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Abstract 

There have been breakthroughs of latest cryo electron microscopy (cryo-EM) data 
analysis algorithms to classify cryo-EM image data. However, most of these cryo-EM 
reconstruction methods have focused on classifying distinctly different biomolecule structures. 
Here, we present our approaches of deep learning to differentiate homologous structures that are 
distinguishable only with inner morphological differences. We succeeded supervised 
classification of these subtly different homologues. However, we could not differentiate them with 
unsupervised methods. Here we discuss what further approaches are likely needed for successful 
unsupervised classification. 
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Summary 

Ever since structural biology methods have played a major role, all these methods require 
time consuming sample preparation process. This limitation has been especially problematic for 
homologous structure determination. Here, we show that deep learning approach overcomes this 
hurdle by deciphering inner pixel densities. Determination of biological homologous structure will 
enable deeper mechanistic understanding and delicate control of pathway fate. 
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Acronyms and Abbreviations 

CNN: Convolutional Neural Network 

cryoDRGN: Cryo-EM Deep Reconstructing Generative Networks 

cryoSPARC: Cryo-EM Single Particle Ab-Initio Reconstruction and Classification 

Cryo-EM: Cryo Electron Microscopy 

Grad-CAM: Gradient-weighted Class Activation Mapping  

MLP: Multiple Layered Perceptron 

MNIST: Modified National Institute of Standards and Technology database 

PDX: Pyridoxal 5'-phosphate synthase 

UMAP: Uniform Manifold Approximation and Projection 

U-NET: U-shaped Network 

VAE: Variational AutoEncoder 
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1.0 Introduction 

Single particle analysis of cryo electron microscopy (cryo-EM) has been advanced by 
many technical improvements in both equipment and computational modeling1. Especially, 2 
dimensional (2D) and 3D image classification algorithms have empowered to extract meaningful 
heterogenous compositional and conformational analysis2 3 4. These breakthroughs have enabled 
to extract more realistic understanding of biological samples that are captured in vitreous ice. 
Especially, one of the recent deep learning based methods, cryoDRGN (Cryo-EM Deep 
Reconstructing Generative Networks), had pioneered heterogeneous cryo-EM reconstruction that 
models a continuous distribution over 3D structures by using a representation for the volume5 6. 
This algorithm is unique since it shows to model continuous and discrete heterogeneity that has 
not been easily achieved even with the state-of-the-art 3D reconstruction method. However, 
including cryoDRGN, most of these reconstruction methods have focused on to classify distinctly 
different biomolecule structures.  

Therefore, it is imperative to develop a new computation method that can classify even 
closely resembling homologues. Here, we present our approaches to differentiate molecules that 
are distinguishable only with subtle inner morphological differences. These approaches include 
‘classification using pixel based difference’, convolutional neural network (CNN) without and with 
residual connection, and variational autoencoder (VAE). Since our goal is to differentiate subtle 
structural differences with pixelated differences in 2D space, we first tested its viability by 
subtracting pixel differences. Specifically, we aim to classify different homologues that are 
assembled with different ratios (stoichiometries) of PDX1.2 (Pyridoxal 5'-phosphate synthase 1.2) 
and PDX1.3 monomers7 (Fig. 1, 2, 3). 

 
 
 
 
 

 
 
 
Figure 1. Heteromeric assembly mechanism of PDX.  
   (Left) monomer of each PDX homologues. (Right) assembled dodecamer after co-

expression. Adapted from Novikova et al.7. 
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Figure 2. Representative native mass spectrometry spectrum for PDX co-expression 
complex 9:1, zoomed into the 12mer region.  

Each symbol above the peak indicates one 12mer species, with their assignment, 
mass, and relative intensity shown on the right. Each peak with the same symbol is 
the same species carrying a different number of charges. Annotation was performed 
using UniDec. Adapted from Novikova et al.7 

 
 
 

 
 

Figure 3. Superimposed and distinct regions between PDX1.2 and PDX1.3 homologs.  

Green: indistinguishable superimposition of PDX1.2 and PDX1.3 homologs. Magenta: 
PDX1.3 specific local structure and sequence. Green & gray: PDX1.2 specific local 
structure and sequence 
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2.0 Pixel Subtraction 

 

2.1 Background 

 To assess whether intact pixel value differences are sufficient to classify homologues, we tried 
to classify 4 sub-classes with subtracted pixel values only. Since the classification was performed 
per same Euler angle set (e.g. rot, tilt, and psi), rotation-based obfuscation was not tested. Since 
the goal of this method is to classify image classes, it may look like contrastive learning. However, 
contrastive learning tries to learn an embedding space in which similar sample pairs stay close to 
each other while dissimilar ones are far apart8. 

 

2.2 Data Set Preparation 

 We hypothesized that a model trained with simulated cryo-EM maps can be applied to predict 
raw experimental cryo-EM map as others have shown9 10. One common challenge with this 
approach is that raw experimental cryo-EM map has inherent noise that is not easily captured in 
these synthetic simulated maps. However, Yao et al. have shown that adding 8 different levels of 
additive white gaussian noise to each simulated map is effective to apply to experimental map 
later9. Similarly, we added different signal to noise ratios (SNR, e.g. 0.5, 0.25, 0.1, 0.05) to our 
simulated maps using cryoSPARC2 that confers noise as gaussian with zero mean. Since 

averaged SNR of a cryoEM micrograph is estimated to be around 0.111 12, we believe that our 

0.05 SNR set would be enough to capture experimental SNR. Additionally, we used defocus 
values from 10,000 to 20,000 angstrom to mimic various defocuses which are often enforced to 
try to enhance contrast during cryo-EM experiments. Specifically, we generated synthetic cryo-
EM 2D images of PDX (pyridoxal 5'-phosphate synthase) molecule. Since there are many 
projected 2D views in experimental cryo-EM data, we needed to simulate ample amount of cryo-
EM map data sets for training and testing. Therefore, we prepared pdb structures of 4 sub-classes 
using UCSF Chimera. These sub-classes are PDX1.2 (all monomers are PDX1.2), PDX1.3 (all 
monomers are PDX1.3), hexagonal (either PDX1.2 or PDX1.3 hexagonal units are stacked with 
top and bottom assemblies), and alternate (PDX1.2 and 1.3 monomers are assembled in an 
alternative fashion). Then, we transformed these pdb structure files into mrc starting maps using 
SPIDER13, and projected into 50,000 2D images in random orientations with various signal to 
noise ratios (SNR) (Fig. S1) using cryoSPARC2. 

 

2.3 Method 

 With this synthetic set, we made classification models using mean squared error of 
averaged pixels per sub-class. 

 

2.4 Result 
 With higher signal to noise ratio (SNR, e.g. 0.25-0.5) simulated data set, we were able to 
achieve 93-99% accuracy (Table 1). This high accuracy proves that it is viable to classify target 
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molecules even with few pixel differences only if we provide Euler angle information. This is 
encouraging since human eye cannot differentiate these subtle differences. However, for low SNR 
data set (e.g. SNR=0.05-0.1), this pixel subtraction method achieved merely 28-38% accuracy 
(note: randomly predicted accuracy is 25% since there are 4 prediction classes). Therefore, we 
decided to use convolutional neural network (CNN) to exploit advantage of deep neural net. 
 

Table 1. Classification Classification prediction with simulated cryo-EM images using 
mean squared error of averaged pixels per each homolog. 

 

prediction with 50k simulated cryo-EM images of 4 PDX pseudo-enzyme/enzyme 
assembly states using mean squared error of averaged pixels per each 
homolog.  

(Upper table) Summary. (Lower table) We summed each case to summarize 
prediction accuracy for SNR=0.5 case. 

 
Signal-to-noise ratio Validation set accuracy 

0.5 99% 
0.25 93% 
0.1 38% 
0.05 28% 

 
 

 PDX1.2 PDX1.3 Hexagonal Alternate 

PDX1.2 10031 11 103 1 
PDX1.3 120 10110 120 2 
Hexagonal 98 11 10037 3 
Alternate 7 7 5 10120 
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3.0 CNN without Residual Connection  

 

3.1 Background 

 Our possible challenge can be to train models overcoming rotation variance issue. Si et al. 
have shown that 2D rotation variance obfuscation can be overcame and in fact adding four sets 
of rotated views (e.g. 0o, 90o, 180o and 270o) helps to expand training set reliably10. However, 
3D rotation invariance (inherent features regardless of rot, tilt, psi Euler angles) will confer 
additional complexity when modeling. Other deep learning researchers argued that CNN can 
deal as if the data is rotation invariant. However, features freshly extracted from CNN are not 
scale or rotation invariant. Only max pooling layer introduces such invariants14. 

 

3.2 Method 
 We implemented conventional CNN architecture (2 layers each with Convolution, BatchNorm, 
Relu and MaxPooling operation) with Pytorch. 

 

3.3 Result 
 We achieved much higher accuracy than pixel difference method. One notable lesson is that 
our CNN differentiates different stoichiometries catching rotation invariant features, because it 
performs well not only with focused data set with similar Euler angles, but also with 
comprehensive data set with diverse Euler angles even without explicit Euler angle information. 
This rotation invariant features are possibly caught due to MaxPooling operation by reducing input 
dimension. 
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4.0 CNN with Residual Connection  

 

4.1 Method 
 With the same synthetic data set, we applied Residual Network (ResNet) architecture-based 
CNN since the ResNet (skip network) tends to better take advantage of deeper layers without 
vanishing gradient problem. Specifically, we employed the latest PyTorch version (1.6.0) in the 
GPU (graphic processing unit) cluster (Marianas, Deception) in Pacific Northwest National 
Laboratory. Starting code of ResNet comes from PyTorch tutorial15.  
 

4.2 Result 
 ResNet achieved much higher accuracy even without any Euler angle information than pixel-
based difference classification and slightly higher accuracy than CNN without residual connection 
(Table 2).  

Table 2. ResNet Based Classification 

Training set accuracy for each SNR data set is either equal or slightly higher than test 
set accuracy. 

 
Signal-to-noise 

ratio 
Base model Run time 

Test set 
accuracy 

0.5 ResNet50 23 hrs (35 epochs) 99% 
0.25 ResNet50 18 hrs (28 epochs) 99% 
0.1 ResNet18 14 hrs (53 epochs) 90% 
0.05 Best accuracy model 

from SNR-0.1 
ResNet training 

7 hrs (27 epochs) 50% 

 

4.3 Interpretability 
 Recent CNN model interpretability has been driven by gradient-based visual attention 
methods such as Grad-CAM (Gradient-weighted Class Activation Mapping) and saliency map. To 
explain which local area was used to make classification, we visualized region of attention by 
applying Grad-CAM to our ResNet based classification model (Fig. 4).  
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Figure 4. Visualization of region of interest.  

(Left) original image of PDX molecules. (Right) Result of Grad-CAM (white dots are 
estimated region of interest). 

4.4 Discussion 
 When we performed transfer learning from trained ResNet series with Imagenet data, it just 
slightly improved the accuracy over non-transfer learning. This result makes sense since our 
synthetic dataset is mostly similar to each other with respect to morphology (projected cylinder) 
and color (grayscale only) while Imagenet dataset is consisted with diverse shapes and colors.  

 
 Since random prediction accuracy would be 25% with our 4 target classes, it is evident that 
CNN can predict with decent prediction accuracy. However, we expect that SNR of experimental 
cryo-EM data is around 0.05~0.1. If we interpolate our naïve application of CNN model that is 
trained with simulated data, prediction of experimental cryo-EM data would be around 50~90% 
only (of course since experimental data has more limited Euler angle ranges, the accuracy might 
be little higher than this). Therefore, either we need to further optimize hyperparameters of CNN 
to further improve accuracy or we need to use a different deep learning method. More importantly, 
our ultimate goal is to develop unsupervised method. However, classification with pixel based 
difference and CNN without and with residual connection are all supervised method. 
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5.0 VAE with cryoDRGN 

 

5.1 Background 
 We believed that regions of interest in our target (PDX multimers) will be better 

captured in 3D space. Therefore, we wanted to map between cryo-EM 2D input image and 3D 
output volume. Spatial-VAE is an ideal foundation architecture for this goal16 because it is rotation, 
translation equivariant. In other words, it can model rotation, translation invariant features (e.g. 
inherent features regardless of random rotation and translation). Starting from the spatial-VAE, 
cryoDRGN reconstructs 3D volume even with 2D projected images as input5. This is possible by 
matching with known Euler angles from another input file (e.g. star) which is generated by 
homogenous refinement.  

Strictly speaking, cryoDRGN is not transformer since it lacks any attention model. 
However, it uses positional encoding to all input coordinate pixels. This positional encoding 
information is concatenated into latent space when it is fed into decoder. Since this positional 
encoder is added to all input tokens, decoder knows input token order (as transformer model 
does). Therefore, this coordinate MLP (or Neural Radiance Field17) can reconstruct 3D volumes. 
Since latent space maps between matching 3D volumes with 2D inputs, latent space clustering 
of cryoDRGN can differentiate obviously different biomolecule structures. 

 

5.2 Result 
When we tried the leading VAE method of cryo-EM reconstruction, cryoDRGN5, to classify 

published obviously different molecules, it classified them well (Fig. 5 Left). However, when we 
ran it again to our target experimental images (e.g. 284,133 particles of PDXcoexpression) that 
has various stoichiometries of PDX homologues (Fig. 2), we were unable to classify even after 
excessive number of epochs (e.g. > 2,400) (Fig. 5 right. A typical number of epoch trials by 
cryoDRGN author is ~25). One notable fact is that we tried fairly exhaustive combinations of 
UMAP (Uniform Manifold Approximation and Projection) hyperparameters (e.g. metric, 
n_neighbors, min_dist, and spread) as well. Although we did not vary different a, b 
hyperparameters due to computational hardware limitation, these fairly exhaustive combinations 
of UMAP hyperparameters ensure that this lack of classification power does not stem from less 
ideal set of UMAP hyperparameters. As a reference, cryoDRGN application to classify distinctly 
different protein structures, default usage of UMAP hyperparameters has been sufficient5. 

 
 

     

Figure 5. CryoDRGN based classification cryo-EM data with MLP and beta=1.  



PNNL-33162 

 A.9 
 

(Left) It clearly clusters ribosome 50S data. (Right) We could not classify PDX 
coexpression data set whose homologues are similar to each other except few internal 
differences among them. 
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6.0 Beta-VAE 

 
Since cryoDRGN uses beta coefficient for KL (Kullback–Leibler) divergence = 1 by default, 

we tried various beta values that are greater than 1 to realize betaVAE18. The purpose of betaVAE 
is to better disentangle latent features even if it sacrifices some reconstruction quality as shown 
with MNIST (Modified National Institute of Standards and Technology database) and human face 
examples. This newer VAE seemed worth a try since our cryoDRGN trials reconstructed expected 
dodecamer structures, we may be able to forfeit some reconstruction loss minimization. However, 
even with the betaVAE (e.g. beta=2, 4), we still could not classify closely resembling homologues 
(Fig. 6 left).  

 
 

     

Figure 6. VAE classification cryo-EM data after modification of cryoDRGN.  

(Left) beta-VAE with cryoDRGN 
(vae128_z8_e1600_beta_4_amp/analyze.1599/kmeans3).  

(Right) cryoDRGN with CNN encoding 
(vae128_z10_e100_conv/analyze.75/kmeans3). 
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7.0 VAE with Cartesian Coordinates 

 

7.1 Background 

 For faster computation, most cryo-EM programs (including cryoDRGN) use coordinates in 
fourier space during the most intensive parts (e.g. pose search, refinement). Of course, the very 
first input and very last outputs are in real space so that human can understand more intuitively. 
We hypothesized that if we feed real space input into encoder, then the VAE may better 
differentiate incoming image data preserving same differences among different stoichiometries 
that may be lost/obscured in fourier space. Eventually, processing data in real space will be better 
interpreted by human anyway. 
 

7.2 Method 
 We modified cryoDRGN to use real space encoder with two options. One is to use original 
MLP (MultiLayer Perceptron) encoder. The other is to use CNN encoder. For CNN encoder, since 
we observed high prediction accuracy with ResNet based CNN, we coded residual connection 
based VAE. For decoding, we used the same fourier transform MLP version (e.g. 
FTPositionalDecoder). With this new CNN encoding model, trainable parameters in model are 
increased to 4 million (4,790,422) from 3 million (3,790,354) in MLP. Typically, the number of 
parameters of MLP should be much higher than the one for CNN since MLP uses fully connected 
layer while CNN abstracts parameters with Pooling (often Maxpool) layers. The possible reason 
behind this increased number of parameters with CNN could be that we used a larger architecture 
of CNN to use residual attention layer that will be visualized by Grad-CAM to highlight crucial local 
regions that are more responsible for classification. Otherwise, MLP in the original cryoDRGN 
may not end up using fully connected layer after all. Possibly due to increased number of trainable 
parameters, our CNN encoding model ran 10 times slower than MLP encoding model.  

7.3 Result 
 Usage of real space encoder still could not classify closely resembling homologues both with 
MLP and CNN encoders (Fig. 6 right). It is notable that even larger number of parameters and 
various trials of z dimensions (for latent space) and epoch numbers for CNN encoder did not help 
to differentiate fine details among homologues. 

7.4 Discussion 

 High numbers of trainable parameters of this new CNN encoding VAE may seem large. 
However, ResNet18 and ResNet50 that we used have even more number of parameters (e.g. 11 
and 23 million respectively). Furthermore, the number of trainable parameters of our 2D only input 
and output InfoVAE models are 134 million. Therefore, it is evident that simple increase of number 
of parameters does not guarantee to classify subtle structural differences. What is more often 
critical is whether the model captures essential properties. Indeed, Deepmind reported that 25 
times fewer parameters of Retrieval-Enhanced Transformer (RETRO) achieved similar 
performance of GPT-3 (that used 178 billion parameters)19. 
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8.0 VAE after Manual Masking 

 

8.1 Background 
 Other than simple subtraction of pixel values among sub-classes, all our approaches are deep 
learning based (e.g. deep neural network). We suspected that our unsupervised deep learning 
approach lacks resolving power since supervised deep learning approaches successfully 
classified subtle differences among homologues. Additional resolving burden with unsupervised 
learning may have complicated pixel resolution in latent space. However, our computing power is 
limited to try very deep layers (Fig. 7). Therefore, we wanted to check whether manually masked 
region of interest (differing parts between different stoichiometries) alone can be captured by our 
current VAE architecture. 

 
  

 

 

 
    

Figure 7. An example that our current GPU hardware cannot minimize loss quickly.  

(Left) Better loss minimization of cryoDRGN enables higher/better resolution 
reconstruction (adapted from Zhong et al.5).  

(Right) However, even 8 GPUs are not reaching optimization plateau within 4 days 
with merely 64x64 images for 3 layers and 1,024 hidden units. 
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8.2 Method 
  
 After aligning corresponding pdb files, we converted them into cryo-EM maps with molmap 
command (pdb2mrc by eman2) in UCSF Chimera. Then, we subtracted these maps by vop 
subtract command in UCSF Chimera (Fig. 8). These subtracted 3D maps are projected into 2D 
images by relion_project. 

 

 

 
 
 
 

 

 

 

 
 

    

Figure 8. Manual masking to leave region of difference only.  

(Upper Left) Red dots are ‘region of interest’ (e.g. difference between two different 
homologous structures.  

(Lower Left) gray → PDX1.2 homologue, yellow → PDX1.3 homologue  

(Right) Masked region of interest after hiding dust.  

 

8.3 Result 
  

 Even with these masked input images (e.g. superimposed regions between two target 
homologues are omitted/discarded), unsupervised VAE could not classify expected 
stoichiometries still (e.g. it classified targets randomly). This result was unexpected since 
resolving power by unsupervised method should be solely devoted to region of interest only this 
time (and these same regions of interests were well classified by supervised CNN). This result 
suggests us that latent space information that is supposed to extract essential information (e.g. 
without noise/tangential structural information) is generated with middle/low resolution information 
only. 
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9.0 VAE Based on cryoDRGN version 2 

 

9.1 Background 
 Based on classification failure even with manually masked input, we came to believe that our 
VAE models that are based on cryoDRGN ver. 1 could not deal high resolution structural 
information (without very time-consuming deep learning architectures). Indeed, a recent report of 
cryoDRGN ver. 220 shows that cryoDRGN ver. 1 (Branch and Bound pose search, e.g. BNB) 
based VAE could not reconstruct into high resolution map. Additionally, cryoDRGN ver. 1 based 
volume model (MLP / NeRF: Neural Radiance Fields) is much slower to render than voxel-based 
models.  

 
 However, cryoDRGN ver. 2 could search pose 172 times more accurately 2~4 times faster. 
This boost of performance of ver. 2 becomes possible by refactoring the pose search (e.g. enable 
tractable joint inference of pose and volumes in the context of an MLP representation of volume). 
Specifically, there are two improvements. First, it alternates epochs between pose search and 
reusing the latest computed pose (instead of pose search epochs only). Second, it resets the 
coordinate MLP model and optimizer state intermittently. This resetting coordinate may seem like 
a conventional residual connection as seen in skip connection of ResNet. However, it is not 
residual connection. Other than these improvements, cryoDRGN ver. 2 is fundamentally same as 
cryoDRGN ver. 1 (e.g. same positional encoding for 3D volume reconstruction). 

 

9.2 Current Development Status 
 As of 12/27/2021, cryoDRGN ver. 2 author announced that she will release the working code 
after 1/1/2022. As the code is released, we plan to use it with 4 combinations (cryoDRGN ver. 2 
original, cryoDRGN ver. 2 + InfoVAE, cryoDRGN ver. 2 + BetaVAE and cryoDRGN ver. 2 + 
InfoVAE + BetaVAE). 
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10.0 VAE Based on U-NET 

 

10.1 Background 
 All deep learning based image classifications by big techs (including Nvidia, Facebook) have 
been focused on large differences between targets (such as Cifar100, Imagenet, Google’s own 
proprietary image set). However, we need a different deep learning approach to deal with high 
resolution information (Fig. 3). We believe that U-NET (U-shaped network) architecture is ideal 
for this purpose (Fig. 9). Specifically, by replacing pooling operators with upsampling ones, the 
U-NET does not lose spatial information (not compressing image size). Additional benefit of U-
NET is that it requires few images/classes to train (few-shot learning). This may be particularly 
useful since cryo-EM experimental 2D images may not be enough.  
 
 
 

 

    

Figure 9. Example of U-NET Based Segmentation.  

U-NET can segment up to high resolution information. Adapted from U-NET tutorial. 

 
 

10.2 Current Development Status 
 As there are many successful U-NET applications to MLP and CNN only deep learning 
architecture, there are U-NET based VAE model as well both in 2D21  and 3D22 representation. 
However, unlike concatenating VAE output into regular U-NET bottleneck23 (like some VAE-GAN 
models), we are modifying our current 2D input, 3D output VAE5 to have U-NET based skip 
connection instead of vanilla MLP. Specifically, we identified that resizing of concatenated z latent 
space into oriented image coordinates has been arbitrarily done. These image coordinates are 
encapsulated in sine and cosine of input 2D images in Fourier space which is already multiplied 
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by "geom_lowf" frequency. For example, torch.size[3, 192] (coordinates dimension and dimension 
of input mrcs) are resized by ‘sum of all encoded mask (e.g. circularly masked input that are 
eventually fed into VAE) – z space dimension’. Most U-NET codes have shown that in practice 
encoder layer concatenation into decoder is done after arbitrary cropping of encoder just to fit 
dimensions of corresponding decoder layer. Therefore, we are adding coordinates of encoder 
layer into decoder (without consideration of perfect symmetry between encoder and decoder) 
which will be halved later so that existing cryoDRGN based 3D volume reconstruction will work 
without further code update. Since cryo-EM data does not fit into single GPU memory, current 
cryoDRGN code uses generator. Per each batch of this generator based input feeding, we are 
deciding which encoder layer to concatenate into decoder in this generator scheme. 
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11.0 Conclusion and Future Direction 

 
 We were able to affirm that supervised deep learning approach classifies even inner structural 
differences between homologous structures much better than simple pixel values-based 
classification does. However, we have not been able to classify same targets with unsupervised 
deep learning approaches even after different architectures of VAE and exhaustive searches of 
VAE and UMAP hyperparameters (Table 3). It turns out dealing higher resolution structural 
information is essential for our goal based on VAE result with manually masked image. To model 
higher resolution structural information, Siamese neural net that is specialized to identify tiny 
difference among input images seems worth a try24. Instead of popular cross-entropy, the 
Siamese neural net uses contrastive loss (e.g. contrastive learning)8 25. Its pretraining property 
enables one shot learning and fast application to external dataset as well. Of course, U-NET 
based VAE, and cryoDRGN 2 based InfoVAE are expected to model higher resolution information 
as well. For faster development of these updates, PytorchLightning26 and SimpleTransformer27 
that wrap long lines of PyTorch and Transformer architecture will save time. 
 
 
 

Table 3. Comparison between Methods We Tried  

 

Method Pros Cons Lesson 

Pixel 
difference 

Training logic is 
better understood by 
human 

Less accurate than 
deep learning 
approach 

Identifying inner structural 
differences is feasible by pixel 
density difference identification 
with high SNR data 

CNN Once trained, 
deployment to test 
set is fast 

Pre-labelled data is 
required (supervised) 

Identifying inner structural 
differences is feasible by deep 
learning architecture even 
without Euler angle information 

VAE Pre-labelled data is 
not required 
(unsupervised) 

Development of 
successful 
classification tends to 
be more challenging 
than supervised 
approaches 

Conventional VAE architecture 
cannot differentiate tiny pixel 
differences among sub-classes 
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Appendix A – Data availability 

 All codes used for this project are available at https://gitlab.pnnl.gov/kimd999/mars_cryo. 
Contact authors for datasets. 
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