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Introduction 
Machine Learning (ML) classifiers may help support power grid operators by identifying 
important events on the grid.  However, even the most higher performing ML will 
occasionally misclassify events (Zhang, Liao & Bellamy, 2020).  For example, imagery 
data with small distortions due to variability in format and image compression may cause 
a classifier to misclassify these images (Zheng, Song, Leung & Goodfellow, 2016).  Power 
grid operators understand the classifier’s potential for error, but they may be less clear 
about when these errors are likely to occur and conversely when the tool’s classification 
can be trusted with an accurate recommendation.   

To provide some guidance, developers can display a confidence score associated with 
each classification to communicate the tool’s confidence in its decision.  Although 
confidence scores may serve as a useful guide for some classifications, for other events, 
the tool’s confidence may not be a good indicator of its own performance.  For some 
classifiers, confidence scores can ‘deviate substantially from their true outcome 
probabilities’ (Zhang et al., 2020, p. 298).  In addition, these confidence scores suffer from 
the same lack of transparency as the underlying classifications.  The operator does not 
understand the underlying analytical processes that led to both the classifications and 
associated confidence scores.  This lack of understanding may lead to automation bias if 
the operator replaces their own assessment of the situation with an automated system’s 
incorrect recommendation (Mosier, Skitka, Burdick & Heers, 1996).  Wickens, Clegg, 
Vieane and Sebok (2015) found that automation bias experienced during a process 
control simulation degraded participant’s ability to diagnose faults in the automation and 
increased operator workload.  On the other hand, lack of understanding may lead to 
algorithm aversion which is a tendency to avoid recommendations offered by algorithms 
in favor of human judgment despite the potential performance benefits of relying on such 
technology (Dietvorst, Simmons & Massey, 2015).   

With our FY22 funds, we executed a pilot demonstration of our methodology for 
developing an expert derived confidence score and associated qualitative descriptions to 
accompany an ML classifier’s classification decision.  The score and qualitative 
description are intended to help operators calibrate their trust and reliance on the tool 
(i.e., know when to accept or reject an ML classifier’s classification decisions). This 
methodology provides a way for operators to receive guidance from a domain expert who 
also has a clear mental model of the error boundaries of the ML classifier.   

The pilot demonstration involved a Learning Phase where our domain expert learned the 
error boundaries of an ML model for classifying power systems data.  This phase was 
followed by a Scoring Phase.  In this Phase our expert rated their confidence in the 
model’s ability to accurately classify a subset of events in the training data.  Next, we 
assessed the predictive power of the expert derived confidence scores compared to the 
ML’s traditional uncertainty quantification score.   
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Machine Learning Classifier 
The machine learning algorithm chosen for the pilot demonstration was the support-vector 
machine (SVM). SVM is a conventional machine learning algorithm that is successful in 
many applications (Cristianini 1992). A SVM forms hyperplanes to separate the training 
data into different categories and to predict new data according to such separations in the 
feature space. SVM is usually good at handling high-dimensional data when using radial 
basis function kernel, which is the kernel of our choice. During the model training process, 
repeated cross validation has been applied to fine-tune the hyper-parameters of SVM to 
avoid over-fitting.  

The uncertainty quantification was provided by the softmax equation in the caret package 
in R (Kuhn 2008).  The softmax equation was selected based on previous research.  In 
past work the softmax equation generated scores that most closely aligned with the 
current model’s performance when compared to other equations for generating 
uncertainty.   
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Data 
Data Overview  

The initial data set in our study included the real-world phasor measurement unit (PMU) 
data of power system events from the Eastern Interconnection in the US. The events are 
classified by a power system engineering expert into two categories, namely generator 
tripping events and other frequency events as ground truth for the following analysis, 
since the generator tripping events are of much more interest than the other types of 
events within the data set. The time range of this data set is from July to December 2018. 
The data set contains 42 generator tripping events and 165 other frequency events. Each 
event is captured by a one-minute window of PMU data of two types of channels, the 
frequency channel and the phase angle difference (PAD) channel. This data set is used 
for training the machine learning classifier. 

PMU data are time series data and must be distilled into several features that the model 
can be trained on. The features used are the 16 signatures developed in work by Amidan 
(2005), as well as six frequency multi-channel features and six PAD multi-channel 
features. The detail descriptions of all the features can be found in (Follum 2020). 
 

Data Selection  

We selected a subset of 124 events from the training data.  The events consisted of five 
types: 

• False Positives (FP) – The ML classified these events as Generator Trips but they 
were actually Other Frequency events. 

• Misses – The ML classified these events as Other Frequency events but they were 
actually Generator Trip events.   

• Near Neighbor FP – Each FP had two near neighbor events (one Generator Trip 
and one Other Frequency event).  These events were closest in latent space to 
the FP.   

• Near Neighbor Miss – Each Miss had two near neighbor events (one Generator 
Trip and one Other Frequency event).  These events were closest in latent space 
to the Miss.   

• Exemplar – These events included only correctly classified events that were not 
near neighbors.  Exemplars were also selected based on their similarity to each 
other.  Events that were dissimilar from each other based on their distance in latent 
space and visual inspection were selected.   

A primary goal of the method was for the SME to learn the performance boundaries of 
the ML classifier.  The Learning Phase was designed to encourage learning by giving 
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SMEs the environment and structure to study the various types of misclassified events 
and contrasting them with correctly classified events. The research team needed to 
provide the SME with a representative sample of misclassified events and this focus on 
misclassified events became the primary factor determining the total number of events 
selected for the learning and scoring phases.   

Our ML classifier was 85% reliable which provided us with far fewer misclassified events 
to choose from when compared to correctly classified events.  Of the 28 FPs in the training 
data, we selected 20 FP events. Although 20 was not the total number of FP events, it 
represented the large (71%) representative majority of FP events in the data, and we 
believe reflected the diversity of FPs in the training data.  The ML only missed 8 generator 
trip events. This small number made it manageable for the SME to work with the entire 
population of missed events. Therefore, we selected all 8 events from the training data.   

Each misclassified event had a Near Neighbor FP and a Near Neighbor Miss selected for 
our method.  Near Neighbor events were identified using the dynamic time warping 
method of calculating similarities between time series data (Keogh, 2005). This method 
can account for the different event starting times within the one-minute data window.  By 
accounting for these differences, dynamic time warping provides a more accurate 
similarity measurement considering the various events within the data set compared to 
more traditional similarity measurements such as L1 or L2 norm.  The Near Neighbors 
allowed the researcher to compare and contrast each misclassified event to similar events 
that were correctly classified.   

All correctly classified events that were not identified as Near Neighbors were eligible for 
selection as Exemplar events.  The research team selected 10 Exemplar events for each 
class (Generator Trip Events, Other Frequency Events).  To guide selection, we 
calculated the similarity of the elidable Exemplar events using dynamic time warping and 
selected events with the highest degree of dissimilarity based on both dynamic time 
warping results and visual inspection.  Dissimilarity was prioritized to provide the SME 
with a visually diverse sample of Exemplar events.  All event types were divided equally 
into two groups and assigned to either the Learning or Scoring phases (see Table 1).   

Table 1.  Number of Events for the Learning and Scoring Phases by Class and Event Type 

Type 
Learning Phase Scoring Phase 

Total 
Gen Other Gen Other 

FP  10  10 20 
Miss 4  4  8 

Near Neighbor FP 10 10 10 10 40 
Near Neighbor Miss 4 4 4 4 16 

Exemplar 10 10 10 10 40 
Total 28 34 28 34 124 

Note. Gen refers to the Generator Trip Event Class, Other refers to the Other Frequency Event 
Class  
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Generating Human Derived Confidence Scores and 
Qualitative Descriptions 

Subject Matter Expert 

One participant was our Subject Matter Expert (SME).  This participant has a background 
in power systems analysis and real-time simulation of large-scale transmission and 
distribution networks using electromagnetic and long-term dynamic models. The 
participant was also previously a technical trainer for transmission system operators, 
balancing authorities, and reliability coordinators working in transmission control rooms 
worldwide.  

Learning Phase 

The research team used the software platform MURAL to conduct the learning phase.  
MURAL is a digital white board that can be accessed by remote collaborators for 
synchronous and asynchronous collaboration and allows teammates to import and 
manipulate images. In the Learning Phase all five types of events were visually displayed 
on MURAL for a total of 62 events.  Each event was labeled on MURAL according to its 
Class and Type and was assigned a unique ID number within its Type.  The ID numbers 
of the misclassified events matched their near neighbor event ID numbers so that the 
SME could track these associations on MURAL.  In the example below we see an FP 
event in the center of two Near Neighbor events (see Figure 1).  The numeric ID ‘3’ 
distinguishes this FP event from the other FP events in the Learning Phase.  To the left 
and right of FP_3 are its near neighbors which were also assigned the label ‘3’ to indicate 
that they are near neighbors of FP_3.  Both start with ‘FPNN’ which stands for False 
Positive Near Neighbor.  The two Near Neighbor events differ by Class.  The Near 
Neighbor on the left is a generator trip event and is assigned the label ‘Gen’.  The Near 
Neighbor event on the right is an Other Frequency event and is assigned the label ‘Other’.  
FP_3 does not need an explicit class designation because all FPs belong to the Other 
Frequency event class.     
 
 

 
Figure 1.  Example Labeled Events as they were displayed on MURAL during the Learning 

Phase.   
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Using both the visual profile of the time series data and their knowledge of model 
performance for each event (i.e., correctly classified or misclassified), the SME organized 
the events into categories that were meaningful to them and provided a label for each 
category.  This exercise allowed the SME to see subtle distinctions between events that 
are typically misclassified and those that are similar, but correctly classified by the model 
(i.e., Near Neighbor events). The sorting task was intended to stimulate critical thinking 
and learning of the performance boundaries of the model by providing visual clues into 
why the model might be misclassifying particular events.  By developing a rich mental 
model of the classifier the goal was for the SME to successfully predict when 
misclassification is likely to occur and provide an informed explanation for their prediction. 
Card sort tasks are commonly employed in human factors psychology as a technique for 
understanding humans’ mental models (Smith-Jentsch, Campbell, Milanovich & 
Reynolds; 2001; Wright, et al. 2020).   

Step 1. The sorting task was largely self-guided because the researchers did not want to 
constrain the SMEs mental model development.  The SME in our pilot demonstration of 
the method choose to divide the sorting task into two steps.  In the first step the SME 
classified the events using their domain knowledge independent of how the ML classified 
the events.  The purpose of this step was to become familiar with the characteristics of 
generator trip and other frequency events unique to the particular data set. The SME used 
their knowledge of three specific domain characteristics to guide grouping of generator 
trip events. The domain characteristics include the following: 

• The magnitude of the frequency decrease corresponds to the size of the unit that 
tripped.  For example, loss of a large unit results in a large frequency drop and loss 
of a small unit causes smaller decreases in frequency. 

• The Rate of Change of Frequency (ROCOF) during the event corresponds to the 
total spinning inertia of the system.  Reduced inertia due to either high renewable 
penetration or fewer online generators during light load conditions results in faster 
decreases in frequency. 

• The rate at which the system recovers after the event.  This characteristic has no 
impact on the SME’s determination of whether an event is generator trip. It is just 
an effect of how quickly turbine governors respond to the disturbance. 

Knowledge of these characteristics helped the SME sort the Generator Trip Events into 
one of four categories: 

a. Events with “textbook” generator tripping characteristics including a large 
frequency drop and some oscillations due to control system overshoot. 

b. Events with very fast frequency drops (high ROCOF) 

c. Events with small frequency decrease associated with tripping of a small generator 

d. Events with quick system recovery after the event 
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Example events from each category can be seen in Figure 2. 

 
Figure 2.  Example events from each Generator Trip class category created in step 1 of the 

learning phase 

 

In the first step, Other Frequency Events were also organized into groups based on 
distinct features that differentiated these events from Generator Trip Events.  These 
features include the following 

Lack of change in frequency 

• Linear decreases in frequency 

• Increases in frequency 

• Decreases in frequency that are too slow (low ROCOF) 

• Decreases in frequency that have the wrong shape 

• Harmonic distortion (possibly caused by inverter-based renewable generation) 

Knowledge of these characteristics helped the SME sort the other frequency events into 
one of four categories: 

a. Events with no change in frequency 

b. Events that increase in frequency 

c. Events that have both incorrect concavity and harmonic distortion 

d. Events with a very slow decrease in frequency (very low ROCOF) 

Examples of these characteristics are shown in Figure 3. 

a) b) c) d) 
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Figure 3.  Example events from each other frequency event class category created in step 1 of 

the learning phase 

 

Step 2. In the second step the SME set out to identify characteristics that were associated 
with the ML’s classification decisions (i.e., correct or incorrectly classified events). This 
step focused primarily on those event characteristics that appeared to lead to 
misclassifications (i.e., Misses or FPs). During a post learning phase debrief the SME 
stated there was no apparent pattern to the correctly classified images.  Therefore, he 
developed an opinion that the classifier would identify an event correctly if the event did 
not contain any features associated with misclassifications. 

The SME observed no characteristic pattern among Miss events other than the similarity 
of the last 600 data points to the other frequency event nearest neighbor.  However, the 
SME did not believe this similarity provided insights into the classification decisions. FP 
events were grouped by a set of visual characteristics (some of which were informed by 
the SMEs domain expertise).  Characteristics that appeared to be associated with false 
positives included the following:   

• “Bumps” in the middle of the data series 

• Harmonic distortion 

• Large spikes in frequency 

Events that had these characteristics were grouped together on the MURAL board.  
However, it is important to note that these groupings contained both correctly classified 
events as well as FPs.  The groupings associated with harmonic distortion and large 
spikes can be seen in Figure 4. 

a) b) c) d) 
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Figure 4.  Portion of the MURAL board that shows the SME’s categorization of FP events into a 

Noise/Distortion group and a Spikes group (both highlighted in red).    

 

Scoring Phase  

Questionnaire. The research team developed a questionnaire to capture SME confidence 
scores and explanations for each event in the Scoring Phase data set (see Table 1).  SME 
scores and descriptions were recorded on a questionnaire posted to the project’s 
Microsoft Teams page where it was accessed and completed by the SME.  Each page of 
the questionnaire displayed a different event from the dataset and, unlike events in the 
Learning Phase, these events were not labeled to indicate their class or type. For each 
event, participants were asked to identify the event as either a Generator Trip or Other 
Frequency Event.  Participants were also asked to provide a likelihood rating from 0 to 1 
that the ML will correctly classify the event.  This likelihood rating served as the 
participant’s confidence score for that event.  For the final item the participant was asked 
to provide the reason for their likelihood score in one to two sentences. The presentation 
order of events in the questionnaire was randomized.  See Appendix A for a sample event 
from the questionnaire.    

SME Scoring Strategy.  The SME spent 3 hours completing the questionnaire.  In the 
Learning Phase debrief the SME reported that the number of events for each type in this 
Phase heavily influenced his perception of the overall reliability of the ML classifier.  In 
the Learning Phase the ML correctly classified 24 of the 28 Generator Trip events (i.e., 
86%) and correctly classified 24 of 34 Other Frequency events (i.e., 71%). The SME used 
these percentages to shape his confidence in the ML.  He reported that overall he was 
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90% confident that Generator Trip events would be correctly classified and 70% confident 
that Other Frequency events would be correctly classified.  In this instance the SMEs 
perception of overall reliability was fairly close to the actual 85% reliability.  Future work 
should continue to match the proportion of misclassified to correctly classified events in 
the Learning Phase to overall classifier reliability since this proportion may influence 
perception of ML reliability.   

The SME started with these initial estimates of the classifier’s overall reliability as his  
baseline confidence for scoring each event.  He then evaluated the event’s characteristics 
in search of possible indicators of ML misclassification identified in the Learning Phase.  
The presence or absence of these indicators caused the SME to adjust his likelihood 
rating of the event from his baseline estimate. The SME kept the MURAL board open on 
a second external monitor as a reference when evaluating each event in the Scoring 
Phase. For some events, part of the evaluation included not just whether the event had a 
characteristic associated with a misclassification, but also the ratio of correct to incorrectly 
classified events with that particular characteristic.  This quantitative approach can be 
seen in several of the SME’s reasons provided for various confidence scores (see Table 
2). 
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Table 2.  Examples of when the ratio of correct to incorrectly classified events for a particular 
characteristic influenced confidence scores. 

Event Image Event No. Confidence Score Justification Provided 

 

16 0.6 
“The classifier is only 3/5 for events with a 
large spike / distortion in the middle with 
false positives on 2/5 events in the 
training set.” 

 

17 0.6 
“In the training set, the classifier was only 
7/12 correct for events with harmonic 
distortion. The overall linear 
increase/decrease is clearly an ‘other’ 
type event, but similar events have led to 
false positives.” 

 

41 0.7 
“Frequency decrease is concave-down 
but otherwise looks like a gen trip, which 
may result in a false positive. The curve 
does not contain much noise or 
distortions, but the classifier is 12/17 for 
events with a bump in the middle.” 

 

42 0.8 
“Frequency increased over the course of 
the event. The classifier identified 4/5 of 
these events correctly.” 
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Evaluation 
The SME’s likelihood ratings provided in the Scoring Phase were treated as his 
confidence scores.  We computed a series of logistic regressions to compare the 
predictive power of the SME’s confidence scores to an ML derived uncertainty 
quantification score (i.e., softmax equation).  In these analyses ML classification 
performance (i.e., correctly classified or incorrectly classified) was the dependent 
variable. The first regression included the ML derived uncertainty quantification score as 
the predictor.  Results of the model show the ML derived uncertainty quantification score 
significantly predicted ML classification performance p=.002 (see Table 3). 
 

  Table 3.  Results for ML Derived Uncertainty Quantification Predictor 

Predictor Estimate Std. Error z p 
Intercept -6.91 2.50 -2.77 0.006 
ML 19.29 6.29 3.07 0.002 

 

Next, the researchers computed a regression with our SME confidence scores as the 
predictor of ML classification performance. Results of the model show the SME 
confidence scores did not significantly predicted ML classification performance p=.29 
(see Table 4). 

 
       Table 4. Results for SME Confidence Scores Predictor 

Predictor Estimate Std. Error z p 
Intercept 3.77 2.48 1.52 0.129 
SME -3.156 3.019 -1.045 0.29 

The researchers wanted to explore if combining the ML Uncertainty Score with SME 
confidence improved the predictive power of the Uncertainty Score.  Although the SME 
confidence was not a significant predictor on its own perhaps it could be used to improve 
the ML Uncertainty Score.  To explore this possibility the resarchers computed the 
midpoint score between both predictors and included this new combined score as a 
predictor of ML classification performance.  Results of the model show taking the average 
of both scores is a stronger predictor of ML classification performance (p<.001) when 
compared to the ML Derived Uncertainty Quantification predictor alone(p=.002) (see 
Table 5). 
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       Table 5. Results for Combined Score Predictor 

Predictor Estimate Std. Error z p 
Intercept -8.833 2.75 -3.21 0.001 
ML+SME 16.245 4.568 3.556 <0.001 

 

We were also interested in analyzing the confidence scores of a novice.  Analyzing a 
novice’s confidence scores may provide insight into the importance of prior domain 
expertise for providing accurate confidence scores.  The PI of the project served this role 
as he did not develop the machine learning classifier and does not have expertise in 
power grid systems.  Similar to the SME, the PI completed both the Learning and Scoring 
phases of the method and his results were analyzed.  Table 6 shows that, like the SME, 
the PI’s scores were not a significant predictor of ML classification performance, p=.55.  
However, unlike the SME scores, combining the novice scores with the ML derived 
uncertainty quantification scores did not improve prediction, p=.002 (see Table 7). 

       Table 6. Results for Novice Predictor 
Predictor Estimate Std. Error z p 
Intercept 0.790 0.785 1.006 0.314 
ML+N 0.669 1.118 0.598 0.550 

 
Table 7. Results for Novice Predictor 

Predictor Estimate Std. Error z p 
Intercept -2.570 1.222 -2.103 0.036 
ML+N 6.923 2.286 3.028 0.002 
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  Discussion 
Neither the SME nor the Novice scores significantly predicted ML classifier performance.  
These findings suggest that the Learning Phase was not successful in teaching 
participants the performance boundaries of the ML classifier.  Interestingly, the combined 
ML Uncertainty Quantification scores and SME confidence did significantly improve 
predictions of ML performance and was actually a stronger predictor than the Uncertainty 
Quantification score alone.  The results of this combined score suggests that there was 
still some value to incorporating expert ratings. In addition, although neither participant 
generated confidence values that significantly predicted ML performance, the SME’s 
scores had a smaller ‘p’ value suggesting the SME’s confidence was better calibrated to 
actual ML performance.   

 Modifications to the Learning Phase 

The findings suggest a need to improve the Learning Phase.  The current method relied 
on a card sorting approach that allowed the participant to organize various events into 
meaningful groups.  This sorting task was designed to help the participant build a detailed 
mental model of the ML classifier’s performance.  Although the SME was able to construct 
a detailed mental model, the findings suggest that this sorting task was not sufficient for 
learning the performance boundaries of the ML.   

We plan to revise this phase of the method to help the participant build a stronger 
association between the relevant event characteristics and the classifier decisions they 
influence.  The research team plans to design an additional component of the Learning 
Phase focused on repeated performance assessments.  After the initial sorting task, 
participants will have their knowledge tested by predicting the ML classifier’s decisions 
on a subset of unlabeled learning phase data.  The participant will receive feedback on 
their performance as learning researchers have long demonstrated the positive impact 
(both informational and motivational) of performance feedback on learning (Matthews et 
al., 2000; Wang, Zhang, He, 2022).  Participants will continue regular assessments of 
their ability to accurately predict ML decisions until they have achieved a minimum 
standard of performance.  Once this minimum standard is met participants will move to 
the Scoring Phase. Learning the performance boundaries of the ML is at least partly an 
experiential process that relies on associative learning (Evans & Stanovich, 2013).  We 
believe repeated exposure to events and their associated ML classification decisions 
during performance assessment should help strengthen the associations needed to 
calibrate participant confidence scores with actual ML performance.   

Insights from the SME’s Learning Process 

The SME provided valuable insights into his process during the post Learning Phase 
debrief.  It was evident from this debrief as well has from his responses in the Scoring 
Phase that he gleaned quantitative insights from the Learning Phase.  For example, he 
used the ratio of Misses to correctly classified Generator Trip events and the ratio of FPs 
to correctly classified Other Frequency events presented in the Learning Phase to form 
an assessment of the classifier’s baseline reliability.  The SME was not instructed to use 
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the frequencies of correctly classified and misclassified events in this way.  It is important 
to recognize that future participants may glean similar quantitative insights from the 
Learning Phase. To prevent incorrect assumptions about classifier reliability based on 
this quantitative approach, we must work to ensure the ratio of correctly classified and 
incorrectly classified events in the Learning Phase approximates model reliability.   

Combining SME and ML Confidence 

Findings also suggest that there may be value in merging the human subjective 
evaluation of the ML’s confidence with the ML’s own uncertainty quantification.  In our 
evaluation the combined score was the most significant predictor of ML performance.  
The research team plans to investigate these results to better understand how 
incorporating the non-significant SME scores improved prediction.  In addition, the team 
would like to explore other approaches for computing a combined score such as a 
weighted average.     

Plans for FY23 

Based on a projected budget of 200K we plan to develop a more complete methodology.  
These tasks include the following: 

• Increase existing model complexity (increase number of classes and/or classify 
events at sub-class level)  

• Develop simple interfaces for completing Learning and Scoring Phase exercises  

• Improve the Learning Phase by including a component to assess participant model 
prediction performance and provide performance feedback 

• Develop a novel uncertainty quantification score  

• Select and Label data for Learning and Scoring Exercises for multiple classes  

• Include multiple SMEs in the Learning and Scoring Phases  

• Explore a weighted average approach for combining SME scores with ML 
Uncertainty Quantification 

• Generalize scored events to entire dataset  

• Evaluation including Human Subjects Testing to assess the effect of the 
associated qualitative descriptions on user prediction performance  
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– Event 1 of EDC Scoring Questionnaire 
EDC Scoring Phase 

1 

 
Please Classify this event (circle the option below).   

Generator Trip  
Other Frequency Event 

 

What is the likelihood the Machine Learning Classifier will correctly classify this event (please 
provide a number between 0 to 1)?  _________ 

 

In one or two sentences please provide a reason for your likelihood score (i.e., your answer to 
question 2).   
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