Low-temperature electroplating of zirconium: Ionic mixture methods

March 2022

Christina Arendt
Lance Hubbard
Low-temperature electroplating of zirconium: Ionic mixture methods

March 2022

Christina Arendt
Lance Hubbard

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354
Acknowledgments

The research described in this report was conducted under the Laboratory Directed Research and Development (LDRD) Program as a strategic investment at the Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. PNNL is a multi-program national laboratory operated for the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830.
1.0 Results

- Zr films up to 6 microns thick have been deposited on Mo substrates
- Contamination levels low
- Surface coverage is high
- Film quality higher & cost lower than other plating methods
2.0 Background & Motivation

• Zirconium is a refractory metal
 ▪ Useful for solar panels, electronics, furnaces, catalysis, etc.
 ▪ Reduction potential past splitting point of water
• Current methods of plating Zr; all have issues
 ▪ Co-rolling/co-extrusion
 ▪ Applied coatings (plasma spray, sputter coating)
 ▪ Molten salt electroplating
 ▪ Ionic liquid (IL) electroplating
• Ionic mixtures
 ▪ Deep eutectic solvents (DES)
 ▪ DES/IL mixtures
 ▪ Room temperature to 125 °C
3.0 System Set-Up

- Gamry’s Dr. Bob’s Cell
 - Non-aqueous silver references
 - Glassy carbon electrode
 - ¼” wide Mo foils
- Deep Eutectic Solvent
 - Ethaline (1:2 choline chloride: ethylene glycol)
 - Ar cleaned under vacuum at 150 °C for 24 hours
 - +0.25 M ZrF₄ and LiF
- Electroplating
 - DC and AC both trialed
 - Pulse plating most successful
 - 100 ms plate, 10 ms rest
 - Stirred
 - Ar bubble and blanket
- Cyclic voltammetry study
4.0 Cyclic Voltammetry

![Graph showing cyclic voltammetry results with ZrCl₂ Deposition between -0.6 to -0.5 V and Zr Deposition between -1.81 to -1.85 V (concurrent with IL range).]
5.0 SEM Imaging, DC Plating

- Metal deposition
 - Coverage > 99.9±0.4%
- Isolated salts
- Porosity 0.01-0.1%
- Grains 30-50 nm
6.0 Literature vs. DC Plating Results

veprints.unica.it/1081/1/PhD_Thesis_LauraMais.pdf
7.0 Film Morphology

- AC plating produces a smoother film than DC plating
- Addition of IL
 - Inhibits plating
 - Smooths roughness
 - Nanotextured Zr
8.0 How do we know we have a metallic coating?

RF, XPS & XRD Help Confirm Metallic Zr

- **XRF**
 - Zr signal occludes Mo signal
 - Mo diminishes & Zr stable
 - S from 0.1 – 2%
 - Intermittent Cl from 0.1 – 0.3%

- **XPS**
 - ZrO (surface oxide) seen

- **XRD**
 - Metallic signature for Zr & Mo
 - No bulk oxides
 - No bulk sulfides
 - Some LiCl and ZrCl
Time-Temperature Effects

![Graph showing Time-Temperature Effects](image)

Ionic Liquid Options

- Other cations
 - BMP short supply
 - Polarity & viscosity
 - BMP BTS (Best Prior)
 - DMA BTS (Polar, ↓µ)
 - MTA BTS (Non Polar, ↑µ)
 - TES BTS (Non Polar, ↓µ)
- Sulfur contamination
 - 2, 31, 12, 13%
 - S-Mo interference
- BMP BTS most reliable IL
 - Can be difficult to acquire
 - MTA BTS & TES BTS possible alternates
 - Smooth film deposition

How do we know we have a metallic coating?
 Ionic Liquid Options

BMP BTS = 1-Butyl-3-Methyl-Pyrrolidium Bis (Trifluoromethylsulfonyl)imide

DMA BTS = Diethylmethyl (2-Methoxyethyl)Ammonium Bis (Trifluoromethylsulfonyl)imide

MTA BTS = Methyl-Triocylammonium Bis (Trifluoromethylsulfonyl)imide

TES BTS = Triethylsulfonium Bis (Trifluoromethylsulfonyl)imide
9.0 Conclusion

- Demonstrated conformal Zr platings at low temperatures
- Deposition of metallic Zr film from DES
 - DC plating: 100s of nm thick
 - AC plating: 6 microns, smoother, cleaner
- ILs can be used as a growth inhibitor
- ZrF$_4$ is more soluble in DES than IL
 - Greatly improves deposition
- Deposition is diffusion limited
 - Pulse plating improves deposition
- Moving on to other metals of interest