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Abstract 
The performance of Data Model Convergence Initiative (DMC) applications on parallel 
machines is far below the limit set by Amdahl’s law. Whether the machine is based on many-
core, GPUs, FPGAs, or a heterogeneous combination, usually the most significant bottleneck is 
accessing data from the memory system. Aligning with DMC’s HW/architecture thrust, this 
project developed a set of memory-centric tools called ‘MemGaze’ that inform the HW/SW 
stack about an application’s memory behavior, including data access latency and diagnosing 
poor data layout and data composition. Our approach uses architectural modeling and analysis of 
workload data accesses.  
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1.0 Introduction 
The performance of the state-of-the-art applications on parallel machines is far below the limit 
set by Amdahl’s law. Whether the machine is based on many-core, GPUs, FPGAs, or a 
heterogeneous combination, usually the most significant bottleneck is accessing data from the 
memory system (Amdahl 1967), (Wulf and McKee 1995), (Esmaeilzadeh et al. 2011). Thus, 
memory analysis and optimization are critical. Figure 1 showcases the pitfalls that might ensue 
by not considering memory movement in the context of parallelization efforts.  

 

 
 
Figure 1  Amdahl's Law including Overheads due to Parallelization and Data Movement (left) 
Figure 2  Toolchain Breakdown (FALLACY in magenta) (right) 

The goal of this project is to provide a new low overhead tool ‘MemGaze’ 
https://github.com/pnnl/memgaze to conduct performance analysis. Furthermore, the tool must 
be capable of dual use, allowing the SW as well as the HW practitioner apply this tool for their 
analysis. The tool’s breakdown is depicted in Figure 2, where the FALLACY’s tool is colored in 
magenta.  FALLACY’s approach is to take a memory-centric vantage point and pursue a 
cascading tool flow where it switches judiciously from static to dynamic analysis. FALLACY 
trades off analysis overhead for approximate analysis characterization.  

The project has collaborated with other DMC projects, including ‘SO(DA)2’ to evaluate Data 
Flow engines and ‘PACER’ to build & analyze a suite of kernels suitable for Co-Design. 

As of August’22, a large part of this work has transitioned via business development efforts to a 
collaborative effort with industry called ‘Advanced Memory to Support AI for Science’. 
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2.0 MemGaze Introduction 
The performance of the state-of-the-art applications on parallel machines is far below the limit 
set by Amdahl’s law. Whether the machine is based on many-core, GPUs, FPGAs, or a 
heterogeneous combination, usually the most significant bottleneck is accessing data from the 
memory system (Amdahl 1967), (Wulf and McKee 1995), (Esmaeilzadeh et al. 2011). Thus, 
memory analysis and optimization are critical. The major challenge of memory analysis tools is 
delivering detailed insight without orders-of-magnitude of additional time, space, and execution 
resources. Detailed application insight requires analysis of both movement and data reuse (Beyls 
and D’Hollander 2001), (Weinberg et al. 2005), (Anghel et al. 2013), (Badr et al. 2020), 
(Carlson, Heirman, and Eeckhout 2011), (Binkert et al. 2011), (Li et al. 2020), (Kim, Yang, and 
Mutlu 2015). Data movement includes access frequencies and costs. Data reuse includes 
temporal and spatial locality, footprint, and access patterns. Such insight is typically gathered 
with memory reuse and modeling tools (Carlson, Heirman, and Eeckhout 2011), (Binkert et al. 
2011), (Xiang et al. 2013) or memory simulators (Li et al. 2020), (Kim, Yang, and Mutlu 2015) 
but requires orders-of-magnitude of additional resources (time and execution) for tracing and 
space for data (intermediate and final). Recent measurement techniques permit low-overhead 
application analysis, but address only one form of locality, usually reuse distance (Wang, Liu, 
and Chabbi 2019).   

Fallacy developed MemGaze, a new tool that provides low-overhead, load-level analysis of 
memory accesses and data reuse for applications. MemGaze differs from prior low-overhead 
tools in two ways. First, it analyzes sampled access traces, where each sample is a long address 
sequence (≈1K), collected with emerging hardware support for processor tracing. Such 
sequences are useful because they enable temporal, spatial, location, and access pattern analyses. 
Second, via sampled traces, it provides a broad set of memory analyses that include locations vs. 
operations, accesses vs. spatio-temporal reuse, and reuse (as distance, rate, and volume) vs. 
access patterns.  

Prior low-overhead memory analyses do not analyze memory address sequences because prior 
collection methods incur very high overheads. Software-based sampling can capture sequences 
of memory addresses by switching between instrumented and non-instrumented execution, but 
easily incurs time overhead of 100× (Xiang et al. 2013), (Kilic, Tallent, and Friese 2020). 
Hardware for performance monitoring was not designed for detailed data reuse analysis. Many 
tools analyze cache misses or statistics from load-store queues. Costly data accesses (Liu and 
Mellor-Crummey 2014), (Choi, Blagodurov, and Tseng 2021) can be identified by sampling 
loads and capturing data addresses with AMD’s IBS (or LWP) (AMD 2021), Intel’s PEBS-DLA 
(Intel Corporation 2020), IBM’s Marked Events (IBM 2018), and ARM’s SPE (ARM 2021). 
Temporal reuse can be captured by sampling reuse intervals (Wang, Liu, and Chabbi 2019), 
(Eklov and Hagersten 2010), (Sasongko et al. 2021). However, none of these methods 
simultaneously permit temporal, spatial, location, and access pattern analyses. To enable low-
overhead and high-resolution memory analysis, MemGaze uses Processor Tracing (PT) to collect 
sampled and compressed memory address traces. PT was originally designed to collect control 
flow to assist debugging and is supported by different vendors, e.g., Intel x64 (Intel Corporation 
2013) and ARM (ARM 2011). Both Intel’s and ARM’s PT also support gathering data addresses, 
though neither is widely available. MemGaze leverages Intel’s ptwrite instruction, which can 
write an arbitrary word data packet, such as an address, to a pinned OS buffer without OS 
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intervention. That is, PT can be entirely enabled or disabled by hardware. ptwrite is currently 
supported by Intel 5th and 6th gen Core CPUs and  Goldmont based Atom CPUs such as the 
Gemini Lake that we use in our experiments; it very recently appeared with Alder Lake 
(‘desktop’) and is scheduled for Sapphire Rapids (‘server’) (Intel Corporation 2021), which will 
be used in Argonne National Laboratory’s Aurora supercomputer.  

Although ptwrite presents an interesting opportunity for collecting memory traces, there are 
several challenges. First, analysis of such traces must account for gaps due to sampling. Second, 
straightforward use of ptwrite for memory generates huge traces — larger than PT for control 
flow (Linux perf 2021b) — that require frequent copying from OS memory to application 
memory to storage, which consumes memory bandwidth and introduces blocking delays unless 
throttled. For example, Linux perf (Linux perf 2021a) drops an unpredictable 30–50% of data, 
even when CPU frequency is throttled. Thus, satisfactory solutions should reduce time overhead 
and data rates.  

Salient features of MemGaze are as follows: First, we demonstrate feasibility of low-overhead 
sequence-aware memory analysis. Specifically, we show how to use ptwrite to collect sampled 
memory access traces, i.e., samples of memory accesses and their data addresses. The sampled 
traces enable instruction-level analysis of access sequences and their data address. Because both 
the sampling rate and sequence size are controllable, trace size is also controllable. Although our 
prototype is Intel-specific, the method is easily generalizable. Second, we describe static analysis 
and binary instrumentation process that enables a compressed (non-lossy) sample representation 
via selective instrumentation of memory instruction. Although most data reduction comes from 
sampling, the compression adds another factor of 1.2–2×. This analysis enables rapid 
decomposition of footprint by access patterns without expensive sequence analysis. Third, we 
describe multi-resolution analysis for locations vs. operations, accesses vs. spatio-temporal reuse, 
and reuse (distance, rate, volume) vs. access patterns. Because trace size is controllable, analysis 
times are reasonable, even with prototype implementation. Fourth, we evaluate MemGaze on 
benchmarks and parallel applications with different access patterns. We elucidate the memory 
effects of different data structure implementations and algorithms. For a sampled trace that is 
≈1% of a full one, analysis metrics have 1-25% MAPE (mean absolute percentage error) for 
histograms of varying dynamic sequence lengths. With current suboptimal kernel support (PT 
runs continuously), MemGaze’s time overhead is typically 10– 95%; 7× worst case. However, 
when PT runs only during samples, overhead is 10–35% on memory intensive regions and 
correlates with executed ptwrites, which are expensive. 
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3.0 MemGaze Overview 
MemGaze is based on collecting and analyzing sampled memory traces. Detailed memory 
analysis of applications is often not feasible using other methods either with respect to time, data 
volume, or resource usage. Figure 3 shows an overview of collecting and analyzing memory 
traces. The first two steps implement sampled tracing. Binary instrumentation (Step 1) inserts 
Processor Tracing instructions (ptwrite) that record sampled sequences of memory addresses 
(Step 2). The instrumentation can be entirely enabled or disabled by hardware.  

Figure 3  Collecting and Analyzing Memory Traces 

To help focus results, one may optionally perform standard hotspot analysis based on time or 
memory loads. This result defines a region of interest (set of functions) that are used to limit 
tracing. The region of interest limits tracing using one of two methods: selective instrumentation 
(Step 1) or Processor Tracing’s hardware guards (Step 2). With PT’s hardware guards, the region 
of interest can change without reinstrumentation. Figure 4 shows a sampled trace fragment. A 
sample is a sequence of w recorded accesses followed by z non-recorded accesses. Since (w + 
z) ≫ w, e.g., (w + z)/w ≈ 103...5, our traces are a fraction of a full memory trace. The
result is address- and sequence-aware traces for very low time and space overhead. To diagnose
data reuse and memory movement problems, we provide analyses to characterize data
movement, temporal and spatial reuse, locations and footprints, and access patterns. The analyses
fall into four categories. Analysis of data access frequency vs. reuse compares memory hotspots
(movement)with poor locality and accesses, potential causes of unnecessary movement. Second,
reuse analysis can be performed on memory locations or memory operations. The former
highlights a specific memory region or data object; the latter highlights a specific sequence of
memory operations. Third, we characterize both temporal and spatial locality to highlight good
use of cache blocks and caches. Finally, we characterize access patterns, both regular and
irregular, to distinguish between accesses that are expected to have good and poor performance.
For example, the former (regular) can hide data movement with prefetching; the latter (irregular)
cannot.

1. Instrument
(ptwrite)

2. Lightweight
memory tracing

3. Memory & data analysis:
• Data reuse v. movement
• Reuse locations v. distances
• Temporal & spatial locality
• Patterns: regular, irregular

Optional: Code hotspot (PT guards)
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4.0 MemGaze High-Resolution Memory Traces 
Very large traces affect (a) application execution (frequent memory copies, saturated memory 
bandwidth, blocking events), (b) trace integrity (unpredictable throttling and data drops), (c) 
downstream analysis time and memory, and (d) trace storage.  This section describes how to 
collect sampled, high-resolution memory traces using ptwrite. It also describes static analysis for 
selective instrumentation and compressed traces.  A sampled trace is shown in Figure 5. To 
collect such traces, ptwrite must be inserted into the instruction execution stream, which we do 
using static binary instrumentation. 

4.1 Instrumenting Loads 

Our instrumentor, which leverages DynInst (Meng and Miller 2016), takes as input an 
executable’s important load modules, i.e., an executable and relevant library. It outputs a new 
executable and an auxiliary annotation file, whose contents are described below.  The off-line 
approach ensures that the static code analysis we perform for trace compression and access 
pattern decomposition has no time or space overhead for executions. A benefit of binary 
instrumentation is that it can instrument libraries such as the C++ standard library, which can be 
a significant source of complex memory behavior.  For each load module, the instrumentor 
analyzes memory accesses within each procedure separately. On x64 there are several addressing 
modes. The two main categories are: 

  ptwrite rs ; load rd ← [rs] + o 

 ptwrite rs1 ; ptwrite rs2 ; load rd ← [rs1] + k[rs2] + o  

where rs indicates source registers, brackets indicate dereference, and k and o are literals for 
scale and offset, respectively.  ptwrites are only inserted for source registers, i.e., dynamic info. 
The literals are extracted, keyed by instruction address, and placed in the auxiliary annotation 
file. ptwrites should precede loads because the source address can be overwritten when            
rd = rs.  The effect of this strategy is that all instrumentation can be masked by hardware. The 
instrumentation is a single instruction without side effects on the CPU’s architectural state.  
Consequently, it does not require a function call or register saves/restores. Further, the 
instrumentation can be enabled or disabled by hardware.  In some situations, it would be possible 
to pack multiple ptwrite payloads into a single 64bit payload. Examples are two 32-bit registers 
or two registers whose contents are known to have a common 32-bit prefix. However, packing 
significantly complicates instrumentation by requiring an additional register, triggering either a 
trampoline call or register reallocation. 
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4.2 Compression via load classes 

For load-based analysis we can ignore stores. Rather than instrumenting every load, we compress 
traces based on a load’s expected access pattern. Programs often reuse constant pools of data that 
are uninteresting from the perspective of dynamic footprint analysis. Our analysis views as 
uninteresting both scalars on the execution stack and scalar global data. Thus, if a load is 
Constant, there is no need to instrument its register as long as we know it executed.  Load access 
patterns are also helpful during analysis because they highlight differences in expected access 
latencies. To analyze access patterns, the instrumentor analyzes data dependencies for each 
procedure’s object code. From data dependencies, the instrumentor classifies each load to 
distinguish three load classes.   

Constant loads access scalar data either within a stack frame or to global data. Specifically, this 
means scalar loads (offset of 0) that are relative to a frame pointer or to a global section. All 
constant loads are viewed as accessing the same address, using total space of 1 unit.  

Strided loads are relative to a loop induction variable (loop-carried dependency) with constant 
stride.   

Irregular. All other loads are classified as irregular.  Typically, they are indirect loads through 
pointers. 

Figure 4  Trace Compression using Load Access Classes 

Figure 4 shows an example of load classification and trace compression. For Strided and 
Irregular loads, memory addresses are always instrumented, and the load class (blue) added to 
the auxiliary annotations (red). For constant loads, it is sufficient to know its basic block 
executed. Basic blocks divide code into straight-line sequences such that an instruction is 
executed if and only if any other is executed. Thus, the instrumentor selects a proxy instruction 
within the basic block. If the block contains a Strided or Irregular load, one is selected and 
annotated with the number of implied Constant loads. Otherwise, the instrumentor selects the 
first Constant load as the proxy and instruments it. As a result, in Figure 4, only half the loads are 
instrumented. Our results (§ VI-C) show that with this scheme, compression of non-optimized 
and optimized code is about 2× and 1.2×, respectively. The difference makes sense because of 
the higher rate of frame loads without optimization.  One can also imagine a compressed 
representation of strided loads using a tuple of ⟨begin-address, stride, end-address⟩. We choose to 
forgo this because it results in complex instrumentation (e.g., conditionals, register spilling). 

for (i = 0; i < N; i+=2)
// a[idx[i]]
load N
load a
load idx[i]
load a[idx[i]]

class
Constant
Constant
Strided
Irregular

trace
annotation
{ }
{ }
{strided, 2}
{irregular}

no ptwrite; no annotation

proxy for implied 
Constant loadsba

sic
 b

lo
ck
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Figure 5  Sampled Memory Address Trace with Reuse Interval Categories R1-R3 

4.3 Sampled memory traces 

We collect traces using an extended Linux perf (Linux perf 2021a).  Figure 5 shows two samples 
from a resulting trace. A sample is a sequence of w recorded accesses followed by z non-
recorded accesses. Each recorded access is associated with an instruction pointer, memory 
address, and timestamp. Each sample shows memory accesses (loads) in temporal context. The 
samples are uniform in memory accesses because any set of accesses is equally likely to appear. 
The samples’ accesses represent common reuse and access patterns.  With Processor Tracing, the 
sample window w corresponds to the contents of a fixed-size circular buffer. The average 
sampling period w + z specifies that a sampling trigger is generated to read the buffer. 
Usually, (w + z) ≫ w, e.g., ratios of 103...5 to 1. Table 1 tracks important symbols.  Let σ be a
set of samples with a total of |σ| samples.  Averaging across σ, each sample has w loads. Let 
A(σ) be the number of observed memory accesses in σ and Â(σ) the (estimated) value for all 
(uncompressed) accesses. Then, if σ is a single sample, w = A(σ) and w + z = Â(σ). 

 Decompressing samples: With compression, observed accesses A can differ from accesses Â 
directly implied by the observation. To reason about compression, we introduce the sample 
ratio ρ of all executed to all sampled memory accesses, or ρ = Â(σ)/A(σ). We also introduce 
the compression ratio κ(σ) of all to selected (compressed) accesses in σ. (see Table 1)  When 
monitoring all memory accesses (non-selective instrumentation), ρ is simply the ratio of all to 
observed accesses or w+z/w . With selective instrumentation, we account for the constant 
loads directly implied by the sample: 

Equation 1 

We calculate κ(σ) using the relation κ(σ)A(σ) = A(σ) + Aconst(σ), which yields 

Equation 2 

reuse
interval

address
<latexit sha1_base64="HZTFWPOIRhr9ZKLnA9JawNgY6CI=">AAACCnicbVC7SgNBFJ31GeNr1dJmNAhWYVcULYM2lhHMA7JLuDs7mwyZfTBzVwghtY2/YmOhiK1fYOffOEm20MQDF86ccy9z7wkyKTQ6zre1tLyyurZe2ihvbm3v7Np7+02d5orxBktlqtoBaC5FwhsoUPJ2pjjEgeStYHAz8VsPXGmRJvc4zLgfQy8RkWCARuraRx7IrA/Uk2GKms69Ao7QtStO1ZmCLhK3IBVSoN61v7wwZXnME2QStO64Tob+CBQKJvm47OWaZ8AG0OMdQxOIufZH01PG9MQoIY1SZSpBOlV/T4wg1noYB6YzBuzreW8i/ud1coyu/JFIshx5wmYfRbmkmNJJLjQUijOUQ0OAKWF2pawPChia9MomBHf+5EXSPKu6F1Xn7rxSuy7iKJFDckxOiUsuSY3ckjppEEYeyTN5JW/Wk/VivVsfs9Ylq5g5IH9gff4AohqaOQ==</latexit>

↵ . . .↵ . . .�
<latexit sha1_base64="fYinkO9evJ0zOj7RFIt2WyE7U1s=">AAACGHicbVBNS8NAEN3Ur1q/oh69LBbBU01E0WPRi8cKthaaUDabTbt0swm7E6GE/gwv/hUvHhTx2pv/xm0bQds+WHjz3gyz84JUcA2O822VVlbX1jfKm5Wt7Z3dPXv/oKWTTFHWpIlIVDsgmgkuWRM4CNZOFSNxINhjMLid+I9PTGmeyAcYpsyPSU/yiFMCRuraZ54IE9DYCxgQ/FsQkfaXV1276tScKfAicQtSRQUaXXvshQnNYiaBCqJ1x3VS8HOigFPBRhUv0ywldEB6rGOoJDHTfj49bIRPjBLiKFHmScBT9e9ETmKth3FgOmMCfT3vTcRlXieD6NrPuUwzYJLOFkWZwJDgSUo45IpREENDCFXc/BXTPlGEgsmyYkJw509eJK3zmntZc+4vqvWbIo4yOkLH6BS56ArV0R1qoCai6Bm9onf0Yb1Yb9an9TVrLVnFzCH6B2v8A3UloAk=</latexit>

. . .� . . .↵ . . .↵ . . .
<latexit sha1_base64="7qHx2cgkdVaLe1fiQ0RYfyePgh0=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzIjii6LblxWsLXQGUomk2lDM8mQ3BFqKf6KGxeKuPU/3Pk3pu0stPXAhZNz7iX3nigT3IDnfTulpeWV1bXyemVjc2t7x93daxmVa8qaVAml2xExTHDJmsBBsHamGUkjwe6jwfXEv39g2nAl72CYsTAlPckTTglYqeseBCJWYHAQMSC4eHTdqlfzpsCLxC9IFRVodN2vIFY0T5kEKogxHd/LIBwRDZwKNq4EuWEZoQPSYx1LJUmZCUfT7cf42CoxTpS2JQFP1d8TI5IaM0wj25kS6Jt5byL+53VySC7DEZdZDkzS2UdJLjAoPIkCx1wzCmJoCaGa210x7RNNKNjAKjYEf/7kRdI6rfnnNe/2rFq/KuIoo0N0hE6Qjy5QHd2gBmoiih7RM3pFb86T8+K8Ox+z1pJTzOyjP3A+fwDYJZTT</latexit>

. . .� . . .
R1 R3

R2

<latexit sha1_base64="jS9JgzDjTqe+wa75JcQXRSE+7lo=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix68diC/YA2lM120q7dbMLuRqihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWtX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD6pONAg==</latexit>z (unobserved: not recorded) sample 2:
<latexit sha1_base64="iGEq+Ie4Mw75QMQYdtR9hnEpNcY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix68diC/YA2lM120q7dbMLuRimhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWtX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD5geM/w==</latexit>wcount sample 1:

<latexit sha1_base64="iGEq+Ie4Mw75QMQYdtR9hnEpNcY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix68diC/YA2lM120q7dbMLuRimhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWtX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD5geM/w==</latexit>w
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It is easy to calculate Aconst(σ) from the combination of the trace and auxiliary annotations 
generated during binary instrumentation. κ(w) is analogous. 

Table 1  Important Symbols 
σ, |σ| Sample of access sequences; number of samples 

ˆ  Population estimate from sample (vs. observation) 

Fstr, Firr Footprint with {strided, irregular} access pattern 

Fstr%, Firr% Fraction of {strided, irregular} footprint 
Aconst% Fraction of accesses to constant-sized data 
∆F Footprint growth rate; footprint per access 

∆Fstr%, ∆Firr% Fraction of strided (irregular) footprint growth 

4.4 Enabling source code attribution 

A challenge when using binary instrumentation is attributing memory analysis results to source 
code. The reason is that the new (instrumented) instruction stream is no longer aligned with the 
load module’s source-line mapping. To recover the source code mapping, we extended the 
functionality in DynInst with an interface that reads the newly recorded mapping between the 
new object code and source code. 
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5.0 MemGaze Analyzing Sampled Traces
This section describes analysis for traces of sampled access sequences. Compared to low-
overhead methods that sample address regions or reuse instances, these traces enable temporal, 
spatial, location, and access pattern analyses. However, there are limitations that must be 
understood. We describe these limitations and then summarize our analyses. 

5.1 Sampling Limitations 

An obvious limitation of sampled traces is that they may miss very short or infrequent behaviors. 
More subtly, a uniform sample of memory accesses may not have a uniform sample of reuse 
intervals.  A reuse interval is the number of loads (or instructions) between a pair of references to 
the same address (see (Yuan et al. 2019)). (In contrast, reuse distance, or stack distance (Mattson 
et al. 1970), is the number of unique addresses in the interval.) It turns out that some reuse 
intervals may not be captured, so that the samples do not represent a uniform sample of reuse 
intervals.  To see this, we classify the ability to observe reuse intervals into three categories 
(Figure 5). We say a reuse interval is captured if both accesses appear within sampled data.   

(R1) Within a sample (w), some reuse intervals 2 . . . w−1 can be captured. Some cannot 
because one element of the interval could occur at the end of a sample buffer.   

(R2) Within a sample period w+z, it is not possible to capture reuse intervals    w, . . ., z. 
Similarly, it is impossible to capture intervals z+1, . . . , w+z−1.   

(R3) Between samples we have a generalization of the prior categories. It is impossible to capture 
intervals such that d mod w=0, . . ., z. Further, although it may be possible to capture 
some intervals greater than z+1, it is impossible to distinguish a single complete interval from 
multiple incomplete instances to the same address. 

5.2 Reducing error with sample aggregation 

Although some reuse intervals may not be observed, with sufficient samples, effective reuse 
analysis is very likely. Most of our analyses aggregate all samples across a certain dimension, 
such as a function instance, reuse distance range, or address region. Sample aggregation is 
important not only because it highlights diagnostic trends, but also because the accumulation of 
more samples reduces blind spots and statistical error. Recall that trace windows have blind spots 
for (R2) and potentially sparse coverage for (R3).   

When trace windows are aggregated to program functions over many samples, forming code 
windows, we expect some observability of blind spots (region z in Figure 5) and therefore useful 
estimates for (R2) and (R3). The reason is that estimates for captures (C) and survivals 
(S) — addresses with and without reuse, respectively — significantly improve.

With sufficient samples, we can use standard estimators to scale statistics from samples and 
apply them to the population.  The typical case is scaling metrics by the ratio of executed to 
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sampled memory accesses, or ρ; see Eq. (3). (It may be necessary to account for trace 
compression, κ.) For hotspots, we expect these diagnostics to be highly informative.  If error is a 
concern, recall that there is often no practical non-sampling methodology for detailed memory 
analysis. Even with PT hardware assistance, full traces are not feasible without random drops. 
Rather, the choice is between coping with microbenchmarks and small data sets, devoting 
enormous time and machine resources to simulation, or ad hoc methods. 

5.3 Multi-resolution time & location analysis 

To quickly find interesting time intervals and memory regions, we use a multi-resolution analysis 
that recursively adjusts the granularity of execution time and access location using tree 
structures.   

 
Figure 6  Multi-Resolution Time Analysis finds Time Regions with Poor Locality 

1) Execution time: To find time intervals of operations with poor reuse, we analyze accesses and
static code (e.g., functions) over execution time. Figure 6 shows an execution interval tree
representing sets of samples at varying window sizes (time intervals). The execution interval tree
is built bottom-up, beginning with samples. Tree nodes above samples correspond to increasing
inter-sample intervals. Nodes below samples correspond to intra-sample intervals. The leaf
function nodes group access sequences from the same function. Metrics are associated with each
node. Inter-sample metrics are estimates, whereas intra-sample metrics are exact. The red
sequence of arrows descending from the root “zooms” to a hot interval (many accesses) with
poor reuse (e.g., large footprint growth).

<latexit sha1_base64="g0hslQlj6DvwxSc79O1pwxgx5Eo=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp0oWlgEbCwTMB+QHGFvM5es2ds7dveUcOQX2FgoYutPsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W4+oNI/lvRkn6Ed0IHnIGTVWqj/1SmW34s5AlomXkzLkqPVKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZodOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDZFG4K3+PIyaZ5XvMuKW78oV2/yOApwDCdwBh5cQRXuoAYNYIDwDK/w5jw4L8678zFvXXHymSP4A+fzB+Q5jPk=</latexit>w
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Figure 7  Location Zooming finds Hot Memory Regions with Poor Locality 

2) Location regions: To find memory regions with poor spatio-temporal locality, we use
location-based zooming. Figure 7 shows this analysis. The zoom tree proceeds top-down from a
single memory region to its hot sub regions (left-to-right in the figure). The tree’s leaves show
the final regions, e.g., A2. For each final region, we show hotness (% total accesses), spatial-
temporal reuse distance D for accesses to that region, and the code (function, line) for those
accesses. The figure’s table shows this data. Accesses for region A2 are shown over time (blue),
which correspond to functions a and b, account for 25% of the total. However, the ‘worst’ hot
region is A1, which accounts for 20% of total accesses but has a far worse reuse distance (D).
The recursive zoom procedure proceeds as follows. Given a region, it is divided into fixed-sized
pages and access blocks.  An access block ba, represents the unit access size for spatio-temporal
reuse distance D; we default to the cache line size.  The page size bp is used to identify
subregions and recursively reduces with tree level. A hot subregion is a maximal set of
contiguous pages, each with at least 1 access, where the set’s total access is at least t% the
region’s accesses. The zoom stops when a subregion reaches a minimum threshold.  The
contiguous property of a hot region is important.  Although some parts of a hot region may be
cold, including them tends to capture a single object or collections of related objects. In this way,
reuse distance (D) represents the spatio-temporal locality of the entire object. In contrast, only
focusing on a region’s hot blocks filters all other accesses to the region, frequently making
spatio-temporal locality appear very good.  The stopping threshold is also important: when too
large it can capture semantically different objects and average many behaviors. When too small,
the analysis is resource intensive and potentially noisy.

Timeà (Memory accesses)Region zoomà

Lo
ca

tio
ns

: M
em

or
y 

re
gi

on

B

A

C

B1

C2 ... A2 ..... A2A2A2 ..... A2A2 ... A2 ...

A2

C1

A1

A3

Refined hot
contiguous 

region

‘Worst’ 
hot 

region

Region metrics & code
A% D

A1 20% 9.0 f, g... 
A2 25% 2.1 a, b
A3 11% 5.0 ...
B1 10% 0.5 ...
C1 7% 7.9 ...
C2 5% 1.3 ...

Accesses to 
A2 over time



PNNL-33259 

MemGaze Memory and Data Reuse Analyses 12 

6.0 MemGaze Memory and Data Reuse Analyses 
We develop several methods for characterizing reuse within sampled traces. Together they 
provide a broad set of diagnostics that capture locations vs. operations, accesses vs. spatio- 
temporal reuse, and reuse (as distance, rate, and volume) vs.  access patterns. 

6.1 Data movement and access frequency 

Characterizing data movement between different system components is a complex process. In 
this paper, we view memory as a single system. To find hot memory regions, we calculate access 
frequencies for each region, focusing on accesses (A) classified as non-Constant. These accesses 
also represent data that must be moved by the memory system. 

6.2 Spatio-temporal reuse distance and interval 

Memory performance is related to the temporal and spatial reuse of cache lines. We therefore 
capture spatio-temporal locality using reuse distance and reuse interval with respect to a 
configurable access block size.  Reuse distance D (or stack distance) (Beyls and D’Hollander 
2001), (Weinberg et al. 2005) is defined as follows. With execution time analysis, D(w) it is the 
unique memory blocks between two operations or a window of accesses w. With location region 
analysis, D(b) for a block b is the unique memory blocks between two subsequent accesses to 
b. The reuse interval for that same block measures number of accesses; it is easier to calculate
but only an estimate of unique blocks.  To adapt D to sampled traces, we either focus solely on
intra-sample windows or calculate the average unique blocks accessed between samples based on
footprint growth. For cache-friendly data structures, we focus on intra-sample reuse where
blocks are cache lines. For working-set analysis, we use inter-sample reuse and blocks of OS
page size.

6.3 Data volume: Footprint 

In time analysis, it is important to understand an access sequence’s data footprint and new data 
per access.  Footprint is the amount of unique data accessed by a series of operations. The 
observed footprint F(w) for a single sample of size w is the unique addresses in w. The 
estimated footprint ˆF(w+z) for the sampled and unsampled addresses assumes F(w) is 
representative of w+z, i.e., that the ratios of unique addresses between the sample and total
population are similar.  With sufficient samples within a uniform sample of loads, this 
assumption of proportionality holds. Therefore, ˆF should scale the sample footprint F by the 
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ratio ρ of expected and observed footprint. Thus, over a set of many samples σ, the estimated 
footprint ˆF(σ) for window size W(σ)  

Equation 3 

Statistically, intra-sample intervals (R1) can be interpreted in two ways. Besides the intra-
window portion of Eq. (3), they can also be viewed as a sample end point (e.g., smaller average  
w) and scaled using the inter-window portion.

6.4 Data reuse rates: Footprint growth 

Footprint growth is footprint’s rate of change. Let A(σ) be number of addresses in a sample. 
Then, average footprint growth ∆ˆF(σ) over the sample of window size W(σ) is 

Equation 4 

An alternative way to view footprint growth is as normalized footprint, i.e., average footprint per 
load. Note that the final equation form does not depend on window classes. 

6.5 Access Patterns 

Many applications tend to frequently alternate between regular execution phases with structured 
memory access patterns and irregular phases with unpredictable memory behaviors.  

a) Footprint access diagnostics: To highlight large differences in expected access latencies,
we decompose footprint into strided (prefetchable) and irregular (non-prefetchable)
access components. The footprint categories are called footprint access diagnostics and
represent the most common patterns that affect memory performance. Specifically, we
define the following metrics: strided and irregular portion of footprint (Fstr, Firr),
their growth rate (∆Fstr, ∆Firr), fraction of footprint growth due to them (∆Fstr%,
∆Firr%), and fraction of constant loads (Aconst%). This analysis is constant time per
operation, without any pattern analysis, using the load classes of described above.

b) General irregularity: For a more general measure of irregularity, we use spatio-temporal
reuse distance (above). 
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7.0 MemGaze Evaluation 
This section evaluates metric accuracy, time overhead, and space reduction. The next section 
provides case studies.   

Platform: To evaluate MemGaze we use an Intel Pentium Silver J5005 (Gemini Lake) CPU with 
four cores and 16GB memory. (We are procuring an Alder Lake machine, but it is not yet 
available.)   

Benchmarks: We use a set of microbenchmarks and application benchmarks. The 
microbenchmarks simulate accesses to both dense and sparse data structures and vary access 
patterns, data reuse, access sparsity, and access likelihood.  Microbenchmarks test analysis of 
(very) short-lived access sequences that become hotspots (repeated 100 times). The 
microbenchmark names give access patterns using “str” (strided with stride step) and “irr” 
(irregular). The different access patterns can be composed conditionally (‘/’) or in series (‘|’).  
For applications we use the graph benchmarks miniVite (Ghosh et al. 2018) (Louvain 
Community Detection) and GAP (Beamer, Asanovic, and Patterson 2015) (Connected 
Components and Page Rank); and the machine learning Darknet (Redmon 2015). The graph 
benchmarks test analysis of reuse and access patterns within load-intensive applications that 
include highly irregular accesses. We vary compiler optimization levels (O0 vs. O3). For graph 
benchmarks, we also vary data structure implementations and algorithms. For Darknet, we vary 
network types for inferencing on images.   

All application benchmarks support OpenMP and are executed with and without parallelism. 
However, note that our analysis focuses on memory behavior and is orthogonal to CPU 
parallelism. (Future work includes exploring the relationship between CPU concurrency and 
memory systems.)   

Sampling configuration: For microbenchmarks, we use a small period (10K loads) and a large 
buffer (16 KiB yielding ≈1150 addresses) to capture short-lived phenomena. The miniVite and 
GAP benchmarks use a larger (typical) period (10M and 5M loads, respectively) and smaller 
buffer (8 KiB yielding ≈500 addresses). The reason buffers do not yield the expected addresses 
(size / 8 bytes) is due to the suboptimal kernel support (buffer fill and flushes occur 
asynchronously with the sampling trigger that record the next buffer).   

7.1 Validation of data reuse analysis 

This section validates data reuse analysis of sampled traces.  Figure 8 shows results for each 
microbenchmark and graph benchmark. The data series represent footprint access diagnostics: 
footprint (F), irregular footprint (Firr) and strided footprint (Fstr). We exclude reuse distance 
(D) as we prefer intra-sample calculations. The three series for MAPE show mean absolute
percentage error over different trace windows, i.e., metric histograms with power-of-2 windows.
The three series for percentage error represent code windows, i.e., aggregated samples for
functions, which reduce error.
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Figure 8  Validating Sampled Footprint Access Diagnostics 

For microbenchmarks, we validate against full traces. For graph benchmarks, we validate against 
sampling data that is 10× more frequent. Collecting full traces for the graph benchmarks is 
problematic for three reasons. First, using PT is not feasible:  the data copy rate between PT’s 
pinned kernel buffer and user memory is too high for real-time, resulting in random drops of 30–
50%. (CPU frequency throttling makes little difference.)  Second, when we attempted to collect 
full trace data with our validation tool, we found it would take days per benchmark.  Finally, full 
traces are huge (order 1 TB), which requires substantial resources to process per benchmark.   

For trace windows (first three series), MAPE is <25%. Errors tend to be higher for benchmarks 
that are more irregular or that include more short-lived behavior, which is expected. For code 
windows (second three series), error <5%. In general, we expect code windows to be more 
accurate than trace windows because they accumulate more samples.   

The errors within trace windows can be understood as follows. First, as expected, errors are 
quantitative overestimates rather than qualitative. Second, from our analysis of reuse intervals, 
we know traces have some blind spots. Third, with benchmarks that include irregular and short-
lived behavior, we expect that characterizing trace windows from samples will include error 
within the reuse analysis (captures C and survivals S). 

  It should be possible to automatically detect most under- sampling by analyzing sample density 
and forming confidence intervals. One could flag regions with insufficient samples. 

7.2  Time overhead 

 Recall that MemGaze’s toolchain consists of (1) binary instrumentation, (2) memory tracing, 
and (3) analysis (Figure 3).  We evaluate each step. Figure 9 focuses on memory tracing while 
Table 2 shows sample times for the first and third.  
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Figure 9  Time Overhead for Memory Tracing. Top show miniVite; bottom, GAP 

1) Memory Tracing: Our primary interest is memory tracing because low overhead implies (a)
fewer timing disturbances (which enables analysis of task interleaving and memory parallelism)
and (b) smaller trace sizes, which improves analysis time. Figure 9 shows MemGaze’s run time
overhead. We show results for two versions of MemGaze. MemGaze is the full implementation 
that relies on suboptimal kernel support where PT runs continuously. MemGaze-opt is proof-of-
concept (in user-space) that enables Processor Tracing only during samples.  The figure also 
breaks down overhead by application phase.  The miniVite and GAP benchmarks include a 
graph generation phase that has distinctly different memory accesses than the second phases 
(‘modularity’ and ‘rank’). 

The first three series of both figures show per-phase and total overhead for MemGaze. Even with 
sub-optimal driver support, MemGaze’s overhead is typically 10–95%. Overhead is higher with 
more compiler optimization (O3) because (a) the rate of instrumented loads is higher and (b) the 
total run time is smaller (making it harder to amortize overhead). We hypothesize DarkNet’s 
overhead of 5×–7× is due to ptwrite interfering with its much higher store rate. The fourth 
(red) series illustrate (a) using the ratio of ptwrites to non-ptwrite instructions.  The ratio 
highly correlates with total overhead.  The MemGaze-opt series (fifth, purple) reduces overhead 
to the near-minimum for our scheme by enabling PT only when sampling miniVite/modularity, a 
load intensive hotspot.  MemGaze-opt reduces overhead from 80% to less than 40%, which is 
very close to the execution rate of ptwrite instructions. This makes sense because 
ptwrites are expensive to decode and trigger data copies (Linux perf 2021b). It may be 
possible to further reduce overhead with 32-bit packets and additional compression that reduces 
ptwrites for Strided loads.  In contrast, current methods for tracing sequences of memory 
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addresses easily incur time overhead of 100× (Xiang et al. 2013), (Kilic, Tallent, and Friese 
2020).   

2) Binary Instrumentation and Analysis:  Table 2 shows sample run times for MemGaze’s 
instrumentation (‘Instrument’) and analysis (‘Analysis/1’ + ‘Analysis/2’) steps. These times are 
‘extreme worst cases’ in that neither step has been optimized or parallelized. Even so, we can 
easily analyze memory intensive applications that are unfeasible to analyze using full traces.  

As MemGaze’s binary instrumentor takes a binary to analyze and instrument, its run time 
depends on the size and complexity of the binary. The different run times between 
microbenchmarks and miniVite show the effect of miniVite’s much larger binary.  The different 
run times between miniVite and PR show the effect of PR’s increased routine complexity. 

Analysis time is divided into two sub-steps: trace building (Analysis/1) and trace analysis 
(Analysis/2). The building step is from converting Linux perf’s trace into one for our trace 
analysis. The run times of both depend on trace size (which is shown in Table III). 

Table 2  Time Overhead: Binary Instrumentation & Analysis 
Benchmark Binary Size Instrument Analysis/1 Analysis/2 
µbenchmarks 19 kB 1.1s 76.1s 79.2s 
miniVite-O3-v1 1900 kB 135.5s 357.0s 284.5s 
GAP pr-O3 95 kB 144.2s 37.4s 22.9s 
GAP cc-O3 100 kB 122.1s 32.3s 21.5s 
Darknet-
AlexNet

2700 kB 83.2s 87.4s 21.1s 

Darknet-ResNet 2700 kB 83.2s 898.2s 289.5s 

7.3 Space reduction 

  This section evaluates the space savings of sampled memory traces. Table 3 compares 
MemGaze’s traces against the sizes of full memory access traces (‘Full’). The table shows three 
versions of a ‘Full’ trace.   

• ‘Rec’ shows a compressed full trace that suffers data loss because of unpredictable
throttling and data drop, due to inability to copy between PT’s pinned kernel buffer and
user memory.

• ‘All’ shows a compressed full trace without data drops by correcting based on perf’s 
‘DROP’ records.  

• ‘All+’ show the full size without trace compression, i.e., by including the suppressed
Constant loads.  

The ‘MemGaze’ column shows size of a sampled, compressed trace. The ‘Ratio’ column shows 
the ratio as a percentage between MemGaze and the corresponding ‘Full’ size.  A glance at the 
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‘All’ or ‘All+’ data shows that a straightforward use of ptwrite would generates huge traces 
— if it were possible to do without significant drops. Note that, except for the microbenchmarks, 
we did not use the ‘Rec’ traces for validation because drops are most likely to occur in the most 
load-intensive regions, which is exactly where we want to validate. (We captured a full trace by 
inserting OS sleeps after each load to substantially reduce the load rate.)  Comparing the ‘All’ 
and ‘All+’ shows that our compression method gives an average of 1.2× and 2× space savings 
for compiler optimization levels O3 and O0, respectively. 

Clearly, the major benefit of MemGaze’s trace size comes from sampling. MemGaze’s trace size 
is generally around 1% of the full trace for applications with O3 optimization. The size is 
controllable by changing the sample buffer size and the sampling period.  In general, ‘All’ traces 
are proportional to the number of non-Constant loads in the execution, where loads with two 
source registers take twice as much space. In contrast, MemGaze’s traces are proportional to the 
product of the number of samples, |σ|, and the sample buffer size, where |σ| is the total 
executed loads divided by sample period w + z. Finally, trace sizes are independent of the 
analysis methodology adopted. 

Table 3  Space Savings of MemGaze's Memory Traces 
Benchmark Full (GB) MemGaze Ratio (%) 

Rec All All+ (MB) Rec All All+ 
all µbench-O0 (1×) 1.9 1.9 3.5 63 3.3 3.3 1.8 
all µbench-O3 (1×) 1.9 1.9 1.91 20 1.1 1.1 1 
all µbench-O3 112 112 113 865 0.8 0.8 0.7 
miniVite-O0-v1 77 163 316.5 1620 2.1 0.9 0.5 
miniVite-O0-v2 71 198 387.9 1697 2.4 0.9 0.4 
miniVite-O0-v3 79 150 292.7 1660 2.1 1.1 0.6 
miniVite-O3-v1 19 41 41.1 310 1.6 0.8 0.7 
miniVite-O3-v2 22 43 54.9 310 1.4 0.7 0.6 
miniVite-O3-v3 13 23 29.4 341 2.6 1.5 1.1 
GAP-cc-O0 2.3 3.4 6.6 355 15.4 10.4 5.3 
GAP-cc-O3 4.9 7.9 9.5 31 0.6 0.4 0.3 
GAP-cc-sv-O0 4.4 6.4 12.5 377 8.6 5.9 3 
GAP-cc-sv-O3 6.7 10.8 13 35 0.5 0.3 0.3 
GAP-pr-O0 5.1 7.5 14.6 377 7.4 5.0 2.5 
GAP-pr-O3 5.4 7.9 9.5 35 0.7 0.4 0.4 
GAP-pr-spmv-O0 6.3 8.9 17.4 385 6.1 4.3 2.2 
GAP-pr-spmv-O3 6.5 10.1 12.1 36 0.6 0.4 0.3 
Darknet-AlexNet 4.6 11.2 16.9 71 1.6 0.6 0.4 
Darknet-ResNet 29 59 66 748 2.6 1.3 1.2 
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8.0 MemGaze Case Studies 
This section provides case studies for miniVite (Ghosh et al. 2018) (Louvain Community 
Detection), Darknet (Redmon 2015), and GAP (Beamer, Asanovic, and Patterson 2015) 
(Connected Components and Page Rank).  Effective analysis requires an understanding of access 
frequency (e.g., accesses are costly), spatio-temporal reuse (e.g., for cache performance) and 
access patterns (e.g., strided accesses leverage prefetching). Our analyses therefore combine 
time-centric and location-centric results 

8.1 miniVite 

miniVite is a benchmark (Ghosh et al. 2018) for Louvain Community Detection. We use three 
variants that show effects of different hash table implementations (map object) on a hotspot that 
inspects (buildMap) neighboring communities for each vertex. v1 uses a C++ 
unordered_map. As an open hash table — an array of keys, each containing a linked list for 
items — it creates irregular accesses. v2 and v3 use TSL hopscotch (Tessil 2019), (Herlihy, 
Shavit, and Tzafrir 2008) a closed hash table that replaces many irregular accesses with strided 
ones. v2 uses the default table size. v3 right-sizes each table instance — there are many — to 
avoid dynamic resizing. 

Time and location analyses for O3 variants are shown in Table 4 and Table 5, respectively. The 
hotspot analysis clearly highlights buildMap and the map’s logical insert function.  It also 
highlights getMax, which uses map. Runtime for each variant is shown to the right and indicate 
increasing improvement between v1, v2, and v3, showing that the different hash tables 
configurations have an effect.  The location analysis highlights three hot regions used within 
buildMap: the map object; a vector of remote edges for local graph vertices; and other objects 
in buildMap coming from the caller. The region’s size corresponds to allocation sizes; and 
accesses/block corresponds to block hotness.  We discuss results by variant. Although v1 has the 
fewest accesses (A), it has poor cache behavior due to irregular accesses. This is shown in Table 
4 with the highest footprint growth (∆F) and highest percentage of irregular accesses (lowest 
∆Fstr%). Table 5 shows that spatial-temporal reuse distance (D) is highest or high.  We created 
v2 to address the poor cache behavior. v2’s closed hash table results in repeated (strided) 
traversals, indicated by an increase in ∆Fstr%, that leverage hardware prefetchers to hide more 
memory latency. The access pattern also improves (lowers) footprint growth (∆F) and tends to 
improve (lower) average reuse distance (D).  The trade-off for the better performance and 
contiguous accesses is that v2 and v3’s closed design uses more memory.  In contrast v1’s open 
hash table grows only as large as needed as suggested by footprint (F).  A defect with v2 is that it 
significantly increases accesses: see A for map.insert and A for map. v3’s right-sized closed 
hash tables avoid extra accesses from resizing (copies) and searches (over-allocation). The result 
reduces accesses compared to v2 but retains the benefits of strided accesses. Interestingly, be- 
cause accesses decrease so much, ∆F for map.insert increases.  v3’s smaller sizes and 
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contiguous accesses generally improve reuse distance (D).  Our analysis uncovers a common 
tendency: Sparse structures have smaller footprint but more irregular access patterns, whereas 
dense structures have larger footprints but more regular access patterns. Further, several 
locality metrics are important for capturing a complete picture.  

Table 4  Data Locality of Hot Function Accesses 

Table 5  Spatio-Temporal Reuse of Hot Memory (64B Block) 
Object Variant Reuse (D) # blocks A A	/ block 
map
(hash table)

v1 
v2 
v3

2.65 
2.79
1.97

768 
768
768

55K 
119K
85K

71.9 
155.2
111.3

remote edges 
of local 
vertices

v1 
v2 
v3

8.71 
4.90
3.32

4864 
4864
4864

24K 
19K
19K

4.9 
3.9
3.9

other objs in 
buildMap
(from caller)

v1 
v2 
v3

0.37 
0.15
0.24

104K 
101K
110K

19235 
21362
22306

0.2 
0.2
0.2

8.2 Darknet AlexNet & ResNet  

Darknet (Redmon 2015) is an open neural network framework written in C/OpenMP. We 
analyze image classification (inferencing) with two pre-trained models for AlexNet (Krizhevsky, 
Sutskever, and Hinton 2012) and ResNet152 (He et al. 2016) for a single image.   

Time and location analysis for the hottest kernels (gemm and im2col) are shown in Table 6 and  
Table 7 respectively.  To capture differences between the neural network layers, Table 8 
compares gemm across memory access intervals.  Table 6 characterizes the primary hotspot, 
gemm, matrix multiplication specialized for neural networks. It dominates total footprint (> 90%) 
and nearly all accesses are strided, as expected. The location analysis (Table 7) independently 
highlights gemm matrices as the primary hotspot. gemm takes matrices A (M ×K) and B (K ×N) 

Function Variant F ∆F Fstr% A 
buildMap v1 2.3G 0.156 66.4 291K 
(make 
map)

v2 2.1G 0.151 66.9 273K 

v3 2.1G 0.160 66.8 270K 

v1 >0.7G 0.011 73.3 106K 

map.insert v2 2.4G 0.003 93.7 318K 
v3 0.5G 0.009 92.8 67.8K 

getMax v1 0.4G 0.150 0.5 44.7K 
(use map) v2 1.3G 0.040 98.4 182K 

v3 1.5G 0.040 97.8 194K 

v1 8.60 s 
v2 5.15 s 
v3 3.88 s 
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and produces C (M ×N).  Due to memory allocator decisions, all AlexNet’s gemm matrices are 
in a single region whereas ResNet152’s hot region contains only B.   

Interestingly, we can compare gemm’s behavior between AlexNet and ResNet152. The 
differences in footprint (F) and footprint growth (∆F) between AlexNet and ResNet152 
correspond to differences in number and type of layers, which result in different combinations of 
matrix multiplication input sizes. The differences in reuse distance (Table 7) correspond to the 
different matrices in the hot regions. Due to the loop order in gemm, there is long-term reuse of 
B that is unlikely to occur within a sample that intra-sample reuse distance (our current interest) 
will not capture.   

Table 8 shows how gemm’s locality metrics differ across access intervals over time. There are 
three observations. First, AlexNet’s ∆F varies more than ResNet152’s. This corresponds to 
AlexNet’s varying convolutional, fully connected, and pooling layers compared to ResNet’s 
more consistent convolutional structure. Second, for both networks, spatio-temporal reuse 
distance (D) over all objects increases over time. This corresponds to a decrease in dimension N 
(gemm’s innermost loop) as the networks synthesize data from higher-level feature filters; and 
for AlexNet N decreases very rapidly.  Finally, observe that, in contrast to AlexNet, ResNet152’s 
footprint growth (∆F) tends to decrease over time. This correlates with the changes in 
dimensions N (decrease) and K (smaller increase), corresponding to gemm’s inner two loops.   

Our analysis captures memory behavior of the well-known matrix multiplication kernel by time, 
location, and across time-location. These differing perspectives are critical for capturing a 
complete picture.   

We evaluated optimizations for gemm kernel. Without per-layer specialization, the current 
algorithm uses correct loop ordering and appropriate inner-loop reuse via unrolling. We do not 
expect tiling to be effective because the matrices are relatively small, and it would significantly 
complicate outer-loop parallelism. 

Table 6  Darknet: Data Locality of Hot Function Accesses 
Function Model F ∆F Fstr% A 
gemm AlexNet 69M 0.113 100 1.2M 

ResNet152 3855M 0.478 100 2.6M 

im2col AlexNet 3.4M 0.138 100 0.05M 
ResNet152 244M 0.813 100 0.09M 

Table 7  Darknet: Spatio-Temporal Reuse of Hot Memory (64B Block) 
Object Model Reuse (D) # blocks A A	/ block 
gemm’s A,B,C	
gemm’s B

AlexNet 
ResNet152

0.76 
0.01

66048 
38400

977K 
598K

14.8 
15.6

hot region in 
im2_col

AlexNet 
ResNet152

1.87 
2.54

8192 
3328

167K 
7K

20.4 
1.9
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8.3 GAP’s Connected Components & Page Rank 

We study the memory effects of different algorithms for each of GAP’s PageRank (PR) and 
ConnectedComponents (CC) specifications. For PR we use pr (Gauss-Seidel) and pr-spmv 
(Jacobi-style). For CC we use cc (Afforest) and cc-sv (Shiloach-Vishkin). In both cases, the 
former represents an optimization of the latter. We run each with the same graph size of 222, i.e., 
4 M vertices and 64 M edges. We ignore graph building and focus on the respective algorithm. 
Location and time analyses are shown in Table 9 and Figure 10 & Figure 11.  The time analysis 
is a histogram plot showing data locality (average) with respect to hot access interval size.  

Figure 10  GAP: Distribution of Spatio-Temporal Metrics for Hot Memory 

Figure 11  GAP: Data Locality of Hot Access Intervals (intra-sample) 
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Table 8  Darknet/GEMM: Data Locality over Time of Hot Access Intervals 

PR’s results show the effects of pr’s optimized algorithm.  With both PR variants, Table 9 shows 
that the hot memory object is o-score, representing intermediate contributions to each vertex’s 
final score (rank). With pr-spmv, updates to o-score are saved until the next iteration whereas 
with pr, updates occur immediately. As a result, Table IX shows that pr’s spatio-temporal reuse 
distance (D) is noticeably smaller (better); and its footprint growth (∆F) slightly smaller. The pr 
variant requires fewer total iterations and, hence, accesses (A). 

Table 9  Spatio-Temporal Reuse of Hot Memory (64B Block) 

CC’s results show the value of detailed location analysis for understanding cc’s optimized 
algorithm. The cc variant uses subgraph sampling (Sutton, Ben-Nun, and Barak 2018), which 
requires more accesses (A) but can improve performance for NUMA parallelism vs. cc-sv.  
Interestingly, a subset of locality metrics could suggest that cc-sv has better locality: cc has 
higher average reuse distance (D), footprint growth (∆F), and irregular footprint ratio (Firr%).  
However, Figure 10’s detailed heatmaps help explain the difference.  The heatmaps show the 
distributions of access frequencies and reuse distances (D), where darker is higher. For accesses, 
cc has fewer and smaller dark bands, indicating more access locality than cc-sv. For reuse 
distance, the heatmaps show that the table’s summary metrics are affected by outliers: the 
average behavior is relatively similar. Thus, to understand CC’s differences, it is important to 
understand memory behavior from many angles and at different resolutions. 

Access 
Interval

AlexNet ResNet152 
F ∆F D A F ∆F D A 

0 28M 0.475 0.01 30K 639M 0.747 0.47 286K 
1 55M 0.675 0.02 30K 772M 0.799 0.57 293K 
2 89M 0.983 0.02 25K 640M 0.617 2.71 302K 
3 64M 0.794 0.14 26K 620M 0.599 2.62 304K 
4 39M 0.489 1.64 29K 591M 0.574 2.69 302K 
5 55M 0.627 1.66 26K 638M 0.618 2.65 302K 
6 41M 0.493 1.66 29K 648M 0.625 2.63 304K 
7 38M 0.644 1.49 17K 549M 0.514 2.66 312K 

Object Algorithm Reuse (D) Max D A A/block Time 
o-score pr 1.13 152 64K 0.76 57.2 s 
o-score pr-spmv 2.41               132 82K 1.14 80.1 s 

cc cc 5.21 154 581K 8.87 2.7 s 
cc cc-sv 0.83 36 476K 8.65 45.5 s 
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9.0 MemGaze Related Work 

MemGaze provides low-overhead, high-resolution memory analysis with load-level, sequence-
aware analysis of data reuse.  High-resolution memory reuse. Current methods for collecting 
load-level sequences of memory accesses use software-based instruction instrumentation, either 
with compilers (Beyls and D’Hollander 2006) or binary instrumentation (Xiang et al. 2013), 
(Marin, Dongarra, and Terpstra 2014). (Xiang et al. 2013) sample address sequences by enabling 
and disabling dynamic instruction tracing (Luk et al. 2005) which results in time overheads of 
100×.  For more detailed access analysis memory modeling tools (Carlson, Heirman, and 
Eeckhout 2011) and simulators (Binkert et al. 2011), (Li et al. 2020), (Kim, Yang, and Mutlu 
2015) can be used.  Low-overhead reuse interval analysis. One class of well- known low-
overhead methods for analyzing memory accesses target reuse intervals, or the time between two 
accesses to the same address. Reuse intervals can be converted into reuse distance (Shen et al. 
2007). (Eklov and Hagersten 2010) sample reuse intervals, measured in loads, using virtual 
memory traps. For lower overhead, debug registers can be used to sample reuse intervals (Wang, 
Liu, and Chabbi 2019), (Sasongko et al. 2021). Since there are only 4 such registers, this 
technique obtains a uniform sample using reservoir sampling. (W. Zhao et al. 2011) disable 
expensive memory tracking of reuse distances when a program’s working set size is stable.  In 
contrast, we sample address sequences rather than reuse intervals, which enables analysis of 
patterns and sequences in addition to reuse. Further, the incorporation of static analysis to select 
instrumentation points immediately suggests a variety of extensions to specialize for different 
use.  Various methods for reuse distance analysis have been designed for storage systems 
(Waldspurger et al. 2015), (Wires et al. 2014). The SHARDS method uses spatial sampling 
(Waldspurger et al. 2015), or monitoring of sampled portions of the address space, which is like 
StatStack (Eklov and Hagersten 2010).  Other low-overhead methods. To capture interaction 
effects between instructions, ProfileMe monitoring hardware (Dean et al. 1997), (Fields et al. 
2004) could monitor pairs of instructions. Our work extends this to sequences and data reuse.  
Another low-overhead method for analyzing data reuse in memory is to use CPU performance 
monitoring units to collect sparse address sets or monitor cache behavior. For example, AMD’s 
IBS (or LWP) (AMD 2021, 64) and Intel’s PEBS (Intel Corporation 2020, 64) can collect data 
addresses. However, the results are so sparse that detecting reuse, much less access patterns, is 
difficult (Roy et al. 2018), (Liu and Mellor-Crummey 2014).  Another method estimates data 
reuse by inferring bounds on footprint through profiles of accesses to each memory hierarchy 
level (Kilic, Tallent, and Friese 2020). This method can also make some inferences about access 
patterns. However, the footprint estimates are coarse and qualitative. In contrast, MemGaze 
enables far more resolution for both data reuse and access patterns.  Thread-level data reuse can 
be captured by monitoring OS-level virtual memory events and thread interactions.  NumaPerf 
(X. Zhao et al. 2021), couples this OS-level data with source-code compiler analysis in order to 
diagnose NUMA-related performance problems.  Performance counters for accesses (loads) and 
cache locality (cache misses) are frequently used for system adaptation (Chen et al. 2020) or 
compiler feedback (Oh et al. 2021).  Analyzing data reuse. Snir et al.(Snir and Yu 2005) 
establish limits on data reuse analysis. Yuan et al.(Yuan et al. 2019) provide an excellent 
overview of temporal data locality of scalar accesses within a trace. Our analysis extends the 
latter in two ways. First, footprint access patterns provide information on spatial locality and 
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expected behavior of an access stream or dynamic access sequence.  Second, we consider static 
access sequences.  We describe multi-resolution analysis for footprint (volume), footprint growth 
(rate), and reuse distance; and decompose each by access pattern (strided vs. irregular). Our 
analysis differs from Xiang et al.’s footprint analysis of sampled traces (Xiang et al. 2013), 
(Yuan et al. 2019). The latter’s analysis is based on reuse intervals and therefore samples access 
sequences of varying lengths. In contrast, we sample constant-size sequences of accesses and 
therefore avoid long reuse intervals (sequences). As mentioned, we also identify common access 
patterns for insight into spatial locality and expected behavior.  Prior work has combined 
analysis of spatial locality and temporal locality (Weinberg et al. 2005), (Anghel et al. 2013). 
However, this work relies on static analysis or coarse (virtual memory) page-level statistics. 
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10.0 MemGaze Conclusion 

The time and space costs (≈100×) of prior methods for sequence-aware analysis of data reuse 
make them unattractive or unfeasible for many working sets or execution scenarios.  We show 
that Processor Tracing (PT) can be an effective technique for low-overhead, high-resolution 
memory analysis that includes locations vs. operations, accesses vs. spatio-temporal reuse, and 
reuse (as distance, rate, and volume) vs. access patterns. We demonstrate load-level analysis of 
applications, not kernels, because both trace size and resolution are controllable. Using sampled 
traces that are ≈1% of full ones, we elucidate the memory effects of different data structures and 
algorithms, including explaining performance differences between prefetching and irregular 
accesses with good spatio-temporal locality. We show that with a straightforward driver 
optimization, time overhead for collecting access traces is 10– 35% on memory intensive regions 
and highly correlates with executed ptwrites.  We plan to leverage our work for 
hardware/software co-design. Using models of different memory systems, we can obtain insight 
into memory system performance and concurrency with respect to data location, data movement, 
and workload accesses. We also believe our work motivates further attention to 
hardware/software co-design of Performance Monitoring Units (PMUs). ptwrite 
functionality generalizes the notion of ‘state gathering’ when using Performance Monitoring 
Units and could be used to analyze arbitrary execution state. Further, ptwrite generalizes the 
notion of sequence, permitting both, points (length 1) or true sequence analysis, something that 
has not thus far been generally possible without binary instrumentation. Finally, ptwrite can 
substantially reduce the number of OS interrupts needed to gather state from PMU registers if 
coupled with judicious (e.g., sampled, masked, or predicated) execution. 
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