
markets procure the following services through competitive markets: regulation reserves, 
spinning reserves, and non-spinning reserves (Kahrl et al. 2021). All markets procure the 
following services on a cost basis through bilateral arrangements: voltage support and black 
start capability (Kahrl et al. 2021).  

Both spinning and non-spinning reserves protect the system from contingencies such as 
unplanned generator outages or wind or solar forecast errors. Regulation reserves respond 
within seconds to keep supply and demand in balance. Requirements for system-wide ancillary 
services are typically designed to meet North American Electric Reliability Corporation (NERC) 
reliability requirements and performance standards. Regulation reserve quantities are generally 
based on net load variability, spinning and non-spinning reserve on inertia conditions, and 
forecast errors; therefore, the reserve requirements vary hourly (Ghosal et al. 2022). Important 
for our research, reserve requirements are determined by load variability, potential generator 
outages, and forecast errors. 

When procurement of energy and ancillary services are co-optimized in the day-ahead or real-
time market, resources do not need to estimate the tradeoff between providing capacity for 
energy versus ancillary services. This tradeoff is reflected in the market, allowing each resource 
to bid all of its capacity into the energy and ancillary service markets, without risking revenue 
loss in one market if capacity is sold in the other (CAISO 2020). With co-optimization, 
expectations of foregone energy sales are not included in ancillary service capacity offers, 
allowing ancillary service clearing prices to account for the opportunity cost of selling energy 
(Potomac Economics 2021a). Without co-optimization, resources estimate the opportunity costs 
between providing energy or ancillary services. Expectations over energy market prices and fuel 
costs (especially natural gas) will inform these bids. Important for our research, in markets with 
co-optimized energy and ancillary service procurement, energy and ancillary service prices will 
likely be correlated. The market clearing price resources receive for providing ancillary services 
typically reflects their capacity bids and opportunity costs, with regulation resources typically 
receiving higher payments than spinning reserves and spinning reserves receiving higher 
payments than non-spinning reserves (Kahrl et al. 2021). 

Table 6 highlights ancillary service procurement and pricing processes in CAISO, ERCOT, and 
ISO-NE ancillary service markets. 

 
1 A real-time market for reserve capacity does not exist in Europe. Papavasiliou (2020) recommend an 
ORDC, as applied in some U.S. markets, as a solution to this problem. 
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Table 6. Ancillary Service Procurement and Pricing Processes 

 CAISO ERCOT ISO-NE 

Ancillary 
services 

Four types of Ancillary 
Services are procured in 
CAISO day-ahead and real-
time markets (CAISO 2022): 

§ Regulation Up  
§ Regulation Down 
§ Spinning Reserve 
§ Non-Spinning 

Reserve 

CAISO procures Flexible 
Ramping Up and Flexible 
Ramping Down in the real-
time markets (15- and 5-
minute markets) 

Four types of Ancillary 
Services are procured in 
ERCOT’s day-ahead 
and supplemental 
ancillary services 
markets (Potomac 
Economics 2021a): 

• Regulation Up 
• Regulation 

Down 
• Responsive 

Reserve 
• Non-Spinning 

Reserves 

Four types of Ancillary 
Services are procured in 
ISO-NE's markets (ISO-NE 
2022): 

• Regulation 
• 10-Minute Spinning 

Reserve 
• 10-Minute Non-

Spinning Reserve 
• 30-Minute Operating 

Reserve 
• Local 30-Minute 

Operating Reserve 

Ancillary 
service 

requirements 

The regulation capacity 
requirement is based on 
inter-hour changes in 
scheduled generation, 
intertie schedules, 
forecasted demand, and the 
number of units starting up 
or down. The operating 
reserve requirement is set 
by the maximum of 5% of 
forecasted demand met by 
hydroelectric resources plus 
7% of the forecasted 
demand met by thermal 
resources (or the largest 
single contingency) (CAISO 
2010). 100 % of the 
expected reserve 
requirement is purchased in 
the day-ahead market. 
Reserve requirements can 
change in real-time 
depending on system 
conditions. In 2020, 
regulation down 
requirements were 520 MW, 
regulation up requirements 
were 390 MW, and average 
combined requirements for 
spinning and non-spinning 
reserves were about 1,800 
MW. 

Responsive reserve 
requirements are based 
on a variable hourly 
need. Regulation 
reserve quantities are 
generally based on net 
load variability, 
responsive reserve on 
inertia conditions, and 
non-spinning reserve on 
forecast errors. The 
combination of 
regulation reserves and 
non-spinning reserves 
cover up to 95% of the 
net load forecast error, 
and non-spinning 
reserves are procured at 
a quantity greater than 
or equal to the largest 
generation unit during 
on-peak hours. In 2020, 
the average total 
ancillary services 
requirement was 4,800 
MW, but the quantity of 
reserves held varies by 
hour. 

The ISO maintains sufficient 
reserves to recover from the 
largest single system 
contingency within 10 
minutes, additional reserves 
must be available within 30 
minutes to meet ½ of the 
second-largest system 
contingency, local resources 
are identified to meet 
second-contingency 
requirements in import-
constrained areas. In 2020, 
the average 10-minute 
spinning reserve 
requirement was 527MW, 
the average total 10-minute 
and 30-minute reserve 
requirements were 1,700 
MW and 2,500 MW, 
respectively. 

Ancillary 
service 

procurement 

CAISO has a co-optimized 
procurement of energy and 
ancillary services in day-

ERCOT has a co-
optimized procurement 
of energy and ancillary 

ISO-NE procures reserves 
six months ahead (but not 
day-ahead) in the forward 
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 CAISO ERCOT ISO-NE 
ahead and real-time 
markets. Procurement of 
flexible ramping products 
are co-optimized with 
energy and ancillary 
services in the real-time 
markets. 

services in the day-
ahead market. 
Additional reserves are 
procured in the 
supplemental ancillary 
services market (at 
much higher prices). 
Co-optimization of 
energy and ancillary 
services in the real-time 
market is planned for 
2025 and will replace 
the need for a 
supplemental ancillary 
services market. 

reserve market auction and 
co-optimizes energy and 
operating reserve 
procurement in the real-time 
market, real-time regulation 
services are procured in the 
regulation market. 

Ancillary 
service pricing 

Resources providing 
ancillary services receive a 
capacity payment at market 
clearing prices for both day-
ahead and real-time 
markets. Regional ancillary 
service shadow prices 
reflect the cost of having to 
procure one additional 
megawatt of a particular 
service within a given 
region. The market clearing 
price is the summation of 
the regional ancillary service 
shadow prices for that 
service in the regions where 
a resource resides. 

ERCOT has a single 
region for ancillary 
services. In the day-
ahead market, ERCOT 
establishes the Ancillary 
Services Plan for 
ancillary service 
requirements the 
following day. Qualified 
scheduling entities 
submit bids and offers 
for ancillary services, 
which are cleared to 
determine the market 
clearing price for 
ancillary service 
capacity.1 In the real-
time market ERCOT will 
apply price adders if 
reserves are insufficient.  

The forward reserve market 
is used to acquire 
commitments from resources 
months in advance to 
provide real-time reserve 
capacity. Forward reserve 
capacity requirements 
(demand) are based on the 
forecasted first- and second-
contingency supply period. 
Forward reserve auction 
clearing prices are 
calculated for each reserve 
service, for each reserve 
zone.2 
The real-time reserve market 
is used to offset opportunity 
costs when a resource 
provides reserve capacity 
instead of producing 
electricity 

 
1 Note that the objective function for the secure economic dispatch (SCED) is the sum of four 
components: (1) the cost of dispatching generation; (2) the cost of procuring Ancillary Services; (3) the 
penalty for violating Power Balance constraint and (4) the penalty for violating network constraints, which 
allows the SCED to economically dispatch resources and procure ancillary services. 
2 As an example, a forward reserve resource will receive revenue from the forward reserve auction but 
forego real-time reserve payments and energy revenue in most hours, as this resource will be held in 
reserve. 
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 CAISO ERCOT ISO-NE 

Scarcity pricing 

CAISO administratively sets 
the scarcity price with a 
scarcity pricing demand 
curve when ancillary 
services’ supply is 
insufficient to meet demand 

ERCOT applies real-
time ORDC price adders 
which approximates the 
pricing outcome of real-
time energy and 
ancillary service co-
optimization since the 
price adder captures the 
value of the opportunity 
cost of reserves based 
on the ORDC (ERCOT 
2021) 

The real-time reserve pricing 
market is used to 
compensate market 
participants for the increased 
value of their production 
when the system is short of 
reserves 

 

2.2.3.1 Literature Review  

Limited empirical analyses have been conducted on the impact of VREs on operating reserves, 
frequency regulation, or scarcity pricing. While not focused specifically on the impact of 
increasing levels of VREs, Zarnikau et al. (2019) explored determinants of ancillary service 
prices in Texas, finding that ERCOT’s day-ahead prices for ancillary services increase with 
energy prices and ancillary service procurement forecasts, but decline with ancillary service 
offer forecasts. Because wind generation decreases ERCOT’s energy prices, Zarnikau et al. 
(2019) point out that Texas can reduce prices for day-ahead ancillary services through wind 
generation development. Wiser et al. (2017) came to the opposite conclusion; using a 
simulation modeling approach, they found that increasing amounts of renewables increased 
ancillary service prices (while decreasing wholesale prices).  

Di Cosmo and Valeri (2018) examined the impact of renewables on both energy prices and 
balancing payments in Ireland from 2008 through 2012. Using a seemingly unrelated regression 
approach, they determined that although 1 MWh of wind energy caused declines in wholesale 
energy prices of 0.018€/MWh, it also increased constraint payments by 3.2€/MWh. Batalla-
Bejerano and Trujillo-Baute (2016) found that renewables increase ancillary service and other 
balancing costs in Spain, whereas Gianfreda et al. (2016) and Hirth and Ziegenhagen (2015) 
found that renewables decrease ancillary service and other balancing payments in Italy and 
Germany, respectively. 

In theory, rising levels of renewables may increase the demand for ancillary services as 
balancing the intermittency of renewable requires more flexible services; however, this increase 
can be mitigated by better renewable power production forecasting and increased demand 
flexibility (Pollitt and Anaya 2020). Further complicating the issue is that rising demand for 
ancillary services may not necessarily indicate a rise in prices for ancillary services as 
distributed generation could potentially supply those services at a lower cost. Highlighting the 
importance of regulation for ancillary service prices, Frew et al. (2021) found that operating 
reserve scarcity pricing rules are instrumental to both energy and ancillary service market 
outcomes, as energy and reserve prices are both strongly impacted by scarcity pricing events. 
However, the literature has yet to come to a consensus on how increasing amounts of 
renewables will impact ancillary service prices.1  

 
1 For a review of the literature on analyses of ancillary service market prices (not specific to price impacts of VREs) 
see Pollitt and Anaya (2020). 
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2.2.3.2 Recommended Modeling Approach for Estimating Ancillary Service Price 
Impacts from VREs 

Our recommended modeling approach for estimating VRE price impacts on ancillary services 
builds on the literature by recognizing that demand for ancillary services is driven by load 
variability, potential generator outages, and wind or solar forecast errors. 

𝑄+,  =  𝑓(𝑙𝑜𝑎𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦,  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑜𝑢𝑡𝑎𝑔𝑒𝑠,  𝑤𝑖𝑛𝑑 𝑜𝑟 𝑠𝑜𝑙𝑎𝑟 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑟𝑟𝑜𝑟𝑠) 

In a market without co-optimization of energy and ancillary services, supply of ancillary services 
depends on expectations of energy market prices (opportunity costs) and fuel costs. However, 
with co-optimization, a resource does not need to explicitly consider its opportunity costs.  

𝑆+,  =  𝑓(𝑒𝑛𝑒𝑟𝑔𝑦 𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑟𝑖𝑐𝑒  exp 𝑒 𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝑠;  𝑓𝑢𝑒𝑙 𝑐𝑜𝑠𝑡𝑠) 

To capture these fundamental drivers, we propose the following model for real-time ancillary 
services price impacts: 

𝐴𝑆!,#  = 𝛼!  +  𝛽(𝑆𝑜𝑙𝑎𝑟!,#   +  𝛽(@𝑆𝑜𝑙𝑎𝑟𝐸𝑟𝑟𝑜𝑟!,#   +  𝛽)𝑊𝑖𝑛𝑑!,#   +  𝛽)@𝑊𝑖𝑛𝑑𝐸𝑟𝑟𝑜𝑟!,#   +  𝛽*𝑁𝐺!  
+  𝛽%𝐿𝑜𝑎𝑑𝑉𝑎𝑟  +  𝛽A𝑂𝑢𝑡𝑎𝑔𝑒  +  𝜃𝑋!,#   +  𝜀!,# (6) 

Where 𝑡	is the time index representing hour of day (ℎ), day of month (𝑑), or month of year (𝑚). 
The ISO of the observation is indexed by 𝑖. 𝐴𝑆!,# 	is the average hourly price for ancillary services 
(operating reserves, regulation up, regulation down) in $/MWh in a selection of ISOs with co-
optimized day-ahead and real-time markets. 𝑆𝑜𝑙𝑎𝑟	is the actual hourly solar production and 
𝑆𝑜𝑙𝑎𝑟𝐸𝑟𝑟𝑜𝑟	and 𝑊𝑖𝑛𝑑𝐸𝑟𝑟𝑜𝑟	follow the same methodology, but for wind production and wind 
forecast errors. 𝑁𝐺	is the daily Henry Hub natural gas price to control for supply-related shifts 
from conventional generation that may influence ancillary service offers. 𝐿𝑜𝑎𝑑𝑉𝑎𝑟	is the hourly 
load variation measured as the standard deviation of load for that hour. 𝑂𝑢𝑡𝑎𝑔𝑒	is a variable 
representing planned generator outages. 𝑋 includes hourly ISO load to control for price effects 
due to demand levels as well as a measure of excess capacity by balancing authority available 
to meet peak load from FERC Form 714 Schedule II Part 1. We will include hour-of-day fixed 
effects, day-of-week fixed effects, and month-by-year fixed effects to account for confounding 
trends. Errors can be clustered at the ISO level or use another error correction for potential 
heteroskedasticity and autocorrelation in the errors. 

To address that energy and ancillary services markets are interrelated, especially in co-
optimized markets, a seemingly unrelated regression can be applied to the short-term energy 
price impact equation (1) and the AS equation (6). By weighting the covariance in residuals from 
equations (1) and (6), seemingly unrelated regression can produce more efficient estimates. 

In future research, we aim to estimate the impacts of VREs on ancillary services to understand 
how increasing amounts of VREs affect this important revenue stream. 

2.2.4 Capacity Price Impacts  

Even with revenues from both energy and ancillary service markets, power producers may fall 
short of obtaining the revenue necessary to cover their fixed and operating costs. In most 
wholesale electricity markets today, this revenue shortfall is addressed through capacity 
payments or a capacity market. However, increasing amounts of VREs can also affect capacity 
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payments and capacity market prices. Further, increased price volatility from VREs can affect a 
risk-averse investor’s willingness to purchase forward contracts for capacity. 

2.2.4.1 Literature Review 

Byers et al. (2018) found that capacity markets across the United States1 have large differences 
in capacity market design and mechanisms, including incentives for operational performance, 
methods to calculate qualifying capacity for VREs and storage, and methods to calculate 
demand curves for capacity. Further, differences in capacity market design and mechanisms 
have led to large differences in historical capacity market clearing prices across markets. 
Particularly important to VREs is the approach used to calculate the qualifying capacity of VREs 
and energy storage.  

In U.S. capacity markets, allowable capacity market bids are based on a resource’s unforced 
capacity, which is typically estimated from a resource’s installed capacity derated for expected 
outages based on prior period performance (Byers et al. 2018). The value of the qualifying 
capacity differs by market and by resource type. As an example, Table 7 provides an overview 
of different approaches to wind and solar qualifying capacity valuation across a selection of 
ISOs. Historically, markets used a resource’s actual performance (power production) during 
certain hours (peak loads or shortage conditions). However, in recent years, many markets 
have moved to an effective load carrying capability (ELCC) approach.2 With this approach, each 
resource’s qualifying capacity is based on the incremental demand it can reliably serve, while 
also considering the probability of demand not being served (LOLE) for various reasons, 
including generator outages and shortfalls.3 ELCC measures each resource’s contribution to the 
resource adequacy needs of the entire system. Regardless of the calculation method, the 
qualifying capacity affects a resource’s bid as well as expected performance (and any penalties 
it may pay for non-performance) in markets with formal capacity markets and performance 
incentives. 

Table 7. Qualifying Capacity Valuation 

ISO Capacity Mechanism Wind/Solar Qualifying Capacity Values 

CAISO 

CAISO’s resource adequacy 
programs have deliverability 
criteria that each load serving 
entity must meet as well as 
rules for counting resources 
that must be made available to 
the ISO. Monthly capacity 
prices are paid by (or to) load 
serving entities based on 
resource adequacy capacity 
contracts (CPUC 2022a). 

Wind and solar qualifying capacity values are based on 
ELCC modeling. The California Public Utilities 
Commission (CPUC) periodically updates the ELCC 
values (CPUC 2022a). 

 
1 These include centralized capacity markets in PJM, ISO-NE, MISO, and NYISO. 
2 ELCC is used to calculate the capacity value for wind resources in MISO; for intermittent resources, storage, and 
hydro in PJM; for intermittent resources in CAISO and SPP; and for energy storage in NYISO. 
3 The ELCC is estimated based on historical and simulated data, see MISO (2020) for further detail.  
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ISO Capacity Mechanism Wind/Solar Qualifying Capacity Values 

ERCOT 

Wind and solar capacity 
contribute to ERCOT’s planning 
reserve margin as a capacity 
resource available to meet 
peak load. 
Because ERCOT is an energy 
only market, there are no 
revenue contributions from an 
installed capacity market, as 
such energy and reserve prices 
provide the only funding for 
revenue sufficiency. 

Existing wind (solar) capacity is calculated as the capacity 
available for summer and winter peak wind (solar) by year 
by region, multiplied by the seasonal peak average wind 
(solar) capacity as a percent of installed capacity.  
The seasonal peak average wind (solar) capacity as a 
percent of installed capacity is the average wind (solar) 
generation resource capacity, calculated as the average 
capacity during the 20 highest system-wide peak load 
hours, available for summer and winter peak load, divided 
by regional installed capacity. The final value is the 
weighted average (by capacity) of the previous ten eligible 
years (for wind) or three eligible years (for solar) of 
seasonal peak (ERCOT 2022). 

ISO-NE 

Qualified VREs can participate 
in ISO-NE's mandatory, 
centralized capacity market, the 
Forward Reserve Market (ISO-
NE 2021; ISO-NE 2022). 

Wind/solar qualifying capacity is based on a resource’s 
median output during predetermined “reliability” hours 
(average over five years, during hours when loss -of-load 
is a potential risk) (ISO-NE 2021). 

 

For example, for the 2021–2022 planning year, MISO determined the system-wide capacity 
wind credit to be 16.3%. As they apply the ELCC value to all wind resources in their market 
footprint, of 22,040 MW of installed wind capacity, 3,598 MW (22,040 MW*16.3%) potentially 
qualifies for resource adequacy (MISO 2020). Because the amount of power that VREs can 
produce in peak conditions is highly variable and uncertain, in 2020, MISO’s market monitor 
recommended that an ELCC methodology be developed for solar, battery, and distributed 
energy resources (Potomac Economics 2021b). However, the ELCC approach can also 
degrade reliability if assumptions do not reflect market realities (Monitoring Analytics 2021). To 
that end, in a simulation of the electricity market in Texas, Bothwell and Hobbs (2017) found that 
inaccurate capacity credits for wind and solar resources both increase costs and shift 
investment among technologies, leading to market inefficiencies. 

The ELCC method also captures an interesting feature of the capacity value of VREs—
additional resources do not always equal additional reliability. Figure 15 displays the ELCC for 
wind and Figure 16 displays the ELCC for solar from PJM’s ELCC report. Both ELCC figures 
show projected ELCCs from 2023 through 2031 with increasing penetrations of wind and solar 
resources. The trend that as VRE penetration goes up, ELCC goes down (marginal contribution 
of incremental VRE capacity goes down) reflects the decreasing marginal reliability benefits of 
VREs. For example, the first unit of a solar resource added to the grid significantly increases 
reliability. But as incremental amounts of solar resources are added to the grid, reliability issues 
can be pushed to other hours when solar is not online, decreasing reliability benefits. However, 
there are also diversity benefits if, for example, wind resources address reliability issues in the 
evening and night hours. 
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.  
Figure 15. ELCC Ratings for Onshore and Offshore Wind in PJM. Source: PJM. 

 
Figure 16. ELCC Ratings for Fixed and Tracking Solar Panels in PJM. Source: PJM. 

The declining marginal benefit of wind or solar power for reliability echoes a similar finding in the 
literature on the value of wind or solar resources. Prol et al. (2020) found that increasing 
amounts of wind and solar resources in California undermine revenues not only for conventional 
generating resources, but also for other wind and solar resources. Further, Bushnell and Novan 
(2018) found that the varying value of VREs can also affect investment. Because increased 
solar capacity reduces midday prices, the marginal revenue from additional solar capacity 
investments diminishes. For example, the tenth gigawatt of California’s grid-level solar capacity 
has half the marginal revenue of the second gigawatt of capacity. 

Increasing amounts of VREs can also cause increased variability in energy prices. For 
investors, this increases the risk that their investment will earn its required return. With many 
potential market designs available to address the missing money problem in electricity markets, 
how well investors can manage risk is also an important consideration for incentivizing 
appropriate investment. Petitet et al. (2017) examined how a capacity mechanism (scarcity 
prices or capacity payments) can address supply security objectives under increasing levels of 
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VREs. To address this question, they conducted a simulation of a power market. They found 
that in an energy only market with a price cap, risk-averse investors prefer a capacity 
mechanism over scarcity pricing. 

Paying for capacity in an electricity market is essentially entering into a forward contract for the 
use of electricity in the future and can also be used to hedge future price risk. More generally, to 
understand the relationship between risk and investor behavior in electricity markets, we turn to 
the foundational literature on how forward contracts affect electricity market outcomes. In a 
seminal paper, Allaz and Vila (1993) demonstrated with a simple two-stage Cournot duopolist 
model that forward contracts reduce power producers’ sensitivity to spot market prices, which 
enhances competitiveness of the spot market.1 If power producers are risk averse, Allaz (1992) 
found that they will further increase their forward contract position and spot market production, 
due to a risk-hedging component in their strategic bid. Both Powell (1993) and Green (1999) 
found that if electricity buyers are risk averse, they may even pay a price premium for forward 
contracts, due to their effect of lowering spot market prices. Confirming theoretical expectations, 
Wolak (2000) examined power producers’ actual electricity bidding and price-setting processes 
in Australia’s National Electricity Market, finding that risk-averse power producers took on larger 
forward contract positions and bid more aggressively into the spot market, reducing spot market 
prices. 

Due to the varying details of capacity payments and remuneration for each ISO/RTO, 
developing an empirical approach to examine the impact of increasing levels of VREs on 
capacity prices or payments will likely need to vary by market to reflect pertinent structural 
details. Second, data availability for capacity payments in ISOs/RTOs without formal capacity 
markets may be limited due to the contractual nature of these payments. To address these 
limitations, our recommended empirical approach (introduced in the next section) focuses on 
the underlying drivers for capacity payments. Because capacity payment mechanisms exist to 
address the missing money in electricity markets that occurs when prices do not adequately 
reflect the value of investment in resources, we first focus on the impact of increasing levels of 
VRE capacity on long-term energy prices.  

2.2.4.2 Recommended Modeling Approach for Estimating VRE Impacts on Capacity 
Prices 

Our recommended modeling approach builds on Bushnell and Novan (2018), who examined 
long-term effects of increasing levels of VRE capacity on wholesale market prices in CAISO. 
Because Bushnell and Novan (2018) relied on capacity-driven changes in renewable output as 
identifying variation, they did not control for long-run trends in capacity through month-by-year 
fixed effects, first-differencing, or including lagged prices. Instead, to address the potential for 
spurious correlation between renewable output and wholesale prices, they controlled for 
demand and supply factors that could influence both renewable output and prices. To control for 
demand and weather-related price effects, they included hourly CAISO demand. To control for 
supply-side effects, they included the Henry Hub natural gas price, as well as precipitation to 
control for potential hydroelectric output-induced price effects. They also controlled for daily and 
seasonal fluctuations in demand that can cause wholesale price variation (e.g., renewable 
output can be correlated with seasonal output from conventional generation and demand, and 
daily weather can drive variation in renewable output and demand). 

 
1 The intuition behind this result is that if one power producer can trade forward in a sequential market setting, it does, 
and obtains a Stackelberg leader position. However, if both power producers can trade forward, they do, and it gives 
rise to a prisoner’s dilemma, making both power producers worse off; but also reducing spot prices below what they 
would be without a forward contract market. Over many repeated periods, the competitive outcome is achieved. 
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Our recommended modeling approach differs from that of Bushnell and Novan (2018) in some 
important ways. We recommend expanding the analysis to a panel of data covering multiple 
ISOs in more recent time periods. Using a panel of data would allow for the inclusion of ISO-
level fixed effects to account for observable and unobservable differences across ISOs, which 
can improve our ability to control for unobserved confounders. Our recommended approach 
modifies the model in equation (1) (which was used to estimate short-term price impacts, in 
Section 2.2.1.2) by removing most of the fixed effects that control for long-run confounding 
trends. We instead recommend including controls for supply-related shifts that could affect 
prices. In addition to controls for natural gas prices, which control for shifts in conventional 
generation, we also recommend including a variable to control for hydropower production. 
Because hydropower generation could potentially respond to VRE power production, 
hydropower production could be endogenous. Following Bushnell and Novan (2018), we 
recommend including monthly precipitation from the National Oceanic and Atmospheric 
Administration to proxy for hydropower production potential. We also recommend controlling for 
supply-related shifts due to nuclear capacity. If nuclear capacity changes over the analysis 
period in any of the ISOs, it should be included in the model. Nuclear generation tends to be a 
baseload fuel and is unlikely to be correlated with VRE production. Additionally, following 
Bushnell and Novan (2018), we recommend including monthly fixed effects to control for 
seasonal shifts in production. All other controls remain the same as in the short-term model. 

𝑃B,C,#   =  𝛼D,#   +  𝛽(𝑆𝑜𝑙𝑎𝑟C,#   +  𝛽)𝑊𝑖𝑛𝑑C,#   +  𝛽*𝑁𝐺C   + 𝜃𝑿B,C,#   +  𝜀B,C,# (7) 

Where ℎ	indexes hour of day, 𝑑	indexes day, 𝑚	indexes month of the year, and 𝑖	indexes ISO. 
𝑃	is the average hourly real-time market price ($/MWh) in each ISO. 𝑆𝑜𝑙𝑎𝑟	and 𝑊𝑖𝑛𝑑	are 
aggregate daily levels of ISO solar and wind (GWh). 𝑁𝐺	is the Henry Hub natural gas price to 
control for supply-related shifts from conventional generation that may be correlated with 
renewable production. 𝑋	includes hourly ISO load a proxy for hydropower production and, 
potentially, nuclear generation at each ISO to control for potential supply-related shifts in 
hydropower or nuclear power capacity. Monthly fixed effects control for season shifts in supply. 
Errors are clustered at the ISO level. The coefficients of interest are 𝛽.and 𝛽/ ,	which represent 
average changes in the ISO real-time market price during hour ℎ	caused by a 1 GW increase in 
solar or wind generation. 

In future research, we also recommend examining how VREs impact capacity market prices 
specifically. Capacity markets tend to secure capacity to meet demand a few years in advance 
of when the capacity is needed. Examining the impact of increasing levels of VRE capacity on 
capacity market prices would require controlling for both supply and demand factors other than 
VRE capacity bid into the market that could influence the price of capacity. Other questions of 
interest for future research include if the ELCC approach to valuing VRE capacity contributions 
is superior to the historical performance approach. This question could be answered by 
examining capacity prices and resource adequacy during scarcity situations before and after 
ELCC implementation. 

An additional question for future research is to empirically investigate how capacity markets 
affect price volatility, and ultimately risk. 



PNNL-33470 

Revenue Sufficiency 49 
 

3.0 Revenue Sufficiency 
3.1 Background and Relevant Trends 

Electricity market revenues are sufficient when payments for energy, capacity, and flexibility 
cover the fixed and variable costs of providing those services. VREs can decrease average 
wholesale electricity prices through the merit-order effect. VREs can also increase price volatility 
with increasing frequency of negative prices. However, VRE intermittency can also lead to the 
need for more flexible resources. For example, when solar power tapers off for the day, it 
creates short and steep ramps that need to be met by power producers that can turn on and 
turn up quickly. But for those power producers to be available in the market, they need to earn 
sufficient revenue to cover both their fixed and variable costs. If these flexible power producers 
do not earn sufficient revenue to cover their fixed and variable costs, this revenue insufficiency 
can lead to a lack of adequate capacity and flexibility in electricity markets (Frew et al. 2016).  

Regardless of the current operating conditions, electricity supply must meet electricity demand 
every second of the day (within accepted tolerance levels to safely and reliably operate the 
electricity grid). To accomplish this delicate balancing act, market operators must have sufficient 
electricity supply available to meet the highest level of electricity demand. Under price pressure 
from VREs, expensive peaking generators—which may be infrequently required to meet peak 
demand—may not earn enough to stay in the market even though they are needed for reliability 
(Frew et al. 2016; NERC 2022). If payments from energy, capacity, and flexibility services are 
not sufficient (i.e., revenues are not sufficient), generators necessary for reliability may exit the 
market (Frew et al. 2016; Zhou et al. 2021).  

In electricity markets, net revenue is a measure of the total revenue received by power 
producers for energy, capacity, and flexibility services, less the variable costs of producing 
power. Net revenue measures the amount of money available to cover a power producer’s fixed 
costs. The gold line in Figure 17 shows the net revenue necessary for a hypothetical natural gas 
combined cycle unit to cover its fixed costs (estimated levelized fixed cost target) compared to 
the actual revenues that resource would have received in CAISO by year from 2016 to 2020. 
Net revenues have not been sufficient to cover fixed costs for several years across several 
geographic market zones (CAISO 2022b). 
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Figure 17. CAISO Net Revenues for Hypothetical Natural Gas Combined Cycle Unit 2016–

2021 Source: CAISO 2022a. 

However, in today’s electricity markets, revenue insufficiency is not limited to just those markets 
with high levels of VREs. As shown in Figure 18, PJM, a market with far fewer VREs, also had 
revenue insufficiency for a hypothetical natural gas combined cycles unit across several 
geographic market zones in recent years (Monitoring Analytics 2021). Parsing out the extent to 
which VREs contribute to revenue insufficiency—as opposed to other factors such as lower 
natural gas prices—is an area that needs to be understood to properly address the challenges 
of VREs on revenue sufficiency. 
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Figure 18. PJM Net Revenues for a Hypothetical Natural Gas Combined Cycle Unit. Source: 

PJM. 

In the related economic literature, most studies on the impact of VREs on revenue sufficiency in 
electricity markets focus only on the impact of VREs on energy revenues. However, in well-
functioning electricity markets, low energy prices could signal adequate capacity. On the other 
hand, low energy prices could fail to represent the long-run scarcity value of electricity and 
undermine both resource adequacy and investment incentives for new generation or 
maintenance of existing generation (Bielen et al. 2017). Because of the nuanced implications of 
low energy prices, the locational marginal price alone may not be a sufficient indicator of 
investment needs—especially as expanding renewables deployment increases price volatility—
instead, total cost to serve load should be considered (Grubb and Drummond 2018). To address 
this concern, Section 3.2 provided a comprehensive evaluation of the impact of VREs on 
revenue streams from energy, flexibility, and capacity markets, as well as other long-term 
contract mechanisms to identify how VREs affect revenue sufficiency in electricity markets. 

3.2 VRE Impacts on Revenue Sufficiency 

A recurring theme in the literature on how renewables affect electricity market price formation 
processes is that through both decreasing revenues and displacing more expensive resources 
through the merit-order effect, renewables make it more difficult for all resources to recover their 
fixed costs. Short-term and long-term energy market prices are all affected by VREs. The total 
revenues a resource receives from wholesale energy and ancillary service markets, as well as 
long-term payments for capacity through capacity payments or other mechanisms, including 
PPAs, determine a resource’s ability to cover its fixed and variable operating costs—and if it will 
continue to participate in an electricity market. In this section, we conduct a case study to 
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examine the impacts of VREs on revenue sufficiency. Because of the varied structures of 
electricity markets across the United States that impact how generators are remunerated, this 
section begins with an overview of electricity generator ownership models, generator owners, 
and compensation types. We then provide an overview of our methodology to assess changes 
to revenue sufficiency from a changing resource mix. We apply our methodology to a detailed 
case study on the revenue sufficiency of a California utility and discuss questions for future 
research. 

3.2.1 Electricity Generator Ownership Models  

In the United States, the markets and underlying policies regulating electricity sales vary 
considerably. As a result, electricity generators are often owned by a vertically integrated utility 
in regulated states, and independent power producers (IPPs) in deregulated states. For 
regulated entities, revenue sufficiency may be less likely of an issue, as they typically receive a 
guaranteed rate of return on owned assets. IPPs, on the other hand, are compensated through 
electricity markets or through PPAs. Utility conglomerates often have both regulated generators 
and IPPs as subsidiaries and operate in both regulated and deregulated markets. 

While these different corporate structures help inform the ways that generators are 
remunerated, compensation types also vary considerably by technology (Figure 19). 
Renewables are both much more likely to be owned by an IPP and to be contracted under a 
power purchase agreement. This is likely due to the non-dispatchable nature of the technology 
and geography. As an example, both California and Texas, which operate under restructured 
markets (or partially restructured, in the case of California), have large populations and excellent 
renewable resources. On the other hand, thermal plants are more likely to be owned by 
vertically integrated electric utilities and are frequently rate-based or used for bidding into 
competitive markets.  

 
Figure 19. Generator Owners and Compensation Types. Source: EIA-860. 

These ownership models have a significant impact on corporate revenues. Rate-based projects 
offer a rate of return on investment and can generally ensure a plant is profitable over its useful 
life. Likewise, projects with a PPA have stable revenues and, if priced correctly, ensure an 
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adequate return. Merchant projects do not see these stable revenues and are subject to market 
conditions. As a result, these projects are subject to greater risk. They may have an outsized 
impact on revenue as electricity markets evolve.  

3.2.2 Methods for Understanding Changing Need for Revenue Sufficiency  

Many metrics are used to evaluate the health of either a company or an industrial sector, 
including revenues, growth, share prices and profit margins. Utilities, especially, are expected to 
provide a steady rate of return for investors, providing stable and consistent dividends (Boyer 
and Ciccone 2009). However, the changes in generator remuneration may complicate this 
arrangement. We propose a method for examining changes to revenue for utilities using data 
from corporate filings, EIA data, FERC data, and PPA data collected by Lawrence Berkeley 
National Laboratory. Pairing these sources of data together will allow us to form an annual 
picture of revenue stemming from generators.  

Information found both in corporate annual reports to the U.S. Securities and Exchange 
Commission and EIA Form-860 allows us to determine ownership in energy generating projects. 
After categorizing projects by ownership share, we pair this information with data from EIA-923 
and FERC’s Electronic Quarterly Reports (EQR) to understand the generation profile for these 
plants. For plants with a PPA, generation is compared with PPA prices to understand annual 
revenue, while merchant revenue is derived to profits listed in corporate filings and, where 
necessary, FERC’s EQR reports. The remaining revenue from rated based power plants is 
derived from corporate filings and integrated resource plans. From this analysis, we can see 
revenue changes in response to a changing resource mix and the influence of remuneration 
methods on revenue sufficiency for specific companies. This analysis is conducted for one 
company below but could be replicated for other major utilities.  

3.2.3 Case Study – Evolving Revenue Streams in a Major IOU 

3.2.3.1 Company Overview  

As previous sections have included VRE impacts to CAISO’s short-term energy markets, with 
the selection of this case study, we also focus on changes to the CAISO market, choosing one 
Sempra Energy (parent company of SDG&E) as our case study. SDG&E is the smallest of the 
three California investor owned utilities (IOUs) and has had smaller electricity revenue impacts 
from legal settlements than the state’s other IOUs, PG&E and SCE.1 Sempra has a few 
business lines and corporate subsidiaries. The largest are SDG&E (a primarily retail gas and 
electricity provider), Oncor (a transmission and distribution utility in Texas), and Southern 
California Gas (primarily a retail gas provider). The company also maintained an IPP, Sempra 
Renewables, until 2018 when the company was dissolved and its assets sold. This transaction 
was part of a broader trend in the electricity industry, triggered by investor preferences. Some 
large infrastructure investors prefer to invest in these business lines independently (as opposed 
to investing through a larger conglomerate) leading to a heightened level of mergers and 
acquisitions during this period (Walton 2018).  

The company also maintains significant investments abroad, with liquified natural gas, 
generating, and retail sales assets in Central and South America. Though relevant to the 
company’s bottom line, we by and large exclude earnings from outside the United States for this 

 
1 Sempra did have wildfire and gas leak related settlements in 2017 and 2021 respectively, leading to 
lower margins and profits in those years (Figure 21) 



PNNL-33470 

Revenue Sufficiency 54 
 

analysis, as they do not pertain to revenue sufficiency in U.S. electricity markets. That being 
said, many utilities operate internationally as a strategy to grow revenue, diversify their asset 
base, and hedge against risk within specific geographies or markets.  

 
Figure 20. Sempra Fleet Characteristics 

In terms of the corporate fleet, Sempra’s generators are dominated by natural gas plants, 
though they owned a not insignificant portfolio of solar and wind generators (Figure 20). The 
renewables were sold through PPAs (as is typical for solar and wind projects) and the gas 
generating plants are being remunerated through the SDG&E rate-base. Though many 
generators bid into the CAISO market, the three IOUs maintain about 6.5 GW of rate-based 
capacity (primarily nuclear and natural gas) (CPUC 2022b). While this is a significant volume of 
capacity, it is small relative to the size of the state, which had nearly 82 GW of net summer 
capacity in 2021 (EIA 2022b).  

3.2.3.2 Revenue Streams  

SDG&E is a relatively large utility in terms of revenue, averaging about $10 billion in earnings 
between 2015 and 2021 (Figure 21). Its revenues have grown steadily over this period, while 
profits have been more inconsistent. Gas and its retail/vertically integrated electricity businesses 
both account for about half of total profits and revenues, with generation forming a much smaller 
portion of both profits and revenue. Large drops in electric (2017) and gas (2021) profits were 
the result of legal settlements. While electricity revenue has increased fairly steadily (a 25% 
increase between 2015 and 2021), gas revenue growth has been more dramatic (a 58% 
increase over the same period). Despite this, profit growth (excluding years when the company 
paid large legal settlements) was more subdued, with growth rates of 20–30%. This may 
indicate that to date revenues have been sufficient, with higher prices (primarily for gas) being 
passed through to customers rather than unfairly burdening either party.1  

 
1 California utilities are allowed to pass through the costs of purchased power and fuel directly to 
customers, and do not earn a rate of return on these purchases (CPUC 2022b).  
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Figure 21. Sempra Profits and Revenues over Time 

A more complicated picture emerges when we examine revenues and profits of the company’s 
wind and solar projects (Figure 22). Solar projects show both stable earnings and profits, 
highlighting some of the benefits of PPAs. Annual profits are generally quite high for solar 
considering the competitiveness of the PPA market. SDG&E records average profit margins of 
nearly 40%, while equity returns for operating utility PV projects are generally assumed to be 
closer to 10% (Feldman et al. 2020). This may be because the projects date to the earlier years 
of the solar PV industry when deals were inked at very high prices (over $100/MWh in some 
cases). Competition may have brought down returns since these were built.  

 
Figure 22. Profits and Revenues from Solar and Wind PPAs 

Sempra’s wind projects, on the other hand, do not break even in most years, though they report 
large impairment charges in some years (particularly 2018) stemming from the anticipated sale 
of the projects. This disguises some of the actual costs associated with these projects. Tellingly, 
these wind projects signed much lower PPAs than the company’s solar projects but included 
escalation rates (which many of the solar projects did not), so it is likely that Sempra intended to 
recoup many of these losses through earnings later in the PPA period.1 

 
1 PPA contracts are typically structured as buy-all sell-all agreements between the electricity purchaser 
and project operator. That is, the purchaser will agree to buy all (or in conjunction with other purchasers, 
a percentage) of the project’s output at a given price. As an example, a utility could agree to purchase 
50% of a project’s output at $50/MWh. Many, though not all, of these contracts include annual escalators, 
allowing the purchase price to increase at a predefined rate over time.  
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Figure 23. Corporate Margins 

Finally, despite changes to their business models, legal settlements, the sale and acquisition of 
companies, and the exit of their renewable PPA business, Sempra’s margins have been 
remarkably stable (Figure 23), ranging from about 65–78% for gross margins and 5–35% for net 
margins. Gross margins are high, as utilities generally have low costs of sales (operating costs 
and investment costs are proportionally higher). Large drops in net margin occurred in response 
to legal settlements, but the company otherwise did not see large spikes in profitability.  

3.2.3.3 Discussion  

Despite massive changes to the California energy market, Sempra has been relatively stable 
financially as a company. However, this in and of itself does not fully answer the questions of 
revenue sufficiency in a zero marginal cost electricity market. Sempra has substantial revenue 
stemming from its regulated gas and electricity holdings, which could be cushioning some of the 
financial risk. While rate-basing could help protect corporate earnings, it may result in higher 
costs for customers and less efficient outcomes (Cicala 2022). This would be less than ideal. 
However, when we examine renewables specifically, a more complicated picture emerges. 
Some of Sempra’s plants were extremely profitable, while others operated at a loss. Some of 
this may be attributable to timing and others to corporate strategy.  

Answering some of these more pertinent questions will require broader investigation. Analysis of 
merchant plants would show how disruption to electricity markets is impacting merchant 
generators. Likewise, a broader analysis of renewable projects could filter out any corporate 
strategy or market timing impacts. A broader geographic scope could also provide some 
lessons learned. For example, capacity markets could have an impact on revenues in a way 
that is only clear if they are compared to generation only markets. Evaluating broader impacts 
will be critical, as energy markets and earnings evolve in response to renewables and clean 
energy goals.  
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4.0 Market Power Monitoring and Mitigation 
4.1 Background and Relevant Trends 

The potential for exercising market power in wholesale electricity markets is again due to the 
unique characteristics of electricity markets—demand is inelastic, electricity cannot easily be 
stored, and electricity supply is relatively concentrated (e.g., due to network topology, 
transmission limitations, and inelastic demand, one or few suppliers may be able to raise price 
above marginal cost, exhibiting market power). These characteristics create opportunities for 
power producers to exercise market power when there are short-term supply and demand 
imbalances. Addressing market power in electricity markets is particularly difficult, as market 
power can either be vertical, where a single firm is vertically integrated, owning production and 
transmission, or horizontal, where a single firm controls a significant share of capacity in the 
market. In related electricity market literature, several studies have pointed to outcomes 
consistent with producers exercising market power even in restructured markets (Borenstein et 
al. 1999; Chen and Hobbs 2005; Puller 2007; Sweeting 2007; Hortaçsu and Puller 2008; 
Bushnell et al. 2008).1 

Market power has been partially addressed in electricity markets through pricing rules (such as 
price caps) that limit the ability of producers to exercise market power but, as discussed in 
previous sections, these pricing rules also distort price signals. For example, price caps may 
prevent scarcity or shortage prices from reaching the levels needed to incentivize investment, 
creating a missing money problem (Joskow and Tirole 2007; Milstein and Tishler 2019). The 
missing money problem is only a part of the issue. Price caps can also contribute to the 
reliability issues on the demand side. In theory, price caps reduce electricity retailers’ incentives 
to purchase power through long-term contracts (and hedge price risk) when the most they are 
willing to pay for electricity in the short-term market is the price cap (Wolak 2021). However, as 
seen in Texas in February 2021, even high price caps may not be sufficient to ensure a market 
solution to reliability, and other public policy interventions may be necessary. Because of the 
relationship between price caps and reliability, how market power is monitored and mitigated is 
a key consideration for how increasing levels of VREs impact market power, as price caps are 
one of the main tools for mitigating market power in electricity markets. 

To add to the challenge, increasing amounts of VREs create short, steep ramps that temporarily 
increase the need for flexible resources. As these flexible resources could potentially exercise 
market power in situations where they are one of few resources available to meet supply and 
demand imbalances, monitoring and mitigating market power may become more difficult. As 

 
1 All of the referenced studies provide evidence that historical electricity prices are more closely predicted 
by models that assume strategic behavior from participants rather than perfect competition. Borenstein et 
al. (1999) provide a survey of the literature and discuss characteristics of electricity markets which create 
opportunities for exercising market power that remain relevant today; Chen and Hobbs (2005) find that 
simulated prices in PJM using a Cournot model with a forward market approximated actual PJM prices, 
except in peak demand periods; Puller (2007) finds that historical prices in California could be best 
predicted by simulating strategic producer behavior with a Cournot model; Sweeting (2007) found firms 
exercised considerable market power in England and Wales, based on analyzing actual prices compared 
to prices predicted by a Cournot model; Hortacsu and Puller (2008) use a supply function equilibria (SFE) 
approach in Texas to examine the market after restructuring, and find that firms with large market shares 
behave as strategic oligopolists; Bushnell et all. (2008) find that in organized electricity markets 
throughout the United States, historical electrical prices are closely predicted by a Cournot model with a 
forward commitment.  
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evidence of this concern, Browne et al. (2015) found that returns to peaking resources 
increased significantly under high amounts of VREs. Further, with high amounts of VREs, 
competitive offers depend on the opportunity costs of operating resources (e.g., storage 
technologies), which increases the difficulty of monitoring markets for market power (Zhou et al. 
2021).  

4.2 Empirical Evaluation of VREs on Market Power 

Monitoring market power under the increasing penetration of VREs is challenging, as VREs 
cause short and steep ramps that need to be met by flexible resources, creating opportunities 
for those resources to exercise market power. Further, Somani and Tesfatsion (2008) point out 
that it is difficult to construct measures that reliably detect market power in electricity markets. 
However, the ability of resources to exercise market power also depends on the rules that 
govern the market, such as price caps that limit the exercise of market power. The existing 
structure of the market also defines the potential for resources to behave strategically and 
exercise market power. These market rules and structures need to be considered when parsing 
out the impact of increasing amounts of VREs on the exercise of market power. Although the 
focus of this review is on the ex-post impacts of VREs, in this section, we also review ex ante 
simulation literature to glean important insights for VREs and market power. 

In an early examination of the potential impact of large amounts of VREs on market power in 
Great Britain, Green and Vasilokos (2010) used expected wind projection and demand data for 
2020 to implement a supply function equilibria model. They found that in the presence of 
significant market power (assuming two firms owned all the remaining fossil-fuel capacity), 
market prices would more than double, while volatility of those prices would increase. However, 
average revenues of wind plants would rise by 20% less than baseload plants. Similarly, 
Twomey and Neuhoff (2010) examined the impact of increasing levels of wind power on market 
power in the Netherlands under different assumptions about the degree of market 
competitiveness (perfectly competitive, monopoly, and Cournot). They found that although wind 
resources decrease average market prices, conventional generators can raise market prices 
when little wind power is being produced. Forward contract markets reduce, but do not 
eliminate, this effect. Further, VREs benefit less from the exercise of market power than 
conventional resources. Mountain (2013) provided empirical evidence in support of Twomey 
and Neuhoff (2010) from the impact of wind on the South Australian Electricity Market. 

VREs also affect congestion in power markets, which could create opportunities for exercising 
market power. Using an agent-based modeling framework, Guerci and Sapio (2012) determined 
that although wholesale prices in Italy are lower due to the merit-order effect, conventional 
generators can exercise market power due to increased congestion from renewable resources. 
Bigerna et al. (2016) found similar impacts due to transmission congestion in Italy in more 
recent work. Because renewable energy resources increase transmission line congestion, they 
disentangled market power from transmission congestion rent by constructing a residual 
demand curve that considers transmission constraints. They then assessed market power by 
computing a zonal Lerner index (ZLI) that analyzes the correlation of market power, congestion, 
and renewable energy supply. They found that exercise of market power has considerably 
weakened during traditional peak hours due to renewable energy supply but has been 
reinforced in off-peak hours when markets split due to zonal congestion. Their findings point to 
flexible natural gas generators exhibiting market power during congested hours. 

Short run increases in wind power production reduce spot market prices due to the merit-order 
effect, which is well documented in the literature, but long-run effects are less clear as increased 
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wind power capacity also changes new investment in other types of resources. Browne et al. 
(2015) examined long-run impacts of increasing renewable energy on market power using a 
capacity expansion model to simulate new capacity investment, with an agent-based simulation 
model to find the (strategic) prices of the new resource mix. They found that exercising market 
power depends on individual firms’ ratio of capacity to peak demand. The intuition of this finding 
is that when reserve margins are narrow, it is optimal to build more peaking units, resulting in 
higher market prices. As wind capacity increases, average prices decrease, but the opportunity 
to exercise market power increases in some periods, with returns to peaker generators 
increasing significantly in the shoulder hours. 

Looking to the future, Ekholm and Virasjoki (2020) examined market power under a hypothetical 
100% VRE system. In this system, price formation is determined by demand and storage 
charging/discharging decisions rather than traditional merit-order supply costs. Although energy 
storage and elastic demand resolve temporal supply and demand imbalances, they find that 
market power can be exerted by both curtailing VRE and, to a lesser extent, by intertemporal 
storage decisions. However, they also point out that regulators could readily observe strategic 
curtailment decisions made by VREs. 

How increasing levels of VREs, energy storage, and more elastic demand affect market power 
in electricity markets is another important area for future research.  
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5.0 Impact of Incentives, Economic Trends, and Market 
Design 

5.1 Background and Relevant Trends 

Price formation and grid operational concerns due to VREs are driven by both climate regulation 
and economic incentives that reduce the cost and risk of these VRE capacity additions (Lee 
2021). For example, in the United States, energy tax credits to promote non-fossil-fuel 
resources have been available since 1978, with a marked increase in these tax credit 
expenditures for solar resources in recent years (Sherlock 2021). Many states also have clean 
energy or renewable portfolio standards (RPSs) that encourage the production of power from 
VREs. Figure 24 shows clean energy and renewable standards by state as of 2020. 

 
Figure 24. Clean Energy and Renewables Portfolio Standards. Source: DSIRE. 

Although the effectiveness of RPSs in driving increasing amounts of VREs is up for debate—
Upton and Snyder (2017) found little difference in renewable generation between states with 
and without RPSs—what is clear is that they provide other avenues for revenue, allowing VREs 
to be profitable even under negative energy prices. Further, increasing amounts of VREs have 
come online in recent years, concurrent with the availability of these various federal and state 
subsidies. Figure 25 shows U.S. electricity generation by major source, with a clear increase in 
VREs occurring in the last decade as a share of total generation. 
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Figure 25. U.S. Generation by Source. Source: EIA. 

Additionally, VRE costs have decreased significantly. Lazard (2021) estimates unsubsidized 
levelized cost of energy (LCOE) for wind and solar each year. Figure 26 shows the LCOE for 
wind and solar from 2009 to 2021. The LCOE estimates for wind and solar have decreased by 
72% and 90% from 2009 to 2021, respectively. When considering U.S. federal tax subsidies, 
the LCOE estimates have decreased by 77% for wind and 87% for solar from 2009 to 2021. 
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Figure 26. Subsidized and Unsubsidized Levelized Cost (in 2020 dollars) of Energy for Wind 

and Solar. Source: Lazard 2021. 

As a case in point, over the past two decades California has enacted regulations that encourage 
electricity production from VREs and reduce greenhouse gas emissions.1 These regulations 
have caused significant changes to the resource mix in California (e.g., from 2011 to 2020, 
California solar power production increased from 0.11% to 14.2% of total in-state generation).2 

But increasing amounts of VREs are not the only change that has occurred in the last two 
decades that significantly affect the electricity grid portfolio of resources, grid operations, and 
electricity prices. Post-2008, improvements in hydraulic fracturing techniques led to sustained 
decreases in natural gas prices and substantial natural gas generation (Joskow 2013). This 
decrease in natural gas prices, paired with increasing amounts of VREs, has also led to a 
remarkable decline in coal generation (Fell and Kaffine 2018).  

 
1 In 2002, California passed regulations to subsidize VREs, and in 2006 California passed the Global Warming 
Solutions Act. 
2 Data on California electrical energy generation available from the California Energy Commission at: 
https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/california-electrical-energy-
generation (accessed 1/26/2022). 
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As an example, Figure 27 plots the capacity factors of coal and natural gas combined cycle 
plants since 2011, indicating coal plants are also being used less while natural gas plants are 
being used more. 

 
Figure 27. Thermal Plant Capacity Factors 

The impact of increasing amounts of VREs on coal plant retirement is less clear cut, due to 
other factors such as SO2 emissions enforcement, planning reserve margins, variations in load 
growth, and age of plants influencing retirement decisions (Mills et al. 2017). 

Figure 28 shows trends in natural gas prices (in million dollars per British thermal unit) 
compared to coal capacity retirements (in megawatts) by year. In the post-2008 period there is a 
marked increase in coal plant retirement with a sustained decrease in natural gas prices.  

 
Figure 28. Coal Plant Retirements and Natural Gas Prices 

Additional changes to market design, such as expanding the footprints of existing markets to 
better balance VREs, are underway. For example, as discussed in Section 2.1.1, CAISO’s EIM 
market, launched in 2014 with PacifiCorp, has since extended membership to vertically 
integrated, rate-regulated balancing authorities across the West, as shown in Figure 29. With 
membership to the market, CAISO has offered enhanced grid reliability and improved 
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integration of VREs due to increased visibility of trades and CAISO’s sophisticated dispatch 
algorithm. 

 
Figure 29. Western Energy Imbalance Market 2021. Source: CAISO. 

Looking forward, as renewables are expected to continue to grow as a relative share of the 
generation mix,1 grid challenges can be expected to continue, with new market designs and 
operational responses required to balance the effects of VRE intermittency. However, because 
changes in the last decade have been driven by several factors, including increasing 
renewables, state- and federal- policy incentives that promote renewables or demote carbon-
intensive plants, and declining natural gas prices, the effects of these various drivers need to be 
disentangled to understand the true impact of increasing amounts of VREs on the grid. 

5.2 Empirical Evaluation of VRE Impacts from State-Level Incentives 
and Market Design  

In this section, we examine the empirical literature to understand how important policy and 
regime changes influence increasing levels of VREs, as well as how VREs impact climate-
related policy goals. We also discuss how market design can impact the successful integration 
of VREs. 

5.2.1 State-Level Incentives 

Various federal- and state-level policies encourage additional VRE investment. Although there is 
a building consensus in the literature that, due to the diminishing marginal revenue for additional 
VRE investments, policy incentives that encourage additional VRE capacity investments are in 
turn encouraging investment in resources that may have little market value (Wiser et al. 2017; 
Bushnell and Novan 2018), renewables portfolio standards remain a leading policy incentive for 
decreasing greenhouse gas emissions across the United States. While Upton and Snyder 

 
1 Based on data from EIA’s short term energy outlook, available at 
https://www.eia.gov/outlooks/steo/report/electricity.php#:~:text=We%20expect%20the%20share%20of,in%20the%20
electric%20power%20sector (accessed 1/28/2022). 
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(2017) did not find significant differences in renewable generation across states with and without 
RPS legislation, Greenstone and Nath (2020) found that RPSs lower emissions by 10–25%, 
while raising prices by 11%, seven years after their passage.1 RPS programs have played a 
significant role in U.S. climate policy, and states continue to adopt goals for future emissions 
reductions through clean energy standards (CESs). 

Figure 30 provides a visual overview of the difference in renewable resource requirements 
among states’ RPSs or CESs; darker green states are those with more stringent RPSs or CESs. 
Beyond the renewable or clean energy requirement (e.g., electricity supply from 100% of clean 
energy by a target year), some states also target specific technologies or disincentivize fossil-
fuel technologies. For example, in Washington State, the Washington Clean Energy 
Transformation Act requires coal plants within Washington to be eliminated by December 31, 
2025 (if not eliminated, the electric utility or affected market customer must pay an 
administrative penalty of $0.150/kWh); retail sales of electricity to Washington electric 
customers must be greenhouse gas neutral by January 1, 2030 (alternative compliance 
payments of $0.150/kWh for coal based, $0.084/kWh for natural gas based peaking power 
plants, and $0.060/kWh for natural gas combined cycle must be paid for each MWh of electricity 
used to meet load that is not electricity from a renewable resource or non-emitting electricity 
generation); there is no new hydro allowed except under tight restrictions; and, by January 1, 
2045, 100% of all sales of electricity to Washington retail electric customers must be from non-
emitting or renewable resources (SB 5116). 

 
Figure 30. RPS and CES Stringency. Source: Author's Depiction Based on Data from DSIRE 

and the National Conference of State Legislatures. 

To examine the empirical implications of climate-related policies, most studies use econometric 
techniques, such as difference-in-differences or synthetic control, to compare electricity prices in 
states that adopt an RPS or CES to those that did not adopt such standards before and after the 
implementation of the policy. There are a few key challenges for determining the effects of an 
RPS or CES, including controlling for endogeneity in policy adoption (if states that adopt an 
RPS select into that policy based on factors that affect future electricity prices, this will bias 
results) and the potential for RPS policy effects to spill over into other states, controlling for the 

 
1 Greenstone and Nath (2020) also point out that most RPSs also overstate their effect on net generation 
by grandfathering in existing renewable generation into statutory requirements. 
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effects of confounding climate policies, as well as addressing the potential for states to 
experience different effects from the RPS policy over time, which can bias results.  

Although research on the effect of RPS or CES on energy prices has been performed in the 
aggregate for average effects across states, less research has focused on the differential 
effects of different types of policies or regime changes in specific states. In future work, VRE-
inducing policy changes at the individual state level can be assessed using the synthetic control 
method. The synthetic control method addresses potential endogeneity in policy adoption by 
matching a particular state of interest (e.g., Washington) to a synthetic state (synthetic 
Washington), which is a weighted average constructed from other states with similar 
characteristics, where characteristics are chosen to account for those variables that both 
influence electricity prices and the adoption of VRE-inducing climate policies. 

5.2.2 Emissions Impacts 

The ultimate goal of climate-related policies and regime changes that encourage investment in 
VREs is to reduce greenhouse gas emissions through displacing emissions-intensive 
conventional generators. An important implication of these policies is to understand how well 
they work at reducing emissions. Actual emissions offsets depend on the type of generator that 
is on the margin, reducing its output in response to VRE generators. In the literature, a common 
empirical approach is to regress emissions variables against stochastic wind or solar 
generation, controlling for load and other confounding factors.  

Cullen (2013) examined the impact of wind generation on emissions in Texas, finding that, on 
average, wind generation reduced more emissions from gas generators than coal generators. 
Kaffine et al. (2013) examined the impact of wind generation on marginal emissions offsets in 
Texas, finding that increasing levels of wind generation resulted in a reduced emissions rate 
that varied over the course of the day. Novan (2015) also examined the effect of increased 
levels of wind generation in Texas, but did so with an instrumental variables approach—
instrumenting for wind power production with wind speed and direction—to account for the 
effect of wind curtailment. His findings were largely the same as Kaffine et al. (2013), who 
instead regressed emissions on stochastic wind generation (and did not account for 
curtailment), while controlling for demand and other confounding factors. Callaway et al. (2018) 
extended the temporal and spatial impact of VREs on marginal emissions reductions to their 
effect on investment incentives. They used variation in fossil-fuel production across days with 
similar demand profiles to predict a marginal emissions rate. They then applied that rate to 
simulated wind data to estimate investment costs for renewable resources under different wind 
and solar patterns. They found that emissions benefits vary significantly across regions, but not 
technologies. Further emissions reductions benefits make up a significant portion of the return 
on VRE investments. 

A potential model to determine the short-term impact of wind or solar on emissions offsets is 

𝐸!,#,6 = α! + 𝛽(𝑆𝑜𝑙𝑎𝑟!,# + 𝛽)𝑊𝑖𝑛𝑑!,# + 𝛽*𝑁𝐺! + 𝜽𝑿𝒕,𝒊,𝒋 + ϵ!,#,6 (8) 

Where t is the time index representing hour of day (ℎ), day of month (𝑑), or month of year (𝑚). 
The ISO of the observation is indexed by 𝑖. 𝐸!,#,) 	is the average hourly CO2 emissions for 
generator j, in ISO, i. 𝑆𝑜𝑙𝑎𝑟!,# and 𝑊𝑖𝑛𝑑!,# are hourly levels of ISO solar and wind (GWh). 𝑁𝐺! is 
the monthly Henry Hub natural gas price to control for supply-related shifts from conventional 
generation that may be correlated with renewable production. 𝑋!,#,) 	includes hourly ISO load to 
control for emissions-effects due to demand levels. Hourly correlation between wind or solar 
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output and demand that varies throughout the day is accounted for with hour-of-day fixed 
effects. Differences in generator emissions due to seasonality are controlled for with generator-
specific month and day-of-week fixed effects. Errors may need to be corrected for potential 
cross-sectional or serial correlation.  

5.2.3 Market Design Impacts 

Market designs are changing to accommodate the operational challenges of increasing amounts 
of renewable resources. An example is the Western EIM (EIM) introduced by CAISO to the 
Western electric region. The EIM extends a centralized, real-time market over a traditionally 
rate-regulated region. The EIM’s main benefits are that it improves economic dispatch by 
allowing CAISO to find the most economic generators in the combined EIM area, it creates 
diversification benefits from improving integration of renewable resources, and it improves grid 
reliability from increased transparency of transmission and generating assets across the 
Western electric region (Hogan 2017).  

Tarufelli and Gilbert (2021) examined how the EIM changed dispatch patterns and emissions 
outcomes across the Western electric region from 2010 to 2019 and found that there are 
significantly different effects on coal and gas generators. EIM market participation caused gas 
generators outside of California to increase power production and emissions during the evening 
ramp and night hours, when wind is a larger share of the generation mix. However, EIM 
participation caused coal generators to systematically ramp down in response to peak solar 
generation from California, reducing coal emissions. The change in dispatch patterns and 
emissions outcomes depend on the generation mix dispatched to meet renewable energy 
imbalances. 

As market designs continue to evolve to better integrate renewable resources, changes to the 
effective resource mix will be important in determining its climate impacts. However, as we 
transition to a zero marginal cost future with increasing amounts of clean energy resources, 
emissions impacts may become less of a concern. New challenges in price formation, revenue 
sufficiency, reliability, and market power mitigation are emerging for the zero marginal cost 
future.  
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6.0 Distributed Energy Resources: Demand Response and 
Energy Storage 

While VREs increase the variability of net load that needs to be met by dispatchable resources, 
other levers available to address this variability include DERs such as demand response and 
energy storage. Although most of these resources remain limited in their deployment due to 
barriers to adoption, economics, and other reasons (as will be discussed in the ensuing 
section), a review of existing trends and recent literature provides some themes for 
understanding how greater deployments of these resources could impact price formation 
processes in the future.  

6.1 Demand Response 

By making customers more responsive to prices, demand response better aligns customers 
willingness to pay for electricity with their actual consumption and incentivizes customers to shift 
or change their consumption in response to price signals, reducing peak demand and lowering 
the need for both power and transmission capacity (DOE 2006). Specific to price formation 
processes, Hurley et al. (2013) highlighted that demand response can reduce price volatility, 
improve the price-elasticity (price-responsiveness) of demand, and reduce energy prices for all 
customers. Figure 31 demonstrates that by reducing demand, demand response can reduce 
energy prices for all market participants. By reducing peak demand, demand response also 
limits generators’ ability to exercise market power (Zarnikau and Hallett 2008). 

 
Figure 31. Price-Reducing Effects of Demand Response. Source: Reproduced from Tarufelli 

(2020) based on DOE (2006). 

Demand response participation typically falls under two categories: (1) incentive-based 
programs that reduce customer demand during peak or critical demand periods by paying 
customers for demand reductions, or (2) price-based programs that reduce customer demand 
during high price periods by allowing customer rates to reflect real-time electricity costs (DOE 
2006; Chen and Liu 2017). Both types of participation have their challenges. In incentive-based 
programs customers are typically paid for a reduction in demand from their baseline or typical 
demand, thus establishing the baseline is critically important. In price-based programs, 
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customers need enabling technology, such as real-time metering, that allows customers to 
respond to market price signals. In addition, in price-based programs, a tradeoff between giving 
customers advanced notice of prices (as with time-of-use pricing), which reduces demand 
sensitivity, or exposing customers to real-time prices, which increases demand sensitivity (but 
also exposes customers to more price volatility), must be made. Cappers et al. (2012) found 
that mass market demand response could help integrate VREs but noted a range of barriers to 
participation for both types of demand response that remain relevant today. For price-based 
demand response, there is a need for real-time pricing coupled with automation and control 
technology. For incentive-based pricing programs, customers will need to be willing to 
participate in programs that feature short duration and frequent demand response events. 
Because demand response has experienced limited deployment due to barriers to participation 
as well as lack of access to enabling technology, empirical evidence of the effect of demand 
response on price formation processes tends to focus on results from pilot programs, barriers to 
participation, and opportunities for future deployment of demand response resources. 

Price-based demand response programs include both static and dynamic pricing programs 
where static programs include time-of-use rates that set prices for certain hours and days, and 
dynamic programs include both real-time pricing and critical-peak pricing, which allow prices to 
change on much shorter notice. Empirical research on price-based demand response programs 
tends to focus on pilot programs, which is how real-time or other dynamic pricing programs are 
currently implemented in the United States. Faruqui and Sergici (2010) performed a survey of 
15 dynamic pricing programs in the United States, finding that ownership of central air-
conditioning, the magnitude of the price increase, and enabling technologies (such as smart 
thermostats) were crucial for peak load reductions. In a meta-analysis of time-varying rate 
programs (mostly time-of-use) from 63 pilot programs, Faruqui et al. (2017) found that 
customers reduce peak loads in response to higher peak to off-peak price ratios, and peak load 
reductions are stronger when customers are provided with enabling technology. Echoing this 
finding, in a recent review of 83 demand response pilots and programs, Parrish et al. (2019) 
found that automation technologies increased reported price responses by 15%. However, 
Parrish et al. (2019) also pointed out that most pilots are static peak pricing or load control 
(discussed next), but more research is needed on more dynamic forms of demand response. 

Incentive-based programs can be either classical or market based (DOE 2006). Classical 
programs include direct load control and interruptible or curtailable load programs, whereas 
market-based programs include emergency demand response, demand bidding, ancillary 
service, or capacity market programs in the wholesale markets (DOE 2006). Parrish et al. 
(2019) surveyed nearly 52 demand response pilots and programs, of which 10 studies were on 
direct load control programs, and found that demand reductions from the baseline varied widely, 
ranging from 0% to nearly 80%, with variation in response driven by access to automation 
technology, the size of a customers’ baseline demand (customers with higher heating or air 
conditioning loads tended to have larger reductions), and whether the program was opt-in or 
opt-out. 

In their assessment of demand response participation, FERC (2021) found that although overall 
demand response participation (in the wholesale markets) decreased by 4% from 2019 to 2020, 
the percent of peak demand that could be met by demand response increased from 6% to 6.6% 
due to lower peak loads. Further, Parrish et al. (2019) pointed out that customer participation in 
existing demand response programs and pilots is often limited to less than 10% of the target 
population. To improve participation in demand response programs, several barriers to 
participation must be addressed. 
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As advanced metering infrastructure roll outs are underway across many regions of the United 
States, there is potential that an important barrier—access to enabling technology—may soon 
be overcome. However, O’Connell et al. (2014) found that establishing reliable control strategies 
and market frameworks to encourage participation remain key challenges for demand response. 
Reliable control strategies are necessary so that efficient communication can occur across a 
complex, diverse, and geographically distributed system. Market frameworks typically limit 
participation to emergency support and ancillary services (limiting participation in the day-ahead 
market) and require strict performance and telemetry standards (O’Connell et al. 2014). Dupuy 
and Linville (2019) documented several barriers that impede participation of demand response 
resources in wholesale markets, including complex market rules for participation, aggregation 
requirements that restrict participation by resource location and size, and requirements that 
resources be available 365 days per year, which may be infeasible for some types of demand 
response, including air conditioning loads. See Tarufelli et al. (2022) for an overview of current 
participation rules. However, the ongoing implementation of FERC Order 2222, which allows 
participation from third-party aggregators, will likely impact how demand response resources 
participate in the wholesale electricity markets; see Eldridge and Somani (2022). 

Other important barriers to participation relate to customer behavior and rate design. 
Customers’ risk perception, knowledge of enabling technologies, and exposure to actual energy 
prices (as opposed to other fixed charges) can all affect demand response participation and 
remain important areas for future research (O’Connell et al. 2014; Brown and Chapman 2021). 

Most studies that evaluate how demand response can help integrate VREs utilize ex-ante 
modeling approaches that assess the potential for flexible load to enable VRE integration in 
power systems; see Jordehi (2019) for a recent review of the literature. Some key themes are 
that demand response should reduce system peak and moderate variability in demand, 
reducing both system costs and VRE curtailment (De Jonghe et al. 2012; McPherson and Stoll 
2020). However, Parrish et al. (2019) point out that most modelling approaches overestimate 
the amount of demand response that will likely be achieved in electricity markets, highlighting 
that incorporating more realistic demand response details in modeling approaches is an 
important area for future research. Another important limitation in analysis of demand response 
programs and their interaction with increasing levels of VREs is that most empirical research is 
on a program-by-program basis, primarily due to data availability. As demand response 
increases across electricity markets, and data on demand response impacts becomes more 
widely available, studying the impact of demand response and its interaction with VREs at more 
aggregate levels is an important area for future research. 

6.2 Energy Storage 

Energy storage is another technology that has the ability to mitigate price formation impacts 
from VREs by price-arbitrage, charging when energy prices are low and sending power to the 
grid when prices are high, effectively balancing periods of over- and under-supply from VREs 
(O’Connell et al. 2014). However, energy storage remains limited in its deployment due to high 
costs of energy storage, although these costs are decreasing, as shown in Figure 32 (Wood 
Mackenzie 2021).  
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Figure 32. Median Storage Costs for Energy Storage Systems. Reproduced from Boff et al., 

2022 with data from historical Energy Storage System Price Trends through Q1, 
2021. Source: Wood Mackenzie 2021. 

Energy storage is comprised of a variety of technologies, each appropriate for different 
applications (Ibrahim et al. 2008; Tan et al. 2021). In reviews of the literature, both Akinyele and 
Rayudu (2014) and Tan et al. (2021) highlighted that energy storage has been shown to 
stabilize renewable output (Gabash and Li 2012; Lund et al. 2015); provide ancillary services 
such as reserves, power quality, and reliability (Gayme and Topcu 2012; Chong et al. 2016); 
reduce peak load; save overall system generation costs; and defer capacity investments 
(Gayme and Topcu 2012; Poudineh and Jamasb 2014). However, the findings in the literature 
primarily focus on the role of battery storage within models of the electricity grid and optimal 
control strategies rather than an empirical evaluation of actual battery performance. 

With respect to how energy storage can impact price formation and revenue sufficiency, a major 
focus is on energy arbitrage, or the ability of an energy storage system to store energy when 
prices are low or negative, and discharge when prices are high. However, the potential for price-
arbitrage depends on a variety of factors, including costs of generation for baseload and peak 
generators, penetration and coincident peak of VREs, availability of flexible resources, and daily 
demand profiles (Staffell and Rustomji 2016). Further, in a study of how different energy trading 
strategies would affect the value of arbitrage for pumped-storage hydropower and compressed 
air energy storage across four markets in Europe, Zafirakis et al. (2016) found that as markets 
integrate and become more efficient, the value of arbitrage was reduced, and thus additional 
revenues would be needed to support the cost of energy storage systems. That additional 
revenues would be needed to cover the investment costs of energy storage systems is a 
common finding in the literature (Staffell and Rustomji 2016). More recent literature considers 
stacked benefits (e.g., co-optimizing benefits from both energy and ancillary services) (Hittinger 
and Ciez 2020). 

One of the main limitations of wide-scale deployment of energy storage is due to the high costs 
of energy storage systems (Spataru 2022), although costs are rapidly decreasing (Hittinger and 
Ciez 2020). Policy changes, such as the energy storage mandate enacted by California in 2013, 
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are causing further decreases in storage costs, enabling economies of scale and learning by 
doing. Through difference-in-differences, synthetic control, and learning curve analyses, Boff et 
al. (2022) found that the cost reductions in energy storage systems costs attributed to 
California’s storage mandate are as much as $1,630 for a 1 MWh battery.1 

Other important limitations for widescale deployment of energy storage systems include the 
technological maturity of some systems, as there is a need to increase the capacity and 
efficiency of energy storage systems, as well as market and regulatory barriers that impede 
increased market penetration of storage technologies (Spataru 2022). 

Some important areas for future research in energy storage systems are to develop more 
standardized and generally applicable storage models (Hittinger and Ciez 2020), as well as to 
understand the actual (rather than expected) impacts of energy storage on price formation and 
other important services with empirical analysis as energy storage deployment increases in 
electricity markets.  

6.3 Looking to the Future 

Traditionally demand response focused on incentive-based programs that were adopted based 
on the predictable nature of electricity demand, but the introduction of increasing levels of VREs 
will require more flexible and continuous demand response (O’Connell et al. 2014). Chen and 
Liu (2017) highlight that transactive energy is a variant and generalized form of demand 
response, as it can align consumer behaviors with the needs of the entire system, maintaining a 
dynamic balance of supply and demand. Several recent transactive energy demonstrations and 
simulations have shown that transactive energy can be used to incorporate VREs and manage 
DERs to flatten load and reduce operational constraints, demonstrating an important option for 
the future management of the distribution grid (Hammerstrom et al. 2008, 2009; Widergren et al. 
2014a, 2014b; Samad and Bienert 2020; Reeve et al. 2022). 

 
1 These cost savings are only related to battery cells, non-battery costs can account for as much as 60% 
of total costs, so this is likely a conservative estimate of cost reductions induced by the mandate (Boff et 
al. 2022). 
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7.0 Conclusions and Next Steps 
With this in-depth analysis of electricity markets and literature review, we have identified several 
key challenges to electricity market design and operation from increasing levels of zero marginal 
cost resources, including their impacts on price formation, revenue sufficiency, reliability, market 
power monitoring and mitigation, and how state-level incentives and market design impact 
VREs and these challenges. Last, we consider how DERs, including demand response and 
energy storage technologies may help integrate and moderate the challenges of VREs. 

Key takeaways are that VREs displace more expensive, emissions-intensive generators in 
electricity dispatch, which reduces emissions but also causes short-term energy prices, on 
average, to decline. Short-term energy price impacts due to VREs vary temporally, 
geographically, and by the underlying resource portfolio. The variability in price impacts can also 
affect market power monitoring and mitigation. However, examining VRE’s impact on short-term 
energy price impacts alone is insufficient, as low energy prices could signal adequate capacity 
or inadequate investment incentives for generators necessary to keep electricity supply reliable. 
Obtaining a complete picture of revenue sufficiency requires examining VRE impacts to all 
potential revenue streams, including short-term energy prices, ancillary service prices, capacity 
and other long-term energy prices (including PPAs), and price volatility. 

In ancillary service markets, we find mixed results. Some research has found that VREs reduce 
both short-term energy prices and ancillary service prices, as these markets are typically linked. 
However, other research finds that VREs increase demand (and prices) for ancillary services. In 
capacity markets, research has found that increasing the capacity of VREs also decreases long-
term energy prices on average, but because the effect varies temporally (decreasing price in 
some periods while increasing prices in others, depending on VRE availability), increasing 
levels of VREs may undermine economic incentives for some conventional resources to stay in 
the market. 

Because PPA data has limited availability, we performed a case study on Sempra Energy, the 
parent company of SDG&E, to examine how revenues from VRE PPAs, as well as other short- 
and long-term revenue sources, affect overall revenue sufficiency. We found that while some 
renewables plants have been extremely profitable, likely due to the prevailing high prices at 
which the PPAs were signed, others have operated at a loss. 

Increasing levels of VREs may be driven by state- and federal-level incentives and climate-
related policies. We found that state-level renewable policies tend to increase short-term energy 
prices but have mixed results on emissions. However, we also identify the need for more in-
depth research on a state-by-state basis, as policies have significant heterogeneity in their 
enactment and implementation. 

Last, we find that although demand response and energy storage deployment remain limited 
due to barriers to adoption, economics, and other reasons, these technologies are expected to 
stabilize VRE output and reduce curtailment, reduce demand variability, reduce system peak 
load and save system costs, as well as contribute important ancillary services. 

Throughout our analysis, we have highlighted important questions for future research, especially 
in the less-studied areas of VRE impacts on ancillary services, capacity, and PPA prices. To 
conduct this research, we have recommended several empirical models which, when estimated, 
will contribute to the literature on understanding how VRE impacts market design and operation.  
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Questions for future research: 

• Short-term energy price impacts 
– We recommend a model for determining the short-term impact of wind or solar 

generation on spot market prices in equation (1). We recommend the model be 
estimated in three ways: (1) as a pooled regression across all ISOs and hours to 
understand how VREs impact average real-time market price across all ISOs, (2) as a 
separate regression for each hour of the day to examine how VREs impact real-time 
market prices over time, and (3) by ISO to understand how VREs impact real-time 
market prices over space. 

– We recommend that additional analyses be performed to examine the robustness of 
results to the impact of outliers in individual ISOs (e.g., the sensitivity of results to 
transmission congestion, generator outages, out-of-market actions, and extreme 
weather events). Future work could also expand our recommended modeling approach 
to a more granular level within ISOs, examining nodal price impacts, to understand the 
local impacts of VREs.  

– We identify that the impact of VREs on retail prices is an important area for future 
research. 

• Volatility impacts 
– We recommend a modeling approach that utilizes some combination of an MS-GARCH 

type model, as shown in equation (5)—that has the ability to capture both regime 
changes and asymmetries that are important volatility determinants—be adopted to 
model volatility in electricity prices 

• Ancillary service impacts 
– We recommend a modeling approach for estimating VRE price impacts on ancillary 

services that recognizes important drivers in the demand for and supply of ancillary 
services, including load variability, potential generator outages, wind or solar forecast 
errors, expectations of energy market prices (opportunity costs), and fuel costs. Our 
recommended model is shown in equation (6). 

– We also recommend a seemingly unrelated regression approach be applied to the short-
term energy price impact equation (1) and the AS equation (6) for co-optimized energy 
and ancillary services markets. 

• Capacity price impacts 
– We recommend a modeling approach that identifies the effects of increasing levels of 

VRE capacity on wholesale market prices, as shown in equation (7). 
– We also identify questions for future research, including examining how VREs impact 

capacity market prices, examining if the ELCC approach to valuing VRE capacity 
contributions is superior to the historical performance approach, and examining how 
capacity markets affect price volatility and, ultimately, risk. 

• Revenue sufficiency impacts 
– We recommend expanding our case study methodology to a broader set of firms and 

markets to understand how energy markets and earnings are evolving in response to 
renewables and clean energy goals. 

• Market power monitoring and mitigation 
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– We identify how VREs, energy storage, and more elastic demand affect market power in 
electricity markets and that this is an important area for future research. 

• Impact of incentives, economic trends, and market design 
– We recommend the impacts of state-level policies that encourage adoption of VREs or 

other changes to the resource mix be examined in more detail, potentially using the 
synthetic control method. 

– We recommend a model to determine the short-term impact of VREs on emissions 
offsets in equation (8). 

• Distributed energy resources: demand response and energy storage 
– We recommend an in-depth examination of barriers to demand response deployment 

and how they can be addressed. 
– We recommend development of modeling approaches with realistic amounts of demand 

response integration. 
– We recommend that as demand response increases across electricity markets, and data 

on demand response impacts becomes more widely available, studying the impact of 
demand response and its interaction with VREs at more aggregate levels. 

– We recommend an in-depth examination of barriers to energy storage deployment and 
how they can be addressed. 

– We recommend development of  more standardized and generally applicable storage 
models. 

– We recommend studying the actual impact of energy storage and its interaction with 
VREs at more aggregate levels on price formation and other important services as 
energy storage deployment increases in electricity markets and data becomes more 
widely available. 
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Appendix A – Volatility Price Impacts 
A.1 Volatility Price Impacts 

A.1.1 ARCH/GARCH 

ARCH stands for autoregressive conditional heteroskedasticity. The name of the ARCH model 
implies that the model works with time-varying variances (i.e., heteroskedasticity) that depend 
on lagged effects (i.e., autocorrelation). The popularity of this model stems from its variance 
specifications, which can capture commonly observed features of the time series of financial 
variables. It is useful for modeling volatility and especially changes in volatility over time.  

However, some of the weaknesses are that it often requires many parameters and a high order 
of the ARCH term to capture the dynamic behavior of conditional variance; this tends to 
overpredict the volatility since it responds slowly to isolated shocks in returns, and it fails to 
capture the leverage effect (Schmidt 2021).  

GARCH stands for generalized autoregressive conditional heteroskedasticity (Bollerslev 1986). 
The difference between ARCH and GARCH stems from the inclusion of a moving average along 
with the autoregressive component. The GARCH model allows for a more flexible lag structure 
by imposing nonlinear restrictions that enable reduction in the number of parameters in the 
model, thus addressing one of the limitations of ARCH. More simply, GARCH is the 
autoregressive moving average (ARMA) equivalent of ARCH.1  

Both ARCH and GARCH fail to capture the asymmetric relationship between asset returns and 
volatility changes.  

Nelson’s (1991) EGARCH model has been shown to overcome the weaknesses of the 
symmetric models—in particular, the leverage effect. 

Variants of both ARCH and GARCH models have been used in the context of forecasting 
electricity prices, even in the context of renewables. For a more detailed mathematical 
formulation of the ARCH and GARCH models, please refer to Greene (2007) (chapter 21) and 
Hamilton (1994) (Chapter 21). 

Table A.1. Example Applications of ARCH-GARCH Models 

Authors Title Model 

Hua et al. 2005 
Electricity Price Forecasting 
based on GARCH model in 
Deregulated Market 

GARCH 

Garcia et al. 2005 
A GARCH Forecasting Model to 
Predict Day-Ahead Electricity 
Prices 

GARCH 

Hickey et al. 2012 

Forecasting hourly electricity 
prices using ARMAX–GARCH 
models: An application to MISO 
hubs 

ARMAX-GARCH 

 
1 https://web-static.stern.nyu.edu/rengle/GARCH101.PDF 
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Authors Title Model 

Wang et al. 2022 

Forecasting renewable energy 
stock volatility using short and 
long-term Markov switching 
GARCH-MIDAS models: Either, 
neither or both? 

Markov switching GARCH-
MIDAS 

Shen and Ritter 2016 Forecasting volatility of wind 
power production 

Markov Regime Switching-
GARCH 

 

A.1.2 ARIMA/ARIMAX/SARIMAX 

ARIMA is a class of models that explains a given time series based on its own past values (i.e., 
its own lags and the lagged forecast errors) so that the equation can be used to forecast future 
values. If the time series is non-seasonal, then a simple ARIMA model can be used. If, however, 
there are seasonal patterns in the time series, then a seasonal ARIMA (SARIMA) model needs 
to be deployed.  

Within the ARIMA class of models, there is another subset—the auto-ARIMA—that combines 
auto regression, differencing, and a moving average into a single model.  

ARIMAX is similar to ARIMA, however it also considers independent variables create more 
exact forecasts. Auto-ARIMAX is similar to auto-ARIMA in that it combines autoregression and 
moving average to provide reliable forecasts after calculating the optimal values for certain 
parameters automatically and differencing the historical data to make it stationary if the need 
arises. However, auto-ARIMAX also considers independent variables (e.g., temperature or 
gross domestic product) that can explain various changes in the time series and help in creating 
more exact forecasts. This method of forecasting is suitable when the enterprise wishes to 
forecast data that is stationary/nonstationary, and multivariate with any type of data pattern (i.e., 
level/trend /seasonality/cyclicity).  

If the auto-ARIMA also has a seasonal component to it, then it is a SARIMAX.1  

While ARIMA models are quite capable at modeling the overall trend of a series along with its 
seasonal patterns, they do not perform quite as well when dealing with outliers/extremes (i.e., 
values that fall outside the norm). For a more rigorous mathematical formulation of ARIMA and 
its extensions, please refer to Greene (2007) (chapters 19-22) and Hamilton (1994) (chapter 3). 

 
1 https://www.scmconnections.com/get-smart/simple-guide-auto-arima-sarima 
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Table A.2. Example Applications of ARIMA/SARIMA/SARIMAX Models 

Authors Title Model 

Zhao et al. 2017 
Improving short-term electricity 
price forecasting using day-
ahead LMP with ARIMA models 

ARIMA 

Basmadjian et al. 2021 

Day-Ahead Forecasting of the 
Percentage of Renewables 
Based on Time Series Statistical 
Methods 

SARIMAX, SARIMA, ARIMAX 

 

A.1.3 Regime Switching Models/Markov Switching Models 

The Markov switching model of Hamilton (1989), also known as the Regime Switching Model, is 
one of the most popular nonlinear time series models in the literature. Traditional time series 
models assume that one set of model parameters can be used to describe the behavior of the 
data over all time. This assumption is limiting in the context of real-world data. This is where 
regime switching models come in. They characterize the data as falling into different recurring 
“regimes” or “states,” thus allowing the characteristics of the time series data (mean, variance 
and model parameters) to change across regimes with the probability that the series may be in 
any of the regimes and may transition to a different regime.1 

More formally, regime switching models are models that allow parameters of the conditional 
mean and variance to vary according to some finite-valued stochastic process with states or 
regimes. The regime changes reflect, or aim at capturing, changes in the underlying financial 
and economic mechanism through the observed time period (Lange and Rahbek 2009).  

Though Markov switching models have been used and proven to be useful in a wide range of 
contexts, like all models, they have some drawbacks. Most importantly, Diebold and Rudebusch 
(1994) and Kim et al. (2008) assume that the Markov chain determining regimes is completely 
independent from all other parts of the model, which is extremely unrealistic in many cases. 
Additionally, the Markov chain that determines the state of the regime in virtually all of the 
existing switching models is assumed to be strictly stationary and cannot accommodate non-
stationarity in the transition probability. This assumption can be restrictive, especially if the 
transition is strongly persistent (Chang et al. 2017). 

For a more rigorous mathematical exposition on Markov switching models, please refer to 
Greene (2007) (chapter 22) and Hamilton (1994) (chapter 22).  

Table A.3. Example Applications of Regime Switching/Markov Switching Models 

Authors Title Model 

Cifter 2013 

Forecasting electricity price 
volatility with the Markov 
switching GARCH model: 
Evidence from the Nordic electric 
power market 

Markov switching GARCH 

 
1 https://www.aptech.com/blog/introduction-to-markov-switching-models/ 
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Wang et al. 2022 

Forecasting renewable energy 
stock volatility using short and 
long-term Markov switching 
GARCH-MIDAS models: Either, 
neither or both? 

Markov switching GARCH-
MIDAS 

Shen and Ritter 2016 Forecasting volatility of wind 
power production  

Markov Regime Switching-
GARCH 

 

A.1.4 MIDAS Models 

Missed data sampling (MIDAS) models are regressions that involve time series data sampled at 
different frequencies. A typical time series regression model involves data sampled at the same 
frequency. The interest in MIDAS regressions addresses a situation often encountered in 
practice where the relevant information is high frequency data, but the variable of interest is 
sampled at a lower frequency. Because MIDAS models involve regressors with different 
sampling frequencies they are not autoregressive models, since autoregression assumes that 
data are sampled at the same frequency in the past. MIDAS models share some features with 
distributed lag models but also have unique novel features. More formally, MIDAS models 
specify conditional expectations as a distributed lag of regressors recorded at some higher 
sampling frequencies (Ghysels 2004).1 For a more rigorous mathematical description of MIDAS 
models, please refer to Armesto et al. (2010). 

Table A.4. Example Application of MIDAS Models 

Authors Title Model 

Wang et al. 2022 

Forecasting renewable energy 
stock volatility using short and 
long-term Markov switching 
GARCH-MIDAS models: Either, 
neither or both? 

Markov switching GARCH-
MIDAS 

 

A.1.5 Bayesian Models 

Bayesian models for modeling volatility are simply extensions of all the frequentist models but 
with a conditional probability aspect tagged on to it. In situations where the parameter space is 
large, as compared with the available number of observations, Bayesian estimation methods 
(where priors from literature are employed) outperform the frequentist models. For a more 
thorough introduction and approach to Bayesian methods and their applicability, please refer to 
Koop (2003). 

 

 
1 https://www.sr-sv.com/nowcasting-with-midas-regressions/ 
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