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Project Aims  
 
Many machine learning (ML) training tasks are essentially optimization processes that would at 
first glance appear eminently parallelizable and scalable.  However, effective acceleration of 
these tasks with scalable parallel hardware has proven to be elusive. While standard methods for 
machine learning, e.g., stochastic gradient descent (SGD) for DNNs, tend to be resource efficient, 
they appear to be fundamentally sequential in nature.  
 
The increasing availability of scalable computing platforms (including accelerators) presents an 
opportunity for more sophisticated approaches to be developed. The idea behind such 
approaches is to apply second-order optimization approaches that, while potentially requiring 
more memory and computation than a first-order approach, would enable significantly faster 
convergence while amortizing the resource requirements across a scalable computing platform. 
The ultimate goal of our work in higher-order solvers is to enable much more rapid time to 
solution than is currently achieved. The work reported here was part of a larger research agenda 
aimed at making ML training scalable and significantly improving their performance. 
 
The specific focus of this project was to continue the development of a software library of 
advanced second order optimization for accelerating ML training. The project designed and 
prototyped selected second order optimization algorithms in PyTorch [1] and evaluated their 
convergence behavior and performance with the CIFAR10 dataset [2], using medium to large 
models (e.g., ResNet18 and ResNet50 [3]).  The results obtained were promising.  Second-order 
methods were shown to be competitive with highly-tuned first-order methods such as SGD/Adam 
[4], suggesting the need for continued research in this area. 
 
The software developed as part of this LDRD will be released publicly as an open-source package 
to the community. It includes a wide variety of second-order algorithms and supporting 
functionality, including: 

• Newton-Krylov optimizer [5] using a matrix-free conjugate-residual algorithm [6], 
• Quasi-Newton optimizers, including limited-memory versions of Broyden, Davidon-

Fletcher-Powell (DFP), and Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms [7]–[9], 
• Nonlinear conjugate-direction optimizers, including Fletcher-Reeves [10], Polak-Ribiere 

[11], Hestenes-Stiefel [12], and Dai-Yuan[13] algorithms, 
• Line-search methods, including Armijo [14] and Wolfe [15],  
• Trust-region methods, including Levenberg and Levenberg-Marquardt [9], and 
• Homotopy-continuation methods [16]. 

By making this comprehensive software library of second-order methods available in PyTorch, 
we hope to enable the larger ML community to experiment with them and to develop highly-
optimized and scalable approaches based on them. 
 
Key Project Accomplishments 

Open Source Repository: https://github.com/pnnl/pytorch_soo  

https://github.com/pnnl/pytorch_soo


PNNL-32925 

 2 
 

 
Acknowledgment 
  
Portions of this work were done in collaboration with Eric Silk (University of Washington, 
Schweitzer Engineering Laboratories) and Tony Chiang (PNNL). 
 
The research described in this report was conducted under the Laboratory Directed Research and 
Development Program at the U.S. Department of Energy’s Pacific Northwest National Laboratory 
(PNNL), a multiprogram national laboratory operated by the Battelle Memorial Institute under 
Contract DE-AC06-76RL01830. 
 
 
Bibliography 
 
[1] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in 

Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, 
F. d’Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–8035.  

[2] A. Krizhevsky, CIFAR10. 2009. 
[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition.” arXiv, 2015. doi: 

10.48550/ARXIV.1512.03385. 
[4] E. H. Chang et al., “The mixed effects of online diversity training,” Proc. Natl. Acad. Sci., vol. 116, no. 

16, pp. 7778–7783, Apr. 2019, doi: 10.1073/pnas.1816076116. 
[5] P. N. Brown and Y. Saad, “Hybrid Krylov Methods for Nonlinear Systems of Equations,” SIAM J. Sci. 

Stat. Comput., vol. 11, no. 3, pp. 450–481, May 1990, doi: 10.1137/0911026. 
[6] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003. doi: 10.1137/1.9780898718003. 
[7] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear 

Equations. Society for Industrial and Applied Mathematics, 1996. doi: 10.1137/1.9781611971200. 
[8] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. 

Elsevier, 1970. doi: 10.1016/C2013-0-11263-9. 
[9] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. New York: Springer, 2006. 
[10]R. Fletcher, “Function minimization by conjugate gradients,” Comput. J., vol. 7, no. 2, pp. 149–154, 

Feb. 1964, doi: 10.1093/comjnl/7.2.149. 
[11]E. Polak and G. Ribiere, “Note sur la convergence de méthodes de directions conjuguées,” ESAIM 

Math. Model. Numer. Anal. - Modélisation Mathématique Anal. Numér., vol. 3, no. R1, pp. 35–43, 
1969. 

[12]M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. 
Natl. Bur. Stand., vol. 49, no. 6, p. 409, Dec. 1952, doi: 10.6028/jres.049.044. 

[13]Y. H. Dai and Y. Yuan, “A Nonlinear Conjugate Gradient Method with a Strong Global Convergence 
Property,” SIAM J. Optim., vol. 10, no. 1, pp. 177–182, Jan. 1999, doi: 
10.1137/S1052623497318992. 

[14]L. Armijo, “Minimization of Functions Having Lipschitz Continuous First Partial Derivatives,” Pac. J. 
Math., vol. 16, no. 1, 1966. 

[15]P. Wolfe, “Convergence Conditions for Ascent Methods,” SIAM Rev., vol. 11, no. 2, 1969. 
[16]H. B. Keller, “Global Homotopies and Newton Methods,” in Recent Advances in Numerical Analysis, 

Elsevier, 1978, pp. 73–94. doi: 10.1016/B978-0-12-208360-0.50009-7. 
 



PNNL-32925 

 

 

Pacific Northwest  
National Laboratory 
902 Battelle Boulevard 
P.O. Box 999 
Richland, WA 99354 
1-888-375-PNNL (7665) 

www.pnnl.gov 

 

http://www.pnnl.gov/

	Standard Disclaimer no limitations (no adonis).pdf
	PACIFIC NORTHWEST NATIONAL LABORATORY
	email: reports@osti.gov





