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Summary 
The Pacific Northwest National Laboratory (PNNL) is conducting confirmatory research for the 
U.S. Nuclear Regulatory Commission (NRC) to evaluate commercially available nondestructive 
examination (NDE) modeling and simulation software used in the nuclear industry. Simulation 
results from ultrasonic testing (UT) models can inform the design and qualification of inspection 
techniques and help interpret inspection results. CIVA is a modeling and simulation package 
developed by the French Alternative Energies and Atomic Energy Commission (CEA). CIVA 
was selected for this study because it is readily available and has been used for NDE in the US 
commercial nuclear power industry. This report is focused on completing the efforts initiated in 
the previous PNNL report to evaluate UT modeling and simulation performance, reliability, and 
accuracy in relation to common inservice inspection (ISI) scenarios in nuclear power plants 
(NPP). This work will be used to provide guidance when establishing methods to perform and 
evaluate simulations for more standardized model implementation, simulation analysis, and 
interpretation of results. 

NPP licensee requests for relief from ISI requirements are submitted for review to the NRC 
Office of Nuclear Reactor Regulation (NRR). Relief requests may contain modeling and 
simulation results to help establish the technical basis of the request. This project is intended to 
provide NRR with the fundamental understanding needed to effectively evaluate such licensee 
submittals. In addition, industry representatives have indicated the desire to determine if 
simulations can be used in lieu of examinations of physical mockups to reduce the time and cost 
associated with inspection qualification. 

The ongoing work at PNNL aims to define best practices for using computational models to 
evaluate UT scenarios on NPP components. The current report is a continuation of work 
initiated in Jacob et al. (2020) where CIVA was used to evaluate simulated flaw responses and 
ultrasonic beam models in austenitic welds, dissimilar metal welds (DMW), and cast austenitic 
stainless steel (CASS) materials. The current report also addresses additional topics of noise 
and attenuation, particularly in models of CASS materials. 

In Jacob et al. (2020), it was shown that representing coarse-grained equiaxed materials with 
three-dimensional (3D) Voronoi models saves time while producing more realistic results than 
two-dimensional (2D) models based on actual CASS geometries. Work was also started on a 
coarse-grained columnar CASS model. Section 3.0 of the current report wraps up the modeling 
work on coarse-grained materials. Results again shows that the 3D Voronoi model produce 
more realistic simulation results than the 2D specimen-based model when compared to 
empirical beam maps. In addition, the simulated sound fields are measurably different between 
the equiaxed and columnar models. When applying coarse-grained models to ISI scenarios, the 
actual grain structure will likely be unknown. Therefore, simulations with multiple specimen 
models are recommended in order to predict a range of flaw responses since the grain structure 
may have an impact on the flaw response. 

PNNL developed an austenitic weld model from electron backscatter diffraction (EBSD) images 
acquired on a laboratory weld sample. When the previous technical letter report (TLR) was 
published, the full weld model was not yet ready for simulations. In Section 4.0 of the current 
report, PNNL shows beam simulation results using the full EBSD-based weld model and 
compares results to model variations. The variations included: 1) multiple grain sizes, 2) random 
Euler angle assignments with the same crystalline shapes as the EBSD model, and 3) altering 
the crystalline shapes by using a Voronoi geometry but using the same Euler angle 
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assignments as the EBSD model. Results showed that the specific Euler angle assignments 
affected the beam scatter but not as strongly as changing the crystalline shapes. The irregular 
shapes in the Voronoi geometry added more interfaces with the same number of regions; the 
added interfaces significantly increased the beam scatter. Overall, results show that the specific 
details of a weld model may not be critical, and a lack of specific grain information should not 
stop someone from using a weld model. Ideally, the simulation results should be compared to 
empirical results. As with coarse-grained models, an absence of empirical results will require 
using multiple models to bound the possible outcomes. 

Sections 5.0 and 6.0 examine the effects of adding noise and attenuation to models. Empirical 
UT scans of coarse-grained materials typically include coherent signal reflections from grain 
boundaries; such signals appear as structural noise. Structural noise in CASS can affect the 
ability to detect and characterize flaws; therefore, accurately predicting flaw detection in such 
materials depends on the ability to accurately simulate structural noise. In Section 5.0, options 
are investigated for simulating structural noise in CIVA for a range of stainless steel materials. 
Simulated noise fields are compared to empirical noise to illustrate that CIVA can simulate noise 
in many scenarios. Attenuation is another key attribute of UT scans, and the severity of 
attenuation depends strongly on the material properties and probe frequency. Section 6.0 
describes how CIVA implements attenuation in simple materials and how attenuation in more 
coarse-grained materials modeled by Voronoi regions can be simulated. 

Section 7.0 summarizes the findings of this report. In a future report, PNNL will consider the 
findings from their previous and ongoing modeling and simulation activities (including the 
current report) to draw conclusions and make recommendations on the use of modeling and 
simulation in nuclear NDE. The goal is to provide the industry and NRC staff guidance on 
modeling and simulation best practices. 

Appendix A describes insight into some CIVA functions and features. This is a continuation of 
CIVA-specific guidance that was provided in Jacob et al. (2020). Appendix B is a copy of an 
internal PNNL technical report describing the conversion of Euler angles between different 
reference frames. Euler angle conversions are important for developing models based on 
empirically-measured crystalline orientations or for converting angles from one modeling 
software convention to another. 
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Acronyms and Abbreviations 
2D two dimensional 
3D three dimensional 
BW backwall 
CAD computer-aided design 
CASS cast austenitic stainless steel 
CEA French Alternative Energies and Atomic Energy Commission 
CS carbon steel 
DMW dissimilar metal weld 
EBSD electron backscatter diffraction 
EDM electrical discharge machined 
FEM finite element modeling 
FSH full-screen-height 
GEIT General Electric Sensing & Inspection Technologies 
ISI inservice inspection 
NDE nondestructive examination/evaluation 
NPP nuclear power plant 
NRC US Nuclear Regulatory Commission 
NRR NRC Office of Nuclear Reactor Regulation 
PA phased array 
PNNL Pacific Northwest National Laboratory 
RES NRC Office of Nuclear Regulatory Research 
SDH side-drilled hole 
SNI Sensor Networks, Inc. 
SNR signal-to-noise ratio 
SS stainless steel 
TLR technical letter report 
TRL transmit-receive-longitudinal 
UT ultrasonic testing 
WSS wrought stainless steel
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1.0 Introduction 
The US Nuclear Regulatory Commission (NRC) has identified nondestructive evaluation (NDE) 
modeling and simulation tools as a technical area of focus for confirmatory research. The NRC 
Office of Nuclear Regulatory Research (RES) initiated a task for the Pacific Northwest National 
Laboratory (PNNL) to conduct a multi-phased technical assessment of various modeling and 
simulation tools and to address modeling issues of increasing levels of complexity. PNNL was 
directed to focus on ultrasonic testing (UT) modeling packages, in particular UltraVision (Zetec, 
Inc.), CIVA (EXTENDE, Inc.), and OnScale Solve (OnScale, Inc.). The approach to the work has 
included: 

• Beam and flaw-response models of multiple component/material/flaw configurations;  

• Empirical data acquisition to compare and validate the model results; and 

• A gap analysis of where the models fail to provide effective and reliable results. 

To date, PNNL has published a series of three technical letter reports (TLR) on the modeling 
and simulation assessment (Dib et al. 2017; Dib et al. 2018; Jacob et al. 2020). These reports 
have covered issues including: 

• Quantitative metrics for measuring simulation outcomes and comparing results to empirical 
data; 

• Understanding uncertainties in simulation results and the role of verification and validation; 

• Understanding how variability in parameter selection affects variability in simulation 
outcomes; 

• Exploring the relationship between beam simulations and flaw response models and whether 
the former can be used as a surrogate for the latter; 

• Developing and testing models of austenitic welds, coarse-grained materials, and dissimilar 
metal welds; 

• Comparing beam simulations generated by UltraVision and CIVA. 

The current report is the fourth in the series and focuses on wrapping up efforts to assess CIVA 
modeling of coarse-grained materials, austenitic welds, specimen noise, and sound field 
attenuation. A future report will address flaw response simulations and will explore UT modeling 
using OnScale Solve. The modeling and simulation work will then be concluded with publication 
of a NUREG/CR on UT modeling, identifying gaps and best practices for the nuclear NDE 
industry.  

The NRC Office of Nuclear Reactor Regulation (NRR) receives licensee requests for relief from 
inservice inspection (ISI) requirements. In the event that licensees use modeling and simulation 
as technical justification in relief requests, PNNL anticipates that NRR would use these reports 
to help evaluate the requests.  

In commercial nuclear NDE, models can be used to help develop inspection procedures, 
calculate beam coverage, predict flaw detection, and inform probe and mockup design. 
Ultimately, the goal of modeling is to save time, money, and resources while maintaining or 
improving plant safety. The use of NDE modeling and simulation continues to grow, but 
modeling has some significant limitations: 
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• Human factors cannot be effectively modeled, as they are dependent on the skill level, 
experience, and physical environment of the NDE examiner; 

• Models may be invalid for certain scenarios if they contain approximations or simplifications; 

• Incomplete knowledge of the specimen material, grain orientation and microstructure, and/or 
geometry can have a strong impact on simulation accuracy; 

• Unanticipated variables can occur in the field, such as noisy scan data, scan range 
limitations, and spurious signals like those from weld root, counterbore, or fabrication defects.  

Modeling and simulation limitations should be well understood so that results can be interpreted 
correctly. Ideally, simulation outcomes are accompanied by empirical data for validation. 
Empirical data can also help catch unanticipated errors or oversights so that models can be 
corrected and refined, thus improving the usefulness and reliability of the models. 

The previous PNNL modeling and simulation report (Jacob et al. 2020) focused on using CIVA 
to model austenitic welds and coarse-grained materials, such as cast austenitic stainless steel 
(CASS). These materials are challenging for typical inservice examinations due to beam scatter, 
attenuation, and redirection. That report described methods for developing and testing 
specimen models that have anisotropic and complex microstructures. The current report 
continues that work, as described in the paragraphs below.1 

Section 2.0 of this report wraps up the modeling work on coarse-grained materials. In the 
previous PNNL TLR, it was shown that representing coarse-grained equiaxed materials with 
three-dimensional (3D) Voronoi models saves time while producing more realistic results than 
two-dimensional (2D) models based on actual CASS geometries. In the current report, the work 
was extended to a coarse-grained columnar CASS model that was described in the previous 
report. Results again show that the 3D Voronoi model produces better simulation results than 
the 2D specimen-based model when compared to empirical beam maps. Results also show that 
the beam simulations with the equiaxed and columnar grain structures are measurably different, 
as observed empirically. When applying coarse-grained models to ISI scenarios, the grain 
structure will likely be unknown. Therefore, simulations with multiple scenarios are 
recommended in order to predict the range of responses. 

PNNL developed an austenitic weld model from electron backscatter diffraction (EBSD) images 
acquired on a laboratory weld sample. At the time the previous TLR had been published, the full 
weld model was not yet ready for simulations. In Section 4.0 of the current report, PNNL shows 
beam simulation results using the full EBSD-based weld model and compares results to 
variations on the model. The variations included 1) random Euler angle assignments with the 
same crystalline shapes as the EBSD model and 2) altering the crystalline shapes by using a 
Voronoi geometry with the same Euler angle assignments as the EBSD model. Results showed 
that the specific Euler angle assignments affected the beam scatter but not as strongly as 
changing the crystalline shapes. The Voronoi geometry had more interfaces with the same 
number of regions; the added interfaces significantly increased the beam scatter. Overall, 
results show that the specific details of a weld model may not be critical and should not stop 
someone from using a weld model in simulations. Ideally, the model should be informed by 

 
1 Jacob et al. (2020) primarily focused on CIVA 2017. A new version of CIVA was released near the 
conclusion of that work, so the current report uses CIVA 2020. CIVA 2021 was then released after work in 
the current report was completed. 
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empirical results. As with coarse-grained models, the absence of empirical results will require 
using multiple models to bound the possible outcomes. 

Finally, in Sections 5.0 and 6.0 the effects of adding noise and attenuation to models are 
examined. Empirical UT scans of coarse-grained materials typically include signals reflected 
from grain boundaries; such signals appear as structural noise. The ability to accurately predict 
flaw detection in such materials depends on the ability to accurately simulate structural noise. In 
Section 5.0, options are investigated for simulating structural noise in a range of stainless steel 
materials. Simulated noise fields are compared to empirical noise to illustrate that CIVA can 
effectively simulate noise in many scenarios. Attenuation is another key attribute of UT scans, 
and the severity of attenuation depends strongly on the material properties and probe 
frequency. Section 6.0 describes how CIVA implements attenuation in simple materials and how 
attenuation in more coarse-grained materials modeled by Voronoi regions can be simulated. 
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2.0 Terminology and Concepts 
PNNL uses the term “model” when referring to the digital representation of a specimen, probe, 
flaw, etc. or combination thereof. “Model” also describes the mathematical framework used for 
computation. PNNL uses “simulation” when referring to the computational execution of a model 
scenario with a particular set of input parameters. A model provides an imitation or 
representation of the real-world scenario, whereas a simulation uses the model to predict 
behavior under user-defined conditions. 

CIVA is an NDE simulation software package published by EXTENDE, Inc. and originally 
developed by the French Alternative Energies and Atomic Energy Commission (CEA) for 
simulating inspections of nuclear power plants. CIVA is used globally in the nuclear industry. It 
has a UT-specific module with a library of standard geometries and transducers common in UT 
inspections, which simplifies the modeling effort for most users. CIVA uses a semi-analytical 
approach and multiple approximations to calculate 3D sound fields in beam simulations and 
flaw-response simulations. As described in Mahaut et al. (2010), CIVA uses a “pencil” method, 
or beam-calculation approach, to calculate sound fields and sound propagation. This method 
uses a high-frequency approximation, which requires the wavelength to be on the order of, or 
smaller than, the size of flaws or model geometry features. With this approach, CIVA is able to 
compute results with good accuracy in a relatively short time, albeit with some limitations. PNNL 
has primarily used CIVA for the modeling and simulation work under the NRC contract because 
the nuclear NDE industry is a primary target of CIVA applications. 

The finite element method (FEM) is a more common approach to modeling because it is much 
more flexible than CIVA. However, FEM typically requires some computational or programming 
expertise, and FEM packages usually lack a UT-specific module with pre-defined probes and 
geometries as found in CIVA. The FEM approach discretizes the model into elements by use of 
a mesh, then solves the sound field for each element by a series of boundary-value problems 
using a system of differential equations. FEM has more flexibility than CIVA because it is not 
bound by the high-frequency approximation and other model assumptions, but simulations 
typically require much more computing power and time, particularly for 3D computations. There 
are dozens of commercial and open-source FEM software packages, many with toolboxes 
specific to ultrasonic simulation. Examples of common commercial FEM software include: 
OnScale Solve, Ansys (Ansys, Inc.), COSMOL Multiphysics (COSMOL, Inc.), and Abaqus 
(Dassault Systemes). 

It is necessary to expand a bit on the high-frequency approximation in CIVA. The high-
frequency approximations do not cause CIVA to fail at a particular cut-off frequency, nor does 
CIVA warn the user when the approximation may be violated. Rather, simulation results may 
gradually become less reliable as the degree to which the approximation is violated increases. 
The user can run simulations that violate the model approximations, so it is the user’s 
responsibility to understand the model limitations and to use appropriate model parameters. In 
PNNL’s experience, most modeling scenarios are executed well at frequencies of 2 MHz and 
higher (the wavelength in steel at 2 MHz is about 3 mm [0.12 in.]). Some scenarios at 1 MHz 
are also possible, but results should be scrutinized. Frequencies below 1 MHz are not practical 
for most scenarios unless specimen and flaw sizes are increased proportionally. For example, 
low-frequency (~500 kHz) simulations in CASS models are generally not feasible in CIVA, and, 
therefore, PNNL has avoided such simulations. Metamodels or parametric studies can be run in 
CIVA to explore model limitations for a given scenario. 
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Empirical data are data acquired in the field or laboratory. For PNNL, the vast majority of 
empirical data are collected in the laboratory under controlled conditions. The laboratory setting 
allows for examination of specifically-designed mockups and for acquisition of more data than in 
the field, as scans can be repeated as necessary using a variety of probes or scan parameters 
without time or dose constraints commonly experienced in the field. Laboratory work also allows 
for destructive testing of mockups to examine grain structures, weld profiles, and flaw shapes. 
However, laboratory data can lack the realism of field data, especially when surrogate flaws are 
used, such as electrical discharge machined (EDM) notches or saw cuts. 
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3.0 Working with Cast Austenitic Stainless Steel and 
Dissimilar Metal Weld Models 

3.1 Summary of Previous Work 

CASS materials pose unique challenges for UT inspections. CASS grain structures redirect and 
attenuate the sound field, resulting in significant beam scatter, high noise levels, and poor 
sound field penetration (Jacob et al. 2019). Each CASS component has a unique grain structure 
that distorts the sound field differently, making it impossible to use modeling and simulation to 
exactly predict sound coverage and flaw echo responses. The challenges are extended to 
dissimilar metal weld (DMW) models, particularly those adjacent to CASS base metal, as the 
weld geometry and buttering have their own unique grain structures. Specimen properties 
typically have the largest effect on simulation accuracy, so it is important to use a model of the 
specimen that most closely emulates the material’s effect on the sound field. Since it is 
impossible to exactly replicate the material properties (e.g., sizes, shapes, and crystalline 
orientations) of the grains, the properties must be approximated in simplified models. 

Jacob et al. (2020) showed a step-by-step method for creating a CASS specimen model from a 
cut and polished section. The method used photography and image filters to extract grain 
boundaries and then assigned Euler angles to each grain. A coarse-grained CASS model was 
created, and beam simulations were generated in CIVA to test against a comparable Voronoi 
model. Voronoi models are convenient because they are a built-in option in CIVA for certain 
geometries (Jenson et al. 2010). Simulation results on both models were qualitatively compared 
to empirical beam maps. Results showed that developing a realistic coarse-grained CASS 
model is feasible in CIVA and that beam simulation results appear to provide a realistic 
representation of beam scatter. Results also showed that the Voronoi model is an excellent 
proxy for the specimen-based model. Indeed, the Voronoi model has many advantages over the 
specimen-based model: the Voronoi model was much faster to create, it was inherently 3D, and 
the simulation times were shorter. 

Previous work with DMW models has been performed using various approaches to modeling 
the weld material. In the simplest approach, a homogeneous weld region was used to join two 
homogeneous materials (Kumar et al. 2021). Although each material in the model was assigned 
different material properties, no effort was made to simulate granular structure. The next 
simplest approach was to use the Ogilvy model of weld grain orientation with homogeneous 
buttering material. The resulting model is a built-in feature in CIVA, so it is easy to implement. 
The Ogilvy model has been used in DMW simulations (Gardahaut et al. 2014; Kim et al. 2016). 
Results in CIVA and using FEM showed no beam scatter, but some beam redirection was 
observed. Another implementation of DMW models divided the weld and buttering into regions 
of predominant dendrite orientation (Gardahaut et al. 2012). Note that dendritic orientation 
(defined by the long axis of the dendrite) is not the same as crystalline orientation, which is 
determined by the Euler angles. Beam simulation results in CIVA showed increased scatter over 
the Ogilvy model, but minimal beam redirection was observed as compared to the Ogilvy model. 
In another study, a group performed CIVA flaw-response modeling on a DMW model where the 
weld was divided into predominantly vertically-oriented regions, each of which was assigned a 
different anisotropy (Szávai et al. 2016). Although good agreement with experimental scans was 
reported, this weld model also did not appear to produce significant beam scatter. With the 
development of a CASS model and an austenitic weld model (as described in Jacob et al. 
(2020)), a realistic CASS-carbon steel (CS) DMW model is now straightforward to construct by 
combining the different model elements of CASS, weld, and buttering. 
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3.2 Columnar Cast Austenitic Stainless Steel Model 

In Jacob et al. (2020), a columnar specimen model was created from a section of specimen 
B519-C, which was originally used in the Programme for the Inspection of Steel Components 
(PISC-III) CASS round robin work conducted in the 1980’s (Bates et al. 1987; Heasler et al. 
1993). Figure 3.1 shows a polished and chemically-etched section of B519-C. Simulations using 
the specimen model were attempted but would not run to completion in CIVA 2017. With the 
release of CIVA 2020, however, the simulations were attempted again and completed 
successfully. 

 
Figure 3.1. Photo of specimen B519-C illustrating a fine-grained columnar microstructure. 

Figure 3.2 shows an example of a columnar model developed from B-519C (top left). Ten 
different sets of Euler angles, as taken from Chen et al. (2015), were assigned to the grains; 
each color represents a different set of angles. The Euler angle assignments were randomly 
assigned with the constraint that neighboring regions cannot have the same set of angles. Ten 
models were created, each of the same geometry and Euler angles but with scrambled Euler 
angle assignments. The model was 2D, so the geometry was extruded in the third dimension. 
The probe was oriented such that the sound propagation was parallel to the extruded direction, 
and a sound field was captured in a plane perpendicular to the extruded dimension. Ten beam 
simulations were performed using a 1 MHz, 45° phased-array probe and a CIVA accuracy factor 
of 16. The same settings were used for these simulations as were used in previous CASS 
simulations based on the model of the equiaxed specimen AAD-3 (Figure 3.2, top right). A 
1 MHz probe was used so that comparisons could be made to previously-acquired empirical 
data on the same specimen prior to it having been cut (see Section 3.3). These settings are 
detailed in Jacob et al. (2020). 
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Figure 3.2. Columnar and equiaxed microstructural geometries. The columnar geometry was 

extracted from the photographs of B519-C. The equiaxed geometry is reproduced 
from Jacob et al. (2020). Each color represents a different set of Euler angles. The 
averages of 10 beam simulations are shown for comparison. 

Figure 3.3 shows the results of the ten B519-C simulations. The images were divided into 
quadrants to illustrate that beam redirection often resulted in asymmetric sound fields. In many 
cases, the bulk of the beam was skewed to the right of center. Also, the sound field appears 
slightly elongated in the vertical direction as compared to the coarse-grained equiaxed CASS 
beam maps (see the simulation results in Figure 3.2). Overall, the B519-C simulation results are 
only slightly different in appearance from those of AAD-3. 
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Figure 3.3. The B519-C geometry with assigned Euler angles. Each color represents a different 

set of angles. A total of 10 sets was used. 

Following the B519-C simulations, Voronoi models were generated to imitate columnar CASS 
material. In a previous CASS model of equiaxed grains, the CIVA Voronoi model was elongated 
in order to imitate the extrusion of the 2D specimen-based model. The elongation was done by 
giving the Voronoi grains a high aspect ratio. The aspect ratio can only be applied in one 
dimension, so for columnar Voronoi grains the aspect ratio must be used to make the grains 
columnar. Thus, the grains cannot be elongated again in the third dimension to mimic the 
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extruded 2D B519-C geometry. In the final model, the columnar Voronoi grains were 3D and the 
specimen-based grains were extruded 2D. Figure 3.4 shows a side-by-side comparison of the 
cross-sections of B519-C (left) and a columnar Voronoi model (right). The Voronoi specimen 
was 100 mm × 80 mm × 60 mm (3.9 in. × 3.1 in. × 2.4 in.) and had 10,000 regions, so the 
average grain volume was 48 mm3 (0.003 in.3). The Voronoi aspect ratio was 7. 

 
Figure 3.4. B519-C model (left) and Voronoi (right). 

To simulate sound scatter in Voronoi regions, CIVA varies the speed of sound from grain to 
grain instead of using Euler angles. The average speed of sound of the specimen can be set 
along with a range of velocities, defined by the parameter ∆V. Sound speeds within the ∆V 
range are randomly assigned to the regions. For example, if the specimen sound velocity is set 
to 6,000 m/s and ∆V is set to 10% (or 600 m/s), then each Voronoi region will be randomly 
assigned a velocity between 5,400 m/s and 6,600 m/s. In the AAD-3 equiaxed case, the value of 
∆V was varied and was found to significantly affect the simulation outcomes. The same 
approach was done with the columnar model. Three different values of ∆V were tried: 4%, 6%, 
and 8%; the results are shown in Figures 3.5, 3.6, and 3.7, respectively. Note that 10 
simulations were initially run with ∆V=4%. This was reduced to six simulations each of ∆V=6% 
and ∆V=8% to save time. The ∆V was randomized for each simulation. 

One minor problem occurred in the way that the Voronoi specimen model varied from simulation 
to simulation. For the equiaxed cases in Jacob et al. (2020), the same Voronoi geometry was 
maintained for each simulation, but the velocity assignments were randomized. This was akin to 
using the same AAD-3 geometry but assigning different Euler angles for each simulation. For 
the columnar cases, however, a bug in CIVA 2020 prevented randomization of the velocity 
assignments with the same Voronoi geometry; therefore, each Voronoi columnar simulation had 
a different randomly-generated geometry. (Note: this bug was brought to the attention of 
EXTENDE and fixed in a CIVA 2020 service pack update). Ideally the geometry would be the 
same for each simulation; in this case the Voronoi geometry was an uncontrolled variable, 
which can complicate comparisons of simulation results. However, with many Voronoi regions, 
the differences from simulation to simulation caused by the geometry differences are expected 
to be small. 
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Figure 3.5. Beam simulations with the columnar Voronoi model, ΔV=4%. 
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Figure 3.6. Beam simulations with the columnar Voronoi model, ΔV=6%. 
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Figure 3.7. Beam simulations with the columnar Voronoi model, ΔV=8%. 

Table 3.1 compares some of the key attributes of the B519-C and Voronoi columnar models. 
Two significant differences are the time required to open the simulation files and the grain sizes. 
First, CIVA takes much longer to open and process custom geometries with many interfaces 
than it does the Voronoi geometries, adding a significant amount of time to model preparation 
and simulation analysis. Second, to compare the grain sizes, a cross-sectional plane was taken 
through the Voronoi model, and grain areas were measured. The B519-C model had a smaller 
average grain size, a larger range of grain sizes (as indicated by the high standard deviation 
[SD] relative to the mean), and a majority of small grains, as indicated by the low median value 
(these small grains may not be impactful on the results since the largest grains have the 
greatest influence on the resulting sound field map (Wan et al. 2017). For the Voronoi model, 
the average grain size depended on the number of grains and the specimen volume. After some 
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trial-and-error, the number of Voronoi grains was set at 10,000 to qualitatively match the 
“typical” appearance of the larger B519-C grains. The number of Voronoi grains can easily be 
changed in CIVA; however, increasing it substantially will increase the simulation time (and 
require higher accuracy factors, further lengthening simulation times), while decreasing it will 
make the grains too large. The absolute number of grains can be reduced while maintaining the 
same grain size by reducing the specimen volume commensurately, if reducing specimen 
volume is feasible for the model. 

Table 3.1. Comparison of B519-C and columnar Voronoi simulations. 

B519-C Voronoi 
2D, extruded in third dimension True 3D 
1,034 total grains 10,000 total grains (this variable can be changed in 

CIVA to affect the grain sizes) 
80 mm × 60 mm (3.1 in. × 2.4 in.) cross-sectional 
area 

80 mm × 60 mm (3.1 in. × 2.4 in.) cross-sectional 
area 

Grain size:  
average ± SD: 4.7 ± 15.7 mm2 (0.007 ± 0.024 in.2) 
median: 1.1 mm2 (0.0017 in.2) 

Cross-sectional grain size:  
average ± SD: 27 ± 17 mm2 (0.042 ± 0.026 in.2) 
median: 25 mm2 (0.039 in.2) 

Time required for CIVA to open the simulation file: 
~45 minutes 

Time required for CIVA to open the simulation file: 
~5 minutes 

Simulation time (accuracy = 16): ~5.5 hours Simulation time (accuracy = 16): ~4.5 hours 

It is important to determine an appropriate accuracy factor in CIVA (accuracy factor essentially 
controls the mesh density) by running a few test simulations. For example, Figure 3.8 shows the 
same Voronoi model simulated with accuracy factors of 8 (left), 16 (center), and 32 (right). 
These simulations ran with times of approximately 1.25 hours, 4.5 hours, and 15 hours, 
respectively.2 Clearly, accuracy=8 is inadequate, as many pixels were uncalculated. The 
simulation with accuracy=16 differs only slightly from that of accuracy=32. Note that in the 
equiaxed/extruded case, an accuracy of 2 or 3 was adequate for the Voronoi model. However, 
with the large number of columnar Voronoi regions, a higher accuracy factor was needed. In the 
end, both models had the same accuracy factor. 

 
Figure 3.8. Columnar Voronoi simulations with accuracy factors of 8 (left), 16 (center), and 32 

(right). 

 
2 This gives an idea of how the accuracy factor affects simulation times, though they will vary from 

computer to computer. 
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3.3 Beam Partitioning in Cast Austenitic Stainless Steel 

Beam partitioning is the sectioning of the beam by the CASS grain structure. Beam partitioning 
is caused by the elongated grains that scatter and redirect the sound field asymmetrically, and it 
can produce a shadowing effect for certain volumes of the sound field since the energy is 
diverted elsewhere. PNNL observed that beam partitioning is a signature of columnar grains 
and developed a metric to quantitatively compare empirical sound fields through different 
materials (Crawford et al. 2014). The metric is calculated by drawing a horizontal line through 
the beam map to create a profile, and every instance that the signal intensity exceeds a 
threshold is counted as a “crossing.” This process is repeated for every horizontal line through 
the image, and the sum of all crossings is taken. Similarly, the crossings of all vertical lines are 
counted. The ratio of horizontal to vertical crossings is the crossing ratio, or partitioning metric. 
PNNL applied the metric to compare the Voronoi simulations, the B519-C simulations, and the 
empirical beam maps. 

Figure 3.9 shows an example of the crossings from a horizontal and vertical line profile through 
a Voronoi beam simulation. Panel A shows the original image. Panel B shows the image with a 
median filter applied and horizontal and vertical lines where example profiles were taken. The 
filter reduces pixel-to-pixel fluctuations while preserving edges and boundaries. Panels C and D 
are the image profiles through the horizontal and vertical lines, respectively. The black 
horizontal lines in C and D represent the threshold level (in this case, 70% of the maximum 
signal), and the red circles show the crossings. In the example in the figure, there are two 
horizontal crossings and one vertical crossing, resulting in a crossing ratio of 2. All horizontal 
and vertical profiles of the image are interrogated in order to find an overall ratio. Beam 
partitioning should result in more horizontal crossings than vertical crossings for columnar 
materials, resulting in a ratio >1. For equiaxed grains, on the other hand, there should be no 
preferred direction of beam segmentation, and the ratio should be ≈1. 
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Figure 3.9. Example of how the crossing ratio is calculated. A) A simulated beam map through 

a columnar Voronoi specimen model. B) The same beam map with a median filter 
applied and with positions of horizontal and vertical sections indicated. C) The 
horizontal line profile with a threshold level (black line) and threshold crossings (red 
circles). D) The vertical line profile with the threshold crossing indicated (red circle). 

Table 3.2 shows the mean crossing ratios of the Voronoi columnar, B519-C (columnar), and 
AAD-3 (coarse-grained equiaxed) simulations. Also included are approximate values taken from 
the 1 MHz, 45° longitudinal-wave data shown in Figure 6.12 of Crawford et al. (2014). Note that 
the high number of samples taken (every row and column of each image) resulted in low SD. In 
the table, the SDs are presented with an extra level of precision, i.e., to the second decimal 
point to avoid misrepresentations from rounding (e.g., all SDs would have to be rounded up to 
0.1 because rounding down to 0.0 would not make physical sense, but rounding all to 0.1 would 
mask the significance of the SD).  
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Table 3.2. Comparison of crossing ratios. 

Case Mean Crossing Ratio 
± SD 

Voronoi columnar ∆V=4% 2.3 ± 0.05 
Voronoi columnar ∆V=6% 2.4 ± 0.06 
Voronoi columnar ∆V=8% 2.2 ± 0.05 
B519-C (simulated) 2.0 ± 0.02 
B519-C (from Crawford et al.)(a) 2.4 ± 0.04 
AAD-3 (simulated) 2.0 ± 0.04 
AAD-3 (from Crawford et al.)(a) 1.4 ± 0.03 
(a) approximate, as read from Figure 6.12 in Crawford et al. (2014) 

The crossing ratios of AAD-3 and B519-C simulations did not differ from each other. The 
simulations were not ideal representations of the different grain structures because the models 
were inherently 2D and were extruded in the third dimension. For AAD-3 (simulated), the ratio is 
higher than empirical, and for B519-C (simulated), the ratio is lower than empirical. Notably, the 
Voronoi columnar simulations and the B519-C empirical results agree. Importantly, the crossing 
ratio of the Voronoi models was largely independent of ∆V, so the optimal value of ∆V should be 
determined based on other factors, such as signal intensity or scatter. The ∆V was not 
optimized here, but the optimization process is shown in Jacob et al. (2020). 

3.4 Dissimilar Metal Weld Model 

DMW models can be particularly challenging because there are four distinct regions that need 
to be modeled: both parent materials, the weld region, and the buttering. Each region has a 
distinct grain pattern and material properties that will affect the sound field differently. PNNL 
attempted two approaches to making a DMW model. The first was to cut, polish, and etch a 
DMW section from the large-bore mockup described in Jacob et al. (2019). The section was 
then photographed to extract the grain boundaries using the method outlined in Jacob et al. 
(2020). Figure 3.10 is an example of a photograph taken with ambient light (top), the light 
source to the left (bottom left), and the light source to the right (bottom right). The bottom photos 
were converted to greyscale and masked to retain the CASS, the weld, and the buttering 
sections. For CASS specimens B519-C and AAD-3, this process resulted in a suitable grain 
representation. However, the DMW had far too many grains, including many small grains that 
were difficult to outline. All of the small grains resulted in more line segments than CIVA could 
efficiently handle, yet combining the small grains into larger grains would have changed the 
scattering and sound propagation effects appreciably (Wan et al. 2017). 
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Figure 3.10. Photographs of a polished and etched section from a DMW mockup. Top: a 

photograph taken with ambient light. Bottom left: the light source to the left. Bottom 
right: the light source to the right. 

The second approach was to build onto the electron backscatter diffraction (EBSD) weld model 
started in the previous TLR and continued in Section 4.0 (cf. Figure 4.1) by adding Voronoi 
regions on the CASS side and a buttering region on the CS side. Recall that in CIVA 2020 the 
Voronoi option is only available in simple specimen models. Therefore, Voronoi regions were 
created in another platform and imported into CIVA using a method such as manual tracing or 
digitization in computer-aided design (CAD) software. A drawback of this approach is that the 
Voronoi regions will be 2D, but this is consistent with the weld model, which is also 2D. Tracing 
in the CIVA CAD tool is a reasonable option if the number of grain boundaries is not too large 
and if the process only needs to be done once or twice.  

PNNL used the second approach to generate a DMW model. First, a 2D image with Voronoi 
regions was generated in ImageJ,3 then this image was converted to a CAD file in MATLAB and 
merged with the 256-pixel EBSD weld model. Voronoi line segments that intersected the weld 
were terminated at the weld boundary. The geometry was then imported into CIVA to test that 
CIVA could read it. At this stage, the CIVA CAD editor was used to reduce the total number of 
line segments—and therefore the computational burden on CIVA—by manually combining small 
regions with neighboring regions and by straightening some segments. At this stage, a buttering 
region was hand-drawn. An isotropic region was then added to the buttering side to represent 
CS or wrought stainless steel (WSS), and another isotropic region was added to the CASS end 
to extend the specimen to accommodate the probe. The final geometry was exported from 
CIVA, and MATLAB was used to assign Euler angles to each grain of the CASS and butter 
regions (the Euler angles of the EBSD weld model were retained in the weld region). Bunge 

 
3 ImageJ is Java-based image analysis software available for free at https://imagej.nih.gov/ij/.   
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Euler angles were taken from Chen et al. (2015) and converted to the specimen frame of 
reference for CIVA.4 Sets of angles were randomly assigned to each grain, assuring that 
bordering grains did not share the same angles (refer to the process described in Jacob et al. 
(2020). The final geometry was then reimported into CIVA. 

The resulting DMW specimen model is shown in Figure 3.11. When extruded in the third 
dimension, it can be used as a general framework for DMW simulations. The model is 33 mm 
(1.3 in.) thick, which was based on the original size of the EBSD weld model. Note that this 
model was simplified by excluding the cladding layer, which is typically found on the CS side of 
such welds. Such a layer may have a small effect on beam simulations, but it is not expected to 
be significant for flaw response simulations when the flaw is located in the weld. The final model 
can be scaled up or down to change the specimen size. Euler angle and/or elastic constant 
assignments can be changed relatively easily to create a “new” model. Changes can be made 
directly to the CIVA specimen xml file using, for example, Python or MATLAB. Note that 
downscaling the model may result in small grains that violate CIVA’s high-frequency modeling 
assumptions. In general, regions should be larger than 10% of the wavelength (Chen et al. 
2015; Nageswaran et al. 2009). 

 
Figure 3.11. DMW model. The regions are color coded as follows: Red—isotropic; green—

CASS; blue—weld; yellow—butter. The isotropic region on the left was added to 
support the probe and allow for longer scan lengths or steeper refraction angles; 
there was no need for added geometrical complexity in this region, so no grains 
were defined. 

Beam simulations were run on the DMW model using a 2 MHz TRL probe (the same probe 
used in previous weld models) at 10 mm (0.4 in.) increments across the specimen model. 
Figure 3.12 shows the simulated beams at the different probe positions from the CASS side 
(left), and from the CS side (right). Three interesting phenomena were observed from these 
simulations.  

1. The weld scatters the sound more than the CASS material. Almost no beam formation 
occurs if the beam passes primarily through the weld.  

2. The combination of CASS plus weld is more scattering and attenuative than CS plus 
weld. Flaws that are located such that the sound must propagate through the CASS and 
the weld will be the most difficult to detect. This result is unsurprising, but it suggests that 
the responses from such flaws will likely be the most difficult to model accurately 
because the material properties of the weld and CASS are difficult to define and model. 

 
4 Converting Euler angles to and from different frames of reference is not trivial, but it is an important 

aspect of maintaining consistency between reference frames. The EBSD system, CIVA, and OnScale all 
use different reference frames, so conversions must be done when importing Euler angles or when 
translating models between software platforms. Appendix B provides details of Euler angle conversions. 
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3. The sound beam tends to “bunch up” at the interface with the weld near the ID surface, 
forming a localized region of strong signal intensity. The fusion line and the backwall act 
as a funnel to channel the sound energy into a small region, so PNNL termed this the 
“funnel effect.” The peak beam intensity at the CASS/weld interface was 7.4 dB (2.3 
times) higher than in the isotropic material and 2.7 dB (1.4 times) higher than in the 
CASS region. The funneling phenomenon is discussed in depth in Section 4.3. 

4. The region on the far side of the weld receives relatively little sound, as the weld 
essentially creates a “shadow.” This is expected, as the scattering effects of austenitic 
welds are well known. 
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Figure 3.12. Beam simulations with a 2 MHz 45° TRL probe across the DMW model from the 

CASS side (left) and the CS side (right). The red circles indicate the highest beam 
intensity due to funneling of the sound by the weld interface and backwall. The box 
represents the extent of the simulation for each probe position. 
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Figure 3.12 illustrates the beam at discrete probe positions. During a typical scan, the probe is 
moved across the pipe, resulting in a continuous and cumulative sound field. To better illustrate 
the cumulative sound field, the simulated beam maps were combined into one image using 
Python5; see Figure 3.13. This figure more clearly shows the contrast between the scatter in the 
CASS (green) and weld (blue) regions. It also shows a “weld shadow” region on the far side of 
the weld (red bracket) that received relatively little sound intensity. The region of highest sound 
intensity is in the red circle. Note that this figure is a cumulation of beam simulations made at 
10 mm (0.4 in.) increments; finer steps would be more realistic, but the 10 mm (0.4 in.) step size 
illustrates the point without excessive computation time. 

 
Figure 3.13. Cumulated beam maps. Arrows at the top are color coded by region the same as 

Figure 3.11. The circle indicates the area of peak beam intensity, and the bracket 
indicates the region of lowest beam intensity. 

PNNL ran some flaw response simulations with the DMW model to see how the funnel and 
shadow effects affect the flaw response. Several 5 mm (0.2 in.), or 15% through-wall (TW), 
rectangular notches were placed at 10 mm (0.4 in.) intervals, assuring that one notch was at the 
base of the weld near the region where the sound field intensity was highest. Another notch was 
placed far into the isotropic material to serve as a calibration signal. Figure 3.14 shows the 
results, which were normalized to the highest flaw response. The flaw response at the base of 
the weld was 7.7 dB (2.4 times) higher than that of the flaw in the isotropic region, similar to the 
7.4 dB (2.3 times) difference sound intensity seen in the beam simulations. Results confirm that 
the strongest echo response came from the flaw closest to the weld on the near side where the 
highest sound field intensity was observed. The funnel and weld shadow effects are explored in 
more depth in Section 4.3. 

It should be noted that the simulations here were performed at 2 MHz to avoid violating the 
CIVA high-frequency approximation that requires the wavelength to be approximately the same 
dimensions or smaller than the feature size (the grain size, in this case). Extensive empirical 
research has shown that field examinations on this type and thickness of the material should be 
conducted at 1 MHz or lower to minimize scatter and maximize flaw response amplitudes 
(Jacob et al. 2019). 

 
5 CIVA 2021 has a built-in feature that can display a cumulated sound field. 
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Figure 3.14. Simulated response B-scans from flaws placed at intervals in the DMW model. 

Red lines were added to highlight the flaw positions. The signal response to the far 
right is from the calibration flaw. Discontinuities in the signal responses are an 
artifact of CIVA’s reconstruction method. 
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3.5 Summary 

This section was a continuation of coarse-grained equiaxed modeling work described in the 
previous TLR, where beam simulations on CASS models were shown. In the current report, 
PNNL presented additional simulations on columnar CASS models. Beam simulations were 
used to compare a 2D CIVA model created from a section of a physical specimen to a 3D 
Voronoi model generated by CIVA. As with the equiaxed models, the CIVA accuracy factor was 
an important parameter for obtaining a complete sound field. The “crossing ratio” metric was 
used to measure beam segmentation caused by the columnar structure. Results showed that 
beam simulations using the columnar Voronoi regions with the range of velocities, ΔV, equal to 
6% gave results that best agreed with those of empirical beam maps. The specimen-based 
model gave the worst results. In the previous report, PNNL showed that ΔV = 6% was 
appropriate for an equiaxed CASS model. The ideal value of ΔV will depend on model 
parameters and it should not be assumed that one particular value is appropriate for all 
scenarios. 

As discussed in the previous TLR, CASS models using Voronoi regions in CIVA are much 
easier to produce and execute than realistic specimen-based models; Voronoi regions are 
inherently 3D, load rapidly, and give realistic results. However, the Voronoi option in CIVA 2020 
is only available in planar or cylindrical specimen geometries, none of which include welds or 
multi-region models such as those drawn in the CAD tool. Models of mixed-grain structures or of 
materials with a wide variety of grain sizes can be created outside CIVA and imported, but then 
the advantages of using Voronoi regions are lost. For example, grain boundaries can be defined 
outside CIVA using Voronoi regions, but the final model will be 2D and extruded in the third 
dimension. 

PNNL created DMW models outside of CIVA by combining a weld region, a CASS region, and a 
buttering region. The previous EBSD-based weld model was used, and a CASS region was 
generated outside CIVA using 2D Voronoi regions. Beam simulations showed the different 
effects that the weld and the CASS regions had on the sound field pattern. Beam scatter and 
redirection were observed in both regions, but the weld region had a stronger scattering effect. 
Flaw response simulations were run on the same DMW model with different flaws to illustrate 
that flaw response was a strong function of flaw position. Results showed that both the 
specimen model and the flaw location within the model had a significant impact on the predicted 
flaw response. 

Overall, PNNL demonstrated the feasibility of an approach to creating realistic DMW models of 
coarse-grained materials. Models can be constructed using various methods, and beam 
simulations and flaw-response simulations can be run in CIVA. It is important to remember that 
the specimen models shown in this section are illustrative approximations and may not be good 
representations of every scenario. Models should be developed, changed, and adapted as 
needed. It is critical to remember that while CIVA appears to have demonstrated efficacy for 
modeling DMW and CASS under the criteria used in the study, it still is not capable of simulating 
low frequency UT exam scenarios that would likely be required for these exams as part of 
ASME Code Case N-824. The role of exam frequency is still a limiting factor. 
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4.0 Working with Austenitic Weld Models 
4.1 Summary of Previous Work 

This section is a continuation of work presented in PNNL’s previous report on modeling and 
simulation (Jacob et al. 2020) testing austenitic weld models for simulating empirically-observed 
sound fields. Previous work showed that simplified weld models, such as the Ogilvy model, can 
provide satisfactory results in some cases (EPRI 2019). However, simplified models do not 
show the same degree of sound field scatter or beam redirection observed in empirical sound 
field maps (Gueudré et al. 2019; Holmer et al. 2017; Jacob et al. 2020; Kim et al. 2021). Another 
approach is to divide the weld into coarse regions with each assigned different material 
properties (Chassignole et al. 2000; Mahaut et al. 2007). Although this approach produces more 
beam scatter than the Ogilvy model, the grains are too coarse to duplicate the degree of scatter 
observed empirically. PNNL therefore began to develop a more complex weld model based on 
EBSD data. EBSD is used to measure crystalline boundaries and orientations, or Euler angles, 
which can be used to define the material properties of a “true-state” model (Maitland and 
Sitzman 2007). In the previous PNNL report, EBSD data were used to create a simplified weld 
model while the complete EBSD-based model was being developed. Detailed descriptions were 
provided of how the model was created and imported into CIVA. Beam simulations with the 
downsampled model showed beam scatter effects similar to that observed empirically.  

In the current report, PNNL continues the work and describes beam simulations performed on 
the final EBSD model. Simulations were also done on variations of the weld model to determine 
how dependent the beam simulation results are on the specific material definitions. The first 
variation used different grain sizes, the second variation used random Euler angles to test the 
limits of a completely arbitrary model, and the third used Voronoi regions in place of the square-
shaped grains to test the effects of grain shape.  

4.2 Weld Model Variations 

PNNL’s previous work used a weld model adapted from EBSD data (Jacob et al. 2020). The 
models incorporated a simplified approach of binning similar Euler angles of neighboring grains 
in order to reduce the number of grains in the weld. This made the model more efficient to run 
during initial testing. One issue with extracting the Euler angles is the reference frame. The 
EBSD results were in the Bunge reference frame, or the reference frame of the grain, while 
CIVA works in a fixed frame, or the reference frame of the specimen. (Note: OnScale Solve, 
another modeling package that PNNL is evaluating, uses yet another reference frame.) 
Therefore, special care was taken to assure that the proper Euler angles were assigned and in 
the proper reference frames, or coordinate frames, so that the models were consistent. 
Appendix B describes in detail the mathematics behind Euler angle coordinate transformations. 
This appendix is a copy of an internal PNNL technical report describing the mathematical 
framework of the Euler angle conversion between different reference frames. 

Multiple variations on the EBSD model were tested. Three variations used the same geometry 
but random Euler angle assignments in order to determine the importance of the Euler angle 
assignments. If the Euler angle assignments can be made arbitrarily, then generating realistic 
weld models will be relatively simple, since the steps of collecting EBSD data, translating 
reference frames, and downsampling can be skipped. A fourth variation used the same Euler 
angles as the EBSD model, but the grain geometries were changed from a square to a Voronoi 
region to address whether irregular grain sizes would produce different scattering. 
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4.2.1 Electron Backscatter Diffraction Weld Model 

As described in Jacob et al. (2020), EBSD was used to determine grain sizes and crystalline 
orientations (Euler angles) in an austenitic weld section. Once the Euler angles were extracted 
from the EBSD data, they were mapped to the weld geometry. The weld was then decomposed, 
or downsampled, to models with grain sizes of 64, 128, and 256 pixels.6 The models are shown 
in Figure 4.1; each color represents a 3D vector defined by the Euler angle rotations. 

 
Figure 4.1. Weld models derived from the EBSD data. A: 64-pixel weld model with grains of 256 

μm × 256 μm. B: 128-pixel model with 512 μm × 512 μm grains. C: 256-pixel model 
with 1024 μm × 1024 μm grains. (1000 μm = 1 mm = 0.0394 in.) 

The geometries were written into an .xml file format compatible with CIVA 2020. The number of 
line segments and regions for each decomposition are shown in Table 4.1. For comparison, the 
numbers of segments and regions used in the 3- and 7-bin models used in Jacob et al. (2020) 
are also shown. Note that for these binned models the number of line segments was artificially 
increased to accommodate CIVA 2017’s inability to handle quadpoint intersections (this issue 
was described in Jacob et al. (2020) and fixed with the release of CIVA 2020). As the table 
indicates, the complexity of the geometry increases rapidly with increasing resolution. 
Geometric complexity correlates with the time required for CIVA to open and process the .xml 
file in addition to the overall simulation time. For example, CIVA required several hours just to 
open and display the 64-pixel geometry. 

 
6 The original EBSD images were acquired at 4 μm × 4 μm resolution. “64-pixel resolution” means that 
64×64 pixels from the original EBSD pixels were combined to form a single grain. The decomposition 
method is described in detail in Jacob et al. (2020). 
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Table 4.1. Number of line segments and regions in the different EBSD-based weld geometries 

Line Segments (Regions)* 
 256 pixels 128 pixels 64 pixels 

3-bin 832 (272) 3193 (1064)   
7-bin 1360 (453) 5215 (1783)   

True Euler 1815 (873) 7003 (3433) 27287 (13557) 
*Numbers from CIVA 2017 models 

A through-weld beam was simulated using the true Euler 64-, 128-, and 256-pixel geometries 
and a 2 MHz, 45° TRL probe, the same probe used in the previous weld simulations (Jacob et 
al. 2020). The accuracy factor was set to 16. For significant time savings, a 2D computation 
zone was used—even so, the 64-pixel simulation took 32 hours to complete a single beam 
simulation. The results are shown in Figure 4.2. Qualitatively, the patterns of beam scatter in the 
256- and 128-pixel scenarios are similar, although the increased scatter of the 128-pixel model 
reduced the overall sound intensity. There is too much scatter in the 64-pixel scenario to make a 
comparison. The total sound energy that passed through the weld was measured (in arbitrary 
units) by integrating the signal intensity along the backwall of the specimen on the far side of the 
weld. Results were 11, 73, and 303 for the 64-, 128-, and 256-pixel models, respectively. One 
way to interpret this is that the 64-pixel model effectively scattered 27 times more than the 256-
pixel model, and the 128-pixel model scattered 4 times more. Scatter in CIVA is strongly 
affected by the number of grain interfaces, so the relatively fewer interfaces in the 256-pixel 
model are less detrimental to the sound field. Based on a qualitative assessment of empirical 
scans, the 256-pixel model appears to work well at 2 MHz. The grain sizes may need to be 
adjusted for different probe frequencies, and that will have to be approached by trial-and-error. 
At 2 MHz, the 64-pixel model is pushing the limits of the high-frequency approximation that 
CIVA uses, since the grain size is about 10% of the wavelength; however, this model may be 
appropriate for higher frequencies. 
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Figure 4.2. Beam simulations with the 64-, 128-, and 256-pixel weld models. 

Empirical beam maps were acquired using a laser vibrometer (Castellini et al. 2006). The laser 
vibrometer, shown in Figure 4.3, can map the sound field along a side of a specimen; the side 
needs to be smooth but can be unpolished. A TRL probe is placed such that only the transmit 
side is in contact with the specimen and the plane between the transmit and receive elements 
aligns with the specimen’s face. A weight can be placed atop the probe for stability and to 
improve coupling. To optimize reflectivity, a surface membrane such as retro-reflective tape can 
be applied to the specimen face.7 Beam maps were acquired on two specimens. The first was 
the same that was used to acquire the EBSD data, Specimen 3C-022-03 in Jacob et al. (2020). 

 
7 Retro-reflective tape has a prismatic coating that reflects light back to the source regardless of the angle 

of incidence. 
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This specimen comprised two 36 mm (1.4 in.) thick 304 WSS piping sections welded together 
with 308/308L stainless steel (SS) weld material. The second was a 76 mm (3.0 in.) thick 304 
SS plate mockup described as Specimen 19C-358-1 in Harrison et al. (2020). The plate 
comprised two flat pieces welded together using 308/308L SS weld material. The focal depth of 
the probe was only 35 mm (1.4 in.), so the thicker specimen was chosen in order to show the 
entire sound field. Two beam maps were acquired on each specimen: one through parent 
material and one through the weld. The same 2 MHz probe that was modeled for simulations 
was used for the empirical maps. 

 
Figure 4.3. The setup used for laser vibrometry measurements. 

The empirical beam maps are shown in Figure 4.4. The top row shows beam maps from 3C-
022-3 in parent material (left) and through the weld (right). The sound beam is scattered through 
the weld, but the amount of sound energy incident on the far-side backwall is appreciable. This 
is more akin to the results of the 256-pixel weld model than those of the other weld models. The 
bottom row shows the same sound beam through the thicker specimen. In this case, the sound 
field is almost entirely scattered by the weld with very little sound making it through, and the 
256-pixel simulation results do not agree as well with the empirical results. However, the weld 
and specimen model were significantly different from the laboratory mockup, so it would be 
more surprising if the results did agree. The beam maps illustrate that different welds can have 
significantly different effects on the degree of scatter and the importance of using a model 
appropriate to the scenario. 
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Figure 4.4. Empirical beam maps through austenitic welds. Top: Specimen 3C-022-3. Bottom: 

Specimen 19C-358-1. The probe has a 35 mm (1.4 in.) focal depth, so minimal 
backwall insonification is expected in the thick specimen, even without the weld.  
Left images are beam maps through parent material. Right images are beam maps 
through the welds. All images are to scale. 

4.2.2 Random Euler Angle Welds 

Weld models based on EBSD data are destructive, costly, and time-consuming to create. They 
require a cut and polished section of the weld, access to EBSD equipment, and computational 
expertise to compile the model .xml file, to translate the Euler angles into the correct coordinate 
system, and to execute the simulation. The EBSD-based models are useful for research and 
development, but they are impractical for routine simulation work. It is therefore important to 
identify what, if any, components of the model can be simplified or eliminated. For example, if 
the key effect of the weld is beam scatter rather than beam redirection, then random Euler 
angles may produce simulation results comparable to those of the EBSD-based angles. An 
arbitrary weld model could then be made without need for specific grain information, eliminating 
much of the time and expense of generating new models and allowing multiple scenarios to be 
tested without starting each model from scratch.  

PNNL demonstrated in Figure 4.2 that changing the grain size (while keeping the Euler angles 
the same) has a profound impact on the beam scatter as well as simulation time. Here, the 
effects are tested of changing the Euler angles but maintaining a constant grain size. PNNL 
created a weld identical to the 256-pixel EBSD weld but with random Euler angle assignments; 
see Figure 4.5. Each set of Euler angles is represented by a different color. Three random weld 
models were generated. 
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Figure 4.5. Example of a random weld model. Left: EBSD-based 256-pixel weld model. Right: 

Weld model with random Euler angles. 

Figure 4.6 shows CIVA beam simulations with the random weld models using the 2 MHz, 45° 
TRL probe; the probe was in the same position for each simulation. Based on the qualitative 
appearance of the scatter, there are noticeable but slight variations between the different weld 
simulations. Comparing the results of using finer grains versus using random Euler angles, 
PNNL concludes that the number of interfaces has a stronger effect on scatter than the specific 
Euler angle assignments (assuming enough variability in Euler angles). Note that PNNL has 
created only one EBSD-based weld model, so the comparisons here are indicative but not 
statistically meaningful. 

 
Figure 4.6. Beam simulations through different weld models. A) EBSD weld, B) random weld 

#1, C) random weld #2, and D) random weld #3. 

Additional simulations were run on each weld model in a “dynamic” scenario to visualize the 
cumulated beam acquired from multiple probe positions. The probe was started to the left of the 
weld such that the entire beam was in the parent material and was stopped nearly past the weld 
such that the sound path at the last probe position was initially through the weld for a short 
distance but was focused in the parent material. The probe increment between simulations was 
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10 mm (0.4 in.). Figure 4.7 shows the results of adding the beam simulations together in Python 
(the Voronoi simulation at the bottom is discussed in Section 4.2.3). All simulations were 
identical to the left of the weld (as expected) and show significant, and essentially random, 
scatter through the weld. Some differences can be seen to the far right of the weld. In the EBSD 
weld, the rightmost beam looks largely undisturbed, perhaps with some slight redirection. On 
the other hand, the random welds appear to scatter more strongly with less sound reaching the 
right side. It is important to remember that these beam simulations are 2D and do not show 
what is happening to the beam outside the simulation plane.  
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Figure 4.7. Cumulated beam maps using the EBSD weld model and other weld models. 

4.2.3 Voronoi Weld Model 

A valid criticism of the weld model is that actual grains are not square, and the square grains 
may induce unrealistic beam scatter. To address this, a Voronoi weld model was created in 
MATLAB from the 256-pixel EBSD weld model. The original model was used as a template to 
generate a new model with the same average grain size and the same Euler angle assignments 
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as the original, but with irregularly shaped grains. Seed points were randomly placed, one point 
in each square, and Voronoi regions were grown from the seed points. Figure 4.8 shows the 
original model with randomly-placed points (left) and the resulting Voronoi regions (right). This is 
similar to the approach used by (Van Pamel et al. 2015) to create a polycrystalline model. The 
Euler angles were then transferred from the squares to the respective Voronoi regions. The 
regions outside the weld boundary (shaded area of the figure) were truncated or removed for 
ease of generating the model, since some Voronoi regions grew into the parent material or 
outside the specimen boundaries. An important difference between the models is the number of 
grain interfaces. The original model had 1,815 interfaces and the new Voronoi model required 
2,579 interfaces. This is a 42% increase, which increases the time required for CIVA to process 
the geometry and run the simulation. 

 
Figure 4.8. A Voronoi weld model was created from the 256-pixel weld model. Left: The 256-

pixel model with one seed point placed randomly in each square. Right: A weld 
model with Voronoi regions grown from the seed points. The regions outside the 
weld boundary (i.e., in the shaded area) were removed. 

To compare the new Voronoi model to the previous model, beam maps were simulated using 
the same 2 MHz, 45° TRL probe as before. All simulation parameters were identical to those of 
previous simulations except for the weld geometry. The simulation results are shown in Figure 
4.9. The left panel shows the original weld model, and the right shows the Voronoi model. Both 
panels are normalized to the peak signal intensity of the original model. The Voronoi weld 
induces much more scatter than the original model, as indicated by the lower overall signal 
intensity, because of the higher number of interfaces. 
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Figure 4.9. Simulation results using the original EBSD weld model and the Voronoi weld model. 

Left: The original EBSD model that used square grains. Right: The new Voronoi 
model. 

In the second simulation with the Voronoi model, the probe was stepped at 10 mm (0.4 in.) 
increments across the specimen, and a beam simulation was performed at each position. Figure 
4.7 shows the beam simulations for the original weld model (top) and the Voronoi weld model 
(bottom). Of the models shown in the figure, the Voronoi weld caused the most scatter, and 
therefore the lowest sound intensity penetrated through the weld. Qualitative comparisons to 
empirical results suggest that the Voronoi weld model scatters too strongly. 

There is little to be gained by trying to make the original weld model more “realistic” by using 
Voronoi regions. However, this exercise provided some additional insight into how the number 
of interfaces affects scatter. Scatter occurs as sound reflects off the interfaces and refracts 
through the grains, so more interfaces means more scatter. It is important to strike a balance 
between the number/size of grains and the number of grain boundaries, or interfaces. Although 
square grains are not realistic, they have several advantages over other grain shapes: 

• Square grains have a low number of grain boundaries for a given number of grains (only 
a triangle tessellation would have fewer boundaries), which facilitates faster computation 
in CIVA; 

• Models of higher or lower resolution can be tested because downsampling and 
upsampling are readily accomplished with square grains; 

• Models with square regions are easier to create and modify because the computer code 
is simple relative to what would be needed for other shapes; 

• Correlating material properties from EBSD data to a grid (square grains) simplifies 
defining and maintaining grid ordering in CIVA. 

Whatever the model or grain pattern one wishes to use, PNNL recommends a weld model that 
uses appropriate grain sizes (i.e., that reflects the empirically-measured grain sizes while not 
violating modeling software assumptions) and minimizes the number of line segments, or 
interfaces. For the models tested, such an approach gives a realistic amount of scatter while 
minimizing the model complexity and simulation time. 
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4.2.4 Polycrystalline Weld 

Another potential method of creating a weld model is to take advantage of the built-in 
“polycrystalline” material feature of CIVA. Although PNNL has not explored the polycrystalline 
option in depth, it is designed to model specimens comprising multiple crystals or grains. The 
user can define an average grain size (but not a range of grain sizes), an elongation factor (for 
non-equiaxed grains), and an orientation. The polycrystalline approach has the potential to 
provide a good option for simulating austenitic welds. For example, the user could create a weld 
with, say, 10 regions of dominant grain orientation, such as shown in Kim et al. (2021) or 
Chassignole et al. (2000), then define different polycrystalline properties (including orientation) 
of each region. This approach might be useful for creating a realistic weld model that is much 
faster to simulate than the EBSD-based model and more realistic than the fast but overly 
simplistic Ogilvy model. In limited testing, PNNL did not achieve satisfactory results with the 
polycrystalline weld approach, but it is premature to dismiss it as a possibility. 

4.3 The Funnel and Shadow Effects 

An interesting effect was observed in beam simulations shown in Sections 3.4 and 4.2. Beam 
simulations showed that the sound field tended to intensify at or near the base of the weld 
nearest the probe, as if sound was being “funneled” into that region by the backwall and weld 
fusion line. PNNL refers to this as the “funnel” effect, where the weld interface and specimen 
backwall act as a sort of funnel for redirecting and concentrating the sound. Figure 4.10 
illustrates the effect, where sound energy enters the funnel region, resulting in stronger local 
intensity. The effect was observed in simulations shown in Figure 3.13 and Figure 4.7. 

 

Figure 4.10. Schematic illustrating the funnel effect. Incoming sound energy is funneled by the 
weld interface and specimen backwall, resulting in an increase in sound energy 
density near the base of the weld. 

A second effect observed in the beam simulations is that scatter from the weld casts a sound 
field “shadow” on the far side of the weld, resulting in a region of relatively weak sound intensity 
This “shadow effect” is a well-known phenomenon in austenitic weld inspections (Anderson et 
al. 2011; Crawford et al. 2009). It was also observed in Figure 4.7 for all cases and was 
strongest for the Voronoi case, where scatter was also strongest. 

Both the funnel and shadow effects were observed (but not commented on) in an empirical and 
simulated data set in another study of the effects of material properties in UT simulations of 
austenitic welds (Gueudré et al. 2019). To confirm the effects, PNNL acquired empirical beam 
maps using the laser vibrometer on the same specimen from which the EBSD weld was 
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obtained. 2 MHz, 45° and 60° TRL probes were used. The 45° probe is the same that was used 
for the weld simulations, with a focal depth of 35 mm (1.4 in.). The 60° probe is nearly identical 
but has a focal depth of 42 mm (1.7 in.). The probes were placed at five intervals of 5 mm (0.2 
in.) with the central position chosen such that the sound beam would be directly incident where 
the weld meets the specimen backwall. Figure 4.11 shows the cut and polished section of the 
weld and a beam map with the 60° probe. The UltraVision timing gates were opened so that the 
entire sound field was visible. This makes the longitudinal-to-transverse (L-T) mode converted 
signal appear prominently to the left of the intended longitudinal-wave beam. It also highlights 
what happens to sound within the weld region. In effect, sound that reflects or refracts into the 
weld ends up bouncing around like a pinball, which is interesting because it highlights the weld 
region distinctly in the scan. The timing gates can be narrowed to help isolate the longitudinal-
wave portion of the incident beam. 

 

Figure 4.11. Example of an empirical side-beam map. Top: cut and polished section showing 
the geometry of the weld. Bottom: Beam map with the 60° probe. The weld fusion 
line (yellow), weld centerline (red), and notch are indicated in the beam map. 

Figure 4.12 shows the 45° (left) and 60° (right) side-beam maps. For the 45° maps, the funnel 
effect is observed in the bottom two panels just to the right of the fusion line where the beam 
signal intensity is the highest (red circle). The effect appears to be less prominent in the 60° 
maps. The shadow effect has been shown empirically in multiple beam maps, including Figure 
4.4 above and in Dib et al. (2018) and Jacob et al. (2020).  
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Figure 4.12. Beam maps acquired at 5 mm intervals with a 45° TRL probe (left) and the 60° 
probe (right). The circled regions show the highest levels of the funnel effect. The 
vertical red lines indicate the weld centerline. 
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PNNL considered how the two effects might affect flaw detection. The funnel effect should 
cause the highest signal response from a near-side flaw located at the base of the weld 
approximately between the fusion line and weld centerline. The shadow effect should cause 
flaws on the far side of the weld to have a relatively low signal response; difficulty with far-side 
detection is well established, but far-side detections will be included in this analysis for 
completeness. Empirical flaw response data were acquired on notches that were placed in a 
welded plate. The plate, labeled 19C-358-2 and described in Harrison et al. (2020), was 32 mm 
(1.25 in.) thick and had a 3 mm (0.13 in.) counterbore. This plate contains four 8.4 mm (0.33 in.) 
deep, or 23% TW, notches positioned at 0 mm, 4 mm, 8 mm, and 21 mm (0 in., 0.16 in., 0.31 
in., and 0.83 in.) from the weld centerline. Scans were acquired with several probes from both 
sides of the weld, resulting in a full complement of near- and far-side detection data. The probes 
are described in detail in Section 4 of Harrison et al. (2020). The probes used here were the 
2 MHz phased array (PA) at 45° and 60°, GEIT (General Electric Sensing & Inspection 
Technologies) 2M-45L (2 MHz, 45° TRL), GEIT 2M-60L (2 MHz, 60° TRL), SNI (Sensor 
Networks, Inc.) 2M-45L (2 MHz, 45° TRL), and SNI 2M-60L (2 MHz, 60° TRL).  

For comparative simulations in CIVA, a specimen was created with the EBSD weld model 
flanked by isotropic steel. Additional similar models were made with the three random welds and 
the Voronoi weld. Seven planar flaws were placed in the models at the same positions as in the 
mockup, namely at 0, ±4, ±8, and ±21 mm (0, ±0.16, ±0.31, and ±0.83 in.) from the weld 
centerline. Flaws were 8.4 mm (0.33 in.) deep, or 23% TW, to match those of the empirical 
specimen. Figure 4.13 illustrates the plate model as drawn in CIVA. Flaw 1 acted as a control or 
baseline since it was unaffected by the weld (when scanning from left to right). It is important to 
note that, although the flaw spacing is precise, the weld geometry is approximated with respect 
to that of the actual plate. Therefore, the relative positions of flaws with respect to the weld 
fusion line may vary from those in the laboratory mockup. Simulations were run as a CIVA 
variation, or parametric study, with one flaw activated for each variation. This approach allowed 
all the simulations to be run at once and avoided flaw response signals from interfering with one 
another.  

 

Figure 4.13. Model of the welded plate with seven flaws used for simulations. 

Simulations were run using the same six probe definitions that were used for the empirical 
scans. For the Voronoi weld, only the two SNI probes were simulated due to time constraints. 
The Half Skip mode was used in 2D with no mode conversions or specimen echoes. Simulation 
results were exported from CIVA, and the total and peak echo responses were calculated in 
Python. The peak echo response was measured from the empirical results for comparison. 
Thus, both the total and peak simulation results were measured to see which simulated 
response had a better correlation with the peak empirical data. Note that the empirical scans 
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were 3D, whereas the simulations were 2D, so the empirical and simulated results are not 
directly analogous. 

Studying the funnel effect has led to several observations that have important implications for 
future weld simulations. These observations are discussed in the subsections below. First, the 
empirical results from the different probes will be compared, and average flaw responses will be 
calculated for the 45° and 60° probes. Next, two methods of measuring the echoes in CIVA—
the peak echo responses versus the integrated echo responses—will be compared to one 
another and to the empirical averages. Third, simulation results from different weld models will 
be examined. Finally, simulation results from the different probes will be compared. 

4.3.1 Comparison of Empirical Scans 

First, the results of the empirical scans are examined. Figure 4.14 shows the peak flaw 
response in UltraVision versus flaw position for the three 45° (left) and 60° (right) probes, with 
the averages indicated by the red lines. Each point represents a flaw, and each dataset was 
normalized to the baseline signal intensity of the leftmost flaw, i.e., the flaw that was unaffected 
by the weld. Thus, all of the datasets start with a baseline value of 1. There are a couple of 
important takeaways from these plots. 

First, the signal intensity increases above the baseline signal as the flaw gets closer to the weld. 
The signal reaches a maximum at the second or third flaw (at the −8 mm or −4 mm position). 
The echo signal is above the baseline when the flaw is near the base of the weld on the near 
side, which implies a stronger sound field intensity at that position. This is experimental 
confirmation of the funnel effect.  

Second, the signal diminishes to below the baseline as the flaw moves through the weld to the 
far side. This is experimental confirmation of the shadow effect, where weaker sound intensities 
on the far side of the weld produce weaker flaw echoes. Interestingly, the decrease in signal is 
not steady in the 60° scans, as there is a slight bump or increase in signal for the sixth flaw. The 
increase was observed for all three probes, and the reasons for it are unclear. 

 
Figure 4.14. Graphs showing the normalized signal intensity versus flaw position for the 45° 

(left) and 60° (right) empirical scans. 
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A practical consequence of the funnel effect is the potential of having to recalibrate the hard 
gain during a scan. For example, the gain is typically set to 80% full-screen-height (FSH) based 
on a baseline signal, such as a corner-trap echo (analogous to the leftmost flaw). Thus, any flaw 
signal that peaks at more than 125% of the baseline will be saturated. The data show flaw 
signals as high as about 160% of the baseline for the flaws near the base of the weld. 
 

4.3.2 Integrated Signal Response vs Peak Signal Response 

Simulated data were analyzed two ways: by measuring the total, or integrated, echo response 
and by measuring the peak echo signal. There were no simulated noise or mode-converted 
signals, so calculating the integrated signal was a simple matter of summation. Both methods 
were investigated for all the 45° and 60° simulations and compared to the empirical results. For 
the empirical data, the conventional method of simply measuring the peak echo response was 
used. Figure 4.15 shows an example of the results with the GEIT probes. The red lines are the 
empirical averages shown in Figure 4.14.  

The empirical results (red lines) appear to agree better with the integrated simulation results (left 
column) than they do with the peak simulation results (right column). This was also observed 
with the SNI TRL probes, but less so for the PA probe. The Pearson’s correlation coefficient R 
was calculated to compare each of the integrated and peak simulation results to the empirical 
data. A Fisher z-transformation was then applied to obtain an average correlation coefficient 
Rz.8 Table 4.2 shows how the empirical data correlated with the simulated data (Rz=1 is perfect 
correlation). Overall, the integrated data correlate better to the empirical data. On balance, the 
CIVA peak measurements tend to underestimate actual flaw responses and are not as good at 
matching the trend of the empirical responses. Therefore, all results shown in the rest of this 
section will use the integrated CIVA signal. Note, however, that CIVA 2020 does not have an 
integration function, so the data were exported and the integration was done in Python. 

Table 4.2. Correlations between empirical data and integrated or peak simulated data. 

 GEIT 45L GEIT 60L SNI 45L SNI 60L PA45 PA60 
Rz Integral 0.901 0.815 0.928 0.719 0.821 0.822 

Rz Peak 0.783 0.681 0.857 0.630 0.840 0.770 

It should be noted that empirical data acquisition in UltraVision assumes a constant sound 
speed, and UltraVision reconstructs the data based on straight-line sound paths, since it has no 
information about grain structures. However, CIVA reconstructs B-scans by using ray paths as 
opposed to assuming a constant sound speed (see Appendix A.1 for a detailed explanation), 
and CIVA reconstructions tend to be choppy with signal more spread out, possibly resulting in 
lower peak measurements. Thus, measuring the peak signal in CIVA with complex geometries 
has the potential to give inconsistent results. 

 
8 https://en.wikipedia.org/wiki/Fisher_transformation  

https://en.wikipedia.org/wiki/Fisher_transformation
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Figure 4.15. Normalized simulated and empirical echo responses versus flaw position. This plot 

shows an example of simulated data from the GEIT 45° (top row) and 60° (bottom 
row) probes. The left column is the integrated B-scan signal, and the right row is 
the peak B-scan signal. The red lines are the empirical data from the GEIT probe. 

4.3.3 Comparison of Weld Models 

Next, the differences between the weld models are examined. Recall that the original weld 
model was based on EBSD measurements, and subsequent models used the same geometry 
but were given random Euler angle assignments. It is important to remember that the EBSD 
measurements were made from a different welded mockup, so the granular structure is likely 
different from that of the plate mockup used here. Thus, the EBSD-based weld model is being 
used as an approximation for a general austenitic weld. 

Figure 4.16 shows empirical and integrated simulation results from all six probe scenarios along 
with the correlations to the empirical results. The left column is the 45° data, and the right 
column is the 60° data. The red lines show the empirical results. Recall that the Voronoi weld 
model was run with the SNI probes only.  
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Figure 4.16. Normalized simulated and empirical signal response versus flaw position for the 
SNI (top row), GEIT (middle row), and PA (bottom row) probes. 
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There are several points to note here. 

• The 45° simulated data tend to agree better with the empirical results than do the 60° 
simulated data. Overall, the 60° simulations appear to overestimate the empirical flaw signals 
in the weld and underestimate them on the far side. The reasons for one angle providing 
more accurate results than another are not clear; additional studies would be needed to 
elucidate the issue. 

• There are some simulation-to-simulation and flaw-to-flaw variations in the data. At 45°, the 
EBSD weld shows a signal peak at flaw 3, in front of the weld centerline, and a second peak 
at flaw 5, after the weld centerline. The random welds, on the other hand, only show a peak at 
flaws 2 or 3 (Random Weld #2 shows a couple exceptions to this). The second peak is not 
observed in the empirical results at 45°. However, at 60°, the reverse is seen as a second 
peak is observed in all the empirical results but not in the simulated results (except with the 
SNI probe and EBSD weld model). 

• The random welds show signal peaks at flaws 2 or 3, consistent with the empirical results. 
The EBSD weld peaked at flaw 3 for the 45° simulations but at flaw 4 for the 60° simulations. 
Although a small difference, it differentiates the EBSD weld from the random welds. 

• The Voronoi model results are not necessarily outliers, but they are also not an improvement 
on the EBSD or even the random models. Recall that the Voronoi weld model uses the same 
Euler angles as the EBSD weld model and has the same average grain size, yet the Voronoi 
and EBSD results are considerably different. In fact, the Voronoi weld results are worse in 
several ways. 1) The funnel effect is weaker for the Voronoi model at both 45° and 60°. 2) 
The shadow effect is stronger for the Voronoi model at 45°. 3) The Voronoi results tend to 
diverge more overall from the empirical results at 60° than the other models do. 

• CIVA tends to overemphasize the funnel effect by making the predicted signal response too 
high. In general, the figure shows that simulated flaw responses tend to peak more sharply 
than the empirical responses, exhibiting more dramatic changes in signal intensity as a 
function of flaw position. This issue is more pronounced at 60° than it is at 45°. 

• CIVA tends to overestimate the shadow effect by making the predicted signal response too 
low. In almost all cases, the empirical signal response from the right-most flaw was relatively 
higher than the corresponding simulated responses, sometimes by as much as a factor of 
two.  

• More weld models and empirical data are needed to develop reliable statistics on expected 
variances between models. However, results do suggest that the specific weld geometry (and 
Euler angle definitions) can have a significant effect on simulation results. It is highly unlikely 
that there is one “ideal” weld model that can be used for all scenarios. The question is, how 
many weld models would be needed in order to achieve representative average results? 

4.3.4 Comparison of Probes 

Every probe should be modeled individually, especially if there are significant differences in 
aperture size and/or frequency. PNNL has shown that nominally identical probes can perform 
significantly differently (Dib et al. 2018). Probe parameters, such as peak frequency and 
bandwidth, should be measured and not assumed from manufacturer specifications. Even so, it 
is interesting to explore the variation in simulated results between similar probes. Figure 4.17 
shows the results from two of the weld models—the EBSD weld (top row) and Random Weld #1 
(bottom row)—along with the correlation to the empirical data. Table 4.3 shows the Rz values of 
only the simulated results to one another. The simulated data from the three probes are strongly 
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correlated for each scenario, with some flaw-to-flaw variations as high as about 20% or so. Of 
the three variables investigated here—the weld model, the inspection angle, and the probe—the 
probe appeared to have the least impact and the inspection angle the most. Note that the 
probes were nominally similar with comparable aperture, center frequency, and bandwidth. 

 

Figure 4.17. Normalized simulated signal response versus flaw position for the EBSD weld 
model and Random Weld #1 at 45° (left column) and 60° (right column). The 
average of the empirical measurements is also shown. Rz values show the 
correlation with the empirical measurements.  

Table 4.3. Correlations of the simulated responses to one another.  

 45L EBSD 60L EBSD 45L Random1 60L Random1 
Rz 0.970 0.961 0.983 0.996 
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4.4 Summary 

PNNL developed seven weld models. The first three were based on EBSD data acquired from 
an austenitic weld, as described in (Jacob et al. 2020) and shown in Figure 4.1. The other four 
were variations on the largest-grained EBSD model: three using random Euler angles (Figure 
4.5) and one using the EBSD Euler angles but with Voronoi grains (Figure 4.8). Beam 
simulations were run in CIVA to determine if there were any observable differences between the 
effects of the weld models on the sound fields. The two smaller-grained EBSD models and the 
Voronoi model all caused too much scatter and beam attenuation. The other four models were 
qualitatively similar. 

The weld models predicted the funnel effect, in which there is a stronger sound field at the near-
side base of the weld. The funnel effect was also observed empirically in beam maps acquired 
with a laser vibrometer and in flaw responses. Simulated results tend to overemphasize the 
effect, more so at 60° than at 45°. This implies that near-side flaws may be more difficult to 
detect than simulations predict. 

The weld models also predicted the shadow effect, where beam scatter from the weld resulted 
in a weaker sound field on the far side of the weld. The shadow effect was also observed 
empirically in beam maps and flaw responses. Simulated results tend to overemphasize the 
effect, meaning that far-side flaws may be easier to detect than simulations predict. 

Results of the flaw response simulations and empirical flaw responses show that variations in 
the Euler angles between the weld models affect flaw detectability, although not dramatically in 
most cases tested. In fact, the results in this section, combined with previous simulations of 
coarse-grained materials (Jacob et al. 2020), suggest that the number of interfaces and grain 
sizes have more impact on beam scatter than the specific Euler angle assignments. The ideal 
minimum grain size is probably on the order of one-half of a wavelength for the CIVA models. 
Grains that are too large will not give realistic scatter (unless they represent the actual grain 
structure of the material), while grains that are too small will violate the CIVA high-frequency 
model assumptions. Note that FEM in other platforms (or CIVA Athena 2D) can be used with 
arbitrarily small grains, but small grains (especially oddly-shaped grains) will require a finer 
mesh and much longer simulation times. 

In developing a weld model from scratch, it should be noted that quasi-random models—models 
that incorporate some aspects from available weld data and some random aspects to fill in the 
data gaps—may be useful. For example, a generic dendritic grain structure common to 
austenitic welds may be applied to a model geometry and realistic Euler angles assigned to the 
dendrites. The literature can be used to obtain examples of Euler angles and EBSD-based weld 
structures (Carpentier et al. 2010; Gardahaut et al. 2014; Nageswaran et al. 2009). There are as 
many unique weld model possibilities are there are actual welds; the weld models shown in this 
report should be considered illustrative and not definitive. 
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5.0 Noise 
5.1 Introduction 

Noise is a fundamental and inescapable part of UT examinations and has been studied 
extensively. Although some noise is inherent to the electronic equipment, noise that can 
substantially affect a UT examination’s effectiveness is often a result of structural echoes, such 
as those from grains, inclusions, or porosities (Jenson et al. 2010). Such noise is referred to by 
many names including granular noise, structural noise, or backscattered noise. Models of such 
noise often assume that the noise is the sum of independent scattering centers (Dorval et al. 
2013; Margetan et al. 1994). Other noise signals can be a result of surface conditions, such as 
corrosion or cladding; such surface noise, sometimes referred to as clutter, does not occur 
throughout the material volume. Surface roughness can mask flaw signals if the coherent 
scatter signals are high enough, but scrambling or dephasing of the wavefield can also reduce 
coherent flaw responses (Bilgen et al. 1993; Greenwood 1998).  

Flaw response simulations in coarse-grained materials require an understanding of flaw 
detection in coarse-grained materials in addition to an ability to add realistic granular noise to 
simulations. PNNL has focused on understanding the effects of grain scatter and noise on flaw 
detection in CASS materials (Anderson et al. 2007; Crawford et al. 2014; Diaz et al. 2008; Diaz 
et al. 2009b; Jacob et al. 2019; Ramuhalli et al. 2010). The bulk of this section will concentrate 
on describing methods for simulating structural noise and noise in coarse-grained models using 
CIVA. 

5.2 Fundamentals of Simulating Noise in CIVA 

5.2.1 Structural Noise with Point Reflectors 

CIVA can simulate structural or granular noise, which occurs when the sound field encounters a 
grain boundary and a resulting coherent echo is received by the probe. Every grain boundary is 
a potential reflector and thus a potential noise source, depending on the geometry and 
orientation of the boundary facets. To simulate a noise field, one can assume a superposition of 
echoes from multiple, uniformly-distributed, non-interacting scattering centers (Margetan et al. 
1994). CIVA simulates structural noise by randomly adding virtual point-like reflectors to the 
specimen model and calculating echo responses from those reflectors (the reflectors are not 
visible in the model). CIVA provides the user two parameters for controlling the noise response 
(Chatillion et al. 2003; Dorval et al. 2013). The first parameter is the spatial density of the 
reflectors (ρ), in units of reflectors per cubic millimeter, or reflector/mm3. The second is the 
scattering amplitude (A), which determines the strength, or reflectivity, of the reflectors; A is 
unitless.9 It may be more intuitive (although not strictly accurate) to think of noise as being 
simulated by the addition of pores. ρ controls the spacing, and therefore the total number, of 

 
9 A couple of technical notes about A. A is a standard deviation of the reflector amplitude on the basis of a 
“zero-mean Gaussian distribution” (see the CIVA user’s manual). The larger the A, the bigger the range 
of reflectivity values, which allows stronger echoes to be received from some of the reflectors and 
weaker echoes from other reflectors. Per an email from EXTENDE to PNNL: “Reflectivity may not be the 
most appropriate word. In CIVA, for structural noise a diffraction coefficient D is assigned to each point. 
Its diffracted wave is proportional to D.” Either way, the parameter A controls the overall signal strength 
from the noise points. 
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pores, and A controls the size or reflectivity of the pores. The CIVA default for each parameter is 
1. 

Simulations were conducted in the flaw response module to determine the effects of ρ and A on 
the overall noise amplitude and appearance (it should be noted that CIVA 2020 cannot simulate 
noise in beam simulations, although the noise options are available in the beam simulation 
module). One immediate finding was that adding noise to a simulation can increase simulation 
time dramatically. Therefore, to minimize iterations, it is important to understand how the noise 
parameters interact with one another to give desired results. PNNL’s initial tests used a 
relatively small specimen model (to minimize the absolute number of noise points and therefore 
minimize simulation time) and simple inspection parameters. 

The relationship between ρ and A was iteratively examined. ρ was varied over several orders of 
magnitude, and A was adjusted to maintain an approximately constant signal-to-noise ratio 
(SNR). This was done by simulating a B-scan with a simple 13 mm (0.5 in.) diameter probe at 
1 MHz, 2 MHz, and 5 MHz. A 1 mm (0.04 in.) side-drilled hole (SDH) was added to the 
specimen model. ρ was increased by factors of 10 from 0.01 reflector/mm3 to 100 reflector/mm3. 
It was empirically determined that decreasing A by a factor of approximately 3 while 
simultaneously increasing ρ by a factor of 10 maintained a nearly steady SNR for values of ρ ≥ 
0.1 reflector/mm3. As shown in panel A of Figure 5.1, the peak signal intensity of the side-drilled-
hole echo remained constant for all sets of noise parameters (the x-axis shows ρ/A 
combinations used for each simulation). Panel B shows that the average noise level was fairly 
steady but slowly increased for values of ρ ≥ 0.1 reflector/mm3. The resulting SNRs are shown 
in panel C. For ρ < 0.1 reflector/mm3, the noise level decreased rapidly, resulting in a sharp 
increase in SNR and indicating that the 10 times increase to 3 times decrease relationship of ρ 
to A fails for low values of ρ. 
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Figure 5.1. Plots showing how the SNR trend is affected by ρ and A. The x-axis labels are ρ/A 

for each simulation run. A: Peak signal intensity of the SDH echo (arbitrary units). B: 
Average noise level (arbitrary units). C: SNR, or the data in A divided by the data in 
B. 

There are three important observations. 1) In an empirical scan (especially in coarse-grained 
materials), some sound energy is scattered or received as noise, thereby diminishing the total 
amount of sound energy available to reflect from the flaw. However, as shown in Figure 5.1, the 
flaw response in CIVA is constant and independent of the noise response. The noise and the 
flaw response echoes are calculated independently. 2) A desired SNR can be obtained through 
trial-and-error by different combinations of ρ and A. 3) Different noise densities can be achieved 
with an approximately constant SNR, because the increased noise from a factor of 10 increase 
in ρ can be approximately compensated for by a factor of three decrease in A. 

It should be noted that the noise scattering centers are automatically randomized throughout the 
material for every simulation. Thus, duplicating a noise field in CIVA from simulation to 
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simulation is not possible. Also, PNNL found that, depending on their location, noise reflectors 
may produce an echo that appears unusually strong, likely the result of a reflector directly in the 
simulation plane. As a result, multiple iterations may be needed to produce the desired noise 
field. Furthermore, a strong noise echo can be coincident with a flaw response, making the flaw 
response appear stronger than it actually is. 

5.2.2 Noise Using Polycrystalline Specimen Models 

CIVA 2020 has a “polycrystalline” option for defining a specimen microstructure. As described in 
Section 4.2.4, this option is designed to model specimens composed of multiple crystals or 
grains. The user can define an average grain size (but not a range of grain sizes), an elongation 
factor for non-equiaxed grains, and an orientation. PNNL ran several investigatory simulations 
that will be discussed in the context of noise. 

First, separate simulations were run with different polycrystalline grain sizes, ranging from 10 to 
10,000 μm (0.0004 to 0.4 in.). Each simulation also included a 1 mm (0.04 in.) diameter SDH. A 
single-element, 2 MHz probe was used in CIVA’s Direct Echo mode; that is, only echoes directly 
from the flaw were calculated, and specimen bounces were ignored. Simulation results are 
shown in Figure 5.2. This figure illustrates the following: 1) There is no visible noise at the 10 
μm (0.0004 in.) grain size. 2) The noise intensity peaks at 1000 μm (0.04 in.) then diminishes for 
the largest grain size. At the largest grain size, the reduced noise probably results from violating 
the Born approximation; CIVA uses this approximation to calculate scatter in sound fields due to 
inclusions (Mahaut et al. 2010). It assumes weak scattering and calculates the interaction of the 
sound field with each scattering center (or grain) as if no other grains were present then adds all 
the contributions of each grain. Some important information was provided by EXTENDE: 
“Because this calculation is based on the Born approximation, it becomes less accurate when 
grains become larger or more anisotropic. In the diffusion regime, the grains are too large for 
the Born approximation to be accurate and it fails to yield the correct frequency dependency.” 
Thus, the results with the 10,000 μm (0.4 in.) grains are not expected to be accurate. (Again, 
this illustrates the importance of being familiar with the model approximations that CIVA uses.) 
3) As with the structural noise, the signal from the SDH remains constant regardless of grain 
size or noise level. 

 
Figure 5.2. Simulations of an SDH echo response using the CIVA polycrystalline model. 

A second simulation was run to test how CIVA handles multiple polycrystalline regions in one 
specimen. Such a setup might be useful for creating a simplified austenitic weld model, as 
discussed in Section 4.2.4. In such a model, there may be macroscopic regions of preferential 
grain size and/or orientation that could be conveniently grouped using the polycrystalline option. 
The result would be a simple model with a few regions, each with different polycrystalline 
definitions. In the simplified model tested, a single specimen was defined with multiple regions, 
and each region was assigned a different polycrystalline grain size. An SDH was placed in each 
region, and the probe was moved across the specimen for a B-scan simulation. Figure 5.3 
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shows the results of the simulation. In the top row, the Half Skip option was selected, which 
calculates both direct and incidental flaw echoes. Though echoes from the specimen backwall 
(BW) were not computed, there was a series of echoes that appeared to be backwall echoes. 
However, EXTENDE explained to PNNL that “the additional echoes you see at a higher time of 
flight are not the backwall echoes but a second echo of the SDH after a skip on the backwall.” In 
other words, these echoes are from the SDH→BW (or BW→SDH) interaction (these 
interactions are illustrated at the top of the figure). The fact that this echo was stronger than the 
direct echo from the SDH seemed odd but was not further investigated. There is also a series of 
weaker half-skip echoes, in which the sound first reflected from the backwall, then interacted 
with the SDH, and finally reflected from the backwall again back to the probe (i.e., 
BW→SDH→BW). 

In the second row of Figure 5.3, the polycrystalline “material noise” option was selected. It is 
unclear from the CIVA user’s manual what material noise is, but it did not appear to increase the 
simulated noise substantially, if at all. In the third row, the Direct option was selected, which 
calculates flaw echoes from sound directly incident on the SDH and ignores all specimen 
bounces (i.e., the SDH→BW and BW→SDH→BW echoes were not calculated). In the bottom 
row, the Half Skip option was again selected, but the flaws were deactivated so that they would 
be ignored in the simulation. This scenario should result in no flaw or specimen echoes at all—
only noise from the polycrystalline structure. However, there persisted a mystery echo 
apparently from the backwall, but only in the third and fourth regions. The source of the mystery 
echo was not further investigated. 

The following summarizes what PNNL has learned about CIVA’s polycrystalline model option: 

• The polycrystalline option can be used to generate simulated noise. However, based on the 
limited work that PNNL did with this option, it is unclear if there are any advantages to this 
approach over the structural noise approach. 

• There is a frequency-dependent effect with the simulated noise and scatter, which is expected 
because such effects are observed empirically. Frequency dependence was verified in CIVA 
for a wide range of frequencies and confirmed by EXTENDE. CIVA uses a modified Born 
approximation for simulating echoes due to scattering from inclusions. This is a low frequency 
approximation. That is, the wavelength of the sound should be larger than the dimensions of 
the grain. For additional information about polycrystalline models and scatter in the different 
regimes, see Ganjehi et al. (2012). (Note that the diffusion regime in that paper [Section 3.2] 
is incorrect [i.e., for λ<<D, α ∝ 1/D]). 

• It is unclear how the distribution of the size and orientation of the grains is controlled. The 
user can select the grain size and orientation, but not a range. In a communication to PNNL, 
EXTENDE noted that “A homogenization process calculates the parameters of the equivalent 
medium: the speed of sound and the attenuation coefficient.” Each region is considered 
homogeneous with respect to grain size, grain orientation, wave velocities, and attenuation 
(Ribay et al. 2012).  
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Figure 5.3. Multi-region polycrystalline simulation results. 
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5.2.3 Surface Noise 

In certain instances, noise or “clutter” originating from the ID surface of a specimen can interfere 
with flaw detection. This is illustrated in Figure 5.4, a laboratory scan of a DMW pressurizer 
surge nozzle specimen that contains an implanted flaw; this specimen is described in detail (as 
8C-901) in Diaz et al. (2009a). The flaw was a hot isostatically pressed EDM notch that was 
placed at (or near) the weld fusion line on the CS side of the weld. The TW depth is about 18% 
(7 mm [0.28 in.]). The CS side, including the weld region, is tapered outward at about 7°. 
According to specimen diagrams, the flaw was implanted at a 0° angle with respect to the 
horizontal, so the flaw is effectively tilted at 7° with respect to a UT search unit on the CS side. 
The flaw should have been readily detected in the empirical scan, but it was not due to 
excessive ID surface noise. The source of the noise is unclear, but it may be from surface 
roughness or the SS cladding layer. Modeling was undertaken in an attempt to duplicate these 
results. 

 
Figure 5.4. Empirical B-scan with surface clutter. The flaw was expected to be found within the 

red box. The arrow indicates the ID surface. 

For simulating the mockup, we used the EBSD weld model and added a 7° tilt to the weld end, 
as shown in Figure 5.5. Tilting the model altered the vertical alignment of regions and affected 
CIVA’s weld region sequencing and subsequent Euler angle assignments. As a result, a few of 
the regions were assigned incorrect Euler angles due to the tilt; this was ignored. Initial 
simulations were performed with the 2 MHz 45° TRL SNI probe. A reference flaw at 0° with 
respect to the specimen backwall and 5 mm (0.2 in.) deep was added to the CIVA model. 
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Figure 5.5. The 8C-091 specimen model used in CIVA. 

To simulate the noise, PNNL first attempted to use structural noise in a narrow, rectangular 
simulation zone near the ID surface. However, CIVA 2020 would not produce any noise with this 
setup. The issue was sent to EXTENDE, and they confirmed that there was a bug (PNNL has 
not verified if this bug was fixed in subsequent releases). PNNL then devised a workaround 
comprising a multifaceted flaw that was drawn in CIVA and positioned on the ID surface 
extending through the weld region. This flaw is labeled “Surface Noise Flaw” in Figure 5.5. 
Simulation results are shown in Figure 5.6. In the left panel, the surface-noise flaw was omitted, 
and the echo from flaw 2 was readily visible near the weld. In the right panel, the surface-noise 
flaw resulted in diminished signal from flaw 2. Additional echoes from the surface-noise flaw 
facets were indistinguishable from the intended flaw. Simulated results agreed well with the 
empirical results, illustrating that simulated surface noise can cause an otherwise detectable 
flaw to go undetected. The workaround was likely better than trying to use the noise simulation 
because the source of the noise signal originated from the specimen surface—just as in the 
empirical scan. Also, simulation time was probably less than with a noise zone, depending on 
the noise parameters. 
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Figure 5.6. Simulation results illustrating an approach to surface noise. Left: the flaw is visible in 

the absence of surface noise. Right: with surface noise added, the flaw is no longer 
detected. 

This work illustrates that surface noise can be simulated by a multifaceted flaw on the surface of 
the specimen model. The noise can be toggled on or off by activating or deactivating the flaw in 
the Simulation Settings tab. The multifaceted flaw’s geometry may have to be iterated until it 
produces desired results, but flaws can be easily edited, resized, repositioned, and exchanged 
in the model. A couple items to note are: 1) the facets should not be so steeply angled that they 
resemble pitting or corrosion (unless those are the desired targets of the simulation), and 2) the 
facets should not be so small that they violate CIVA’s high-frequency approximations (i.e., the 
reflector size should be on the order of, or larger than, the wavelength). 

It should be noted that CIVA has a “surface roughness” option in the Geometry tab of the 
Specimen tab. This option only affects the wedge/specimen interface and is modeled as a 
modification of the transmission coefficient, which is a function of the probe frequency. This 
option will not generate surface noise but will act as a source of probe attenuation. Surface 
roughness is explored in Section 6.3. 

5.3 Noise Simulations in Coarse-grained Material 

5.3.1 CIVA Structural Noise 

PNNL investigated methods to effectively add noise to simulations of coarse-grained materials, 
such as CASS. B-scans were simulated for values of ρ ranging from 0.001 reflector/mm3 to 100 
reflector/mm3 and are shown in Figure 5.7. Each value of ρ was approximately matched to a 
laboratory specimen as a real-world example of a granular structure with a comparable 
scatterer, or grain, density. Photographs of the polished and etched specimens are also shown 
in the figure. Four points gained from this figure will be discussed. 
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Figure 5.7. Flaw response simulations with different noise parameters. A and ρ pairs were 

selected such that approximately the same SNR was maintained for all simulations 
(except for ρ = 0.001). Examples are shown of stainless steel materials that exhibit 
a grain density approximately comparable to ρ. 

First, the pattern of noise appears relatively consistent for values of ρ ≥ 1 reflector/mm3 (bottom 
row of the figure), i.e., high scatterer densities had very little effect on the appearance of the 
noise. On the other hand, decreasing ρ below 1 reflector/mm3 eventually leads to discrete noise 
centers since the noise reflectors are far enough apart that their echoes do not substantially 
overlap. For example, see the top left panel of the figure where ρ=0.001 reflector/mm3. The level 
of ρ where discrete noise echoes are obtained is a function of probe frequency because lower 
frequencies produce larger noise echoes. 
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Second, for comparisons with CASS materials, these dimensions can be roughly translated to a 
linear grain size d. Imagine a cubic grain with the dimension d of each edge and a volume of d3. 
For example, one noise reflector per cm3 can be thought of as corresponding to hypothetical 
grains that are 1 cm × 1 cm × 1 cm, or 1 cm3 (0.4 in. × 0.4 in. × 0.4 in., or 0.06 in.3). Ten noise 
reflectors per cm3 would correspond to grains that are 0.46 cm × 0.46 cm × 0.46 cm, or 0.1 cm3 
(0.18 in. × 0.18 in. × 0.18 in., or 0.006 in.3).10 Note that ρ=0.001 reflector/mm3 corresponds to 1 
reflector/cm3 (16 reflectors per in.3), ρ=0.01 reflectors/mm3 corresponds to 10 reflectors/cm3 
(160 reflectors per in.3), and so forth. Table 5.1 summarizes the noise reflector density and 
amplitude parameters used, the corresponding grain dimensions, and the simulation time for the 
B-scans shown in Figure 5.7. 

Table 5.1. Noise reflector density and simulation time. 

Noise 
Reflector 
Density 

(per mm3) 

Noise 
Reflector 
Density 

(per cm3) 

Noise 
Reflector 
Density 
(per in.3) 

Grain 
Dimension 

d (mm) 

Noise 
Reflector 

Amplitude 
A 

Approximate 
Simulation Time 

0.001 1 16 10 100 4 seconds 
0.01 10 164 4.6 27 5 seconds 
0.1 100 1,640 2.2 9 12 seconds 

1 1,000 16,400 1 3 75 seconds 
10 10,000 164,000 0.46 1 12 minutes 

100 100,000 1,640,000 0.22 0.333 15 hours 

The third point regarding Figure 5.7 is that empirical scans from specimens with known grain 
structures are important for benchmarking and assessing simulation results. The figure shows 
examples of SS material that approximately represent the grain sizes for each ρ. The CASS 
materials were laboratory specimens described in (Jacob et al. 2019) for end-of-block signal 
dropout studies. The figure illustrates how the range of CASS and WSS grains in different 
laboratory specimens can be modeled with different values of ρ. Empirical B-scans from four of 
the laboratory specimens are shown in Figure 5.8. These scans were acquired with a 1 MHz 
probe but are illustrative in this context. Qualitative comparisons can be made of the 
appearance of the noise in this figure to the simulations of the corresponding specimens in 
Figure 5.7. Overall, the empirical scans show discrete noise echoes from individual scattering 
centers (presumably grains), similar to the patterns that were simulated with the smallest values 
of ρ. However, noise in the empirical scans is also characterized by a more uniform and lower 
intensity background, similar to that obtained using higher values of ρ. Even coarse-grained 
CASS has a large range of grain sizes, so the distribution, size, and orientation of “noise 
reflectors” is not uniform. Smaller grains provide a weaker noise echo that, in ensemble, give a 
uniform-looking noise background, and larger grains may provide stronger, more discrete, and 
more coherent echo responses that are visible above the noise background. 

 
10 The dimensions of the hypothetical grain are found by taking the inverse cube root of the number of 
reflectors per cm3; i.e.; d = ρ(-1/3), or 0.46 = 10(-1/3).  
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Figure 5.8. Empirical scans through various CASS materials illustrating noise patterns and 

corner echo intensities. 

Fourth, Table 5.1 shows that simulation time is a strong function of reflector density. Figure 5.9 
illustrates the relationship between simulation time and ρ on a log-log scale. A straight line on a 
log-log plot indicates an exponential relationship, with the slope of the line defining the 
exponent. However, in this case, the increasing slope of the line indicates that simulation time is 
a very strong function of ρ, stronger than an exponential. Using higher values of ρ would result 
in impractically long simulation times. Indeed, extrapolating the data in Figure 5.9 suggests that 
a simulation with ρ = 1000 reflector/mm3 would take approximately one year (≈3×107 sec) to 
complete. In PNNL’s testing, values of ρ ≥ 1 reflector/mm3 resulted in only small differences in 
the appearance of the noise, so using high values of ρ is both impractical and unnecessary. 
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Figure 5.9. Simulation time as a function of noise reflector density. Note that the plot is on a log-

log scale. 

The information learned about noise simulations in CIVA was applied to an example of a planar 
flaw response. The flaw response was simulated with three noise scenarios: no noise, a low 
noise amplitude (relative to the flaw response), and a strong noise amplitude. The specimen 
was 85 mm (3.3 in.) thick with a 10 mm (0.4 in.) rectangular flaw (12% TW). The probe was 
1 MHz TRL with a focal depth of 79 mm (3.1 in.) at a 45° refraction angle. ρ was set to 0.001 
reflector/mm3 to imitate a coarse-grained material, and A was varied. Figure 5.10 shows the 
results; A=0 is in the top panel, A=100 is in the middle panel, and A=1,000 is in the bottom 
panel. In all three situations, the flaw response is prominent. In the top panel where there is no 
noise, the tip response is clearly visible. In the middle panel, the tip is still visible, and some 
background noise is apparent. The bottom panel shows prominent noise, and the tip echo is no 
longer clearly distinguishable. The red circles indicate regions where the noise signal is stronger 
than the tip signal. Note that in the bottom panel, a noise signal is incidentally near the location 
of the tip, but it is not a tip signal; the flaw response amplitudes are not affected by the 
simulated noise, so the true tip signal is weaker, as seen in the top and middle panels. The SNR 
of the tip signal in the bottom panel is < 1. These results demonstrate how noise simulations 
can be used to reduce SNR and make it more difficult to characterize the flaw depth. Higher 
noise amplitudes could be used to obscure corner echoes; however, the noise amplitude would 
likely have to be unrealistically high. A better method of simulating signal loss in coarse-grained 
materials is to control the sound field scatter (Section 5.3.2) and/or attenuation (Section 6.0). 
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Figure 5.10. Flaw response simulations with noise. Top: Flaw response simulations with no 

noise (top), low noise (middle), and high noise (bottom). There are several regions 
in the high-noise figure where the noise signal is greater than the tip signal (red 
circles). 

5.3.2 Simulating Noise with a CIVA Voronoi Model 

Note in Figure 5.10 that the flaw response is unaffected by the presence of noise. To generate a 
more realistic response, a noise model and a coarse-grained model must be combined. There 
are two options in CIVA 2020 for simulating a flaw response in a coarse-grained specimen: 
create a coarse-grained model (such as PNNL has done previously with polished and etched 
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CASS specimens) or use CIVA’s Voronoi feature. PNNL previously showed that the Voronoi 
grains resulted in beam simulations that were similar to empirical beam maps and were much 
easier to create and faster to run (Jacob et al. 2020); also see Section 4.0. The Voronoi 
approach is the obvious choice. However, there are two important limitations of using Voronoi 
regions. First, the Voronoi option is not available with CAD-generated specimen models or weld 
models. Any custom geometry, such as a dissimilar metal weld or a geometry based on a real 
specimen, would not support Voronoi grains in CIVA 2020. Thus, simulating a dissimilar metal 
weld with CASS as one of the base materials would require a manually-created specimen. 
Second, noise cannot be simulated with Voronoi regions in CIVA 2020. When the “Coarse 
Grained” material type is selected (which activates the Voronoi region option), the 
“Attenuation/Structural Noise” option disappears. Voronoi regions cause scatter but do not by 
themselves result in noisy simulations; the region boundaries are apparently treated differently 
from other interfaces, lacking backscatter-associated noise. However, PNNL devised a 
workaround that may be suitable for simulating a flaw response with noise in coarse-grained 
Voronoi materials. 

The workaround includes performing a first simulation with the Voronoi regions activated, then 
performing a second simulation with the same model parameters but through an isotropic 
material with noise activated. The two results can then be combined outside of CIVA. An 
example of this approach is shown in Figure 5.11. The top two figures show the flaw response 
and the noise response. In the noise simulation, the flaw must be deactivated so that no flaw 
response is calculated—only noise is simulated in that case. The bottom figure shows the sum 
of the two simulations. The simulations were reconstructed outside of CIVA using Python code 
that assumes straight-line beam paths (see Appendix A.1). The image summation was also 
performed using Python. More sophisticated approaches might be devised to combine the 
images (for example, to normalize signal intensities or to blend noise and flaw response 
signals), but simply adding them together was adequate for this illustration. This method of 
simulating a flaw response with noise is relatively fast, as long as the individual simulations are 
not too complicated. Using an excessive number of Voronoi regions and/or a high ρ can make 
this approach impractical due to long simulation times. There are a couple of drawbacks to this 
workaround. One is that off-line processing is needed to correct the ray paths and to combine 
the images. The second is that considerable trial-and-error may be necessary to find the desired 
noise level and appearance. These shortcomings can be overcome with a parametric study to 
change noise properties and an automated post-processing approach. 
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Figure 5.11. Simulation results with Voronoi regions (top left), noise only (top right), and their 

sum. 

Next, an example is provided to illustrate the effect of combining noise in an isotropic specimen 
with a flaw response in a Voronoi specimen over a range of Voronoi parameters. A simple (non-
weld) specimen model was used with 10,000 Voronoi regions to imitate coarse-grained CASS. 
The specimen was 160 mm × 80 mm × 50 mm (6.3 in. × 3.1 in. × 2.0 in.), resulting in a typical 
grain volume of 64 mm3 (0.0039 in.3), equating to an average grain size d of 4 mm (0.16 in.). 
From Table 5.1, this grain size can be represented by a ρ of about 0.01 reflector/mm3.  A 1 MHz 
TRL probe was modeled with a focal depth of 45 mm (1.8 in.) at 45°. The speed of sound range 
ΔV of the Voronoi regions was increased from 0% to 6% in 1% intervals. A 100% TW flaw was 
added to imitate an end-of-block so that comparisons could be made to the empirical end-of-
block scans in Jacob et al. (2019).  

Figure 5.12 shows the simulation results (results were postprocessed in Python). All panels 
were normalized to the isotropic case (upper left). The simulations show a steady decrease in 
echo signal intensity as ΔV is increased until the echo signal is essentially gone at ΔV=5%; this 
relationship is expected, since grain scatter causes attenuation (this will be explored further in 
Section 6.5). A separate noise-only simulation was performed and then added to the flaw 
response simulations. Figure 5.13 shows the results with ρ = 0.01 reflector/mm3 and A = 400. 
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The lower right panel is the noise without any flaw response simulation. The echo signal is 
effectively overwhelmed by the noise at the ΔV = 3–4% range. Note in Figure 5.12 that spurious 
signals exist in the region above the echo response, especially for ΔV=1% and greater. The 
origin of the artifact is not currently known. It appears to be present at very low levels in the 
isotropic case, so the Voronoi regions are not causing it, but they are somehow intensifying it. 

Accurate flaw response modeling in CASS models will require parametric studies to determine 
ideal values of d, ΔV, ρ, and A for a given specimen, particularly if a polished and etched face of 
the specimen is unavailable. 

 
Figure 5.12. Flaw response simulation results through isotropic material (top left) and through 

the same Voronoi geometry with different values of ΔV. 
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Figure 5.13. Flaw response simulation results through isotropic material (top left) and through 

the same Voronoi geometry with different values of ΔV with noise (bottom right) 
added to each result. 

5.3.3 Background and Foreground Noise 

PNNL noticed that noise in empirical scans of CASS materials appears to be composed of a 
consistent, low-level background interspersed with brighter noise echoes. The empirical noise 
can therefore be thought of as two independent, superimposed noise fields: a relatively low-
level and spatially smooth “background” noise and a “foreground” noise with stronger, discrete 
echoes. The background noise likely originates from the cumulative scatter, while the 
foreground noise originates from a few individual grains that are serendipitously shaped or 
oriented to form a coherent echo. PNNL observed that CIVA can simulate the background noise 
by using a large ρ or foreground noise by using a small ρ. However, efforts to simulate both 
types of noise at once were unsatisfactory. A better reproduction of simulated CASS noise was 
generated by simulating background and foreground noise fields separately then combining the 
results. For the background noise, ρ=1 reflector/mm3 and A=1 were used (values of ρ higher 
than 1 take too long to simulate). For the foreground noise, ρ=0.001 reflector/mm3 and A=200 
were used. In addition, a 100% TW (i.e., end-of-block) flaw response was simulated while using 
a Voronoi model of CASS. Other settings were: 1 MHz TRL probe, 2 mm (0.08 in.) step size 
(i.e., 2 mm [0.08 in.] between A-scans), ΔV=3%, 160×80×50 mm3 (6.3×3.1×2.0 in.3) specimen 
block, and 10,000 equiaxed Voronoi cells (average region size 64 mm3 [0.004 in.3]), the 
equivalent volume of 4×4×4 mm3 (0.16×0.16×0.16 in.3 cubes). A single B-scan was simulated. 
Data were exported and processed in Python. 

The flaw response was then combined with the two different noise simulations. Figure 5.14 
shows the flaw response with the background noise, foreground noise, both combined, and an 
empirical scan. The empirical data shows an example B-scan (single slice) from the end-of-
block scan of OND-P-5 (see Figure 5.7). The mean grain size of OND-P-5 was measured to be 
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about 4 mm (0.16 in.), approximately matching the d of the model specimen, which had ≈64 
mm3 (0.004 in.3) Voronoi grains. In the combined image, the foreground noise was multiplied by 
two and the background noise by 0.5 to better match signal intensities of the empirical scan. 
Note that the noise texture in the empirical scan appears to be “grainier” with smaller discrete 
echoes, much different than the blurred appearance of the noise peaks in the simulations. 

 
Figure 5.14. Top row: Flaw response with background noise, and flaw response with 

foreground noise. Bottom row: Combined noise and flaw response, and an 
empirical scan. 

The foreground noise simulation was repeated with higher spatial resolution to try to match the 
grainy texture of the empirical noise. The same scan region was covered with 0.2 mm 
(0.008 in.) step sizes to better match the empirical scan resolution to see if a grainier noise 
appearance could be achieved with increased resolution. However, results did not show any 
difference in simulated noise texture. 

A second attempt to match the texture of the empirical noise was undertaken by increasing the 
probe frequency in the simulation to 2 MHz. Figure 5.15 shows the results with the background 
noise, foreground noise, and combined noise (the background noise was multiplied by three in 
this case). Results show that increasing the probe frequency indeed reduces the size of the 
noise echoes in simulations. There are several drawbacks to using a higher frequency for 
simulating noise than for the flaw response simulation. 1) Changing the probe frequency adds 
another level of complexity because the probe frequency becomes a free parameter. 2) Higher 
frequencies increase simulation time. 3) An additional simulation setup is required with the 
higher frequency probe. 



 

Noise 66 
 

 
Figure 5.15. Top row: Flaw response with background noise, and flaw response with 

foreground noise. Bottom row: Combined noise and flaw response, and an 
empirical scan. 

Figures 5.14 and 5.15 illustrate a method of simulating coarse-grained noise. Neither figure 
shows noise fields that are comparable to or representative of those observed empirically. In 
PNNL’s testing, no methods of satisfactory coarse-grained noise field simulations were found. 

5.3.4 Iterative Approach to Simulating Backscattered Noise 

The CIVA user’s manual notes that “realistic description of scattered noise in terms of the two 
parameters density and amplitude requires use of experimental calibration” (emphasis added).  
Segmentation and statistical analysis tools (which PNNL has not yet explored) are suggested 
and may be useful for streamlining the process. This section explains the process step-by-step. 
The approach is essentially trial-and-error and is the basis of the method described in this and 
preceding sections. Individual users may find a subset or combination of procedures to be 
helpful. 

A description of how to simulate noise in coarse-grained specimens is provided in (Chatillion et 
al. 2003). This paper is provided as a reference for structural noise modeling in the CIVA 2020 
user’s manual and outlines the following steps to simulate empirical noise: 
1. Create a noise field in CIVA and segment the noise peaks. Segmentation is a method in 

CIVA of identifying the location and extent of noise echoes that exceed a threshold value. 
2. In CIVA, create a histogram of the segmented peaks based on amplitude. 
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3. In the empirical data, fill the active window with the noise field (i.e., gate out a region that 
contains only noise). 

4. In the empirical data, adjust the soft gain as necessary so that the maximum noise is at 
100%. 

5. Create a histogram of the empirical noise field. 
6. Compare the simulated and empirical histograms. Qualitatively observe the characteristics 

of the histogram peak. 
7. In CIVA, tune the scatterer distribution (the parameter A) until the histograms are similarly 

shaped. This will require running multiple simulations. 
8. In CIVA, adjust the density (ρ) to achieve a simulated noise level similar to the empirical 

one. This will require running multiple simulations. 

PNNL attempted to implement these steps but kept getting different simulation results in CIVA 
from the exact same model setup. That is because CIVA automatically randomizes the locations 
of the noise scatterers before each simulation, so no two noise simulations are alike. One way 
to avoid this is to increase ρ to a high enough value so that the distribution of scatterers does 
not substantially vary from simulation to simulations, but this causes simulation time to increase 
dramatically. Also, the outlined approach seems to only work if the simulated and experimental 
data can somehow be normalized or calibrated to each other. PNNL found matching noise 
characteristics in simulated to real data to be challenging, time-consuming, and frustrating. The 
process might be simplified if the empirical data were being analyzed in CIVA. (PNNL was using 
UltraVision because CIVA 2020 could not read UltraVision data; however, CIVA 2021 can read 
UltraVision data exported in .txt format.) At any rate, Chatillion et al. (2003) points out that the 
noise characteristics in CIVA are a property of the specimen and not the probe. Thus, once 
noise properties are established, they can be kept constant for simulating different probe 
parameters. PNNL did not test this. 

5.4 Summary 

PNNL evaluated three types of simulated noise in CIVA: structural, polycrystalline, and surface. 
Structural noise can be added to flaw-response simulations in CIVA by using the built-in noise 
feature, and the noise response can be changed by adjusting the noise-scatter density ρ and 
the amplitude A. Note that some model scenarios, such as Voronoi regions, do not support 
structural noise (in CIVA 2020). Initial tests of the polycrystalline method showed that it can 
generate noise, but this method lacks advantages over the structural approach in the scenarios 
tested. Finally, a multifaceted flaw placed at the surface of the specimen can effectively simulate 
surface noise or clutter by providing echo responses that are similar in appearance to empirical 
surface noise. The shape of the surface flaw should be iterated until the desired noise signature 
is achieved. 

The structural noise option in CIVA is the most straightforward method of simulating noise. 
There are some important things to remember: 

• Structural noise reflectors are always the same size and shape. The spatial size of the echo is 
determined by the wavelength, so lower frequencies produce spatially larger noise echoes 
than higher frequencies. 

• Adding noise to a model does not diminish the flaw response amplitude. However, if a noise 
reflector is coincident with the flaw, then the flaw signal will appear to increase. When 
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simulating noise, the SNR is affected only by a change in noise and not by a change of signal. 
The user should be careful not to misinterpret results with regard to flaw detectability. 

• CIVA noise reflectors are randomly redistributed for each simulation. Rerunning a simulation 
with identical parameters gives a different noise pattern. A controlled test of flaw response 
with variable flaw parameters but a constant noise distribution is not possible in CIVA 2020. 
This can be a problem if, for example, a noise reflector happens to lie on the flaw in some 
simulations but not in others, because the noise added to the flaw response makes the flaw 
response appear stronger. 

• Noise reflectors are on occasion randomly assigned to the simulation plane. Occasionally, a 
reflector will end up in the simulation plane, resulting in a very strong and anomalous-looking 
noise response. It may be best to rerun such instances. 

• Simulation time is a very strong function of ρ, so minimizing ρ is advantageous. In PNNL’s 
tests, simulation times were increased by well over a factor of 10,000 from a simulation with 
no noise to one with ρ = 100 reflector/mm3. Low reflector densities, such as ρ ≈ 0.001 to 0.01 
reflector/mm3, have little impact on simulation time in the scenarios that PNNL tested. Again, 
the appropriate value of ρ should be determined iteratively. 

Flaw response simulations in CASS materials can be simulated using Voronoi regions as 
models for grains, but structural noise cannot be added to simulations with Voronoi regions. 
That is, one can simulate noise or a flaw response in a coarse-grained specimen, but not both 
simultaneously. Adding granular noise must be done in stages by combining separate noise and 
flaw response simulations. Accurate flaw-response modeling in Voronoi CASS models will 
require parametric studies to determine ideal values of d, ΔV, ρ, and A for a given specimen, 
particularly if a polished and etched face of the specimen to reveal the grain size and structure 
is unavailable. Achieving the desired noise level and appearance is an iterative approach, and 
empirical noise can be used to guide the selection of CIVA parameters.  

There are pros and cons to simulating noise. The pros are: 1) simulated noise can give a more 
accurate picture of the sound field; 2) simulated noise can help predict SNR for flaw 
detectability, especially in coarse-grained materials. On the other hand, the downsides of 
simulating noise are: 1) simulating noise can significantly extend computation time; 2) simulated 
noise and the resulting SNR depend strongly on correctly determining multiple parameters 
through a time-consuming iterative process that requires access to empirical data. Errors in this 
process can cause an unrealistic or incorrect noise field. If the required empirical data are not 
available, then simulated noise should not be considered reliable. 

PNNL anticipates that adding noise to simulations of coarse-grained materials will be helpful to 
predicting flaw detectability, and it should be done when feasible. Even if the simulated noise 
field does not exactly resemble that of empirical scans, there are benefits to being able to 
predict flaw detectability in the presence of structural noise. As with other simulation scenarios, 
running multiple simulations with a range of parameters can help establish nominal results and 
potential outlier cases.   
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6.0 Attenuation 
6.1 Introduction 

Attenuation is the reduction of the sound-field amplitude as it propagates through a medium. 
Acoustic attenuation can be observed in every material and is typically a strong function of 
frequency, with higher frequencies more strongly attenuated than lower frequencies. Applying 
attenuation to simulated scenarios is usually not necessary unless relatively high frequencies 
are used (i.e., ≳ 5 MHz) or strongly attenuating materials are being modeled, such as many 
types of polymers or aggregates. Based on PNNL’s experience to date, adding attenuation to 
CIVA models is straightforward and results in virtually no increase to simulation time. This 
section describes methods for adding attenuation to simple and coarse-grained CIVA models.  

6.2 Sound Field Attenuation in CIVA 

Attenuation in CIVA is defined in units of dB/mm, or decibels of signal loss per millimeter of 
sound path, and it can be characterized as a frequency-dependent function using either an 
exponential or a polynomial. The type of frequency dependence must be determined empirically 
or theoretically, since it is an inherent property of the material. For materials that exhibit 
exponential attenuation, the user enters three parameters: a wave frequency f0 (in MHz), the 
attenuation at that frequency α0 (in dB/mm), and the exponent, or power of the attenuation rate 
p.  These values are unique to each material and should be determined empirically or found in 
the literature. CIVA calculates the attenuation α (in dB/mm) for any frequency f using the 
following equation: 

𝛼𝛼 = 𝛼𝛼0 �
𝑓𝑓
𝑓𝑓0
�
𝑝𝑝

 

For the polynomial attenuation, the user enters relevant coefficients and exponents, depending 
on the frequency dependent function. For example, from Ono (2020), the attenuation of 
longitudinal waves in 304 stainless steel is of the form: 

𝛼𝛼 = 𝐶𝐶𝑑𝑑𝑓𝑓 + 𝐶𝐶𝑅𝑅𝑓𝑓4 

where α is the attenuation in dB/mm, Cd is the coefficient of attenuation due to damping of 
longitudinal waves in dB/mm/MHz, and CR is the coefficient of attenuation due to Rayleigh 
scattering in dB/mm/MHz4. Rayleigh scattering occurs when the distance between scattering 
centers is much smaller than the wavelength and exhibits attenuation dependent on the fourth 
power of the frequency. Rayleigh scattering typically becomes significant at about 5–10 MHz 
(Ono 2020). (By comparison, stochastic scattering, where the spacing between scattering 
centers is about the same as the wavelength, results in attenuation proportional to the square of 
the frequency and is significant for most metals at frequencies ≳ 20 MHz.) In this example, the 
user would enter the value of Cd with 1 for the corresponding exponent and the value of CR with 
4 for the exponent. It should be noted that CIVA provides default sound speed and density 
values for many materials, but coefficients or exponents for attenuation are not included, since 
measured values can vary considerably from specimen to specimen, even if they comprise 
nominally the same material. Values for sound attenuation coefficients and exponents for many 
common materials can be found in published literature (c.f., Ono (2020)). 
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Figure 6.1 shows four examples of CIVA-generated attenuation versus frequency graphs 
defined in an isotropic material. The bottom example is a polynomial with Cd = 0.0212 
dB/mm/MHz and CR = 7.78×10−6 dB/mm/MHz4. These values were taken from non-magnetic 
304 stainless steel (test F86 in Table 2 of Ono (2020)). The black line shows the attenuation as 
a function of frequency; at 5 MHz, the attenuation is 0.111 dB/mm. The attenuation was then 
defined for the other cases to also be 0.111 dB/mm at f0=5 MHz. The first graph shows a 
constant attenuation, which was defined using the power law option with an exponent of 0. Here 
the black line is horizontal (i.e., attenuation is independent of frequency). The second and third 
examples show a power law attenuation with an exponent of 2 and 4, respectively. Note that the 
vertical axes have different scales, but the attenuation at 5 MHz—at the red cursor—is always 
0.111 dB/mm. 

 
Figure 6.1. Graphs showing attenuation vs frequency for four different scenarios. 

From the attenuation curves given in CIVA (shown in Figure 6.1), the user can determine the 
attenuation at other relevant frequencies. For example, the modeled 5 MHz probe was assigned 
a −6 dB bandwidth of 80%. Thus, the −6 dB drop-off of the transmitted signal occurred at 3 MHz 
and 7 MHz. Using the attenuation curves and the red vertical cursor, the user can obtain 
attenuation values at those frequencies, as shown in Table 6.1. 
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Table 6.1. Attenuation values at different frequencies for different attenuation laws 

Attenuation Law Atten. at 3 MHz 
(dB/mm) 

Atten. at 5 MHz 
(dB/mm) 

Atten at 7 MHz 
(dB/mm) 

Constant 0.111 0.111 0.111 
Power, p = 2 0.040 0.111 0.218 
Power, p = 4 0.014 0.111 0.426 
Polynomial 0.064 0.111 0.167 

Figure 6.2 shows the simulated sound field for the scenarios shown in Figure 6.1 for a 12.7 mm 
(0.5 in.) diameter 5 MHz probe with an 80% bandwidth. Isosonic curves, or contour lines of 
constant sound intensity, were added at the −3 dB, −6 dB, and −12 dB levels to help the eye 
differentiate between the sound fields. The unattenuated scenario shows the sound field 
propagating through the full 200 mm of simulated material. It is not realistic to select this probe 
for inspections of materials of that thickness; these simulations are illustrative. The attenuated 
scenarios show significant truncation of the overall sound field, but the depths of the near 
field/far field transitions, indicated by the red dashed lines, are not affected much. The sound 
field is not dramatically affected at depths of up to about 50 mm (2 in.) in any of the cases. 

 
Figure 6.2. Simulated sound fields at 5 MHz for different attenuation laws. The dashed lines 

indicate the position of the near field/far field transition. 

Figure 6.3 shows simulated sound fields for a 25 mm (1 in.) diameter 2 MHz probe with an 80% 
bandwidth using the same attenuation scenarios. A different probe diameter was simulated in 
order to generate similar unattenuated sound fields at the lower frequency to facilitate visual 
comparison to the 5 MHz results. This figure illustrates that the lower frequency probe is not 
strongly affected by the frequency-dependent scenarios (i.e., the power law and the polynomial 
attenuation laws), since the attenuation decreases as the frequency decreases. Note that both 
probes are similarly affected by the constant attenuation scenario; this is an expected outcome 
since the attenuation is the same at both frequencies. As with the 5 MHz scenario, the location 
of the near field/far field transition is not strongly affected by attenuation at 2 MHz. 
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Figure 6.3. Simulated sound fields at 2 MHz for different attenuation laws. The dashed lines 

indicate the positions of the near field/far field transitions. 

Results show that it is probably unnecessary to add attenuation to simulations in steel at 
frequencies ≤ 5 MHz, since the sound field at relevant depths is not strongly affected. 
Ultimately, the decision to add attenuation will depend on the material type and actual sound 
path in addition to the probe frequency. For example, field examinations of coarse-grained 
material would be conducted at relatively low frequencies of ≤ 1 MHz and examinations of 
austenitic welds would be at frequencies up to about 2 MHz. Attenuation in these materials may 
be best simulated by adjusting the material scattering properties, such as in Figure 5.12. 

For flaw response simulations, attenuation would affect the echo amplitude; however, it is not 
useful to simulate attenuation through homogeneous materials unless the probe and/or signal 
response is well calibrated to a standard signal. Applying attenuation through a homogeneous 
material will simply result in a reduction of the relative echo strength, but the absolute echo 
signal will still be arbitrary. In other words, without a calibrated probe or signal response in the 
simulation, all sound field intensities and signal responses are arbitrary. CIVA does not model 
the probe electronics or piezoelectric elements; thus, it is essential to use a calibration signal 
when absolute measurements are needed. Indeed, the CIVA user’s manual emphasizes the 
need for a calibration signal: 

It is compulsory to normalize [a] simulated amplitude by the simulated echo 
amplitude from the calibration flaw. … The value of this ratio is consequently 
experimentally measurable and can lead to comparisons between simulation and 
experience. The use of this amplitude normalization by a calibration technique allows 
[the user] to overcome the complex modelling of the electro-acoustic transduction 
(not modelled in CIVA). 

For example, a weak signal response in an empirical scan could result from a variety of 
sources, such as a poorly-performing probe, a weak transmit pulse, poor coupling, or 
attenuation in the material. Without a simulation calibration signal, simulated attenuation will 
only allow the user to observe relative changes to sound fields and echo responses but will not 
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provide any direct information on flaw detectability. All direct, quantitative comparisons to 
empirical results require some type of calibration, such as a side-drilled hole or a corner echo. 

When simulating attenuation in CIVA, it is critical to remember to 1) define the appropriate 
attenuation in the Specimen tab, and 2) activate the attenuation in the Simulation tab by 
checking the Attenuation box. Also, CIVA allows the user to define directionally-dependent 
attenuation in anisotropic materials; PNNL has not investigated this feature. 

6.3 Attenuation due to Surface Roughness 

Another option for adding attenuation to a simulation is by using the Roughness option in the 
Geometry tab of the Specimen tab. This option adds virtual surface roughness to the specimen 
model (the roughness is not shown in the model diagram). The user enters this as a roughness 
Ra value in units of μm.11 According to the CIVA user’s manual, a roughness factor is added to 
the specimen/probe interface (i.e., the surface that interfaces with the beam after it exits the 
probe), and “the effect is modelled as a modification of the transmission coefficient, [and is] a 
function of the frequency.” That is, the transmission coefficient of the sound into the component 
is reduced with increased surface roughness and increasing probe frequency (Rodriguez et al. 
2003). Figure 6.4 shows an example of beam maps simulated at 2 MHz with different values of 
roughness, ranging from 0 μm to 200 μm. Note that the shape of the beam is constant with 
increasing roughness, only the intensity changes. This is because changes to the transmission 
coefficient only occur at the surface. The overall effect can be likened to that of a poorly-coupled 
probe or a probe with reduced output intensity. In other words, reduced probe output can be 
modeled by using the surface roughness option as a surrogate. For comparison to empirical 
results, a calibration flaw response signal is required. 

 
11 https://www.sciencedirect.com/topics/chemistry/surface-roughness 
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Figure 6.4. Simulated beam maps for different values of surface roughness (Ra). Ra is in units 

of microns. 

The surface roughness affects the transmission coefficient, so attenuation with this method is 
fundamentally different from the sound field attenuation described in Section 6.2. Figure 6.5 is a 
comparative illustration of simulations done with surface roughness and with specimen 
attenuation. Attenuation values were set such that the simulations in each row gave the same 
peak beam intensity. Attenuation in the bottom row was more aggressive than in the top row. 
With strong specimen attenuation, the sound beam barely penetrates, whereas high surface 
roughness diminishes the overall beam intensity. Results show that the simulated sound fields 
with the different types of attenuation are fundamentally distinct. The attenuation from surface 
roughness diminished the entire sound field uniformly, whereas the specimen attenuation 
reduced the sound field intensity with increasing depth. Before adding attenuation to a model, 
the user should understand the difference between the attenuation types and the effects each 
will have on the simulation. 
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Figure 6.5. Examples comparing surface roughness (or transmission attenuation, left) and 

specimen attenuation (right). Attenuation values were chosen such that each row 
has the same maximum signal intensity. Surface roughness diminishes the entire 
sound field uniformly, whereas specimen attenuation causes a reduction in sound 
intensity with increasing depth. 

6.4 Attenuation in a Weld Model 

To show an example of the application of specimen attenuation in a beam simulation, a 
simulation was computed using the 256-pixel EBSD weld model. This simulation used a 
2.0 MHz PA probe with a 45° focal law and a focal depth of 24 mm. A constant attenuation of 
0.1 dB/mm was added. This level of attenuation is similar to the empirically-measured 
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attenuation in the specimen used to develop the model. Note that attenuation must be added to 
each region of the specimen model. The results of the beam simulations are shown in Figure 
6.6. The left panel shows the beam simulation without attenuation, and the right panel includes 
attenuation. The beam maps were normalized to the peak signal of the non-attenuation result. 
Results illustrate that attenuation and scatter can be applied in the same simulation to affect the 
sound intensity. Again, it is important to note that the absolute signal intensity is arbitrary, and 
quantitative results from flaw response simulations can only be achieved by using calibration 
signals. Adding a flaw to the far side of the weld model would result in a stronger flaw response 
in the unattenuated scenario than in the attenuated one. However, there is no way to know 
which flaw response more accurately predicts reality without a calibration signal—preferably 
from an SDH in both the simulation and empirical scans—that can be used to normalize the 
simulated and empirical results to one another. It is important to note that the example shown 
here is one specific scenario and that attenuation should be customized for every scenario 
independently. 

 
Figure 6.6. Through-weld beam simulations without (left) and with (right) attenuation. 

Adding attenuation to a CIVA 2020 specimen model that comprises multiple regions requires 
defining the attenuation in each region independently. If the same attenuation law is to be 
assigned to all the regions, then they can all be changed en masse in CIVA by right-clicking in 
the Material tab of the Specimen tab. However, if different regions require different attenuation 
laws, then the attenuation can be assigned manually region-by-region. If there are many 
regions, the specimen .xml file can be exported and edited outside of CIVA using a program 
such as MATLAB or the Find/Replace function of a text editor. PNNL has successfully tested all 
of these approaches. 

6.5 Simulated Signal-to-noise Ratio and Attenuation in CASS 

Attenuation in empirical scans of CASS material is caused largely by sound reflection and 
refraction (manifest as scatter and redirection) as the sound passes through grains of different 
size and orientation, typically in the stochastic or geometric scattering regimes (Ryzy et al. 
2018). As discussed above, CIVA can simulate attenuation directly by allowing the user to enter 
attenuation parameters, such as the attenuation rate (in dB/mm) and the frequency dependence 
(in the form of an exponential or power relationship). It should be noted, however, that CIVA 
does not give the option for adding attenuation when using the Voronoi model for coarse-
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grained material. Therefore, PNNL has investigated two alternative approaches for simulating 
attenuation in Voronoi-based CASS materials. 

Empirical scans of CASS tend to have high structural noise. The first method simulates an 
“apparent” attenuation by substituting the simulation of noise for attenuation. Noise has the 
effect of reducing the relative signal intensity of an echo, or the signal intensity of an echo 
relative to structural noise. The echo signal is not reduced in an absolute sense, but as the 
noise level increases, the SNR level decreases and gives the effect of an attenuated echo 
response. This apparent attenuation can be tuned by increasing or decreasing the intensity of 
the simulated noise. Once the noise level overwhelms the echo signal, then the SNR becomes 
≤1 and the beam is essentially fully attenuated. This method is not ideal because it will always 
result in an echo signal (whereas a strongly attenuated beam will not always produce an echo 
signal), even though the signal may be weaker than the average noise level. This approach may 
require very high noise amplitudes. 

The second method is to leverage the Voronoi parameters to imitate attenuation. It is well 
known that scattering and attenuation are closely related, as beam scatter leads to signal loss 
(Dorval et al. 2013; Feuilly et al. 2009; Ryzy et al. 2018). Coarse-grained materials are strongly 
attenuative due to the high degree of scatter that occurs. CIVA 2020 does not model noise or 
scattered signals with Voronoi regions, but the regions do deteriorate the echo response via 
beam scatter, such as shown in Figure 5.12. Two variables can be used to affect attenuation 
with Voronoi regions: the total number of regions and ΔV, which is the range of velocities 
assigned to the Voronoi regions. Here, PNNL explored the effect of ΔV on beam attenuation 
and SNR in a coarse-grain Voronoi model. The SNR ratios of the images shown in Figure 5.13 
were measured. Each image represents stronger scatter due to increased ΔV but has the same 
noise background. Table 6.2 shows the measured echo signal intensity for each ΔV and the 
calculated SNR, and Figure 6.7 shows a graph of the SNR as a function of ΔV. For reference, 
the dashed line in the figure represents the 3:1 SNR level. Results show that, for the given noise 
field and the given grain size, a ΔV of 3% results in an SNR of about 3 and probably represents 
a typical coarse-grained CASS exam. Values of ΔV that are higher than this represent worse 
(i.e., lower SNR) scenarios, and values below this are more favorable scenarios. Again, it is 
important to remember that adjusting ΔV does not affect the modeled grain size, but it does 
affect the ability of the ensemble of grains to scatter the sound. Finding the optimal value of ΔV 
for a given grain size is important for accurately simulating beam attenuation in coarse-grained 
materials. 
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Table 6.2. Signal, SNR, and attenuation for a given simulation scenario. 

ΔV (%) Echo Signal 
(arb. units) SNR* 

Apparent 
Atten.** 
(dB/mm) 

0 83.1 12.2 0.017 

1 62.0 9.1 0.030 

2 38.3 5.6 0.052 

3 22.5 3.3 0.076 

4 11.9 1.8 0.106 

5 6.6 1.0 0.132 

6 3.7 0.5 0.159 
* mean noise = 6.8 
** The reference signal through an isotropic 
specimen was 120 (arb. units) and the metal path 
was 190 mm. 

 

 
Figure 6.7. Relationship between SNR and ΔV in Voronoi simulations. The dashed line 

indicates the 3:1 SNR level. 

Next, the apparent attenuation was calculated by comparing the signal loss of each ΔV case to 
the signal of the isotropic case for the given metal path; this was done independently of any 
noise. Table 6.2 shows the calculated attenuation values, and Figure 6.8 shows a graph of the 
relationship between ΔV and attenuation. The relationship appears to be nearly linear for 
ΔV≥1%.12 Sakamoto et al. (2012) suggest that attenuation in equiaxed CASS is about 
0.75 dB/mm. This agrees very well with the attenuation value obtained here with ΔV=3%. 
Therefore, both the SNR and attenuation results of this example suggest that ΔV=3% provides 
good approximations of both SNR and attenuation levels (for the simulation parameters chosen) 

 
12 It is unclear what happens in CIVA when ΔV is defined as 0%. Results were expected with ΔV=0% to 
match those with an isotropic specimen, since there is no velocity variation from grain to grain and the 
specimen should be effectively isotropic. However, the echo response in the isotropic model was about 
1.4 times higher than that of the ΔV=0% Voronoi model. 
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that have been empirically observed in CASS. It is important to remember that these results are 
only illustrative and represent one simulated noise background and one average size of Voronoi 
regions. For example, if we had used a higher noise amplitude A, then the noise level would 
have been higher and the SNR results would have been lower. Such a change, however, would 
not have affected the attenuation values. To optimize ΔV for a given scenario, or other 
parameters that may affect signal intensity, it is imperative to conduct parametric studies by 
systematically varying the noise parameters and Voronoi parameters. It is essential to have 
access to empirical data to guide the parametric study. 

 
Figure 6.8. The relationship between calculated attenuation and ΔV in Voronoi simulations. 

It can be an onerous task to simultaneously and iteratively optimize ρ, A, ΔV, and the Voronoi 
region size d. Below is some step-by-step guidance to help with the process. 
1. Determine a typical grain size and shape. This may require referring to empirical data, a 

body of literature, engineering judgment, and/or polished and etched specimens similar to 
the one that is being modeled. It is ideal to repeat the process for a range of grain sizes in 
order to explore a range of possible scenarios. 

2. Using the typical grain size, calculate the number of Voronoi regions needed for the 
modeled specimen. For example, if the typical grain is determined to be 5 mm (0.2 in.) 
across, then a typical grain volume is approximately (5 mm)3, or 125 mm3 (0.008 in.3). 
Calculate the specimen volume from the dimensions entered in CIVA, then divide the 
specimen volume by the grain volume. For example, if the specimen is 100 mm × 100 mm × 
40 mm (3.9 in. × 3.9 in. × 1.6 in.), then the volume is 400,000 mm3 (24.4 in.3), and the 
number of Voronoi regions needed is 400,000/125 = 3,200. Note that simulation times 
increase with higher numbers of Voronoi regions. It is best to minimize the volume of the 
modeled specimen. 

3. Determine ΔV based on attenuation. If an attenuation value is known from empirical data, 
then ΔV can be determined from a parametric study using a backwall echo, a rectangular 
flaw, or other reflector. It is important to remember to use the full metal path x in the 
calculation (i.e., x is twice the distance from the probe to the backwall or flaw). The 
attenuation in dB/mm is calculated by:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚� � =
1
𝑥𝑥
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where S is the attenuated signal and S0 is the unattenuated signal, such as through isotropic 
material. Alternatively, an echo train can be simulated and the attenuation calculated by 
measuring the decay rate of successive echoes. 

4. Simulate a desired noise field. This is largely qualitative and depends on the noise patterns 
or characteristics observed empirically. For example, a coarse noise field with many strong 
echoes, such as in coarse-grained CASS, will require sparse noise scattering centers. 
Select a fixed value of A, and iterate ρ until the desired noise field is found. Note that it is 
best to use as small of a ρ as possible to reduce simulation time. Also, combining sparse 
and fine noise fields (i.e., “foreground” and “background” noise), as shown in Section 5.3.3, 
may be desired. 

5. Iteratively determine the value of A that provides the desired SNR for the values ρ and ΔV 
that have already been determined. 

6. Because CIVA does not simulate noise with Voronoi regions, separate simulations will need 
to be run to generate a noise field and a flaw response. Run the simulations with the 
parameters determined above. If changes are needed, repeat any necessary steps. Use 
care to only change one variable at a time. 

6.6 Summary 

Applying specimen attenuation to CIVA models is straightforward but does require some 
knowledge of attenuation coefficients and frequency dependence. Attenuation is generally only 
needed for simulation scenarios where the frequency is high, i.e., at frequencies ≳ 5 MHz, 
although the importance of attenuation will have to be evaluated on a case-by-case basis. 
Attenuation of the transmitted sound can be applied in CIVA by using the surface roughness 
parameter. Calibration signals are critical for quantitative evaluation of flaw response 
simulations. Otherwise, the amount of attenuation added to a simulation is arbitrary. 

Attenuation can be simulated in Voronoi-based coarse-grained materials by selecting 
appropriate grain sizes and sound field scattering parameters. The addition of noise can also be 
used to increase apparent attenuation by reducing the SNR. Step-by-step procedures were 
described for iteratively optimizing the parameters. 
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7.0 Summary  
This report is the fourth in a series of modeling and simulation studies that have taken place at 
PNNL over the past several years (Dib et al. 2017; Dib et al. 2018; Jacob et al. 2020). The 
project has systematically addressed issues of ultrasonic modeling and simulation that are 
relevant to nuclear NDE. Most of the work to date has focused on CIVA because of its 
widespread use in the global nuclear industry. These reports have covered issues including: 

• Quantitative metrics for measuring simulation outcomes and comparing results to 
empirical data; 

• Understanding uncertainties in simulation results and the role of verification and 
validation; 

• Understanding how variability in parameter selection affects variability in simulation 
outcomes;  

• Comparing beam simulations generated by UltraVision and CIVA; 

• Exploring the relationship between beam simulations and flaw response models and 
whether the former can be used as a surrogate for the latter; 

• Developing and testing models of austenitic welds, coarse-grained materials, and 
dissimilar metal welds; 

• Investigating the effects of adding noise to simulations; 

• Investigating models of attenuation. 

Results from this report and Jacob et al. (2020) show that CASS models can be reliably 
produced in CIVA using Voronoi regions. These models are inherently 3D, load rapidly, and 
generate realistic results. However, the Voronoi option in CIVA 2020 is limited to planar or 
cylindrical specimen geometries, none of which include welds or multi-region models. Models of 
mixed grain-structures, like combinations of columnar and equiaxed CASS, or of a wide variety 
of grain sizes can be created outside CIVA and imported, but the final model will be 2D and 
extruded in the third dimension. Such models tend to be time consuming to create and do not 
produce as good of results as the 3D Voronoi models. 

PNNL tested the ability of CIVA to simulate the sound field and flaw responses in a DMW 
model. Because of the limitations with the Voronoi option in CIVA, PNNL created DMW models 
outside of CIVA by combining regions of weld, coarse-grained (i.e., CASS), buttering, and 
isotropic materials. Sound field distortion and changes to the flaw response echo amplitudes 
were observed in the simulations, as expected. Results showed that the specimen model, 
including the flaw location within the model, has a strong impact on the simulated flaw response. 

PNNL observed two effects in the beam simulations. First, a “funnel effect,” or a stronger sound 
field at the near-side base of the weld was observed. This effect was due to sound being 
funneled by the backwall and fusion plane, and all of the weld simulations predicted the funnel 
effect. Empirical sound field maps verified the presence of the funnel effect. Simulated flaw 
response results tended to overemphasize the effect, more so at 60° refraction angles than at 
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45°, meaning that the simulated flaw response may be overestimated for near-side flaws. 
Second, PNNL observed a “shadow effect,” where beam scatter through a weld resulted in a 
weak sound field on the far side of the weld. The shadow effect was also observed empirically. 
Simulated flaw response results tend to overemphasize the effect, meaning that simulated far-
side flaw responses may be underestimated. 

The specific Euler angles of the weld models affect flaw detectability, although not dramatically 
in most cases tested. Results of this work and the previous work (Jacob et al. 2020) suggest 
that the impact of the specific Euler angle assignments is smaller than that of the number of 
interfaces and grain sizes. Grain size is important because grains that are too large will not give 
realistic scatter, while grains that are too small will violate the CIVA high-frequency model 
assumptions. The ideal weld grain size is probably about one-half of a wavelength. Note that 
FEM in other platforms (or CIVA Athena 2D) can be used with arbitrarily small grains, but small 
grains (especially oddly-shaped grains) require a fine mesh and much longer simulation times. 

CIVA is well suited for simulating noise, although PNNL found it challenging or impossible to 
reproduce CASS noise fields. Structural noise is straightforward to simulate in CIVA by entering 
a couple parameters, but homing in on the parameters that will generate the desired noise field 
is an iterative process and may require some additional data processing. Simulation times can 
increase dramatically when noise is added. ID surface noise from corrosion or cladding can be 
simulated with a multifaceted flaw placed along the surface of the specimen. Again, the desired 
noise response may require iterative changes to the flaw shape. 

Structural noise is not an available option in CIVA 2020 in simulations with Voronoi regions. 
PNNL showed that separate noise and flaw response simulations can be run and results 
combined outside of CIVA. Accurate flaw-response modeling with appropriate noise 
backgrounds in Voronoi CASS models will require parametric studies to determine ideal 
simulation parameters that agree with empirical scans, particularly if a polished and etched face 
of the specimen is unavailable. Indeed, for realistically simulating noise, it is particularly 
important to have empirical data for comparison. 

CIVA has multiple options for defining sound attenuation within a specimen model. The user 
should have some knowledge of relevant attenuation coefficients and frequency dependence. 
PNNL observed that attenuation is typically only needed for steel simulation scenarios when the 
frequency is ≳ 5 MHz, although the importance of attenuation should be evaluated on a case-
by-case basis. For CASS models, attenuation can be simulated in Voronoi materials by 
selecting appropriate grain sizes and sound field scattering parameters. Noise can also be used 
to increase apparent attenuation by reducing the SNR. Step-by-step procedures were described 
for iteratively optimizing the Voronoi and noise parameters. CIVA does not allow the user to 
directly control the probe transmit power, but the strength of the transmitted sound can be 
reduced by using the surface roughness parameter. In all cases of simulations with attenuation, 
the amount of attenuation added to a simulation is arbitrary unless calibration signals are used. 
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Appendix A – CIVA Tips 
A.1 Reconstruction of B-scans 

During field UT examinations, echoes are measured in time and projected to a position in the 
specimen-based on the refracted angle, the speed of sound in the specimen, and a straight-line 
sound path. Bending of the beam is likely to occur through non-isotropic materials, but the 
sound path is always assumed to be straight, because the degree of bending and the actual 
sound path are unknown. As a consequence, the received echoes may be projected to the 
wrong location in the specimen. Although this is typically not a dramatic effect, a flaw may 
appear to be in one location when it is actually in a slightly different location. CIVA, however, 
appears to reconstruct the data based on simulated beam paths, so any bending of the beam is 
accounted for. This causes simulation results to show the flaw at the actual location as opposed 
to the apparent location that one would see in a field exam. Figure A.1 illustrates the difference. 
A specimen was modeled with two regions and a single interface; a small, embedded flaw was 
added. The regions were given different material properties so that the sound path would bend 
as the beam passed across the interface. The solid green line indicates the actual sound path 
from the probe to the flaw; this path was used by CIVA to calculate the echo response at the 
actual flaw location. The dashed line shows the straight-line path along which an examiner (or 
software such as UltraVision) would project the flaw location. The flaw would appear in a field 
exam to be several millimeters away from the actual flaw location. 

 
Figure A.1. CIVA flaw response simulation with the CIVA-calculated beam path (solid green 

line) and the straight-line beam path (dashed line). In an empirical exam, the flaw 
position would be projected along the dashed line. 

A more complex example of the beam path issue is shown in Figure A.2. The top panel shows 
the ray tracing diagram of a phased-array probe over an isotropic material with the rays incident 
on a flaw tilted at 19°. The bottom panel shows the same PA probe over an austenitic weld 
model. In an actual examination, such as with UltraVision, all received signals in the bottom 
panel would be mapped to the lower portion of the flaw, based on the straight-line ray paths in 
the top panel and the sound time-of-flight. However, CIVA maps the received signals based on 
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the actual beam paths. If the user wants to compare flaw response simulations to empirical data 
(for simulations with non-isotropic materials), the user will have to reconstruct the B-scans 
outside of CIVA and assume straight-line beam paths. PNNL did this by exporting the “BScan 
(scanning/time)” data (not the “True BScan (scanning/depth)” data) and performing 
reconstructions in Python. 

 
Figure A.2. Ray paths from a PA probe through isotropic material (top) and the weld model 

(bottom). 

The Python B-scan reconstruction algorithm projects the simulated A-scans along the refraction 
angle. Some image interpolation and anti-aliasing is required to remove artifacts. An example of 
the reconstruction results is presented in Figure A.3. Here, a flaw response simulation was run 
through the EBSD weld model with a flat flaw of about 80% through-wall depth and 19° tilt. The 
top panel shows a screenshot of the CIVA-reconstructed B-scan. Discontinuities and gaps are 
visible in the reconstruction. The bottom panel is the “True BScan (scanning/depth)” data 
reconstructed in Python assuming straight-line beam paths. The Python reconstruction is 
smooth and contiguous as would be seen in a field exam.  
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Figure A.3. Top: Screenshot of the CIVA-reconstructed B-scan. Bottom: B-Scan reconstructed 
using Python and straight-line beam paths. 

As an aside, it is interesting to note the degree of distortion that the weld model causes in the 
flaw response; Figure A.4 shows the response from the same flaw but with isotropic material as 
reconstructed in CIVA. The distinct corner and tip responses are absent when the weld model is 
used. 

 
Figure A.4. Flaw response through isotropic material. 
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A.2 Correcting for Wedge Delay 

When reconstructing B-scans outside of CIVA, it is important to understand that the starting 
timepoint of the simulation does not necessarily occur at the surface of the specimen. Instead, 
the initial timepoint of the simulation often occurs somewhere within the wedge; this can be 
thought of as a “wedge delay,” or a calculation of some portion of the sound path through the 
wedge. PNNL found that the duration of the wedge delay, or the number of data points 
calculated in the wedge, can vary from simulation to simulation, even with the same wedge and 
specimen parameters. Inconsistent delays can cause problems with the offline reconstruction. 
However, the delay can be set manually with a gate before execution of the simulation, but 
without a priori knowledge of where the simulation will begin, setting the gate is initially arbitrary. 
The delay duration is not recorded in the output files, so it must be determined manually. 
Therefore, when exporting the data to Python for reconstruction, there is no way to tell from the 
information in the data file where the outer surface of the specimen is in relation to the start of 
the data file. However, after the simulation is complete, CIVA gates can be used in 
postprocessing to eliminate the wedge delay and force the first data point to be at the surface of 
the specimen. The postprocessed data can then be exported for reconstruction. 

A.3 Region sequencing 

CIVA 2020 had a significant update to the method of region sequencing. The previous method, 
described in (Jacob et al. 2020), was slow to load geometries in CIVA and cumbersome to 
create geometry .xml files outside of CIVA. The new method is a major improvement that is 
more intuitive, much faster, and easier to implement in MATLAB. The new method employs “a 
lexicographic order on the bounding boxes of the faces.”1 The bounding box is the smallest 
possible square or rectangle drawn in the Cartesian frame that fully encompasses the shape. 
An example of a bounding box around an arbitrary shape is shown in Figure A.5. The minimum 
and maximum X and Y coordinates of the bounding box vertices are labeled. After all regions in 
the geometry are assigned bounding boxes, the regions are then sequenced using the vertices 
of the bounding boxes based on the following hierarchy:  

1. Minimum X value 
2. Maximum X value 
3. Minimum Y value 
4. Maximum Y value. 

 
1 E-mail received from EXTENDE, January 2020 
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Figure A.5. Example of a bounding box around an arbitrary shape. 

If two regions share identical bounding boxes, then the algorithm uses the iso-barycenter1: 
1. Minimum X value of iso-barycenter 
2. Minimum Y value of iso-barycenter. 

An example of when the iso-barycenters may have to be invoked is shown in Figure A.6. In this 
case, two right triangles that share a hypotenuse (i.e., a rectangle with a diagonal line through it) 
have the same bounding box but different iso-barycenters. 

 
Figure A.6. Example of when the iso-barycenter is used to distinguish regions with identical 

bounding boxes. 

 
1 The iso-barycenter is the centroid, or “center of gravity,” of a shape based on the endpoints of the line 
segments, with each endpoint given equal weight. 
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A.4 Euler Angles 

CIVA 2020 has new options for entering Euler angles. The user can now select “CIVA,” “ROE,” 
or “BUNGE” conventions. However, no matter what convention is entered, CIVA immediately 
calculates values in the “CIVA” convention and saves only those values. This is typically a non- 
issue, since the calculation is instantaneous and behind-the-scenes. However, when the user is 
generating a custom geometry with an .xml file outside of CIVA, then the angles in that .xml file 
must be of the “CIVA” convention. Bunge angles still need to be converted to the specimen 
reference frame when generating a custom .xml file prior to opening the file in CIVA.  

When working with Euler angles, it is critical to understand the frame of reference. The default 
CIVA reference frame is the reference frame of the specimen, and the CIVA Euler angles are 
calculated with respect to that frame. Bunge angles, on the other hand, are calculated with 
respect to the crystal orientation. Prior to editing Euler angles in custom .xml files, users must 
account for the different reference frames and make any necessary conversions. Furthermore, 
OnScale Solve uses a different reference frame, and the raw EBSD data that PNNL used to 
generate the weld model were in yet a different reference frame. Any operations that require 
interpreting Euler angles from one frame to another must use the correct Euler angle 
transformation. For example, verifying a model that was run in one software package by running 
it in another software package will require careful scrutiny of the Euler angle conversions to 
assure that the same Euler angles are actually being used in both cases. Appendix B is a 
technical description of relevant Euler angle conversions with a Python implementation. 

A.5 Custom Cracks 

It is possible to create custom flaws in CIVA using the CIVA CAD tool. PNNL has explored the 
“Branched” and “Multifaceted defect” options. A multifaceted flaw was created for the surface 
noise tests in Section 5.2.3. Users should understand how these flaw types are handled 
differently by CIVA 2020. A multifaceted flaw cannot be changed into a branched flaw simply by 
adding a branching line segment, since the flaw types are defined differently in CIVA. Branched 
flaws are defined by line segment lengths and branch angles, whereas multifaceted flaws are 
defined by segment endpoint coordinates. Multifaceted flaws are easily scaled in the CAD 
editor, but branched flaws are not. Rather, branched flaws must be scaled segment by segment. 
Some of the scaling issues came up for PNNL when they were testing flaw .xml files with 
computer-generated branched cracks that were defined by endpoints. 

Figure A.7 shows an example of a branched flaw definition. Each segment is defined by a 
length, an angle, and a parent segment. The flaw can be drawn in the CAD editor, as shown in 
the bottom of the figure. Note that every branched or multifaceted flaw must be accompanied by 
an extrusion segment, shown by the magenta line in the figure. The extrusion segment is used 
to define how the flaw is extruded in the third dimension. The flaws can also be rotated 
arbitrarily about the x, y, or z axes and placed anywhere within the specimen. For example, the 
flaw shown was drawn at an angle, but it could be placed vertically in a specimen model if 
desired. 
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Figure A.7. Example of the definition of a branched flaw. 

A.6 Low frequency tests in CIVA 

PNNL briefly investigated the relationship between flaw size and probe frequency in CIVA 
simulations. As explained in the CIVA user’s manual, CIVA uses a high-frequency 
approximation for crack or notch simulations; the approximation is valid when the defect size is 
approximately greater than the wavelength. Results confirmed that flaw response simulation 
results are not reliable for cases where the flaw size is smaller than the wavelength. This 
limitation is important and should be remembered for all simulated scenarios. For example, 
simulations of flaw responses in CASS materials using low-frequency probes (e.g., 500 kHz) are 
not recommended in CIVA. 
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Appendix B – Euler Angle Coordinate Transformations 
This appendix is a reproduction of an internal PNNL report authored by M. Hughes. It describes 
in detail the mathematical foundation of Euler angle transformations. It also contains 
descriptions of an implementation in Python. 
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Abstract

Given Euler angles, αi, βi, and γi, in an initial coordinate system, i, (e.g., Bunge, CIVA, OnScale), f ,
we with wish to find the geometrically equivalent the Euler angles, αf , βf , and γf in the final coordinate
frame.

There are at least twelve different conventions for defining the Euler angles. The conventions used
for αi, βi, γi may be different from those used for αi, βi, and γi. This must be accounted for also1.
Consequently, we must account for two different transformations when computing the final Euler angles
from the initial:

A transformation T from the initial to final coordinate system.

A transition from the initial Euler angle convention to the final convention.

This is accomplished in three steps.
First construct the Euler transformation matrix, Ei using the initial Euler angle conventions. This is

just a rotation matrix. The content of representation of rotations by Euler angles is that any rotation
in R3 can be factored into the product of three rotations each of which is defined in terms of one of the
Euler angles.

Second we use use the (invertible) matrices for transformations T (denoted now bt Ti,f to be more
specific) Ti,f : R3 → R3, between initial coordinate system (e.g., Bunge, CIVA, OnScale), and the
final coordinate system to transform to transform Ei from the initial coordinate system, i to the final
coordinate system f with the similarity transformation:

Ef = Ti,fEiT
−1
i,f . (1)

This transformation is derived in Fig. (1).
Third, we factor Ef into the product of three rotations, αf , βf , and γf corresponding the final Euler

angle convention. This factorization is not possible if the new configuration exhibits “gimbal lock” as
described below.

Execution of the third step to find αf , βf , and γf requires use of inverse trigonometric functions. As
a result the “factoring” step is ill-posed for two reasons:

The functions cos−1(θ) and sin−1(θ) lose accuracy as θ → ±1, and

These “functions” cos−1(θ) and sin−1(θ) are multi-valued.

The first problem is solved by replacing expressions based on cos−1(θ) and sin−1(θ) with tan−1(θ).
The second is solved by recognizing the values of αf , βf , and γf provided by these numerically stable
expressions actually only equal to within some unknown multiple ±π of the true answers. The ultimate
source of this ambiguity is the multi-valued nature of the inverse trigonometric functions combined with
the potential inversion of axes in different xyz coordinate systems. Only two different values for αf , βf ,
and γf need be considered, depending on the lower bound of the range of allowed valued (this choice is a
matter of convention and different software packages take different choices). Numerical studies indicate
that of the 8 different combinations only one is consistent with the Eq. (1) so the ambiguity may be
resolved.

All three steps have been implemented in a python module written to use the same variable names that
appear in this document. Additionally, the code is commented with references the equations appearing
below.

Program desriptions and test results are included at the conclusion of this report.

Figure 1: Transformation of a transformation under a invertible linear map T : R3 → R3.

1There are actually even more conventions to account for see,1 pg 477.
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1 Python Implemention

1.1 Function Definitions

The following functions are implemented in the Python module Euler to Euler.py:

MAIN CALLER ROUTINE:

Euler convert(input filename, output filename, conversion mode, verbose=False)
Parameters: input filename contains lines containing: (x, y, αi, βi, γi), while output filename contain lines (x, y, αf , βf , γf ),
conversion mode specifies the system conventions (Bunge, CIVA, OnScale) used for αi, βi, γi, and the sys-
tem conventions desired for αf , βf , γf . It must be one of six strings: ’Bunge to OnScale’, ’OnScale to Bunge’,
’Bunge to CIVA’, ’CIVA to Bunge’, ’CIVA to OnScale’, ’OnScale to CIVA’. If the verbose parameter is set to True,
the parameter is passed through to the conversion functions described below to trigger generation of debugging
output.
Outputs: The outfile specified by output filename containing lines lines (x, y, αf , βf , γf ).

DOUBLE CHECKING ROUTINES:

Check Bunge EA against OnScale EA (alpha B, beta B, gamma B,alpha O, beta O, gamma O)
Parameters: alpha B, beta B, gamma B are Euler angles specified in the Bunge system, while alpha O, beta O,
gamma O are (supposed to be) the geometrically equivalent Euler angles specified in the OnScale system. This
function uses alpha B, beta B, gamma B to compute the rotation matrix, E B defined in Eq. (23). Subsequently,
Eq. (26) is used to compute a rotation matrix: E O fromXformed E B: the transformation of E B from the Bunge
system to the OnScale system. This matrix is then compared with the rotation matrix E O, computed from alpha O,
beta O, gamma O via Eq. (24). They should be equal.
Outputs: The matrices E B,E O,E O fromXformed E B,status, where status is the boolean True if E O=E O fromXformed E B
and is the boolean False otherwise.

Check OnScale EA against Bunge EA (alpha O, beta O, gamma O,alpha B, beta B, gamma B)
Parameters: alpha O, beta O, gamma O are Euler angles specified in the OnScale system, while alpha B, beta B,
gamma B are (supposed to be) the geometrically equivalent Euler angles specified in the Bunuge system. This
function uses alpha O, beta O, gamma O to compute the rotation matrix, E O defined in Eq. (24). Subsequently,
Eq. (27) is used to compute a rotation matrix: E B fromXformed E O: the transformation of E O from the On-
Scacle system to the Bunge system. This matrix is then compared with the rotation matrix E B, computed from
alpha B, beta B, gamma B via Eq. (23). They should be equal.
Outputs: The matrices E O,E B,E B fromXformed E O,status, where status is the boolean True if E B=E B fromXformed E O
and is the boolean False otherwise.

Check Bunge EA against CIVA EA (alpha B, beta B, gamma B,alpha C, beta C, gamma C)
Parameters: alpha B, beta B, gamma B are Euler angles specified in the Bunge system, while alpha C, beta C,
gamma C are (supposed to be) the geometrically equivalent Euler angles specified in the CIVA system. This
function uses alpha B, beta B, gamma B to compute the rotation matrix, E B defined in Eq. (23). Subsequently,
Eq. (28) is used to compute a rotation matrix: E C fromXformed E B: the transformation of E B from the Bunge
system to the CIVA system. This matrix is then compared with the rotation matrix E C, computed from alpha C,
beta C, gamma C via Eq. (25). They should be equal.
Outputs: The matrices E B,E C,E C fromXformed E B,status, where status is the boolean True if E C=E C fromXformed E B
and is the boolean False otherwise.

Check CIVA EA against Bunge EA (alpha C, beta C, gamma C,alpha B, beta B, gamma B)
Parameters: alpha C, beta C, gamma C are Euler angles specified in the CIVA system, while alpha B, beta B,
gamma B are (supposed to be) the geometrically equivalent Euler angles specified in the Bunge system. This
function uses alpha C, beta C, gamma C to compute the rotation matrix, E C defined in Eq. (25). Subsequently,
Eq. (29) is used to compute a rotation matrix: E B fromXformed E C: the transformation of E C from the CIVA
system to the Bunge system. This matrix is then compared with the rotation matrix E B, computed from alpha B,
beta B, gamma B via Eq. (23). They should be equal.
Outputs: The matrices E C,E B,E B fromXformed E C,status, where status is the boolean True if E B=E B fromXformed E C
and is the boolean False otherwise.
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Check CIVA EA against OnScale EA (alpha C, beta C, gamma C,alpha O, beta O, gamma O)
Parameters: alpha C, beta C, gamma C are Euler angles specified in the CIVA system, while alpha O, beta O,
gamma O are (supposed to be) the geometrically equivalent Euler angles specified in the OnScale system. This
function uses alpha C, beta C, gamma C to compute the rotation matrix, E C defined in Eq. (25). Subsequently,
Eq. (30) is used to compute a rotation matrix: E O fromXformed E C: the transformation of E C from the CIVA
system to the OnScale system. This matrix is then compared with the rotation matrix E O, computed from alpha O,
beta O, gamma O via Eq. (24). They should be equal.
Outputs: The matrices E C,E O,E O fromXformed E C,status, where status is the boolean True if E O=E O fromXformed E C
and is the boolean False otherwise.

Check OnScale EA against CIVA EA (alpha O, beta O, gamma O,alpha C, beta C, gamma C)
Parameters: alpha O, beta O, gamma O are Euler angles specified in the OnScale system, while alpha C, beta C,
gamma C are (supposed to be) the geometrically equivalent Euler angles specified in the CIVA system. This func-
tion uses alpha O, beta O, gamma O to compute the rotation matrix, E O defined in Eq. (24). Subsequently,
Eq. (31) is used to compute a rotation matrix: E C fromXformed E O: the transformation of E O from the OnScale
system to the CIVA system. This matrix is then compared with the rotation matrix E C, computed from alpha C,
beta C, gamma C via Eq. (25). They should be equal.
Outputs: The matrices E O,E C,E C fromXformed E O,status, where status is the boolean True if E C=E C fromXformed E O
and is the boolean False otherwise.

EULER ANGLE CONVERSION ROUTINES:

Bunge to OnScale(alpha in deg, beta in deg, gamma in deg, verbose=False)
Based on Eqs. (36), (37), (38), and (34), and regularized by Eqs. (32) and (34).

Parameters: alpha in deg, beta in deg, gamma in deg are the Euler angles in the Bunge System
verbose, if set to True, Bunge to OnScale prints debugging output
Outputs: alpha out deg, beta out deg, gamma out deg are the geometrically equivalent Euler angles in the On-
Scale system.

OnScale to Bunge(alpha in deg, beta in deg, gamma in deg, verbose=False)
Based on Eqs. (46), (47), (48), and (44), and regularized by Eqs. (43) and (44).

Parameters: alpha in deg, beta in deg, gamma in deg are the Euler angles in the OnScale System
verbose, if set to True, OnScale to Bunge prints debugging output
Outputs: alpha out deg, beta out deg, gamma out deg are the geometrically equivalent Euler angles in the
Bunge system.

Bunge to CIVA(alpha in deg, beta in deg, gamma in deg, verbose=False)
Based on Eqs. (56), (57), (58), and (54), and regularized by Eqs. (53) and (54).

Parameters: alpha in deg, beta in deg, gamma in deg are the Euler angles in the Bunge System
verbose, if set to True, Bunge to CIVA prints debugging output
Outputs: alpha out deg, beta out deg, gamma out deg are the geometrically equivalent Euler angles in the CIVA
system.

CIVA to Bunge(alpha in deg, beta in deg, gamma in deg, verbose=False)
Based on Eqs. (66), (67), (68), and (64), and regularized by Eqs. (63) and (64).

Parameters: alpha in deg, beta in deg, gamma in deg are the Euler angles in the CIVA System
verbose, if set to True, CIVA to Bunge prints debugging output
Outputs: alpha out deg, beta out deg, gamma out deg are the geometrically equivalent Euler angles in the
Bunge system.

CIVA to OnScale(alpha in deg, beta in deg, gamma in deg, verbose=False)
Based on Eqs. (76), (77), (78), and (74), and regularized by Eqs. (73) and (74).

Parameters: alpha in deg, beta in deg, gamma in deg are the Euler angles in the CIVA System
verbose, if set to True, CIVA to OnScale prints debugging output
Outputs: alpha out deg, beta out deg, gamma out deg are the geometrically equivalent Euler angles in the On-
Scale system.

OnScale to CIVA(alpha in deg, beta in deg, gamma in deg, verbose=False)
Based on Eqs. (86), (87), (88), and (84), and regularized by Eqs. (83) and (84).

Parameters: alpha in deg, beta in deg, gamma in deg are the Euler angles in the InScale System
verbose, if set to True, OnScale to CIVA prints debugging output
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Outputs: alpha out deg, beta out deg, gamma out deg are the geometrically equivalent Euler angles in the CIVA
system.

“Regularize” means setting the values of k,m, n) appearing in the equations cited above.
If “gimbal lock” does occur, i.e., conversion is not possible, then these functions return a numpy array

[0, 0, 0]. Otherwise the a numpy array containing the Euler angles in the new system is returned: [alpha f,
beta f, gamma f]. All angles are measured in degrees.

1.2 Software Testing

As mentioned above, conversion of Euler angles αi, βi, and γi from one system followed by a conversion of
the resulting angles, αf , βf , and γf , back to the original system should produce Euler angles α′i, β

′
i, and γ′i

that produce the same rotation matrix as do the angles αi, βi, and γi.
We have tested all of the python functions written above over more than one million randomly chosen

sets of Euler angles, to a precision of individual marix elements of 10−8 to detect unaccounted for edge cases.
No deviations were observed in any of the tests
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2 Introduction

Euler angles α, β and γ may be used to define rotations in three-dimensional space. For example, the
coordinate axes may be rotated to successively produce the sequence of new axes: xyz → x′y′z′ → x′′, y′′, z′′

where

α represents a rotation around the z axis,

β represents a rotation around the x′ axis,

γ represents a rotation around the z′′ axis.

The range of values taken by α, β and γ in different software packages may vary, where α, γ ∈ [A,A + 2π],
and β ∈ [B,B + π], with A,B being positive or negative constants.

The range conventions applicable to the Bunge, CIVA, and OnScale systems are not clearly docu-
mented. We have written the python Euler angle transformation Python code to return angles between
[−π, π]. Ambiguities introduced by the unavoidable use of inverse trigonometric are sesolved using internal
mathematical consitency requirements specified by Eqs. (32), (43), (53), (63), (73), and (83) as described
below.

There are many different conventions concerning the application of Euler angles. Consequently, any
discussion must be proceeded by a complete specification of the choices that have been made. To indicate the
range of possibilties we begin with a description of Euler angles taken from the Wikipedia page (URL: https:
//en.wikipedia.org/wiki/Euler_angles) since this seems to be one of the clearest available (however, see
also1 and §4.4.1 “The active interpretation and the active transformation” on p. 74 in “Robots and screw
theory: applications of kinematics and statics to robotics”2):

Euler angles can be defined by elemental geometry or by composition of rotations. The geometrical def-
inition demonstrates that three composed elemental rotations (rotations about the axes of a coordinate
system) are always sufficient to reach any target frame.

The three elemental rotations may be extrinsic (rotations about the axes xyz of the original coordinate
system, which is assumed to remain motionless), or intrinsic (rotations about the axes of the rotating co-
ordinate system XYZ, solidary with the moving body, which changes its orientation after each elemental
rotation).

Euler angles are typically denoted as α, β, γ, or ψ, θ, φ. Different authors may use different sets of
rotation axes to define Euler angles, or different names for the same angles. Therefore, any discussion
employing Euler angles should always be preceded by their definition.

Without considering the possibility of using two different conventions for the definition of the rotation
axes (intrinsic or extrinsic), there exists twelve possible sequences of rotation axes, divided in two groups:

Proper Euler angles (z − x− z, x− y − x, y − z − y, z − y − z, x− z − x, y − x− y)

Tait–Bryan angles (x− y − z, y − z − x, z − x− y, x− z − y, z − y − x, y − x− z).

Tait–Bryan angles are also called Cardan angles; nautical angles; heading, elevation, and bank; or yaw,
pitch, and roll. Sometimes, both kinds of sequences are called “Euler angles”. In that case, the sequences
of the first group are called proper or classic Euler angles.

We see that extrinsic transformations are the result of transforming the vectors in the vector space R3,
whereas intrinsic transformations are accomplished by transforming the basis vectors of R3. The terms
“extrinsic” and “intrinsic” are thus examples of “active” and “passive” mathematical transformations re-
spectively. The “extrinsic” vs. “intrinsic” terminilogy adds additional physical context to the mathematical
terms and we will use it in the naming of variables and functions defined to compute the Euler angle trans-
formations. However, to write these functions we must actually understand the mathematical terms and we
next give their explicit statement.

A linear transformation, Aa : R2 → R3 is called active (hence the subscript “a”) if it entails the
calculation of (x′1, x

′
2, x
′
3) = ~x′ such that

~x′ = Aa~x. (2)
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A linear transformation, Ap : R2 → R3, is called passive (hence the subscript “p”) if it entails calculation

of (X ′1, X
′
2, X

′
3) = ~X ′ such that

~X =X ′1Ap~e1 +X ′2Ap~e2 +X ′3Ap~e3 (3)

=Ap (X ′1~e1 +X ′2~e2 +X ′3~e3) (4)

=Ap
~X ′, (5)

or
~X ′ = A−1p

~X. (6)

Returning to software documentation, we will follow the conventions set forth in the Wikipedia Euler
angle page: extrinsic transformations (=“active”) are executed in coordinate frames denoted using small
letters x, y, z. On the other hand, intrinsic (=“passive”) transformations are executed in coordinate frames
denoted using capitol letters X,Y,Z

Calculation of (X ′1, X
′
2, X

′
3) = ~X ′ is equivalent to solving

A−1i
~X = ~X ′. (7)

From these definitions we see that extrinsic rotations are executed using active transformations and
intrinsic rotations are executed using passive transformations.

Finally, Euler angles, α, β and γ, suffer from the well-known limitation of “gimbal locking”, To quote the
Wikipedia page one last time:

The Euler angles α, β and γ are uniquely determined except for the singular case that the xy and
the XY planes are identical, i.e. when the z-axis and the Z-axis have the same or opposite directions.
Indeed, if the z-axis and the Z-axis are the same, β = 0 and only the (α + γ) is uniquely defined (not
the individual values), and, similarly, if the z-axis and the Z-axis are opposite, β = π and only (α− γ) is
uniquely defined (not the individual values). These ambiguities are known as gimbal lock in applications.

3 Preliminary Transforms

3.1 Coordinate Transforms

We are interested in transformations of Euler angles between three different systems: Bunge, CIVA, and
OnScale. The term “system” encompasses both the choice of coordinate axes and the sequence of rotations
employed. These transformations are accomplished using, Ti,f : R3 → R3 described above. For the three
coordinate systems that we wish to transform “from” an “to”, Ti,f is one of:

TB,C : Bunge←→ CIVA, (8)

TB,O : Bunge←→ OnScale, (9)

TC,O : CIVA←→ OnScale. (10)

These have matrix representations,

TB,C =

−1 0 0
0 0 1
0 1 0

 , (11)

TB,O =

−1 0 0
0 −1 0
0 0 1

 , (12)

TC,O =

1 0 0
0 0 −1
0 −1 0

 . (13)
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Interestingly

TB,C = T−1B,C = TC,B , (14)

TB,O = T−1B,O = TO,B , (15)

TC,O = T−1C,O = TO,C , (16)

so these TB,C , TB,O, TC,O are the only matrices we need to facililtate transformations between the coordinate
systems that interest us.

3.2 Euler Matrices

Next we specify the rotation matices that embody the Euler angle conventions adopted by each of the three
systems: Bunge, CIVA, and OnScale. These are constructed by composing the following matrices (which
represent rotations about the single axis indicated by the subscript) for active transformations

Rx,a(θ) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 , (17)

Ry,a(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 , (18)

Rz,a(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (19)

For passive transformations we use the inverses of these matrices as indicated by Eq.(6). It turns out that
for each of the matrices above the inverse is the transpose. Here is the list

Rx,p(θ) =

1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 , (20)

Ry,p(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 , (21)

Rz,p(θ) =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 . (22)

Now we may list the relevant Euler rotation matrices for each of the three systems we must consider.
They are

Rz,p(α)Rx,p(β)Rz,p(γ) = EBunge(α, β, γ) =− cos (β) sin (α) sin (γ) + cos (α) cos (γ) cos (β) cos (γ) sin (α) + cos (α) sin (γ) sin (α) sin (β)
− cos (α) cos (β) sin (γ)− cos (γ) sin (α) cos (α) cos (β) cos (γ)− sin (α) sin (γ) cos (α) sin (β)

sin (β) sin (γ) − cos (γ) sin (β) cos (β)

 , (23)

Rx,a(α)Ry,a(β)Rz,a(γ) = EOnScale(α, β, γ) = cos (β) cos (γ) − cos (β) sin (γ) sin (β)
cos (γ) sin (α) sin (β) + cos (α) sin (γ) − sin (α) sin (β) sin (γ) + cos (α) cos (γ) − cos (β) sin (α)
− cos (α) cos (γ) sin (β) + sin (α) sin (γ) cos (α) sin (β) sin (γ) + cos (γ) sin (α) cos (α) cos (β)


(24)
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Rz,a(α)Ry,a(β)Rx,a(γ) = ECIVA(α, β, γ) = cos (α) cos (β) cos (α) sin (β) sin (γ) + cos (γ) sin (α) − cos (α) cos (γ) sin (β) + sin (α) sin (γ)

− cos (β) sin (α) − sin (α) sin (β) sin (γ) + cos (α) cos (γ) cos (γ) sin (α) sin (β) + cos (α) sin (γ)
sin (β) − cos (β) sin (γ) cos (β) cos (γ)

 ,
(25)

4 Specific Transforms

From these we may enumerate the set of equations we must solve to transform from one system (i.e.,coordinate
system and Euler angle conventions) to another. They are

EOnScale(αf , βf , γf ) =TB,OEBunge(αi, βi, γi)T
−1
B,O, (26)

EBunge(αf , βf , γf ) =TO,BEOnScale(αi, βi, γi)T
−1
O,B , (27)

ECiva(αf , βf , γf ) =TB,CEBunge(αi, βi, γi)T
−1
B,C , (28)

EBunge(αf , βf , γf ) =TC,BECiva(αi, βi, γi)T
−1
C,B , (29)

EOnScale(αf , βf , γf ) =TC,OECIVA(αi, βi, γi)T
−1
C,O, (30)

ECIVA(αf , βf , γf ) =TO,CEOnScale(αi, βi, γi)T
−1
O,C , (31)

4.1 Bunge to OnScale Conversion

We rewrite Eq. (26) as an explicit matrix equation to obtain (using SageMath)

TB,OEBunge(αi, βi, γi)T
−1
B,O =− cos (βi) sin (αi) sin (γi) + cos (αi) cos (γi) cos (βi) cos (γi) sin (αi) + cos (αi) sin (γi) − sin (αi) sin (βi)

− cos (αi) cos (βi) sin (γi)− cos (γi) sin (αi) cos (αi) cos (βi) cos (γi)− sin (αi) sin (γi) − cos (αi) sin (βi)
− sin (βi) sin (γi) cos (γi) sin (βi) cos (βi)


= cos (βf ) cos (γf ) − cos (βf ) sin (γf ) sin (βf )

cos (γf ) sin (αf ) sin (βf ) + cos (αf ) sin (γf ) − sin (αf ) sin (βf ) sin (γf ) + cos (αf ) cos (γf ) − cos (βf ) sin (αf )
− cos (αf ) cos (γf ) sin (βf ) + sin (αf ) sin (γf ) cos (αf ) sin (βf ) sin (γf ) + cos (γf ) sin (αf ) cos (αf ) cos (βf )

 .
(32)

To simplify subsequent discussion, and to expedite accurate software implementation, we rewrite the first
matrix in this equation in the more compact form (these variables appear in the Python implementation)

F ≡

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 , (33)

so that Eq. (32) becomesa1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

 cos (βf ) cos (γf ) − cos (βf ) sin (γf ) sin (βf )
cos (γf ) sin (αf ) sin (βf ) + cos (αf ) sin (γf ) − sin (αf ) sin (βf ) sin (γf ) + cos (αf ) cos (γf ) − cos (βf ) sin (αf )
− cos (αf ) cos (γf ) sin (βf ) + sin (αf ) sin (γf ) cos (αf ) sin (βf ) sin (γf ) + cos (γf ) sin (αf ) cos (αf ) cos (βf )

 .
(34)

Equation (34) enables us to “factor” the final matrix into the product of three rotations and thus recover
the final Euler angles, αf , βf , and γf . In practice, this amounts to no more than picking off suitable
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components of the matrix and solving for the final angles using that fact that αi, βi, and γi are known. Here
are the equations displayed in the order in which they should be solved. They were obtained by equating the
(1, 3), (2, 3) and (1, 2) elements of the matrices in the preceeding equation,

βf = sin−1 (a1,3) ,

αf = sin−1
(

a2,3
cos(βf )

)
,

γf = sin−1
(

a1,2
− cos(βf )

)
, (35)

where the angles αi, βi, γi are specified in the Bunge system and αf , βf , γf are the geometrically equivalent
Euler angles for the OnScale system2.

While these are definitely obvious equations, they are numerically unstable since they require evaluation
of sin−1. The use of this function for computation of αf , βf , γf should be avoided as it is not even possible
to perform a “back-and-forth” test 3 without accuracy loss approaching 20% in some cases. This is due to
the fact that the derivative of sin−1 is infinite near ±1. We will however, write similar equations for all of
the system conversions we derive, since they illustrate the limits imposed by “gimbal lock”.

Alterntive expressions based on tan−1 are more accurate, as we might expect, since its derivative is finite
everywhere. Taking that approach we divide the (2, 3) by the (3, 3) elements appearing in Eq ((32)) we
obtain

αf = − tan−1
(
a2,3
a3,3

)
± kπ, k = 0, 1, . . . . (36)

If we divide the (1, 2) element by by the (1, 1) element we obtain

γf = − tan−1
(
a1,2
a1,1

)
± nπ, n = 0, 1, . . . . (37)

Finally, we observe that ±
√
a21,1 + a21,2 = cos(βf ) so that

βf = ± tan−1

 a1,3√
a21,1 + a21,2

.

±mπ, m = 0, 1, . . . . (38)

where the + or − sign is chosen so that {
βf > 0 if a1,3 > 0,

βf < 0 if a1,3 < 0,
(39)

We need consider only two choices each of k, n,m due to the periodicity of the function tan(θ). Our Python
implementation considers k, n,m = ±1, other conventons are also possible and the software could be gener-
alized to account for this. Determination of the correct valules of k, n,m is determined in the Python im-
plementation of Eqs.(36) through (37) by enumerating all 23 posibilities and testing which satisfy Eq. (34)).
At most twwo solutions may be valild although extensive testing indicates that only one valid solution is the
typical outcome. If two valid solutions are found, the conversion software stores the first in the converted
Euler angles file produced by the Python implementaion. The second solution is, however, equally valid since
it produces the same rotation matrix, which is the only way in which Euler angles enter physical modelling
calculations.

If βf = nπ/2 where n is an integer we cannot employ Eqs (35). However, in this case Eqs (34) simplifies

2by geometric equivalence we mean that any vector is rotated to the same vector regardless of which system is used to
perform the calculations.

3e.g., conversion of test coordinates αi, βi, and γi, from CIVA to OnScale and the back to CIVA should result in the
same rotation matrix. However, the angles need not return back to the same values. This depends on the conventions chosem
to define the each system system
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toa1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

 0 0 (−1)n

(−1)n cos (γf ) sin (αf ) + cos (αf ) sin (γf ) (−1)n+1 sin (αf ) sin (γf ) + cos (αf ) cos (γf ) 0
(−1)n+1 cos (αf ) cos (γf ) + sin (αf ) sin (γf ) (−1)n cos (αf ) sin (γf ) + cos (γf ) sin (αf ) 0

 . (40)

If n is even, the last matrix in Eq. (40) becomes

L ≡

 0 0 1
cos (γf ) sin (αf ) + cos (αf ) sin (γf ) − sin (αf ) sin (γf ) + cos (αf ) cos (γf ) 0
− cos (αf ) cos (γf ) + sin (αf ) sin (γf ) cos (αf ) sin (γf ) + cos (γf ) sin (αf ) 0

 ,
=

 0 0 1
sin (γf + αf ) cos (γf + αf ) 0
− cos (γf + αf ) sin (γf + αf ) 0

 . (41)

Equations (40) and (41) may be combined to obtaina1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

 0 0 1
sin (γf + αf ) cos (γf + αf ) 0
− cos (γf + αf ) sin (γf + αf ) 0

 , (42)

from which we may extract only equations that enable computation of αf + γf , which we recognize as a
manifestation of “gimbal lock”. Consequently, we cannot perform the conversion in this case.

Similarly if n is odd, inspection of Eq. (40) shows that L→ −L and, in this case also, we may only solve
for αf + γf . Consequently, we cannot perform the conversion in this case either.

4.2 OnScale to Bunge Conversion

We next rewrite Eq. (27) as an explicit matrix equation to obtain (using SageMath)

TO,BEOnScale(αi, βi, γi)T
−1
O,B = cos (βi) cos (γi) − cos (βi) sin (γi) − sin (βi)

cos (γi) sin (αi) sin (βi) + cos (αi) sin (γi) − sin (αi) sin (βi) sin (γi) + cos (αi) cos (γi) cos (βi) sin (αi)
cos (αi) cos (γi) sin (βi)− sin (αi) sin (γi) − cos (αi) sin (βi) sin (γi)− cos (γi) sin (αi) cos (αi) cos (βi)


=− cos (βf ) sin (αf ) sin (γf ) + cos (αf ) cos (γf ) cos (βf ) cos (γf ) sin (αf ) + cos (αf ) sin (γf ) sin (αf ) sin (βf )
− cos (αf ) cos (βf ) sin (γf )− cos (γf ) sin (αf ) cos (αf ) cos (βf ) cos (γf )− sin (αf ) sin (γf ) cos (αf ) sin (βf )

sin (βf ) sin (γf ) − cos (γf ) sin (βf ) cos (βf )

 .
(43)

As was done in Eq. (33), we replace the first matrix with the compact form representing its elements by
ai,j , i, j = 1, 2, 3 in order to simplify subsequent discussion, and to expedite accurate software implementation,
we rewrite the first matrix in this equation in the more compact forma1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

− cos (βf ) sin (αf ) sin (γf ) + cos (αf ) cos (γf ) cos (βf ) cos (γf ) sin (αf ) + cos (αf ) sin (γf ) sin (αf ) sin (βf )
− cos (αf ) cos (βf ) sin (γf )− cos (γf ) sin (αf ) cos (αf ) cos (βf ) cos (γf )− sin (αf ) sin (γf ) cos (αf ) sin (βf )

sin (βf ) sin (γf ) − cos (γf ) sin (βf ) cos (βf )

 .
(44)
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Equation (43) enables us to “factor” the final matrix into the product of three rotations and thus recover

the final Euler angles, αf , βf , and γf . In practice, this amounts to no more than picking off suitable
components of the matrix and solving for the final angles using that fact that αi, βi, and γi are known. The
following equations (displayed in the order in which they should be solved) were obtained by equating the
(3, 3), (2, 3) and (3, 2) elements of the matrices in the preceeding equation,

βf = cos−1 (cos(αi) cos(βi)) ,

αf = cos−1
(

sin(αi) cos(βi)

sin(βf )

)
,

γf = cos−1
(

sin (βi) sin (γi) cos (αi) + sin (αi) cos (γi)

sin(βf )

)
, (45)

where the angles αi, βi, γi are specified in the Bunge system and αf , βf , γf are the geometrically equivalent
Euler angles for the OnScale system. As discussed in §4.1 these equations are numerically inaccurate but
they facilitate clear discussions of restrictions on intersystem conversion that are imposed by “gimbal lock”.

A numerically stable equation for αf is obtained by dividing the (1, 3) element by the (2, 3), while to
obtain γf we divide the (3, 1) element by the (3, 2) element to obtain

αf = tan−1
(
a1,3
a2,3

)
± kπ, k = 0, 1, . . . . (46)

γf =− tan−1
(
a3,1
a3,2

)
± nπ, n = 0, 1, . . . . (47)

Finally, we observe that ±
√
a23,1 + a23,2 = sin(βf ) so that

βf = ± tan−1


√
a23,1 + a23,2

a3,3

±mπ, m = 0, 1, . . . , (48)

where the + or − sign is chosen so that{
βf > 0 if a3,1/ sin(γf ) > 0,

βf < 0 if a3,1/ sin(γf ) < 0.
(49)

Since sgn(a3,1)/ sin(γf )) = sgn(a3,1 sin(γf )) we use the latter in Python implementations of Eq. (89) to avoid
difficulties that might arise if sin(γf ) = 0. Finally, as discussed in §4.1 need consider only two choices for
each of the k, n,m due to the periodicity of the function tan(θ). Our Python implementation considers
k, n,m = ±1, other conventons are also possible and the software could be generalized to account for this.
Determination of the correct valules of k, n,m is determined in the Python implementation of Eqs.(46)
through (47) by enumerating all 23 posibilities and testing which satisfy Eq. (44). The functions are written to
return the last valid enumeration along with the total number of enumerations satisfying Eq. (44). Extensive
numerical testing indicates that there is always only on valid enumeration. We have, therefore, not attempted
to prove uniqueness.

Similar to the preceeding case, if βf = nπ where n is an integer we cannot employ Eqs (45). However, in
this case Eqs (44) simplifies toa1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

(−1)n+1 sin (αf ) sin (γf ) + cos (αf ) cos (γf ) (−1)n cos (γf ) sin (αf ) + cos (αf ) sin (γf ) 0
(−1)n+1 cos (αf ) sin (γf )− cos (γf ) sin (αf ) (−1)n cos (αf ) cos (γf )− sin (αf ) sin (γf ) 0

0 0 (−1)n

 (50)

12Appendix B B.13



D
ra

ft@
05

/0
8/

21
If n is even, the last matrix in Eq. (50) becomes

L ≡

− sin (αf ) sin (γf ) + cos (αf ) cos (γf ) cos (γf ) sin (αf ) + cos (αf ) sin (γf ) 0
− cos (αf ) sin (γf )− cos (γf ) sin (αf ) cos (αf ) cos (γf )− sin (αf ) sin (γf ) 0

0 0 1

 ,
=

 cos(αf + γf ) sin(αf + γf ) 0
− sin(αf + γf ) − cos(αf + γf ) 0

0 0 1

 , (51)

So that (50) becomes a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

 cos(αf + γf ) sin(αf + γf ) 0
− sin(αf + γf ) − cos(αf + γf ) 0

0 0 1

 , (52)

from which we may extract only equations that enable computation of αf + γf , which we recognize as a
manifestation of “gimbal lock”. Consequently, we cannot perform the conversion in this case.

Similarly if n is odd, inspection of Eq. (50) shows that L→ −L and, in this case also, we may only solve
for αf + γf . Consequently, we cannot perform the conversion in this case either.

4.3 Bunge to CIVA Conversion

We next rewrite Eq. (28) as an explicit matrix equation to obtain (using SageMath)

TB,CEBunge(αi, βi, γi)T
−1
B,C =− cos (βi) sin (αi) sin (γi) + cos (αi) cos (γi) sin (αi) sin (βi) − cos (βi) cos (γi) sin (αi)− cos (αi) sin (γi)

sin (βi) sin (γi) cos (βi) cos (γi) sin (βi)
cos (αi) cos (βi) sin (γi) + cos (γi) sin (αi) − cos (αi) sin (βi) cos (αi) cos (βi) cos (γi)− sin (αi) sin (γi)


= cos (αf ) cos (βf ) cos (αf ) sin (βf ) sin (γf ) + cos (γf ) sin (αf ) − cos (αf ) cos (γf ) sin (βf ) + sin (αf ) sin (γf )
− cos (βf ) sin (αf ) − sin (αf ) sin (βf ) sin (γf ) + cos (αf ) cos (γf ) cos (γf ) sin (αf ) sin (βf ) + cos (αf ) sin (γf )

sin (βf ) − cos (βf ) sin (γf ) cos (βf ) cos (γf )

 .
(53)

As was done in Eq. (33), we replace the first matrix with the compact form representing its elements by
ai,j , i, j = 1, 2, 3 in order to simplify subsequent discussion, and to expedite accurate software implementation,
we rewrite the first matrix in this equation in the more compact forma1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

 cos (αf ) cos (βf ) cos (αf ) sin (βf ) sin (γf ) + cos (γf ) sin (αf ) − cos (αf ) cos (γf ) sin (βf ) + sin (αf ) sin (γf )
− cos (βf ) sin (αf ) − sin (αf ) sin (βf ) sin (γf ) + cos (αf ) cos (γf ) cos (γf ) sin (αf ) sin (βf ) + cos (αf ) sin (γf )

sin (βf ) − cos (βf ) sin (γf ) cos (βf ) cos (γf )

 .
(54)

Equation (53) enables us to “factor” the final matrix into the product of three rotations and thus recover
the final Euler angles, αf , βf , and γf . In practice, this amounts to no more than picking off suitable
components of the matrix and solving for the final angles using that fact that αi, βi, and γi are known. Here
are one set of possible equations displayed in the order in which they should be solved. They were obtained
by equating the (3, 1), (3, 2) and (2, 1) elements of the matrices in the preceeding equation,

βf = sin−1 (cos (αi) cos (βi) sin (γi) + sin (αi) cos (γi)) ,

γf = sin−1
(

cos (αi) sin (βi)

cos(βf )

)
,

αf = sin−1
(
− sin(βi) sin(γi)

cos(βf )

)
, (55)
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where the angles αi, βi, γi are specified in the Bunge system and αf , βf , γf are the geometrically equivalent
Euler angles for the OnScale system.

As mentioned in the two preceeding sections these equations are relatively inaccurate; we state them to
facilitae clear discussion of the limitations of intersystem conversion imposed by “gimbal lock”.

More accurate expressions based on tan−1 may be obtained using other elements of the arrays appearing
in Eq. (54). For example, if we divide the (2, 1) by the (1, 1) elements we obtain

αf = − tan−1
(
a2,1
a1,1

)
± kπ, k = 0, 1, . . . . (56)

Similarly dividing the (3, 2) by the (3, 3) elements leads to

γf = − tan−1
(
a3,2
a3,3

)
±mπ, m = 0, 1, . . . . (57)

Finally, since
√
a23,2 + a23,3 = cos(βf )

βf = ± tan−1

 a3,1√
a23,2 + a23,3

±mπ, m = 0, 1, . . . (58)

where the + or − sign is chosen so that {
βf > 0 if a3,1 > 0,

βf < 0 if a3,1 < 0.
(59)

Similar to the other cases, if βf = nπ/2 where n is an integer we cannot employ Eqs (55). However, in
this case Eq. (54) simplies toa1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

 0 (−1)n cos (αf ) sin (γf ) + cos (γf ) sin (αf ) (−1)n+1 cos (αf ) cos (γf ) + sin (αf ) sin (γf )
0 (−1)n+1 sin (αf ) sin (γf ) + cos (αf ) cos (γf ) (−1)n cos (γf ) sin (αf ) + cos (αf ) sin (γf )

(−1)n 0 0

 . (60)

If n is even, the last matrix in Eq. (60) may be simplified to

L ≡

0 cos (αf ) sin (γf ) + cos (γf ) sin (αf ) − cos (αf ) cos (γf ) + sin (αf ) sin (γf )
0 − sin (αf ) sin (γf ) + cos (αf ) cos (γf ) cos (γf ) sin (αf ) + cos (αf ) sin (γf )
1 0 0

 ,
=

0 sin(αf + γf ) − cos(αf + γf )
0 cos(αf + γf ) sin(αf + γf )
1 0 0

 , (61)

so that Eq. (61) becomesa1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

0 sin(αf + γf ) − cos(αf + γf )
0 cos(αf + γf ) sin(αf + γf )
1 0 0

 , (62)

from which we may extract only equations that enable computation of αf + γf , which we recognize as a
manifestation of “gimbal lock”. Consequently, we cannot perform the conversion in this case.

Similarly if n is odd, inspection of Eq. (60) shows that L→ −L and, in this case also, we may only solve
for αf + γf . Consequently, we cannot perform the conversion in this case either.
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4.4 CIVA to Bunge Conversion

We next rewrite Eq. (29) as an explicit matrix equation to obtain (using SageMath)

TC,BECIVA(αi, βi, γi)T
−1
C,B = cos (αi) cos (βi) cos (αi) cos (γi) sin (βi)− sin (αi) sin (γi) cos (αi) sin (βi) sin (γi) + cos (γi) sin (αi)

− sin (βi) cos (βi) cos (γi) cos (βi) sin (γi)
− cos (βi) sin (αi) − cos (γi) sin (αi) sin (βi)− cos (αi) sin (γi) − sin (αi) sin (βi) sin (γi) + cos (αi) cos (γi)


=− cos (βf ) sin (αf ) sin (γf ) + cos (αf ) cos (γf ) cos (βf ) cos (γf ) sin (αf ) + cos (αf ) sin (γf ) sin (αf ) sin (βf )
− cos (αf ) cos (βf ) sin (γf )− cos (γf ) sin (αf ) cos (αf ) cos (βf ) cos (γf )− sin (αf ) sin (γf ) cos (αf ) sin (βf )

sin (βf ) sin (γf ) − cos (γf ) sin (βf ) cos (βf )

 .
(63)

As was done in Eq. (33), we replace the first matrix with the compact form representing its elements by
ai,j , i, j = 1, 2, 3 in order to simplify subsequent discussion, and to expedite accurate software implementation,
we rewrite the first matrix in this equation in the more compact forma1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

− cos (βf ) sin (αf ) sin (γf ) + cos (αf ) cos (γf ) cos (βf ) cos (γf ) sin (αf ) + cos (αf ) sin (γf ) sin (αf ) sin (βf )
− cos (αf ) cos (βf ) sin (γf )− cos (γf ) sin (αf ) cos (αf ) cos (βf ) cos (γf )− sin (αf ) sin (γf ) cos (αf ) sin (βf )

sin (βf ) sin (γf ) − cos (γf ) sin (βf ) cos (βf )

 .
(64)

Equation (63) enables us to “factor” the final matrix into the product of three rotations and thus recover
the final Euler angles, αf , βf , and γf . In practice, this amounts to no more than picking off suitable
components of the matrix and solving for the final angles using that fact that αi, βi, and γi are known. Here
are the equations displayed in the order in which they should be solved. They were obtained by equating the
(3, 3), (3, 2) and (2, 3) elements of the matrices in the preceeding equation,

βf = cos−1 (− sin (αi) sin (βi) sin (γi) + cos (αi) cos (γi)) ,

γf = cos−1
(

cos (γi) sin (αi) sin (βi) + cos (αi) sin (γi)

sin(βf )

)
,

αf = cos−1
(

cos (βi) sin (γi)

sin(βf )

)
, (65)

where the angles αi, βi, γi are specified in the Bunge system and αf , βf , γf are the geometrically equivalent
Euler angles for the OnScale system.

As mentioned in the two preceeding sections these equations are relatively inaccurate; we state them to
facilitae clear discussion of the limitations of intersystem conversion imposed by “gimbal lock”.

More accurate expressions based on tan−1 may be obtained using other elements of the arrays appearing
in Eq. (64). For example, if we divide the (1, 3) by the (2, 3) elements we obtain

αf = tan−1
(
a1,3
a2,3

)
± kπ, k = 0, 1, . . . . (66)

Similarly, if we divide the (3, 1) by the (3, 2) elements we obtain

γf = − tan−1
(
a3,1
a3,2

)
± nπ, n = 0, 1, . . . . (67)

Finally, since
√
a23,1 + a23,2 = sin(βf )

βf = tan−1


√
a23,1 + a23,2

a3,3

±mπ, m = 0, 1, . . . . (68)
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where the + or − sign is chosen so that{

βf > 0 if a3,1/ sin(γf ) > 0,

βf < 0 if a3,1/ sin(γf ) < 0.
(69)

Since sgn(a3,1/ sin(γf )) = sgn(a3,1 sin(γf )) we use the latter in Python implementations of Eq. (89) to avoid
difficulties that might arise if sin(γf ) = 0.

Similar to the OnScale-to-Bunge case, if βf = nπ where n is an integer we cannot employ Eqs (65).
However, in this case Eq. (64) simplies toa1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


=(−1)n+1 sin (αf ) sin (γf ) + cos (αf ) cos (γf ) (−1)n cos (γf ) sin (αf ) + cos (αf ) sin (γf ) 0
(−1)n+1 cos (αf ) sin (γf )− cos (γf ) sin (αf ) (−1)n cos (αf ) cos (γf )− sin (αf ) sin (γf ) 0

0 0 (−1)n

 . (70)

If n is even, the last matrix in Eq. (70) becomes

L ≡

− sin (αf ) sin (γf ) + cos (αf ) cos (γf ) − cos (γf ) sin (αf ) + cos (αf ) sin (γf ) 0
− cos (αf ) sin (γf )− cos (γf ) sin (αf ) − cos (αf ) cos (γf )− sin (αf ) sin (γf ) 0

0 0 1

 ,
=

cos(αf + γf ) sin(αf + γf ) 0
sin(αf + γf ) cos(αf + γf ) 0

0 0 1

 , (71)

Equations (71) may then be rewritten asa1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

cos(αf + γf ) sin(αf + γf ) 0
sin(αf + γf ) cos(αf + γf ) 0

0 0 1

 , (72)

from which we may extract only equations that enable computation of αf + γf , which we recognize as a
manifestation of “gimbal lock”. Consequently, we cannot perform the conversion in this case.

Similarly if n is odd, inspection of Eq. (70) shows that L→ −L and, in this case also, we may only solve
for αf + γf . Consequently, we cannot perform the conversion in this case either.

4.5 CIVA to OnScale Conversion

We next rewrite Eq. (30) as an explicit matrix equation to obtain (using SageMath)

TC,OECIVA(αi, βi, γi)T
−1
C,O =cos (αi) cos (βi) cos (αi) cos (γi) sin (βi)− sin (αi) sin (γi) − cos (αi) sin (βi) sin (γi)− cos (γi) sin (αi)

− sin (βi) cos (βi) cos (γi) − cos (βi) sin (γi)
cos (βi) sin (αi) cos (γi) sin (αi) sin (βi) + cos (αi) sin (γi) − sin (αi) sin (βi) sin (γi) + cos (αi) cos (γi)


= cos (βf ) cos (γf ) − cos (βf ) sin (γf ) sin (βf )

cos (γf ) sin (αf ) sin (βf ) + cos (αf ) sin (γf ) − sin (αf ) sin (βf ) sin (γf ) + cos (αf ) cos (γf ) − cos (βf ) sin (αf )
− cos (αf ) cos (γf ) sin (βf ) + sin (αf ) sin (γf ) cos (αf ) sin (βf ) sin (γf ) + cos (γf ) sin (αf ) cos (αf ) cos (βf )

 .
(73)

As was done in Eq. (33), we replace the first matrix with the compact form representing its elements by
ai,j , i, j = 1, 2, 3 in order to simplify subsequent discussion, and to expedite accurate software implementation,
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we rewrite the first matrix in this equation in the more compact forma1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

 cos (βf ) cos (γf ) − cos (βf ) sin (γf ) sin (βf )
cos (γf ) sin (αf ) sin (βf ) + cos (αf ) sin (γf ) − sin (αf ) sin (βf ) sin (γf ) + cos (αf ) cos (γf ) − cos (βf ) sin (αf )
− cos (αf ) cos (γf ) sin (βf ) + sin (αf ) sin (γf ) cos (αf ) sin (βf ) sin (γf ) + cos (γf ) sin (αf ) cos (αf ) cos (βf )

 .
(74)

Equation (73) enables us to “factor” the final matrix into the product of three rotations and thus recover
the final Euler angles, αf , βf , and γf . In practice, this amounts to no more than picking off suitable
components of the matrix and solving for the final angles using that fact that αi, βi, and γi are known.
Here are onse set of possible equations (displayed in the order in which they should be solved). They were
obtained by equating the (1, 3), (1, 2) and (2, 3) elements of the matrices in the preceeding equation,

βf = sin−1(− cos (αi) sin (βi) sin (γi)− cos (γi) sin (αi)),

γf = sin−1
(

cos (αi) cos (γi) sin (βi)− sin (αi) sin (γi)

− cos(βf )

)
,

αf = sin−1
(

cos (βi) sin (γi)

cos(βf )

)
, (75)

where the angles αi, βi, γi are specified in the Bunge system and αf , βf , γf are the geometrically equivalent
Euler angles for the OnScale system.

As mentioned in the three preceeding sections these equations are relatively inaccurate; we state them to
facilitae clear discussion of the limitations of intersystem conversion imposed by “gimbal lock”.

More accurate expressions based on tan−1 may be obtained using other elements of the arrays appearing
in Eq. (74). For example, if we divide the (2, 3) by the (3, 3) elements we obtain

αf = − tan−1
(
a2,3
a3,3

)
± kπ, k = 0, 1, . . . . (76)

while if we divide the (1, 2) by the (1, 1) elements we obtain

γf = − tan−1
(
a1,2
a1,1

)
± nπ, n = 0, 1, . . . . (77)

Finally, since
√
a21,1 + a21,2 = cos(βf ) we obtain

βf = tan−1

 a1,3√
a21,1 + a21,2

±mπ, m = 0, 1, . . . . (78)

where the + or − sign is chosen so that {
βf > 0 if a1,3 > 0,

βf < 0 if a1,3 < 0.
(79)

Similar to the Bunge-to-OnScale case, if βf = nπ/2 where n is an integer we cannot employ Eqs (75).
However, in this case Eq. (73) simplies toa1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

 0 0 (−1)n

(−1)n cos (γf ) sin (αf ) + cos (αf ) sin (γf ) (−1)n+1 sin (αf ) sin (γf ) + cos (αf ) cos (γf ) 0
(−1)n+1 cos (αf ) cos (γf ) + sin (αf ) sin (γf ) (−1)n cos (αf ) sin (γf ) + cos (γf ) sin (αf ) 0

 . (80)
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If n is even, the last matrix in Eq. (80) becomes

L ≡

 0 0 1
cos (γf ) sin (αf ) + cos (αf ) sin (γf ) − sin (αf ) sin (γf ) + cos (αf ) cos (γf ) 0
− cos (αf ) cos (γf ) + sin (αf ) sin (γf ) cos (αf ) sin (γf ) + cos (γf ) sin (αf ) 0

 ,
=

 0 0 1
sin(αf + γf ) cos(αf + γf ) 0
− cos(αf + γf ) sin(αf + γf ) 0

 , (81)

Equation (80) then becomesa1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

 0 0 1
sin(αf + γf ) cos(αf + γf ) 0
− cos(αf + γf ) sin(αf + γf ) 0

 , (82)

from which we may extract only equations that enable computation of αf + γf , which we recognize as a
manifestation of “gimbal lock”. Consequently, we cannot perform the conversion in this case.

Similarly if n is odd, inspection of Eq. (80) shows that L→ −L and, in this case also, we may only solve
for αf + γf . Consequently, we cannot perform the conversion in this case either.

4.6 OnScale to CIVA Conversion

We finally rewrite Eq. (31) as an explicit matrix equation to obtain (using SageMath)

TO,CEOnScale(αi, βi, γi)T
−1
O,C = cos (βi) cos (γi) − sin (βi) cos (βi) sin (γi)

cos (αi) cos (γi) sin (βi)− sin (αi) sin (γi) cos (αi) cos (βi) cos (αi) sin (βi) sin (γi) + cos (γi) sin (αi)
− cos (γi) sin (αi) sin (βi)− cos (αi) sin (γi) − cos (βi) sin (αi) − sin (αi) sin (βi) sin (γi) + cos (αi) cos (γi)


= cos (αf ) cos (βf ) cos (αf ) sin (βf ) sin (γf ) + cos (γf ) sin (αf ) − cos (αf ) cos (γf ) sin (βf ) + sin (αf ) sin (γf )
− cos (βf ) sin (αf ) − sin (αf ) sin (βf ) sin (γf ) + cos (αf ) cos (γf ) cos (γf ) sin (αf ) sin (βf ) + cos (αf ) sin (γf )

sin (βf ) − cos (βf ) sin (γf ) cos (βf ) cos (γf )

 .
(83)

As was done in Eq. (33), we replace the first matrix with the compact form representing its elements by
ai,j , i, j = 1, 2, 3 in order to simplify subsequent discussion, and to expedite accurate software implementation,
we rewrite the first matrix in this equation in the more compact forma1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


 cos (αf ) cos (βf ) cos (αf ) sin (βf ) sin (γf ) + cos (γf ) sin (αf ) − cos (αf ) cos (γf ) sin (βf ) + sin (αf ) sin (γf )
− cos (βf ) sin (αf ) − sin (αf ) sin (βf ) sin (γf ) + cos (αf ) cos (γf ) cos (γf ) sin (αf ) sin (βf ) + cos (αf ) sin (γf )

sin (βf ) − cos (βf ) sin (γf ) cos (βf ) cos (γf )

 .
(84)

Equation (83) enables us to “factor” the final matrix into the product of three rotations and thus recover
the final Euler angles, αf , βf , and γf . In practice, this amounts to no more than picking off suitable
components of the matrix and solving for the final angles using that fact that αi, βi, and γi are known. Here
are the equations displayed in the order in which they should be solved. They were obtained by equating the
(3, 1), (3, 2) and (2, 1) elements of the matrices in the preceeding equation,

βf = sin−1 (− cos (γi) sin (αi) sin (βi)− cos (αi) sin (γi)) ,

γf = sin−1
(

cos (βi) sin (αi)

cos(βf )

)
,

αf = sin−1
(

cos (αi) cos (γi) sin (βi)− sin (αi) sin (γi)

− cos(βf )

)
, (85)
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where the angles αi, βi, γi are specified in the Bunge system and αf , βf , γf are the geometrically equivalent
Euler angles for the OnScale system.

As mentioned in the five preceeding sections these equations are relatively inaccurate; we state them to
facilitae clear discussion of the limitations of intersystem conversion imposed by “gimbal lock”.

More accurate expressions based on tan−1 may be obtained using other elements of the arrays appearing
in Eq. (74). For example, if we divide the (3, 2) by the (2, 2) elements we obtain

αf = − tan−1
(
a3,2
a2,2

)
± kπ, k = 0, 1, . . . . (86)

while dividing the (1, 3) elements by the (1, 1) elements leads to

γf = − tan−1
(
a1,3
a1,1

)
± nπ, n = 0, 1, . . . . (87)

Finally, since
√
a23,2 + a23,3 = cos(βf ), we obtain

βf = tan−1

 a3,1√
a23,2 + a23,3

±mπ, m = 0, 1, . . . . (88)

where the + or − sign is chosen so that {
βf > 0 if a3,1 > 0,

βf < 0 if a3,1 < 0.
(89)

Similar to the other cases, if βf = nπ/2 where n is an integer we cannot employ Eqs. (85). However, in
this case Eq. (83) simplies toa1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

 0 (−1)n cos (αf ) sin (γf ) + cos (γf ) sin (αf ) (−1)n+1 cos (αf ) cos (γf ) + sin (αf ) sin (γf )
0 (−1)n+1 sin (αf ) sin (γf ) + cos (αf ) cos (γf ) (−1)n cos (γf ) sin (αf ) + cos (αf ) sin (γf )

(−1)n 0 0

 . (90)

If n is even, the last matrix in Eq. (90) becomes0 sin(αf + γf ) − cos(αf + γf )
0 cos(αf + γf ) sin(αf + γf )
1 0 0

 , (91)

so that Eq. (90) simplifes finally toa1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

0 sin(αf + γf ) − cos(αf + γf )
0 cos(αf + γf ) sin(αf + γf )
1 0 0

 , (92)

from which we may extract only equations that enable computation of αf + γf , which we recognize as a
manifestation of “gimbal lock”. Consequently, we cannot perform the conversion in this case.

Similarly if n is odd, inspection of Eq. (90) shows that L→ −L and, in this case also, we may only solve
for αf + γf . Consequently, we cannot perform the conversion in this case either.
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