o

Pacific
Northwest

NATIONAL LABORATORY

PNNL-32687

Smart Contract
Architectures and
Templates for
Blockchain-based Energy
Markets (V1.0)

March 2022

D. Jonathan Sebastian-Cardenas
Sri Nikhil Gupta Gourisetti

Peng Wang

Jesse Smith

Mark Borkum

Monish Mukherjee

EEEEEEEEEEEE
Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <https://www.ntis.gov/about>
Online ordering: http://www.ntis.gov

mailto:reports@adonis.osti.gov
https://www.ntis.gov/about
http://www.ntis.gov/

PNNL-32687

Smart Contract Architectures and Templates
for Blockchain-based Energy Markets (V1.0)

March 2022

D. Jonathan Sebastian-Cardenas
Sri Nikhil Gupta Gourisetti

Peng Wang

Jesse Smith

Mark Borkum

Monish Mukherjee

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

PNNL-32687

Abstract

Within the field of Transactive Energy Systems (TES), there is an active need for tools that can
support and accelerate the development of these new grid solutions. Among the many tools
available, blockchain stands out as a viable instrument that can help researchers develop
decentralized, autonomous, and tamper-resistant grid applications. In this work, we explore the
use of smart contracts (SCs), a subset of blockchain technology, and analyze their applicability
to facilitating the implementation of TES solutions. In particular, we focus on presenting areas of
opportunity and potential drawbacks, along with use cases that can benefit from this technology
building upon previous research developed by Pacific Northwest National Laboratory and other
research organizations.

This work builds upon the fundamentals of TES and smart contract technology to develop a
series of software templates that can be used by industry to build TES-oriented grid solutions.
These templates are intended to be platform agnostic and take into consideration the unique
properties of SCs and distributed ledger storage mechanisms to ensure actual code
implementations remain aware of the limitations of the technology. The proposed templates
have the potential to enable software architects to mix and match components to satisfy their
application requirements, thereby reducing the number of resources required to implement
blockchain-based solutions.

These templates are divided into two main components—data and behavioral models. The data
models are intended to help software engineers represent the underlying grid objects along with
their properties in a ledger-based storage system. The behavioral models are used to describe
the processes and actions that actors within a system must perform to achieve a given outcome
such as registering an asset, placing a bid, and performing bid clearances. These two
components are documented in a Unified Modeling Language (UML) format and are intended
for use in SC-based implementations, with special behavioral considerations to account for the
asynchronous properties of the underlying ledger and the typical execution model of smart
contracts.

Finally, future research ideas and potential extensions to this work are discussed. In particular,
known limitations and potential improvements of the developed product are identified and
expected to be addressed in future revisions of the template model.

Abstract

PNNL-32687

Acronyms and Abbreviations

ABAC
ACL
B-ATES
CA
DER
DSO
DLT
DOE
ESI
ISP
LMP
LPC
MSP
NIST
PDP
PEP
PIP
PKI
PNNL
PRP
RBAC
RT
SC
TE
TEAC
TES
TESC
TNT
TENT
TPS
UML

Acronyms and Abbreviations

Attribute-Based Access Control

Access Control List

Blockchain Architecture for Transactive Energy Systems
California

Distributed Energy Resource

Distribution System Operator

Distributed Ledger Technology

U.S. Department of Energy

Energy Service Interface

Identity Service Provider

Local Marginal Pricing

Locational Pricing Calculator

Membership Service Provider

National Institute of Standards and Technology
Policy Decision Point

Policy Enforcement Point

Policy Information Point

Public Key Infrastructure

Pacific Northwest National Laboratory

Policy Retrieval Point

Role Based Access Control

Real Time

Smart Contract

Transactive Energy

Transactive Energy Abstract Component
Transactive Energy System

Transactive Energy Systems Conference
Transactive Network Template (V 2.0 or below)
Transactive Energy Network template (New versions of TNT)
Transaction Per Second

Unified Modeling Language

PNNL-32687

Contents
ADSITACT. ... iii
Acronyms and ADDIEVIALIONS.ovviiiiiiiiiiiieie e iv
1.0 INEFOTUCTION ..t 1
1.1 LT = 1 3
1.2 REPOI OVEIVIEW ... 4
2.0 Exploration of Existent TE Models, and the Need for Blockchain-aware Models.............. 5
2.1 The 2016 NIST Transactive Energy Challenge ..., 6
2.2 The Transactive Energy Network Template ..o, 10
2.3 Supporting TES Services Using Blockchain, Explorations............cc...cooevvvvviinnnn.. 15
24 Identified Gaps........coooiiiiiiii 17
3.0 Blockchain Use in the Energy DOM@IN...........uuuuuuuuimiiiiiiiiiiiiiiiiiii e 19
3.1 Cybersecurity Characteristics of Blockchain-based Environments 21
3.2 Performance Characteristics of Blockchain..............ccccovvviiii 23
3.3 Potential Pitfalls of Blockchain-based TES Solutionsccccccvvvvviiiiiiiieinnnnn, 24
4.0 The Blockchain-aware TES Template Model ..., 26
4.1 HIigh-1evel OVEIVIEWcoooiiiiii 26
4.2 The Five-stage TE MOUEL.........coii it 28
4.3 BASIC DAta TYPES....cciiiiiiiiiiieiee e 29
4.3.1 BasiC 0DJeCt MOUEIS.........uuiiiiiiiiiiiiiiiii e 29
T = 10 01111V 29
4.3.3 TIiME ODJECES ...ttt 30
S |- 1 o 32
4.35 Trackable ObJECES......uuiii i 32
4.3.6 Digital CertifiCAeS.uuuuuuuuiiiiiiiiiiiiiiiiiiiiiiii bbb 34
4.3.7 BloCKChain LEAQETuuuiiii i 34
4.3.8 Lifecycle ManagemeNnt............uuuuuuuuumueiiiiiiiiiiiiiiiiiiiiiiieesneinneeeeeneeneeneenee 37
4.3.9 Permissions and Qualifications.............cccoovvieeriiiiiiiiiin e 38
4.3.10 Grid objeCt MOAEIS.......coii i 40
4.3.11 Persona 0bjeCt MOUEISuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiie e 42
4.3.12 MeMDBDEISNIPS ... 42
4.3.13 Summary of basic INterfacesccooeviiiiiiiiii e 43
4.4 Resources and Participants modeling ... 49
4.4.1 RESOUICES ...ttt e e e e et e e e e e e eeeans 49
4.4.2 (0T To I =TT 01U o1 S 50
4.4.3 IBR-Based Generation RESOUICES...........ceiiieeeiieiiiiiiaiseeeeeeeeeiiiaeaeeeaeas 50
444 Rotational Generation RESOUICES...........coiiiieeiiiiiiiiiaie e 52
4.4.5 StOrage RESOUICES.....ceuiiiiiii ettt e e e e e eneees 54

Contents

PNNL-32687

446 AUeStation RESOUICESccoiiiiiiiiiiie et e et e e e e eeeeeens 54

4.4.7 Organizational Hierarchycccoooiiiiiiiiiic e, 55

4.4.8 AULhOrity MOEluiiiiiiiiiiiiii e 57

4.4.9 Sample Hierarchy with associated actorscccccevvviieieeeeeeievivinnnnn. 57

4.5 (€] gTo leTo]aq] oT0T g 1= o1 £ TSP PPUR 59

45.1 (€T To 1 1Y T To 1= PRSPPI 59

4.6 Smart Contract Modeling and Support SEIVICES.........cceevieeeiiiieiiiiieie e, 61

4.6.1 Measurement and Verificationccccooviiiiiiiiicii e 61

4.6.2 REl@DIIILYuuuiiiiiiiiiiiiii i anrnnnnnn 63

4.6.3 SMArt CONACES ...oeviiuiiiiee ettt e e e e eeee s 63

4.7 Operations-Structural COMPONENTS.........uuuuuuiiiiiiiiiiiiiiiiiiiiieeeieebeeeereeeee e 64

4.7.1 Qualification & RegiStrationcccccoeviiiiiiiiiiii e, 64

4.8 OperationS-EXampIEs ... 65

4.8.1 Agent QUAlIfICATIONuuueeeiiiiiiiiiiiiiiiiiiiiii e 65

4.9 Sample: Developing a Smart Contract-Based Permission Solution.................... 68

49.1 TES execution model in Hyperledger fabriC............cccccvviiiiiiiiiiiiiiinnnnns 69

4.9.2 ABAC Implementation on BIOCKCNAINuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiines 71

5.0 CONCIUSION <. 75
6.0 =] (=] =T o = SRR 76
Appendix A — Blockchain-Architecture for Transactive Energy Systems in-depth review........... 78

Contents

Vi

Figures

Figures

Figure 1.

Figure 2.
Figure 3.

Figure 4.
Figure 5.

Figure 6.
Figure 7.

Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.

Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.

PNNL-32687

An overview of a generic TE model topology, using the TEAC model

building blocks, adapted from (Burns, Song and Holmberg 2018).ccccvvvee... 7
Comparing the local asset model and the neighborhood model. 12
Hierarchical market architecture, demonstrating the use of correction

markets, taken from (Hammerstrom 2019).......ccccooviiiiiiiiiiiiie e, 14
Open research questions related to blockchain applicability in the field of
EFANSACTIVE BNBIGY it 16
Detailed, service-level components present in a typical Hyperledger fabric

(o (=701 ()Y 1 1 T=T o | SX PP 21
The blockchain-aware TES template model. ..., 27
The transactive node model as represented by (Widergren, Transactive

Energy for Distributed Resource Integration 2016)............ccoevvvviiiiiiiiiiiiiiiiiinnnnn. 28
Overview of the BasicObject’s package components.cceveeeeeeeeeeeeevvnnnnnn. 29
Overview of the Primitive’s package components.cccccvvvviiiiiiiiiiniiiiinnnnn. 30
Overview of the time objects COMPONENTS.ooviiiiiiii e, 31
Overview of the Math COMPONENTS.uuuiuiiiiiiiiiiiiiiii e 32
Overview of the TrackableClass’ package COmMpONENts.eeevevevevmennnennnnns 33
Overview of the DigitalCertificates’ package components (Left side).................. 35
Overview of the DigitalCertificates’ package components (Right side). 36
Overview of the BlockchainLedger’s package components.ueeveveiinnnns 37
Overview of the LifecycleManagement’s package components.............cccccvvvnne. 38
Overview of the Permissions’ package components.cccceuvvviieieeeerreeevennnnnn. 39
Overview of the GridObjects s package components.cccvveeeeeeeeeieeeiinnnnnn. 41
Overview of the Persona’s package cComponents.euuveeeeiiiiimemennmnneennnnnnn 42
Overview of the Membership’s package components.cccccceeeiiieeevveeeiinnnnnn. 43
Overview of the Basiclnterface’s package components (Top-left view). 44
Overview of the Basiclnterface’s package components (Top-right view). 45
Overview of the Basiclnterface’s package components (Bottom-left view). 46
Overview of the Basiclnterface’s package components (Bottom-right

VWY ettt 47
Overview of the Basiclnterface’s package components (Auxiliary view)............. 48
Overview of the Resources’ package Components.uuvueevveiiiiiiimieiiieiiinnnns 49
Overview of the LoadResources’ package components.cccceeeveeeeeveeeeennnnnn. 50
Overview of the IBR-BasedGeneratorResources’ package components............ 51
Overview of the RotationalGenerationResources’ package components. 53
Overview of the StorageResource’s package components.cccccevveeninnnnns 54
Overview of the AttestationResources’ package components.eveeenens 55
Overview of the OrganizationalHierarchy’s package components. 56

Vii

Figures

Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 43.
Figure 44.

Figure 45.
Figure 46.

Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 21.
Figure 22.
Figure 23.
Figure 24.

Figure 61.
Figure 62.
Figure 63.
Figure 64.

PNNL-32687

Overview of the AuthorityModel’s package components.cccccoveevvvieeiinnnnnn. 57
Overview of the SampleHierarchyWithActors’s package components................ 58
Overview of the GridModel’s package components............cccoeevvvciinieeenreeiiinnnnnn. 60
Overview of the MV'’s package components.............ccveeeiieeeiiiieiiiiiii e, 62
Overview of the Reliability’s package components.............ccceevvviieiiieeeeceeviiinnnnn. 63
Overview of the SmartContracts’ package components.cccccevvveeviiieiiinnnnnn. 64
Overview of the Qualification’s package components.ccccccceeiieeeeriieeininnnnn. 65
Overview of the QualificationUseCase’s package components.cc........ 66
Overview of the 4.8.1 Registration&Qualification’s package components. 67
The components of an ABAC SYSEM........coiiiiiiiiiieiiiiee e 69
Overview of the BaseTES’ package cOmpoNnents........cccooeevvvveeeviiiiineeeeeeeeiiiinnnnn. 70
Objects used to represent the ABAC architecture.ccooovviiiieieieeeecveviiinnnnn. 72
The policy-filtering algorithm finds policies based on the target resource

and a user’s role (covering the first and second algorithm).ccccccciiinnnns 72
The internal algorithm used to evaluate attribute-based rules (the third

AIGOTTENMY). L 73
Implementing an ABAC system within a permissioned blockchain

2T NV €0] o1 41T o | 74
Overview of the BasicObjects' package COmMpPOoNENtSeevvvveemiimmiinneenennnnns 78
Overview of the Primitives' package COMpPONENtSueuuviimmimiiimiiniiiiiiiiiniinns 83
Overview of the TimeObjects' package COMPONENES.............ccevvvieeeeeeeeeeeviiinnnnn. 91
Overview of the Math's package COMPONENTSuuuuuuiiimmiiiiiiiiiiiiiiiiiiiiiieienenes 96
Overview of the TrackableClass' package componentsccccceeeeeeeeeiveeiinnnnnn. 98
Overview of the DigitalCertificates’ package components (Left side)................ 105
Overview of the DigitalCertificates’ package components (Right side). 106
Overview of the BlockchainLedger's package components...........cccceeeeeeeeennns 137
Overview of the LifecycleManagement's package components..............c......... 144
Overview of the Permissions' package COmMpoNeNts.................eveuveieeimeeniennnnnnns 148
Overview of the GridObjects' package componentsccevvvveviviieeeeeeeneeennnn, 156
Overview of the Persona’'s package COMpPONENtS............uuuuueuiiiiimiiiiiiiiiiiiiniinnns 162
Overview of the Memberships' package components................ceuvveeeeeeeeeeennnns 169
Overview of the Basiclnterface’s package components (Top-left view). 175
Overview of the Basiclnterface’s package components (Top-right view). 176
Overview of the Basiclnterface’s package components (Bottom-left view). 177
Overview of the Basiclnterface’s package components (Bottom-right

Y= TSR 178
Overview of the Resources' package COMPONENTS...........uuuuvuuiiiiiiiiiiiiiiiiiiiiinnns 180
Overview of the LoadResources' package cCoOmponentsvevvveeeeeenennnns 190
Overview of the IBR-BasedGenerationResources' package components 194
Overview of the RotationalGenerationResources' package components.......... 205

viii

Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.

PNNL-32687

Overview of the StorageResources' package components...............ccccvvveeeennns 215
Overview of the AttestationResources' package componentsccceeveeeie 221
Overview of the OrganizationalHierarchy' package components...................... 225
Overview of the AuthorityModel' package componentsccceeeeeeeeeeeeeeenns 237
Overview of the SampleHierarchyWithActors' package components................ 241
Overview of the GridModel' package COmpoNentseeevveivmiimiiiminennnnnnnnns 247
Overview of the Reliability' package components............ccocovvvviiiiiiineeeeeeecinns 258
Overview of the MeasurementandVerification' package components............... 265
Overview of the SmartContracts' package componentscccceveeeveennnnnnes 278
Overview of the Qualification' package componentscceevvviviiiieeeeneeennnn, 282
Overview of the QualificationUseCase' package components..............ccc.uvveneee 284
Overview of the Registration&Qualification' package components................... 286
Overview of the BaseTES' package COmMpoNentS........cccceeveeeeeiiiiiiiiiiineeeeeeeennnns 288
Overview of the ABAC' package COMPONENTSuuuuuruummmmmriiiiiiiiiiiiiiinnnennnnnnns 292

PNNL-32687

Tables
Table 1. Core components of the TEAC MOdel.ccooiieiiiiiiiiiiiiieee e, 9
Table 2. Sample list of specialized components in the TEAC model.cccooeeeevvviiiinnnnnnn. 9
Table 3. Other relevant components within the TENT model.ccccovvieeiiiieiniiiiiinnnnn. 13
Table 4. Methods used by the market’s state machine in the TENT v2, taken from
(Hammerstrom 2019).ceiiiiiiiiiiiiieeeeeeee ettt e e e e 14
Table 5. Cybersecurity characteristics of blockchain environments and their
APPlICADIIEY 1O TESS. .. uuiiiiiiiiiiiiiiiiiiiieiet bbb nennnne 22
Table 6. Typical performance metrics of blockchain environments and their
IMPACES ON TESS. ...t e e e e e e e e e eanees 23
Table 7. Potential impacts/drawbacks of using a blockchain environments in TES
APPIICALIONS. ... e 25

Tables

PNNL-32687

1.0 Introduction

Blockchain technology has continued to receive attention over the last decade due to its unique
ability to store data in an immutable datastore (known as a ledger), while simultaneously
enabling a diverse set of agents to reach a consensus about its contents. Although the term
blockchain is often used in the literature, blockchain represents only a subset of the possible
implementations within the field of Distributed Ledger Technologies (DLTs). DLTs represent a
much more general term that encompasses several storage and consensus mechanisms used
to communicate, compute, agree on the outcome, and eventually store data. Nevertheless, in
this report both terms are used interchangeably because the presented work is implementation
and feature agnostic.

Although blockchain use is often related to cryptocurrencies, its underlying features can be
leveraged to address a wide variety of use-case applications that may benefit from the following
features:

1. Adistributed, open, and verifiable transaction platform that relies on distributed-system
architecture to agree on a common state, with a broad emphasis on sustaining ad hoc
applications. Although the agreement is often bound to the data layer, agreement can also
be ensured at the logical level.

2. Strong immutability properties that can enable participants to efficiently detect data
modification attempts. This immutability can be used to support strong data-provenance
guarantees for end-user applications.

3. A multi-entity, multi-factor, identity management service, which can be used to provide
strong non-repudiation properties to the system, thereby fostering a distributed, yet highly
trusted computing platform.

Based on the aforementioned features, an individual's application needs maybe partially
satisfied by blockchain technology. Viable candidate applications are usually related to those
that require or have a need for (1) decentralized operations or where participants present ad
hoc behaviors; (2) require strong immutability/non-repudiation properties that trump other
performance demands (e.g., speed, throughput); (3) cannot be efficiently handled by existent or
traditional computing solutions. Within the electrical industry, and based on ongoing/previously
reported research efforts, use cases can be broadly grouped into the following categories:

e Consumer-facing applications: Applications that can increase end-user trust by increasing
transparency along with other governance attributes. Examples include determining the
economic value of energy credits, keeping track of carbon-free credits and clean energy
tokens, and documenting decision-making processes, actions, or plans, examples include
(Patel, et al. 2020).

o Market places and trading: Applications that require multiple parties to participate in open
trading operations in a scalable manner. Well-designed systems can ensure equitable and
inclusive agent participation regardless of their size or competitive advantages, thereby
enabling participants to accurately determine the true value of energy, examples include
(Eisele, Barreto, et al., Blockchains for Transactive Energy Systems: Opportunities,
Challenges, and Approaches 2020), (Hahn, et al. 2017). Specifically, blockchain technology
has the potential to eliminate intermediaries while protecting data-in-transit and data-at-rest.

e Supply chain: Applications that need to track an asset’s lifecycle with high degree of
certainty. Although usually tied to physical assets, the concept can be expanded to provide

Introduction

PNNL-32687

data provenance services, identity management (e.g., managing prosumer credentials), and
support process lifecycles (e.g., track customer interconnection requests), among many
other applications, examples include (Mylrea and Gourisetti, Blockchain for Supply Chain
Cybersecurity, Optimization and Compliance 2018), (Liang, et al. 2018).

Enabling multi-organizational integrations: Applications that require multi-organizational
vertical or horizontal participation that may benefit from neutral platforms that enable
organizations with competing interests to reach consensus (Tonghe, et al. 2021). Typical
use cases may include integrating organizations with operational or ownership boundaries,
such as utilities, regulatory entities, and regional/system operators within the same platform.

Digital enforcement of contractual obligations: Applications that require agents to follow
procedural processes that can be tracked and enforced by digital means (Hahn, et al. 2017).
Examples include but are not limited to the tracking of asset exchanges (if digital
representations can be achieved), neutral enforcement of legal contracts among parties with
competing interests, and the automation of processes that benefit from a distributed,
decentralized architectures.

As stated in the preceding category descriptions, blockchain can assist a variety of grid
applications, with some authors such as (Andoni 2019) providing extensive reviews on potential
grid applications. However, an application’s reliance on blockchain must be dictated by actual
needs rather than want-to-use obligations. To this end, this report focuses on the use of
blockchain technology as an enabling technology to support the requirements of a Transactive
Energy System (TES). According to (GridWise Architecture Council 2015), a TES is a system of
economic and control mechanisms that allows the dynamic balance of supply and demand
across the entire electricity infrastructure using value as a key operational parameter. In a more
general sense, a TES is a mixture of components that work together to bring the below outlined
benefits, these benefits have been derived from (Gourisetti, et al. 2021), (Gourisetti, et al. 2019),
and (GridWise Architecture Council 2015).

Optimization-oriented capabilities: Transactive systems can be configured to achieve a
common, predefined goal, which can serve to bring benefits to individual groups or to an
entire system depending on an organizational policy.

Improved reliability and maintainability: A well-designed transactive system can increase
a system’s overall reliability by supporting automated recovery solutions. The solutions could
leverage individual agents, system-level automations, and communication links to achieve
their desired functionality. Furthermore, due to its multi-domain capabilities, a TES may
enable implementation of solutions that rely on vertical or horizontal integrations to achieve
its end goal.

Allows fair and equitable operations: By providing standardized interfaces that follow
procedural behaviors, agents are ensured fair participation. Moreover, these procedures can
be tailored to enable equitable participation if desired.

Increased observability: Because a TES is expected to follow strict procedural behaviors,
a record of the decision-making process should be available for posterior analysis. This
transparency promise can further encourage participants’ engagement regardless of their
size, limited capabilities, and/or prior experience (as opposed to more established,
dedicated service providers).

Scalability, extensibility, and adaptability: A TES enables a wide number of agents
dispersed across the entire grid system to participate toward fulfillment of a common goal.

Introduction

PNNL-32687

Furthermore, a well-designed TES can accommodate future expansions and adapt to
changing conditions, thereby ensuring a future-proof system.

¢ Participant’s accountability: Due to its traceability properties, a TES holds all participants
accountable for their actions, which may include keeping track of an individual’s participation
history, compliance behavior, and predictability. This accountability property helps ensure a
fair system that can be corrected if issues arise.

As can be observed, a TES can be applicable to a wide variety of scenarios. However, in this
work, the focus is on those services that can satisfy common industry needs, such as those
described by (Cazalet, et al. 2016). Specifically, uses cases that demonstrate or enable the
interoperability of systems that are currently isolated or have limited operational connectivity
may be particularly valuable (e.g., enabling behind-the-meter DERs to support DSO’s needs). In
addition, use cases that can enable decarbonization and integration of renewable energy into
more traditional processes can be a welcome addition. Based on these ideas, generic market
interfaces that can enable the exchange of services, goods, and non-tangible assets across a
wide variety of systems by relying on the TES model and blockchain technology are explored in
this work.

In particular, we aim to leverage the automation features of blockchain—features referred to as
smart contracts (SCs) within the context of this report. SCs are a collection of tools and data
mechanisms that enable participating peers to agree on a logical state using a complex state
machine that runs on top of blockchain peers. These pieces of logic can be used to assemble
complex algorithms that run on a distributed platform (the degree of Turing-completeness
depends on the blockchain implementation). These SCs enable end-users to develop solutions
that inherit many of the traits of blockchain technology without having to worry about the
complexities of developing a distributed system from scratch, thereby reducing potential costs
and implementation risks.

However, SCs still require application developers to be aware of the limitations and unique
processing requirements of SC technology—a task that may prove daunting and limit an
interested party’s ability of to experiment with the technology. To ease with this task, this report
presents a series of pre-vetted data and behavioral models that can speed blockchain
development. These models are intended to serve as a reference guide for software architects,
developers, and any interested party that seeks to build blockchain-based solutions.

1.1 Goals

Based on the previously identified gaps, and perceived industry needs, this report focuses on
satisfying the following goals.

1. Design a set of SC templates that can be used to deploy TES-based applications
irrespective of the underlying blockchain solution. The design operates under the
assumption that Turing-complete logic algorithms can be executed by the underlying
blockchain.

2. The proposed designs should aim to simplify the process of end-to-end connectivity across
a variety of systems, enabling both vertical and horizontal integration of service providers
irrespective of their scale or aggregation capabilities.

3. The developed templates must enable application designers to mix and match components
as they see fit. The design should enable wide compatibility with TES-oriented applications,
and the templates should rely on the Energy Systems Interface as the common point of

Introduction

PNNL-32687

coupling between the service provider and the grid (Widergren, Interoperability Strategic
Vision 2018).

4. The implemented model should remain language neutral and avoid middleware or protocol-
specific dependencies that limit its eventual implementation.

5. The TES templates are intended to facilitate end-user adoption by facilitating the initial
configuration and providing software architects with a generic platform that can be further
refined to suit specific needs. However, providing pre-built libraries or reference code
implementations is outside the scope of this work

6. The TES templates should include access control mechanisms that prevent unauthorized
access at the SC level. Furthermore, the feasibility of ledger-based access control
mechanisms should be explored.

7. A set of sample applications that demonstrate the applicability of the models should be
explored, and the applications should demonstrate the ability of the system to mix and
match components. These applications will remain at the UML-level

1.2 Report Overview

This report is divided into five main sections. In Section 2.0, we start by presenting some of the
needs of TES applications along with prior research, while section 3.0 focuses on blockchain
technology from a low-level perspective, particularly in the field of SCs. In Section 4.0, we
present the proposed template architectural models, including a discussion of cybersecurity
considerations along with an attribute-based access control mechanism. In Section 5.0, we
present the conclusion of this work.

Introduction

PNNL-32687

2.0 Exploration of Existent TE Models, and the Need for
Blockchain-aware Models

Over the last two decades the electrical grid has undergone a rapid transformation, primarily
fueled by an increase in sustainability and resiliency goals. This transformation has been
supported by a multitude of technologies that enable a wide array of physical devices, digital
systems, and human operators to efficiently communicate over an extensive set of network
systems and architectures. Nevertheless, this process remains largely centralized, with device-
level participation mostly restricted to distribution and transmission operators / or large,
previously qualified entities that must comply with strict operational policies. However, at the
same time, there has been an explosion of customer-located resources that remain subject to
more traditional operational models that are reminiscent of an age when customers only played
a passive energy consumption role.

Across the years, these distributed energy resources have been part of experimental research
studies of varying levels of maturity that have demonstrated a wide array of potential benefits,
leading to standards and rulings, like the Institute of Electrical and Electronics Engineers’
(IEEE’s) Standard 2030.5, Standard for Smart Energy Profile Application Protocol, and
California Electric Rule 21 (CA rule 21) that currently being used to provide active grid support
services for Distributed Energy Resources (DERS). However, these real-world deployments only
represent a subset of the potential applications of TESs. In this context, it is reasonable to
expect, that with the correct tools, industry engagement, and correct policy drivers these
experimental results can be advanced and deployed to assist with grid operations, thereby
enabling greater integration of renewable resources, while enhancing grid reliability and
resiliency in a manner that benefits all participants.

However, these novel developments are sometimes hindered by regulatory limitations, or a lack
of technology solutions that can support real-world use cases. In some cases, certain
technologies can seem promising, but their true value cannot be correctly assessed until more
development tools and wide-range testing is performed. In particular, blockchain has raised
interest in the TES field because of its decentralized architecture that promises to empower
agents to participate in complex grid operations. This idea has led to the exploration of a wide
variety of grid-related use cases that use blockchain as an enabling technology. Examples
include, enabling peer-to-peer (p2p) energy exchanges (Troncia, et al. 2019), enabling
collaborative microgrid environments, tracking grid assets across their lifecycle, among many
others.

Although proving that a technology can work for a very specific case has value, these sorts of
experiments can be hard to translate/adapt to other problems, even within the same field,
potentially requiring extensive retooling and code refactoring before this can be achieved. In
addition, it can be difficult for researchers to perform comparisons due to tool dependencies
(e.g., licenses) and data unknowns. Organizations such as the U.S. Department of Energy
(DOE) and National Institute of Standards and Technology (NIST) have recognized this issue
and have encouraged the development of interoperable tools that can allow users to create
solutions in a platform-agnostic manner. Current and past projects include those that use
middleware to enable the integration of multiple technologies (e.g., HELICS, VOLTTRON
BLOSEM), and those that seek to create interoperable data models that enable users to
exchange information across multiple domains (e.g., The North American Energy Resilience
Model [NAERM], the Transactive Energy [TE] challenge, and the Transactive Energy Network
Template [TENT]).

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

PNNL-32687

In this section, we review some of the previous research that has proposed the use of platform-
agnostic tools to support TES development, with a focus on generic data models rather than the
tools needed to simulate/implement them. It is important to note that this report only focuses on
the data models that are relevant to a decision-making agent and does not consider the data
needed to model the physics of the grid, it is assumed that this can be either simulated by
dedicated tools or extracted from a real-world, operational grid.

2.1 The 2016 NIST Transactive Energy Challenge

The TE challenge was a NIST-sponsored competition that sought to create a repository of co-
simulation tools, models, and documentation that would enable stakeholders to quickly
understand, test, and apply TE solutions to address their grid challenges (Holmberg, et al.
2019). The challenge originated from a desire to evaluate the integration of renewable
resources into TESs using simulation tools rather than demonstration projects; therefore, a
significant part of the challenge included the development and identification of co-simulation
tools that would accelerate the development, testing, and evaluation of potential TE solutions.

Multiple teams participated in the challenge, and certain teams were dedicated to addressing
specific interoperability issues related to software or data models. In particular, the “Tiger” team,
developed the Transactive Energy Abstract Component (TEAC) model, which proposes the use
of an abstract model that can be used to explore the benefits and impacts of transactive
solutions in the day-to-day operation of energy systems (Burns, Song and Holmberg 2018). The
TEAC model is intended to be compatible with any TES and provides an abstract representation
of typical TES patrticipants (e.g., loads, generators, controllers, markets).

In their work, the authors developed a framework that includes data models, as well as interface
descriptors that enable stakeholders to express and develop their own solutions based on a
common set of objects (see Figure 1). These objects are built around the concept of five core
components (i.e., parent objects) from which other resources can be derived using an object-
oriented approach. A summary of these components is presented in Based on the components
described in Error! Not a valid bookmark self-reference., developers can create
specializations that are able to capture low-level details. The TEAC contains several examples
that illustrate how such specializations can be performed; in particular, the authors present a
beta use case that maps the objects found in typical grid simulation models such as GridLAB-D
to the TEAC framework. A subset of these examples has been reproduced in Table 2.

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

PNNL-32687

Table 1; these components are mostly defined at the data layer and must be complemented by
an end-user—provided interface that enables information exchange. It is important to note that the
TEAC model defines object properties that have been removed from this summary.

S

Microgrid
PCC

= Grid & Controls

== Manages

=== Transactive

Bulk
Generator

X
g5

Microturbine

Industrial
Load

1%

Storage

Residence
Load

Local Controllers
. Supervisory Controllers

)— Transactive Agent

Grid
Controller

[pami

Industrial
Customer

@)
=7
Retail

Customer

. Resource Load

Auction

S¢Z
JIF\

Aggregator
TA

. Distributed Energy Resources

. Grid Link

Figure 1. An overview of a generic TE model topology, using the TEAC model building blocks,
adapted from (Burns, Song and Holmberg 2018).

Based on the components described in Error! Not a valid bookmark self-reference.,
developers can create specializations that are able to capture low-level details. The TEAC
contains several examples that illustrate how such specializations can be performed; in
particular, the authors present a beta use case that maps the objects found in typical grid
simulation models such as GridLAB-D to the TEAC framework. A subset of these examples has

been reproduced in Table 2.

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

PNNL-32687

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

PNNL-32687

Table 1. Core components of the TEAC model.

Core Components Description

Local controllers These represent non-decision-making controllers that follow rules received from a
higher hierarchy system but remain aware of the physics of the underlying
system. Typical examples include thermostats (which regulate temperature based
on user preference and available power), voltage regulators and in general, any

energy demand/injection controller (i.e., to follow a generator’s capability curve).

Supervisory These represent controllers that aggregate local controllers. These devices

controllers remain unaware of the underlaying system constraints and express required
changes in units of power over a unit of time (AS/At).

Resources These represent any traditional grid resource that affects demand. These include
loads, generators, or energy storage systems.

Weather This component is used to represent the weather characteristics, serves as a data
oracle.

Grid The actual grid model: for the purposes of the TEAC, the model is assumed to be
virtual.

Transactive agents These represents the core functionality of a TES; they are the agents responsible
for offering, bidding, negotiating, and participating in any energy exchange. They
rely on all of the above objects and user-defined interfaces to achieve their

functionality.

Table 2. Sample list of specialized components in the TEAC model.

Relevant Parameters/Attributes

Components ization Description Inherited Specialized
Supervisory Grid Typically used to model Resources (list of) checkLineLimits()
controller controller the local grid operator WeatherInfo (function)
that manages a grid Tender (function)
net flows according to Quote (function)
physical limitations Transaction (function)
Resource ZIP A load that can be Current & Voltage LoadModel:
load controlled (i.e., NodelD (location) ImpedanceFraction
available for demand Power CurrentFraction
response) Status PowerFraction
Resource Generator A power injection Current & Voltage Internallmpedance
source that can be NodelD (location) IsSolar?
controlled (i.e., can Power hasinverter?
provide grid support Status
functions)
Transactive Auction This can act as a WeatherInfo (function) Auction(function)
Agent system-level market Tender (function)

broker in centralized
environments or be a
service that allows
decentralized energy
exchanges to occur.

Quote (function)
Transaction (function)

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

PNNL-32687

As mentioned earlier, the TEAC model is composed of data models and interface descriptors.
These interfaces are logical constructs that enforce the methods/functions that must be
supported by the objects that choose to expose these interfaces. Under this paradigm, an air-
conditioner and a water heater must support the same function calls, thereby enabling external
systems to communicate with them regardless of an individual’s principle of operation. It is
important to note though that the TEAC reference model remains at a very high level and it only
provides basic interfaces, such getting a device on/off status and invoking functions that
represent the quote, tender, and transaction processes. It is up to the developer to define how
these interfaces are actually implemented (not only from a communication and logical
perspective, but also relative to the algorithms that are used to perform the process).

The TEAC model also supports the use of composite classes, that is, it enables end-users to
logically join functionalities of different systems into a single device model. This for example
could enable grid operators to represent photovoltaics (PV)-based smart inverters acting as a
resource, local controller, and supervisory controller at the same time as a single, integrated
object, thereby reducing the number of objects that must be maintained and communicated.
Although the TEAC offers many object-oriented relational capabilities, potential users should
refrain from regrouping or modifying the core models to ensure that systems developed by
different entities remain comparable across the board. This means that end-users should rely on
composition and inheritance to build new specializations rather than adding new core
components.

In summary, the TEAC model provides an excellent set of reference models that enable
potential users to leverage a well-defined skeleton that can be used to represent and compare
different TES implementations. This, for example, could enable competitors to share
architectural diagrams without risking the loss of proprietary information, while also ensuring
that everyone understands the underlying communication/data dependencies among resources.
However, the TEAC remains at a very high level, and still requires the end-user to develop and
refine the implementation details.

2.2 The Transactive Energy Network Template

The transactive network template (TNT) was developed by Pacific Northwest National
Laboratory (PNNL) in 2019 to advance the implementation and use of TESs (Hammerstrom
2019), and further developed into its current form, the Transactive Energy Network Template
(TENT). The TENT represents a metamodel architecture, or a system of models that work
together to achieve a common goal (a TES). In this context, the metamodel serves as a highly
abstracted template that seeks to replace single-use, custom-engineered TES solutions with a
more standardized architecture that enables future integration of these isolated solutions under
a single umbrella. This forward-thinking logic should prevent the eventual isolation of existing
and ongoing TES projects by providing common objects that enable inter-system
interoperability, regardless of the individual problem being solved.

Since its inception, the TENT has allowed decentralized and distributed scheduling, control, and
coordination of electric power systems. Transactive agents within a TENT are considered truly
independent, with no de-facto centralized authority (participants may join a central-like authority
if they want to). Transactive agents negotiate prices and energy-related assets by exchanging
transactive signals in a fully distributed manner. A transactive agent is aware of its own assets,
flexibilities, and capabilities, but is (and should remain) incapable of determining any other
agent’s resources and capabilities unless the other party wishes to disclose that information.

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

10

PNNL-32687

To achieve the aforementioned goals, there must be a communication system that enables all
agents to gain equal access to the system and equal opportunity to offer and receive grid
resources/flexibilities to and from the system. However, the TENT appropriately notes that
reference implementations should remain communication-system-agnostic, i.e., a reference
implementation should not specify or rely on the features provided by a single communication
solution/platform to provide their services. To accomplish this, the TENT relies on high-level
UML-based representations of the different participating entities to assemble its metamodel.
These representations have been designed to fulfill the following features:

Multi-domain, multi-capability representation: The TENT enables the representation of
diverse agents. All agents are capable of providing supply or demand services as they see
fit without a predetermined flow direction.

Ability to announce capabilities and needs: Agents are capable of expressing their future
plans, resources, and needs. However, they should not expect the same level of reciprocity
from all other agents.

Enable negotiation: Agents can send transactive signals to their neighbors and are able to
coordinate using communication channels and other grid-specific attributes such as prices.

Enable the representation of multi-domain architectures: The TENT has been designed
to enable the representation of multiple TES use cases, ranging from asset exchanges
between peers (p2p) to more traditional, centralized market operations.

Enable the collaboration of multiple actors: The TENT maintains an open representation
of an agent. An agent can be a wholesale market actor, or a generation, transmission,
distribution, commercial, or residential participant. All assets across all subcircuits can be
engaged in the TENT.

The TENT is composed of 11 base objects, which can be extended/customized to satisfy the
stakeholders needs. A brief description of the most important components is provided below:

Transactive agent object: The transactive agent represents a business entity that is in
charge of a specific circuit region, circuit element, or a specific generating or consuming
device. It keeps track of its local assets, its local market, and its neighboring transactive
agents with which it communicates, negotiates, and exchanges signals. There may be
multiple transactive agents in a TNT, and each agent can manage multiple devices/services
within the same electrical node.

Market object: This object balances the power supply/demand for a transactive agent (the
market is its own agent). A successful balancing means that the sum of generated,
imported, consumed, and exported electricity power or electricity energy must be zero in
every market period. The balancing is achieved with a price-discovery mechanism. There
may be multiple market instances within a TES. For example, instances of a day-ahead
market and a real-time hourly market can co-exist at the same time. In addition, different
types of markets (i.e., energy and ancillary services) can co-exist under the same system.
Market time intervals must be communicated to agents and must be aligned with local
scheduling and coordination processes, it is assumed that markets are operated using
forward time intervals (e.g., the price is known before consumption).

Local asset model object: A local asset model contains all elements that are known and
managed by the transactive agent. Local assets are fully transparent to their transactive

agents, which means that transactive agents know everything about the local assets (e.g.,
demand, or storage needs). The model is responsible for forecasting and scheduling all of

Exploration of Existent TE Models, and the Need for Blockchain-aware Models 11

PNNL-32687

the local assets’ power generation or consumption demands using forward time intervals.
Once dispatches/prices are known, the local asset model must ensure that the physical
assets follow the pre-scheduled actions. The local asset model object is capable of
integrating low-level controls and the necessary communication protocols.

¢ Transactive neighborhood model object: This model represents the neighbor agents
from the perspective of a single agent (e.g., an agent’s neighbor). The model should be
instantiated for every neighbor agent. Two agents are neighbors if they make transactions
with each other. A transactive neighbor model manages information sent to and received
from the neighboring transactive agent. The information may include price, schedule,
flexibility, and other related information. This information should flow using flexible, but
standardized, interfaces to ensure interoperability across all participants; flexible and event-
triggered communications are preferred. The transactive agent is responsible for scheduling
the power that imports from or exports to the neighboring location. A neighborhood model
object is effectively a view containing a subset of the information contained within each of
the local asset models (see Figure 2).

Neighbor’s #1:
Local Asset Model

: Private information
Neighborhood
LOCI:\;T'I g‘slset n%odel #1 +OperationalCosts
ode +...
Accessible information . .
oo Enown by | Shared information
Private information fxportAva”abmty iscovery | +ExportAvailability
+OperationalCosts t...
+. Neighbor’s #...:
Shared information - Local Asset Model
. o Neighborhood Private information
+ExportAvailability model #... +OperationalCosts
+... Others will Accessible information 4+
know this +ExportAvailability ; ;
. <@——— Shared mforma_tl_on
v +ExportAvailability
+...
Known info to the local asset Unknown info

Figure 2. Comparing the local asset model and the neighborhood model.
In addition to the four key TENT components described above, other relevant objects within the

TENT are presented in Table 3,. Their primary purpose is to assist with coordination and to
provide agents with system-wide information that enables discovery to occur.

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

PNNL-32687

Table 3. Other relevant components within the TENT model.

Object Intended Use Object Intended Use

Timelnterval Used to define an event MarketState Used to keep track of the
interval market state (e.g., its lifecycle)

IntervalValue Measured quantity over MeterPoint An agent that is limited to
specified interval reporting measurements

TransactiveRecord Basic price vs demand Vertex Point within a curve to define an
curve for a given operational point, e.g., the cost
Timelnterval vs demand (in a tuple)

InformationServiceModel A generic information
provider within a TES. (e.g.,
climate, system net load,
market agents and
identities)

A key contribution of the TENT is its market-handling characteristics. Within the TENT, a market
is executed by an agent, and this market can receive a multitude of signals from one, a set, or
all agents within the region, depending on the market structure that is being deployed. However,
all markets rely on an the same eight-stage lifecycle, thereby creating a model that is agnostic
to the underlying market theory of operation (e.g., it does not care about the price-discovery or
clearance mechanism). This prototypical lifecycle is reproduced verbatim in Table 4, and it
offers multiple benefits, as follows:

¢ Ability to develop event-driven TES implementations, this enables automation at the agent
side, while enabling other agents to subscribe or monitor as needed, thereby helping to
decouple individual actors’ communication dependencies.

o Ability to perform market pipelining. This means that multiple markets can trail each other;
for example, while one market is in delivery, the upcoming market is in delivery lead,
disseminating market results so that agents can schedule and prepare accordingly.

o Ability to run parallel markets. The TENT does not limit the number of markets that can run
at the same time within a single TES. This not only enables the execution of multiple
commodity markets but enables the deployment of correction markets. This could enable
real-time markets to correct for scheduling and forecasting deficiencies. An example
diagram of this process is presented in Figure 3.

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

13

PNNL-32687

Table 4. Methods used by the market’s state machine in the TENT v2, taken from
(Hammerstrom 2019).

Methods Automatically Invoked

Triggers or Actions

Inactive Initial state upon instantiation.
Market is added to agent’s list of active markets
transition_to_active Active period starts.
Active while_in_active
transition_from_active_to_negotiation Negotiation period starts.
Negotiation while_in_negotiation Negotiate.
transition_from_negotiation_to_market_lead Negotiation period ends.
Market while_in_market_lead Collect market bids.
Lead Market calculations.
transition_from_market_lead_to_delivery le The market clears.
ad
Delivery while_in_delivery_lead Disseminate final market results.
Lead Prepare for asset controls.
transition_from_delivery lead_to_delivery Delivery of market periods begins.
Delivery while_in_delivery Meter delivered electricity.
Control scheduled electric power.
transition_from_delivery_to_reconcile Last delivery period ends.
Reconcile while_in_reconcile Reconcile transactions.
transition_from_reconcile_to_expire Market is reconciled.
Market is removed from agent’s list of active
markets.
Expire on_expire A historical record may be kept
™
E Market LEX! Delivery Lead X Delivery

Market clears

Market delivery starts

Active)ﬁegotlatlox‘larket Leat){)elwen.r Leadx Delivery Subinterval

Reconcile){na-::tl\re

Correction Market 1 clears

-

Delivery subinterval ends

b

Active

XegotiatioMla rket LeaXDeIi\rer\r LeadX Delivery Subinterval

Correction Market 2 | Correction Market 1

o 5 10 15 20 25 30 35

1 T 1 1 T T 1 1 1 1 T
45 50 90 95100

Figure 3. Hierarchical market architecture, demonstrating the use of correction markets, taken
from (Hammerstrom 2019).

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

14

PNNL-32687

In summary, the TENT provides an interesting perspective toward achieving a template-based
representation of TESs. It offers a clear decoupling of the physical grid devices and its
transactive energy counterparts, which may prove useful when decoupling TES solutions from
the simulation or physical grid components. An agent within the TENT is fully responsible for
managing its own assets, while at the same time being required to expose a standardized
interface, thereby greatly simplifying the interoperability of diverse systems. A known limitation
of the current TENT model is its lack of data models to enable non-power demand-related asset
exchanges; for example, no support for ancillary services or for derived markets exists.
However, most of these limitations, if not all of them could be addressed by performing
specializations over the base classes.

2.3 Supporting TES Services Using Blockchain,
Explorations

As outlined by Section 1.0, TES solutions based on DLTs (e.g., blockchain) have shown great
potential. However, most of the literature has focused on solving specific problems that may
prove difficult to generalize to the entire TES domain. Furthermore, some fundamental
guestions regarding the applicability of blockchain technology remain unanswered. Figure 4
illustrates some of the pending questions, which represent some of the key unknowns identified
during the development of this report. It is expected that these types of questions could be
better understood and addressed if more experimentation/research is carried out.

As can be observed in Figure 4, these questions cover a multitude of domains, with a wide
range of topics that are relevant to an ample spectrum of potential users—ranging from
prosumers, stakeholders to software developers who must implement the solutions. For end-
users, industry stakeholders, and asset owners, the most relevant topics revolve around trust,
privacy, and fairness. Whereas for researchers and developers, the areas of interest include
scalability, enforcement of contracts, and those related to identifying the best practices
(cybersecurity, software development cycles, maintenance).

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

15

PNNL-32687

e How do consumers/producers interact with the
platform?

\— \}'\' e How can we attest a system’s physical capabilities
lﬁ within the digital domain?
Consu mers/prod ucers e How can we represent assets inside a blockchain?

e How do we determine what data goes inside the

operations?

e How do we enforce business rules?
Business requirements

chain, what goes toward off-chain storage
Tanglble assets e How do we model relationships, actions,

e How do we provide privacy to participants?
o e How do we ensure that all participants have fair,
and equitable base system?

e What unique properties does a blockchain based
approach brings into TE?
e How does it scale up?

Figure 4. Open research questions related to blockchain applicability in the field of transactive
energy.

To address these questions multiple researchers and working groups have started to develop
models that abstract the functions provided by blockchain. For example, in (Lima 2018), the
author presents a breakdown of blockchain technology using a hierarchical structure that can be
used to map common application needs to blockchain services. Whereas in (Cali, et al. 2019),
introduced an initial approach to mapping TES-based applications to a blockchain platform; the
main takeaway is that blockchain can be used as the backbone to support the future grid needs
(in the TES space), while also recognizing the need for standardization and the development of
use cases.

Another exploratory work (Gourisetti, et al. 2021), presents a TES-oriented solution that uses
blockchain technology to implement a series of processes and objects that enable agents to
participate in a double-auction market. Although the demonstration section still falls under the
specialization problem described above, its design was based on analyzing the engineering
requirements of a TES and then mapping those requirements to the features provided by a
blockchain-based environment, placing special emphasis on SCs, which are logical pieces of
code that can execute on top of a blockchain. This procedure mimics some of the template work
presented in previous sections, where emphasis is put on accurately representing the TES
architecture rather than building a system that is only relevant to the particular problem.

Another area of interest within the Transactive Energy Systems field revolves around exploiting
the enhanced trust capabilities that blockchain provides. Devices that choose to participate in
such a system have the potential to increase the quality and trustworthiness of the operations in
which they participate, thereby offering a competitive advantage to cases where participants are
owned or operated by different organizations and no traditional trust relationship can be
established. Such features have been explored in works such as (Eisele, Barreto, et al.,
Blockchains for Transactive Energy Systems: Opportunities, Challenges, and Approaches
2020), where a transactive energy network based on smart contracts has been developed, and
(Tucker and Johnson 2021) where a mechanism for enabling local grid operators to pre-

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

16

PNNL-32687

emptively evaluate and assess market transactions before they are submitted to the wholesale
market.

Another approach to integrate a TES network with existing grid infrastructure is described in
(Mokhtari and Rahimi 2021), the approach enables participants to perform peer-to-peer
transactions with a distribution system operator having oversight capabilities. The system is
based on a token-based system where energy producers are assigned tokens once the amount
and source of energy have been validated, participants rely on these tokens to perform
transactions. Under the author’s premise, tokens can be pegged to an actual currency to enable
operations with other external participants.

Similarly, in (Li, et al. 2019) the authors have proposed the use of blockchain for enabling
transactive services in microgrid environments. The approach follows a multi-stage operational
cycle that enables 1) DSO-level (distribution system operator) level oversight; 2) Participant
registration; 3) Distributed state estimation and 4) Final settlement among participants. The goal
of the paper is to create automated and traceable mechanisms that can increase efficiency
reliability, and resiliency. Although the paper has an interesting approach, it fails to provide a
reference implementation for other researchers to explore and build upon it.

As it can be observed from the previous paragraphs, there is a wide array of works that have
relied on using blockchain for satisfying TESs requirements. Nevertheless, this list is not
comprehensive and thus it is only used as an example of the work being performed across the
research space. Although, performing an in-depth review of the existing literature is outside the
scope of this report, additional reviews regarding the subject of TESs and blockchain technology
can be found within (Gourisetti, et al. 2021).

2.4 Identified Gaps

Based on this short review, it becomes clear that proposing high-level solutions such as those
reported by the TEAC and the TENT models can be beneficial to the majority of stakeholders.
Key benefits of using a template-based architecture for TESs applications include:

e Supporting and encouraging participation through the use of highly standardized, neutral
trading platforms.

¢ Enhancing failure resistance (due to centralized or single points of failure), by enabling
agents to operate in a decentralized fashion.

¢ Enabling participants to freely negotiate based on their own preferences, thereby
fostering competition for better services.

However, in order to achieve these benefits, a significant amount of work needs to be performed
by organizations that seek to adopt this model, a task that can be compounded when novel
technologies, such as blockchain disrupt traditionally accepted operational paradigms.
Therefore, there is a need for creating tools that can facilitate this adoption. Specifically, we
propose to develop a framework that extends the TEAC model to operate under a blockchain
environment, offering organizations the ability to experiment with the technology without first
having to allocate resources towards analyzing its properties and designing mechanisms to
address its drawbacks. It is expected that this template system can be beneficial to
organizations, software architects and potential developers by allowing them to accelerate
deployment of TES-based applications based on pre-engineered templates.

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

PNNL-32687

This, however, should be done with care; in particular, the concepts of universality,
interoperability, and extensibility should remain a priority over solving predetermined problems.
Potential frameworks should not rely on the specific technological features of a product/offering
to accomplish tasks. The developed templates should remain at a high level but must still
provide insightful information to potential adopters to avoid confusion. Following this logic, in this
work we propose a set of blockchain-agnostic reference templates that can be adapted to a
wide variety of TES applications. The key contributions of this work are:

¢ providing stakeholders with a set of blockchain-agnostic templates that can accelerate the
development of TES-based applications.

¢ being built around the concepts of universality, interoperability and extensibility; remain
language and implementation agnostic by relying on UML diagrams.

¢ following an object-oriented approach, enabling them to be extended and composited to suit
the end-application needs. We refer to this capacity as mix-and-match.

¢ being designed to leverage blockchain features, while at the same time avoiding the use of
problematic features that can create performance issues (or are incompatible with the
technology).

e presenting an attribute-based access control mechanism that has been specifically designed
for blockchain environments.

e presenting a high-level, configuration example intended to represent a real-time market
operating over a TES.

Exploration of Existent TE Models, and the Need for Blockchain-aware Models

18

PNNL-32687

3.0 Blockchain Use in the Energy Domain

As mentioned in Section 1.0 of this document, blockchain is a relatively new technology that has
received wide industry attention due to its potential disruptive solutions. Blockchain promises to
facilitate the execution of contractual obligations between parties without the need for a
dedicated backend system or a third party that enforces rules. The specific mechanisms that
allow such a system to exist are beyond the scope of this work but can be found in the literature
(Nakamoto 2008) (Buterin 2013) (Yaga, et al. 2018) . Nevertheless, to frame the characteristics
of blockchain and create compatible templates, it is important to present a high-level summary
of blockchain core concepts and components, which are as follows:

e Blockchain categorization: Blockchain systems can be largely grouped into permissioned
or permissionless systems. Permissioned systems require participants to establish and
maintain identities before access to a network is granted, ideally creating a trust relationship
that can simplify the consensus mechanisms. Permissionless systems represent some of
the most common deployments; they enable a truly decentralized operation where decisions
follow the behavior dictated by the majority of agents, under the assumption that most
agents are ad hoc, independent, and cooperate toward achieving a common goal.

e Peers: Within blockchain terminology, a peer is a computational node that is capable of
engaging in blockchain activities (subject to authorization). Common activities include being
able to get a copy of the data, participating in the consensus decision-making process and
submitting transactions. Actual authorizations vary depending on the blockchain
implementation and pre-configured access permissions.

o Data blocks: Within blockchain, a data block represents the most basic unit of data storage.
Individual blocks contain copies of the intended data, along with a digital fingerprint that can
be used to verify its authenticity.

e Block chaining/aggregation: Blockchain derives its name from the digital-chaining
mechanism used to tie blocks in a sequential manner by relying on cryptographic functions
to link them together. In a more general sense, DLTs expand this concept to refer to the
mechanisms that are used to aggregate data blocks into a data structure that prevents data
modification, thereby providing immutability.

e Ledger: Once data blocks are aggregated into a data structure, they become part of the
ledger. The ledger is intended to be distributed across participating peers (for replication
purposes), and provides the open, verifiable platform that makes blockchain attractive for
applications that seek transparency.

e Transactions: Requests to input and retrieve data from the ledger are submitted to a
blockchain system via a transaction request. For most blockchain implementations,
transactions that led to writes into the ledger require consensus to be achieved before
changes are committed; read operations do not need this consensus to occur and can be
obtained from cached versions of a ledger. The number of transactions a blockchain
implementation is able to commit per unit of time is an important metric that has a direct
impact on application scalability.

e Consensus models: Consensus models dictate the mechanisms that agents use to agree
on the global system state, such as determining the data blocks and the order in which they
are committed to the ledger. These mechanisms can be selected based on the nature of the
blockchain (permissioned vs permissionless) and the desired speed or security traits that
are needed to satisfy the application requirements. Examples of common consensus

Blockchain Use in the Energy Domain

19

PNNL-32687

algorithms include Proof-of-Work (for permissionless systems), Proof-of-Stake, and Proof-of-
Time, among many others (for descriptions, see (Yaga, et al. 2018) and (Cali, et al. 2019)).

e Smart contracts: Because consensus models enable blockchain technology to agree on a
common state, the underlying mechanisms can be extended to support agreement at the
logical level without needing to write the state into the ledger. This is achieved by essentially
deploying a state machine that transitions to a new state only if a consensus is reached. The
complexity of the code that can be deployed into a blockchain (if at all supported) remains
implementation-specific.

e A public ledger: Perhaps one of the most publicized features of blockchain is its ability to
store data in an immutable data source, known as the ledger. This ledger usually remains
public and accessible to all participants (thereby enabling them to validate its integrity). It is
important for application developers to choose what information needs to be stored in the
ledger and what can be sent to an off-the-chain storage mechanism, because large or
rapidly expanding ledgers can be problematic to maintain.

As can be deduced from the previous list of core concepts and components, blockchain is a
complex ensemble of systems that requires careful selection of components to ensure that the
target application needs are satisfied. Specifically, for grid-related applications, authors seem to
agree that a permission-based blockchain is the preferred option, because it enables system
operators to still maintain control over which agents can participate within the network.
Furthermore, the consensus mechanisms can be more computationally efficient if a trust anchor
can be leveraged (i.e., by creating an identity based on a physical interconnection point).

The second characteristic that may be relevant to a TES is a platform's SC capabilities.
Although SCs are not mandatory (because external systems can query, process results, and
eventually post results back to the blockchain network), they may prove useful in simplifying the
decision-making process, while providing strong guarantees of the validity of the decisions.
These guarantees are achieved by enabling participating peers to explore the code and execute
their own copy of the contract within their own system (however, their execution results must
agree with other systems to achieve consensus).

Common blockchain implementations include Ethereum and Hyperledger fabric. Ethereum is
often cited as a public, permissionless network, although it can also be deployed on a private
network. Ethereum is primarily based on a Proof-of-Work system (currently transitioning to
Proof-of-Stake), and it requires agents to expend gas to propose a new block. Gas in this
context refers to a transaction fee paid by users to execute a transaction, a fee that is based on
its computational complexity. However, private networks can set their own gas requirements,
effectively resulting in a no-cost network. Ethereum can run SCs using a custom language and
a dedicated virtual machine that runs on each of the participating peers. This is a simple, but
powerful interpreter-based solution that is a quasi-Turing-complete machine (limited by the
number of instructions that a network allows) (Antonopoulos and Wood 2018).

Hyperledger fabric is a project backed by the Linux foundation that intends to provide a modular
architecture that can be configured and adapted to suit an application’s needs. It offers a
permissioned network, where participants need to register and obtain a digital identity from a
Membership Service Provider (MSP) before they are allowed to access the ledger or
invoke/process transactions. Multiple MSPs are supported, under the assumption that peers
may belong to different organizations, and each organization must be capable of vetting their
own members. Hyperledger fabric operates under a channel-based architecture, where multiple,
parallel networks can exist. Individual peers can be part of one or more channels, and peers can

Blockchain Use in the Energy Domain

20

PNNL-32687

execute SCs using one of the currently supported languages (GoLang, Java, and JavaScript).

Communication among peers is restricted to members of the same channel and can occur via
traditional IP/Hosthame addresses or a dedicated gateway service that can interconnect peers
across multiple networks or organizations. A detailed overview of the Hyperledger Fabric

architecture is presented in Figure 5.

Out-of-chain communication

i A
L S Orgn i
External connectivity :
Fabric libraries
Smart contract | —™—™¢ = T £ N
Local —
Fabric’s peer VM DB |ir. Gateway service/
1 = "} (optional comm path) Individual PKI IDs
B : ;
° =z ? 4 Root CA
o Communication network
E 'S 'S 'S MSP
@ D i
2 §§ Identity management
A 4 /@
) - §>,'»\9 v) v s v s
g Orderer service LL{','E? Org n+1 }i0rg n+2 | Org n+3 |
(@) : : : :
BCo [BCy D BCn,
Fabric 2.x Network I Links to other channels I

Figure 5. Detailed, service-level components present in a typical Hyperledger fabric
deployment.

In the next sections, an in-depth, blockchain-agnostic review of features (and limitations)
introduced by blockchain technology that are applicable to TES applications is developed.
These features revolve around three main areas of interest: (a) cybersecurity; (b) performance

characteristics, and (c) potential pitfalls.

3.1 Cybersecurity Characteristics of Blockchain-based
Environments

One of the competing reasons to adopt a blockchain-based platform for TES is to increase the
cybersecurity properties of the target application. Commonly cited features include its
immutability and its decentralized, consensus-based decision-making abilities. However, these
features may not provide a complete picture; for example, immutability does not mean
permanent data protection (because deleting the ledger will cause data destruction), but instead
refers to the ability to detect data modifications. Similarly, consensus, does not imply correct
consensus; in this case a majority-based decision made based on an incorrect data set or by a
faulty algorithm will lead to an incorrect ledger state from the perspective of the application.
Nevertheless, Table 5 presents some of the properties provided by blockchain and the expected

benefits (at the TES level).

Blockchain Use in the Energy Domain 21

PNNL-32687

Table 5. Cybersecurity characteristics of blockchain environments and their applicability to

TESs.

Blockchain

Characteristic

BC Domain Descriptions

Potential TES Benefits

Potential TES Drawbacks

Authentication

Data privacy

Data integrity

Data
confidentiality

Nonrepudiation

Data
provenance

Distributed
consensus

Noncentralized
database

Smart contract

Writing rights can be
enforced by an Identity
Service Provider (ISP); also
known as a Member Service
Provider (MSP).

Blockchain does not natively
support data privacy;
applications can selectively
protect data.

Blockchain data blocks are
digitally signed, enabling
peers to verify the integrity of
the data,

Blockchain can store data
that have been previously
protected.

Because writing can only
occur after an ISP does
Public Key Infrastructure
(PKI) validation, an agent
cannot deny a signed
operation.

The current block state
depends on the previous
blocks.

The current database state
reflects the agreement of
participating peers, based on
a predefined set of rules.

Multiple, replicated
databases are stored across
all participating peers.

A peer’s behavior can be
defined by a smart contract.
A “logic” set of steps
executes at the peers, and
the results are deterministic
and should yield the same
result across all peers.

Access to blockchain
applications/operations is
permissioned.

Transparency

As long as the TE has
access to the live,
committed version of the
chain, integrity can be
assumed,

Ability to store business
sensitivity data

Participants have
reasonable guarantees to
trust ledger-stored, third-
party data.

An operation can be
recursively traced back to
its previous state, up to a
genesis block.

The state has been agreed
upon by all endorsing
peers, increasing the trust
level.

Risk of data loss is
minimized; snapshot
capabilities are already
built into the database.

Business definitions can
be specified in a
programmatic manner.
Any Turing-complete
algorithm can be deployed.

Requires blockchain
network operators to
whitelist participants,
creating the possibility of
discrimination.

Most operations can be
observed once a copy of
the ledger is obtained, and
can lead to the loss of
competitive advantages,

Mechanisms to ensure
connectivity must be
provided, otherwise there is
a risk of operating with
inconsistent data,

TE applications must
selectively protect data
based on their risk profile,
limits transparency.

Mechanisms to secure
private keys must be
considered (credential
management).

Off-the-chain events cannot
be fully secured, only
validated against the stored
fingerprint.

Consensus does not imply
correct consensus.
Mechanisms to correct
incorrect ledger states must
be developed.

There is a risk of rollback if
the application happens to
be in an invalid fork.

True randomness cannot
exist. All algorithms must be
deterministic (steps, inputs,
and outputs),

Blockchain Use in the Energy Domain

22

PNNL-32687

3.2 Performance Characteristics of Blockchain

A key interest related to blockchain is determining its ability to scale-up—particularly when it is
subject to large amounts of data or transactions, as typically experienced in a real-world TES
deployment. To date, there is no clear source of information or procedure that can be used to
accurately predict the performance of a TES application just by specifying a blockchain
platform. However, certain properties are empirically known and are widely accepted; for
example, it is generally acknowledged that permissionless (PL) networks can take a long time to
commit to the ledger, and also require a significant amount of computational power to reach
consensus. In contrast, permissioned (P) networks are designed to be time and resource
efficient at the cost of requiring participants to register before participation is granted.

Based on these limitations, Table 6 was developed to serve as a generic benchmark
assessment tool to aid developers in comparing different solutions. In this case, the first two
columns are used to describe key performance metrics, while the third column describes a
metric’s potential implications within the TES domain; Finally the fourth column is used to
provide sample metrics to the reader. These metrics are categorized according to the underlying
blockchain architecture (P is used to denote permissioned blockchains and PL is used for
permissionless blockchains), the reported metrics have been adcquired from multiple sources,
including: (Zheng, Yongxin and Xueming 2019), (Kuzlu, et al. 2019) and (Mylrea, Gourisetti and
Culley, Keyless Infrastructure Security: Technology Landscape Analysis Report 2018).

As mentioned earlier, the only reliable mechanism that can be used to gauge a given blockchain
performance is to perform experimentation. To aid in this aspect, some tools such as
Blockbench and Hyperledger Caliper can be configured to capture low-level performance
metrics from a wide array of blockchain implementations (Wang, Ye and Xu 2019). However,
metrics can only be captured once a proof-of-concept or beta version is deployed, a task that is
hard to achieve on its own. However, certain approximations can be made if the use case
characteristics are known. For example, if the target goal is to implement a real-time market
mechanism, then the chosen blockchain system should be capable of:

Table 6. Typical performance metrics of blockchain environments and their impacts on TESSs.

BC Domain
Metric Descriptions Potential TES Impacts Reported metrics
Transaction This is the maximum This number may limit the Hyperledger (P): Thousands of

throughput number of transactions number of TE transactions TPS
that can be processed by that can be run per day. The Ethereum(PL): Hundreds of TPS
the system per unit of number of TE transactions a I0TA(PL):~100 TPS
time,e.g., Transactions system requires is dictated
per Second (TPS). by the number of agents and
the periodicity of the
transactions.

Transaction This represents the time This acts as a delay in
enqueuing to submit a transaction, getting a TES transaction

time until all agents are ready processed.

to start execution.
Consensus This is the time needed to This acts as a delay in Hyperledger(P): <10ms
time reach consensus among getting a TES transaction

peers and is usually lower processed. Note that in
certain blockchain

Blockchain Use in the Energy Domain

23

Block Once a consensus has This acts as a delay in Hyperledger(P)- 1s
commit been reached there could getting a TES transaction Ethereum(P)-12s
time be a delay in putting the processed. Bitcoin (PL)-10 minutes

data into the ledger due

to ordering and data

replication delays.
Smart This metric will be tied to This acts as a delay in Hyperledger(P)-Dependent on
contract the complexity of the SC, getting a TES transaction program logic & used language.
execution the platform overheads, processed but is a factor Ethereum(P)-Dependent on
time and the language that can be managed by program logic.

characteristics. optimizing the logic/code. Bitcoin (PL)-Not supported
Smart This metric will be tied to High memory requirements Hyperledger(P)-Dependent on
contract the complexity of the SC. may act as barrier for program logic & used language.
memory smaller, less capable Ethereum(P)-Stack is limited
footprint participants. Bitcoin (PL)-Not supported
Average This metric represents the Although directly performing Dependent on smart contract
Read average time needed for ledger reads may be fast, logic, connectivity, but usually
speed retrieving and validating requiring additional order of magnitudes faster than

data from the ledger. This processing via smart write operations (no consensus

number can be quite contracts may add required)

small. significant overhead costs.
Average This time is the The write speed, or the time Hyperledger(P): Tens of
Write accumulation of multiple to achieve ledger seconds, worsens as TPS
speed metrics such as commitment, may limit the increase

for permissioned
networks.

consensus time, block
commit time, and SC
execution time.

environments the consensus
time is not time-bound.

number of operations if
subsequent processes
require such information to
be present in the ledger to
continue.

PNNL-32687

Ethereum(PL): ~ 100 seconds
IOTA(PL):~ sub second

As described earlier, blockchain offers multiple benefits to applications that wish to leverage its

3.3

Potential Pitfalls of Blockchain-based TES Solutions

features. However, it also introduces certain limitations that may affect the ability of a TES to
fulfill its duties. Based on previous experiences, a non-exhaustive list of potential issues is
shown in Table 7. Within this context, a topic that has received community interest is the
implications and engineering decisions that must be considered before deciding on using on-
chain or off-chain data storage mechanisms. Broadly speaking, existing grid applications

produce vast amounts of data (e.g., data from Advanced Metering Infrastructure), making some
of them impractical to be stored in-chain. Nevertheless, enough metadata must be stored on the
chain to ensure that either 1) data integrity or 2) data recovery will be possible in the event of a
system compromise or malfunction. An example, of how such engineering decisions could be
applied to determine the data (or metadata) that must be stored is exemplified in (Sebastian, et
al. 2021).

Blockchain Use in the Energy Domain

24

PNNL-32687

Table 7. Potential impacts/drawbacks of using a blockchain environments in TES applications.

Metric BC Domain Descriptions Potential TES Impacts
No consensus Blockchain systems operate Fail-safe defaults must be considered in case a
guarantees over distributed networks, and lack of consensus state is reached. These may
as such cannot guarantee that include setting default prices or following
consensus will be reached. previous dispatch orders.
Ledger forking Agents operating in a To detect these conditions, mechanisms for
risk fragmented network may reach comparing the number of agents that are
an inconsistent state that does currently participating in the consensus against
not match the global state. the expected number of agents.
Delayed There could be a significant A TES operational timeframe should be greater
commitment delay in getting a value than the maximum commitment time to ensure
time committed to the chain. that the blockchain can keep up with the TES.
Smart contracts Smart contracts must follow Certain functions, such as true random number
are restricted to deterministic procedures to generators are not possible. Data inputs should
deterministic ensure eventual consensus. remain the same for all peers. e.g.,
algorithms This also includes providing the getweatherat (time=11h) is preferred over

same data inputs to all agents. getweatheraAt (time=Now ()) because the Now ()
can be resolved differently by peers.

Risks of relying Blockchain can only guarantee Special considerations to securely link external

on off-chain the integrity of on-chain systems to the blockchain must be developed.
systems systems. An external system The overall security of a blockchain application is
can become unavailable or defined by the weakest link/component in the
repudiate information previously solution.
provided.
Risks of off- Data stored off-chain can only In case the off-chain storage gets compromised,
chain storage be validated for integrity there is no built-in mechanism to recover it. The
purposes. only mechanism provided by blockchain is to

verify the integrity of the data.

Blockchain Use in the Energy Domain

PNNL-32687

4.0 The Blockchain-aware TES Template Model

As mentioned in Section 2.4 there is a need for developing specialized blockchain-aware
templates that enable stakeholders to implement TES-based solutions using blockchain. These
templates should aim to ease overall development, aiding stakeholders in reducing the time
required to transition from an idea to implementation, while also providing mechanisms that
allow different entities to compare their implementations using uniform models, in addition to
enabling interoperability that reduces the number of problem-specific solutions. This section
walks the reader through the proposed templates by first discussing the overall approach and
then exploring the template constructs in detail.

4.1 High-level Overview

The objective of this research is to develop artifacts that can help researchers follow a
methodical and engineering-based approach when using blockchain to implement relevant TES
applications. This research is performed in a DLT-agnostic fashion. Therefore, the research
artifacts will be applicable for any TES application that intends to use blockchain or DLT. The
proposed templates are grouped into five categories that follow the model described by
(Widergren, Transactive Energy for Distributed Resource Integration 2016), and a high-level
overview of this process is presented in Figure 6. The next section presents the details of this
five-stage model.

The Blockchain-aware TES Template Model

26

TES Smart contract templates
(building blocks with objects along with typical process flows)

Negotiation Operations Measurement Settlement
process process & Verification = reconciliation
Generation Diverse market Clearance S, | int Billi
;:apall)lltlty templates notification n?gglguereprggn{ ten:pllg%es
emplates . t lat i
Terms/ Horizon emplates rep0||'t|ng
Measurement templates . templates Contract
capability Forecasting enforcement
templates Process flows templates templates
Load capability e
template
————
Base templates/components selected by end-user #1
Potential user #1 AMI/DER
DER generation DSO level Day-ahead ; T
capabilities traditional forecasting mg::\)si;ltnsng LeRlLe
bidding
>> AMI End-user selects the key
measurement Day ahead + 15 .
capabilities min market options/blocks needed to

E.g. a FERC 2222 use
case

Potential user #2

Needs &

requirements for a
p2p market

E.g. wants to
explore p2p

PNNL-32687

Data storage -
>> =

User-specific
implementation

Basic templates/components selected by the end-user support its needs

Base templates/components selected by end-user #2

i - Data storage
DER generation Day ahead Day-ahead D@:{tﬁmséztslgﬂég P2P billing i J =+ (Process flows
capabilities forecasting ; objects
points

Trusted P2P market DER availability >> =

remote measurements User_speciﬁc
B e implementation

Submit global forecast:
Local/zone forecastin
Submit surplus quantities, costs
n n
P2P Explore alternative energy sources (P2P)

negotiations Submit p2p
agreements
Accept p2p
agreement
Validate system constralnts
Approve and store in B
Query fully- valldated p2p agreement

Settlement

Figure 6. The blockchain-aware TES template model.

The Blockchain-aware TES Template Model

27

PNNL-32687

4.2 The Five-stage TE Model

For the purposes of this report, the team decided to leverage the transactive node model, which
introduces the concept of the Energy Service Interface (ESI) (Widergren, Interoperability
Strategic Vision 2018) to serve as the interface between a local node and other neighboring
transactive nodes (see Figure 7). To achieve its operational lifecycle the ESI relies on a five-
stage process that is intended to be operated over a continuous loop (except for the first stage),
and the stages are not necessarily serialized (e.g., an agent may skip certain steps if needed).
A brief summary of each stage is summarized below.

1.

Transactive Node Example ESI Services
i
Remote Data Optimize local business objectives .—:
Register and qualify capabilities to participate in '
others' programs

Judge terms and qualifications of others
Bid for services needed, evaluate and accept offers One or
=] | Local Data from supplier(s) Negotiation Process more other
,@} = Value offers for services it renders, evaluate and transactive
accept bids from buyers nodes
Implement control of local assets under purview Operations Process*

L— Local Devices/ —!L——— Local Intelligence ————! Transactive Interaction

Registration/Qualification: In this stage the transactive node gets registered into the
system and its capabilities are recorded, vetted, and approved following the procedure
defined by the system operator

Negotiation process: At this stage the node discovers other neighboring transactive nodes
and starts a negotiation process. This can involve tasks such as placing and waiting for bid
clearance, but it can also include the discovery of new services.

Operations process: This stage represents the actual asset exchange process; it is
expected that most of the action happens at the physical level (or within the simulation
domain if this is the case).

Measurement and Verification: During this stage measurements are taken to ensure that
the negotiated terms are effectively being followed by the participants. Although this process
is logically represented after the operations process, in practice, this process should occur in
parallel to it, to ensure that measurements capture the actual asset exchange progress.

Settlement and Reconciliation: Using the information established during the negotiation
stage and the measurements collected, the settlement operation occurs by taking into
account the deviations between the agreed-upon quantities and the measured/verified
guantities. The value assigned to this deviation is determined using the agreed-upon
contract negotiated during the second stage.

Registration/Qualification

according to agreement

Deliver and receive products, rights, or services
required by transaction

Deliver and receive data, measurements, and
Local Control verification as required by transaction
Execute financial settlement as required by

transaction and reconcile performance differences

Measurement and Verification

Settlement Reconciliation

NN
NN NV NN

L

Systems *E.g., Operations signals
or e-product exchange

Figure 7. The transactive node model as represented by (Widergren, Transactive Energy for
Distributed Resource Integration 2016).

The Blockchain-aware TES Template Model

28

PNNL-32687

4.3 Basic Data Types
In this section a collection of basic data types that are used within the template are introduced.
The details of these objects are summarized during the main body of this document, only
presenting an overview of their responsibilities and capabilities along with high-level diagrams.
Low-level details of these objects can be found in the appendix section of this document.

4.3.1 Basic object models

The diagram/package shown in Figure 8 provides an overview of foundational classes that are
used as the base constructs for the Blockchain Architecture Transactive Energy Systems (B-A
TES) template framework. These elements work together to 1) uniquely identify objects; and 2)
support an event-based architecture.

Randomizableete 4.3.7 BlockchainLedger ::GenericBlockchainDep

{leaf}

+ randomizeDuration: TimeSpan [0..1] =0
+ randomizeStart: TimeSpan [0..1] =0

<7 =7

¢
| uID
Event L
= E BlockchainInterface: GenericBlockchainDep
creationTime: TimeType - SeqlD: Int64
+ interval: DateTimelnterval - TypelD: Int32
FireEventDep - TypeVersion: VersionType
Z% {leaf} . .
+ computeFQID(Int64, Int32, VersionType): int
+ Listen(): void + GetFQID(): int
«interface» r + GetObject(VersionType, Int32): Object
FireEvent / + getVersion(): void
+ LoadInstance(Int64, Int32, VersionType): Object
+ NotifyAll(): void FireEvent ~ < + LoadInstanceFromFQID(int): Object
~
P
| FireEventRealization
1
SingleFireEventRealization IdentifiedObject
Int16
- _hasFired: Boolean VersionType + description: String [0..1]
+ mRID: mRIDType
+ version: VersionType [0..1] =0

Figure 8. Overview of the BasicObject’s package components.

4.3.2 Primitives

The diagram/package shown in Figure 9 presents an overview of data primitives. These data
type models are intended to support a wide variety of data needs, provide generic structures
and in general support more complex template models. In addition, they provide clearance on
the size, supported operations, and intended usage.

The Blockchain-aware TES Template Model 29

XYpointList GeolocationData
- ElementAddress: Address cenumeninm,
<— - = E Geolocation: XYpointList LocType
+ Type: LocType :| — —
N Point
> N Rectangle
Int64 <T->XYpoint >\ — Path
- Data: Bytes = <size=8>
ArraylList Object
Int32 + add(T): void
+ count(): int
- Data: Bytes = <size=4> - + remove(int): void
n
\b »
Data: Bytes UE Z}
Int16 isLE: int
— ,> OrderedArrayList . . .
- Data: Bytes = <size=2> + getValue(): void u SerializableObject
g sevallclil : add('[()):.\{otld + Deserialize(Object): void
Int8 countl + Serialize(): Object
+ previtem(T): T
- Data: Bytes = <size=1> + remove(int): void Q
T:*
TES_Base
Bytes
i —— Array + _UID: UID
e <T->Byte> - dataBuffer: T + _getUID()
- sizerint
BitEncodedString i
Byte e + create(Int): void]
- bitlen: Integer + getBufferLen(): int Choice
value: Bit [8] :l = _ Name: String <=L Bits: Bit [0..%] + getElement(int): T

4.3.3

- Position: Integer
- Value: Boolean

Figure 9. Overview of the Primitive’s package components.

Time Objects
The diagram/package shown in Figure 10 presents an overview of time-related constructs that
will be used in this work. The data models are intended to support a common ground, in which

- Name: String

PNNL-32687

setBufferLen(int): void
setElement(int, T): void

all applicants are subject to the same time references and requirements.

The Blockchain-aware TES Template Model

30

«dataType»
CountStamp

«enumeration»
UTCOffset

The Blockchain-aware TES Template Model

«dataType»
TimeStampBound

days: int
months: int
TotalDays: Int64
years: int

TotalSeconds: Int64

«dataType»
DateTImeStampTZ

- timeZone: UTCOffsg__t|

«enumeration» «dataType» «dataType»
AggregationPeriods DateStamp TimeStamp
01 week - day:int + hour: int
02 bi_weekly - month:int + minute: int
03 semi_monthly - yearint + second: int
04 month - TotalSeconds: Int64
05 bi_montly R ﬁ
07 semester
08 year «dataType»
06 quarter DateTimeStamp
09 2years
10 3years /I,\/I,\
11 5Syears 11
12 10years 7/
7/
7/
/ gte
DateTimeBound /7
>4
+ End: DateTimeStamp_ | /
+ Start: DateTimeStamp]
Figure 10.

Overview of the time objects components.

7

«dataType»
TimeSpan

-12:00
-11:00
-10:00
-09:30
-09:00
-08:00
-07:00
-06:00
-05:00
-04:00
-03:30
-03:00
-02:00
-01:00
00:00

+01:00
+02:00
+03:00
+03:30
+04:00
+04:30
+05:00
+05:30
+05:45
+06:00
+06:30
+07:00
+08:00
+08:45
+09:00
+09:30
+10:00
+10:30
+11:00
+12:00
+12:45
+13:00
+14:00

PNNL-32687

31

The Blockchain-aware TES Template Model

PNNL-32687

4.3.4 Math

The diagram/package shown in Figure 11 groups objects that have mathematical or engineering
applicability but are usually not natively supported by programming languages. This diagram
may be expanded in the future to introduce more definitions.

T:*
4.3.2 Primitives::
ArravList<Complexsf — — — — — — Arrr;ml-lisl\tles «dataType» «enumeration»
1Y < T->Complex > g Complex PowerOfTenMultiplierType
+ add(T): void .
+ cour(1t())' int ImaC gL UE D
Arraylist<Real> f———— — — -[> A remové(int)- e - Real: Real -06 micro
< T->Real >) -03 milli
00 unit
«dataTYpe» 03 kilo
o XYpoint 06 mega
Vertex2D O 09 giga
Y: Real
Figure 11. Overview of the Math components.

4.3.5 Trackable Objects

In this case, the diagram/package (see Figure 12) contains classes that can be used to track an
object's changes through the trackable interface. Objects that inherit these interfaces can be
used to track an instance's particular history across its lifecycle. The interface can be used to
store a full copy of the previous state (e.g., when a ledger is present), or two store a hash only
(for off-chain applications).

32

OptionallyTrackable

PNNL-32687

GenericTrackableDep - isTracked: Boolean

. leaf

: {leaf) + _OnCreate(): void GenericTrackableRealization

| + _OnDelete(): void

T . + _OnUpdate(): void \A ::IGenericTrackable

GenericTrackable + CreatedBy: GenericldentityDep
_______________________________ + CreatedWhen: DateTimeStamp
+ CurrentRecord: RecordTracker
v + DigestDescriptor: DigestFunctionType [0..1]
«interface» «enumeration» : :aDSeI-lI:tse:f Ezg:zz:
IGenericTrackable DigestFunctionType : i
—— E CreatedBy: GenericldentityDep SHA256 ::IGenericTrackable)
: + CreatedWhen: DateTimeStamp SHA3-256 + _OnCreate(): vo!d
] [+ currentRecord: RecordTracker = SHAKE128 + _OnbDelete(): vo@
¥ + DigestDescriptor: DigestFunctionType [0..1]]|~ HMAC-SHA1 K _OnUpd.ate(): VO'O!
I| |+ hasHASH: Boolean HMAC-SHA256 M- - t=Dis=si
I |+ isDeleted: Boolean HMAC-MD5.SIG-ALG.REG.INT + ValidateDigest(): void
I
I + _OnCreate(): void
I + _OnDelete(): void N
'l |+ _onUpdate(): void —_—— - i .
I OIS ekRE|) Vol DigestDescriptor Definition «interface»
¥ + CreateDigest(): void . : : : FunctionE)
I + ValidateDigest(): void) - FunctionDescriptor: DigestFunctionType _ /7
I FunctionEval | - FunctionEval: FunctionEval 3 I + CreateDigest(Object, Object): void
| - FunctionParameters: FunctionParamet: i i iect):
| =)— \ ValidateDigest(Object): Boolean
I RecordTracker FunctionParameters \/
- AN
I . . A . - << 1 «realization» L7 «interface»
| - DigestDescriptor: DigestDescriptorDefinition | SHA256 FunctionParameters
| - DigestValue: Bytes | O—
: - pastRecord: RecordTracker L — - FunctionEval | + Create(Object, Object): void o E + Certificate: X509Certificate
| - UpdatedBy: GenericldentityDep j | O + CreateDigest(Object, Object): void PrivateKey: Bytes
AN - UpdatedWhen: DateTimeStamp |) + SetParameters(Object): void PublicKey: Bytes
\\ | FunctionParameters | ./ yate(Object): Boolean
JI + ValidateDigest(Object): Boolean SetParameters(Object): void
GenericldentityDep << -
Ilaafl
oy
Figure 12. Overview of the TrackableClass’ package components.

The Blockchain-aware TES Template Model

33

PNNL-32687

4.3.6 Digital Certificates

This diagram/package diagram shown in Figure 13 and Figure 14 contains assets that can be
used to create a secure, digital representation of a subject’s identity. This digital identity relies
on the X.509 certificate model described by rfc5280 (Boeyen, et al. 2008). The presented
interface allows static validation (by walking the certificate tree), and an online verification
mechanism that checks for revoked certificates using Certificate Revocation Lists.

4.3.7 Blockchain Ledger

This package/diagram shown in Figure 15 provides the basic representation of a blockchain
environment. It is intended to serve as a reference for software engineers implementing this
technology. Many of the blocks presented in this diagram must be overridden, extended or
otherwise adjusted to correctly represent a blockchain environment. Nevertheless, the basic
read/write functionalities, and an immutable ledger must continue to hold.

The Blockchain-aware TES Template Model

34

«interface»
iDigitalCertificate

Certificate: X509Certificate

generateUID(): void
getPublicKey(): void
loadCertificate(): void
parseCertificate(): void
Validate(): void
ValidateWithOCSP(): void

X509Certificate

SignatureAlgorithm: Algorithmldentifier

-

SignatureValue: Bytes
TbsCertificate: TBSCertificate

V

TBSCertificate

Extensions: X509V 3ExtensionsType [0..1]

IssuerName: Name

issuerUniquel D: Uniqueldentifier [0..1]
SerialNumber: CertificateSerialNumber

_ _ - To X509V3ExtensionsType

~ To Name
7

SignatureAlgorithm: Algorithmldentifier P -

SubjectName: Name

subjectPublicKeyInfo: SubjectPublickeyInfo
subjectUniquel D: Uniqueldentifier [0..1] -

Validity: Validity Ty pe
Version: X509Version = V1

To ValidityType

P
-

j,.__

" To X509Version

Int32

CertificateSerialNumber

«dataType»
BasicConstraints

isCertificateAuthority: boolean

PathLenConstraint: int

DistributionPoint

To DistributionPointName

cRLIssuer: GeneralName [0..1]

To ReasonFlags

/
distributionPoint DistributicnPointName[O..E /

reasons: ReasonFlags [0..1

NamedConstraintsClass

PNNL-32687

excludedSubtrees: GeneralSubtrees)

permittedSubtrees: GeneralSubtreed| = — = — — —°

DigitalCertificateDep
{leaf} |
\\\\
=
DigitalCertificateRealization ki
¥
ASN10bjectidentifier N
AlgorithmlIdentifier s
+ ASN1Objectldentifier(String): Oldentifier = - +
~= algorithm: ASN1Objectldentifier +
i _ - [= parameters: int \
«interface» = \
AlgorithmParameters = AN
(N\
+ getParameters(): void | SignatureAlg: ’_ =
: SubjectPublicKeyInfo Algorithmldentifier ﬁs—e» N
--qE= algorithm: Algorithmldentifier —
7 SubjectPublickey: <———1[Z subjectPublickey: Bytes
7 «use»
P e Bytes
s
e
Ve BitEncodedString _
s Int32 - E
e KeyUsageMasks + i
_ i Uniqueldentifier 1 S~ E
(- Bit<pos=0>: Bit = digitalSignature N = ":
| - Bit<pos=1>: Bit = nonRepudiation ... | T =
| - Bit<pos=2>: int = keyEncipherment SN l\l E
| - Bit<pos=3>: int = dataEncipherment ~ + O~ I':
: - Bit<pos=4>: int = keyAgreement 1N F
| - Bit<pos=5>: int = keyCertSign AuthorityKeyldentifier 11 E
| - Bit<pos=6>: int = cRLSign) [3
| - Bit<pos=7>: int = encipherOnly - authorityCertissuer: GeneralName [0..1] | k -
| ~ Bit<pos=8>: int = decipherOnly - authorityCertSerialNumber: CertificateSerialNumber [0..1] | \A
| v - keyldentifier: Keyldentifier [0..1] |
| N / |
! : N |
| Ke«i:‘:mes:]go:i:;ns Policylnformation N N |(«dataType» |
I ey NS X509V3ExtensionsType)
| = _ N s
| (S:ﬁg:zr:;h T~ | [AuthorityKeyldentifier: int <<--
! N - BasicConstraints: BasicConstraints JJ---——- SN
igni > KeyPr Id ~ ; = -
: ?de_ls';gr:nft_ > it [E CertificatePolicies: Policylnformation [1..*] B
| Tir:]naelst;or: i:m + toO0ID(): void < _— i - CRLDistributionPoints: DistributionPoint [1..*]:‘ ~o
| OCSPSi ,p e = —|[L ExtendedKeyUsage: KeyPurposeld S~
| 'sning [P [InhibitAnyPolicy: SkipCerts NN
| - - lIssuerAlternativeName: e (L4 F ——
: k-7 """ 777 - =+ KeyUsage: KeyUsageMasks \l.]
| =g - NameConstraints: NamedConstraintsClass [~ — — v
| SkipCerts n A - PKUsagePeriod: None- Deprecated \ \
PolicyConstraints)y 3) .
| r‘\ r\\ <= — —|[Z PolicyConstraints: PolicyConstraints \ \
! aiataiety [= inhibitPolicyMapping: SkipCerts [= PolicyMappings: PolicyMappingsseq AN
: —————— [= requireExplicitPolicy: SkipCerts / SubjectAlternativeName: GeneralName [1..*1‘ r—— \\ 1
| / - SubjectDirectoryAttributes: Attribute [0..*] \\ \ A
| A [SubjectKeyldentifier: Keyldentifier VoA
!
: PolicyMappingsSeq | \ \
| "
: issuerDomainPolicy: CertPolicyld I~ Keyldentifier
: subjectDomainPolicy: CertPolicyld + getKeyldentiier(): Bytes
L _

Figure 13.

The Blockchain-aware TES Template Model

To GeneralName

s

[T
i

Overview of the DigitalCertificates’ package components (Left side);

w
(&)

Vv

«interface»

uniformResourceldentifier

T =
Attribute «:nu:era.lt_ion» ——= TeletexString
_ = ttributeType
- Type: AttributeTy pe:| B > option_Teletex
E Value: AttributeValue Country -
Organization option_Printa PrintableString
/I'\ OrganizationalUnit N
Opi ans | DistinguishedNameldentifier on_ Bomi St - =
ption_rdnSequence | StateProvinees °pt'°':— amlon_w\ﬁion_ tring UniversalString
Choice | CommonName |
Name > RDNSequence : SerialNumber | .
- B | ring EDIPartyName
_ =7 - RDNSequence: Attribute [1..*] k- |
- i
o - P /7 «interface» - nameAssigner: int
= h
3 - i i)
;,.% e Validity Type /'\ Option_Time G
b . | Choice| ~ 9..1]. =7] + GeneralTime: int N N
] + End:TimeXs09 _J-——d—————— =) b N
© + Start:TimeXs09 _Jj———d——————————— - >> TimelCes AnotherN 1A5Stri N
g ~ g | intar— notherName ring N
~ .
= - I —— == utcTime - type-id: int /I'\/I'\
c «enumeration» : ption UTC T - value: Oldentifier 11
S X509Version | [0..1] + utcTime: int L :
(VR ——
———— = Vi : DPN_nameRelativeToCRLIssuer A : : | :
V2 i] (I
V3 L E nameRelativeToCRLIssuer: RDNSequence «interface» «interface» : : «interface» T
option_NameRelative; otherName rfc822Name 1 DNSName | : :
- |
i |
Choice - 7 + otherName: AnotherName + rfc822Name: IASStrin_gl - . E DNSName: |A5String | : :
istributi i - = |
DistributionPointName DistributionPointName _fullName Ot otherNamel0..1 /\ ﬂ :) prl
option_FullName . / B «interface» 1
o _> - fullName: GeneralName [1.3 N~ - GeneralName / - — x400Address P
S ~\| Opt_rfc822Name[0..1] - |l
, - _——~ 7]+ ao0nddress: Oradressl| ~ | |
, et Opt_DNSName[0..1] -7 !
/ ReasonFlags - Il
Int32 -] 1
I . . Opt_X400Address[0..1] «interface» |
From DistributionPoint BaseDistance - Bit<pos=0>:Bit=unused . |, B —N directoryName | |
- Bit<pos=1>: Bit = keyCompromise Opt_directoryName[0..1] : |
= i =2>: int= i + directoryName: Name
A B!t<pos 2>: !nt cA?orr?promlse Opt_ediPartyName[0..1] - ry 11
1M - Bit<pos=3>: int = affiliationChan... - 11
. —_— I | | - Bit<pos=4>: int = superseded Opt URI[0..1 Tm - . 11
From NamedConstraintClass I I |- Bitcpos=5>:int= i P URES =~ = e I
pos=5>: int = cessationOfOper... ~ N
GeneralSubtrees 11 § . > Opt_IPAddress[0..1] S~ ediPartyName 11
e ————————) - Bit<pos=6>: int = certificateHold... i ~ ~~_ ol
TTT |- base:GeneralName 7 R Poss 7 lintelpivlcesiitidialy 4 Opt_registeredID[0..1] T~ ™ |+ ediPartyName: EDIPartyNamelF —|—
TT T =]- maximum: BaseDistanc—e| s Y - Bit<pos=8>: int = aACompromise ... -7 7 >~ N |
- __minimum: BaseDistanu?_‘ 7 N = |
|
|
|

From X509V3ExtensionType

«interface»
IPAddress

«interface»
registeredID

Oldentifier

i

|ASString: |A5String_|

[registered|D: Oldentifier

Figure 14.

The Blockchain-aware TES Template Model

+ IPAddress: IPOct;t‘r -=

Overview of the DigitalCertificates’ package components (Right side).

PNNL-32687

36

GenericBlockchainRealization

::iBlockchain
BlochchainDescriptor: BlockchainStructure
CurrentTransaction: SerializableObject
::LedgerBlock
Data: BlockData
Header: BlockHeader

IBlockchain

MetaData: BlockMetaData

LA

::iBlockchain

+ GetCurrentTransaction(): SerializableObject
ReadOffChain(Int): void
ReadOnChain(int): void

StoreOffChain(int, Bytes): void e
- StoreOnChain(int, Bytes): void o
+ SubmitTx(Bytes, GenericDigldentityDep): void 2
::InmutableLedger
+ remove(int): Not_supported

. . «enumeration»
GenericBlockchaltDER BlockchainStructure .
{leaf} TypesOfBlockchain
BlockchainType: TypesOfBIockchaEI - — —> -
- ConsensusType: TypeOfConsesus] = Perm
Z -) " Permissionless
«use» LedgerType: TypesOfLedger :I \ i
\ Hy brid
| \ ;
\ \ «enumeration»
: \ V' — = - => TypeOfConsesus
«interface» \]
iBlockchain : _> «enumeration» ProofOfElapseTime
| TypesOfLedger ProofOfStake
BlochchainDescriptor: BlockchainStructure | ProofOf ...
CurrentTransaction: SerializableObject Mel.'kIeTree ProofOfWork
InmutableLedger RadixTree ProofOfVote
GetCurrentTransaction(): SerializableObject
ReadOffChain(Int): void + remove(int): Not_supported
sl e — — — —————————— -

ReadOnChain(int): void

StoreOffChain(int, Bytes): void
StoreOnChain(int, Bytes): void
SubmitTx(Bytes, GenericDigldentity Dep): void

BlockData

dataHash: Byta

rawData: Byte?_l

<T->LedgerBlock > \

N\

4.3.8

Figure 15.

Lifecycle Management

4.3.11 Persona:: x

GenericDigldentityDep
== {leaf} LedgerBlock
|
| - Data: BlockData _]
| BlockMetaData - Header: BlockHeader _|
!_ --1c e . . < T|l= MetaData: BlockMetaData

- SubmissionAgent: GenericDigldentityDep
SubmissionTime: TimeStamp
TransactionlD: int

AN
/ N
/ A 4.3.2 Primitives::
/ BlockHeader Bytes
- BlockHash: ByEls ————— ;7 size: int
T =2xl- PrevHash: Bytg —————

SeqNumber: int

Overview of the BlockchainLedger’s package components.

PNNL-32687

4.3.2 Primitives::
OrderedArraylList

add(T): void
count(): int
previtem(T): T
remove(int): void

+ 4+ + o+

This diagram/package shown in Figure 16 contains the necessary object templates and interfaces required to track an asset's state across its
operational lifecycle. The provided interface is designed to function in an ad-hoc behavior (e.g., on demand). This contrasts with the mechanisms
provided by the trackablelnterface which are designed to be inheritable (and thus always tracking the changes in state).

The Blockchain-aware TES Template Model

37

PNNL-32687

.) 4.3.1 BasicObjects::Event

LifecycleStatusDep LifecycleStatusRealizaton
{leaf} i + creationTime: TimeType

7 iLifecycleStatus + interval: DateTimelnterval
/ + LifecycleStatus: LifecycleManager
/
/ / iLifecycleStatus IGenericTrackable
LifecycleStatys == OnTransition(): void

. . 4.3.5 TrackableClass::
Transition_Abort(): void

+

o

.) GenericTrackableRealization
+ Transition_Complete(): void

o

Transition_Start(LifecycleStatusEnum): void

«interface» / .
iLifecycleStatus «enumeration»
LifecycleStatusEnum
+ LifecycleStatus: LifecycleManager _ ~ LifecycleManager
\A Unprovisioned
+ OnTransition(): void - _inTransition: Boolean Active
+ Transition_Abort(): void - CurrentState: LifecycleStatusEnuEJ r— ’> Suspended
+ Transition_Complete(): void - NextState: LifecycleStatusEnum Retired
+ Transition_Start(LifecycleStatusEnum): void - Reason: String Provisioned
Figure 16. Overview of the LifecycleManagement’s package components.

4.3.9 Permissions and Qualifications

The diagram/package shown in Figure 17 contains the basic interfaces for defining access
control permissions to resources, as well as mechanisms for assigning qualifications/attributes
to entities. These interfaces must be configured to suit the application/use case needs. For
example, different types of qualifications may exist within a single TES implementation, each of
them applicable to different set of agents, participants or external service providers.

The Blockchain-aware TES Template Model 38

Certifications: Certifications([]

PNNL-32687

«interface»
iEntityQualifications

QualificationOrg

DigitalCertificate: DigitalCertificateDep [0..1]
Qualifications: Qualification
QualifiedEntity: PersonaDep

AvailableQualifications: AvailableQualifications [1. i_l] ~

DigitalCertificate: DigitalCertificateDep [0..1]
Organization: PersonaDep

hasCertification(): void
validateRights(): void

Qualification

«enumeration»
ilableQualifications

GenericPermissionDept— N1 — — — — — _ _ _ _ _ _ _ _ GenericPer Reali
leat iPermission
«enumeration»
TES_Base AccessPermissions
«interface»]
iPermission Attnt?utes
A iPersonalPermission - Riint
- AssignedRoles: int - W:int
- Grantee: PersonaDep - _isActive:int - Xint
- Grantor: PersonaDep - Authority: int _ RW:int
- GroupMembership: AssignableGroups - DateAcq: int - RWX:int
- Resources: UID - Details: int
- Permission: int Ir T /:\
+ CheckPermissions(): void |
7 // /
e
AssignedRoles // LS|
PersonaPermissions | /
- AccessPermissions: int :| AssignableGroups

AssignedQualification: AvailableQualifications
EffectiveDates: DateTimeBound
isDigitallySigned: Boolean

DERinstaller
DERprovisioning
DeviceCapabilityTester

Y2
Access: int :l % -
Description: int) E
Resource: UID

AccessPermissions: int
AssignedRoles: int
Groups: int

Figure 17.

The Blockchain-aware TES Template Model

[———= -———" isRevoked: Boolean TES_acceptance
| iEntityQualifications \ QualificationAuthority: QualificationOrg TES_Member
| \ QualifiedEntity: PersonaDep N X
| . i ThirdPartyAttestation
| SR S -] ThirdPartyPowerOfAttorney
EntityQualificationRealization
: CheckCertification(): void
|
EntityQualificationsDep «enumeration» 4.3.11 Persona:: 4.3.6 DigitalCertificates:: 4.3.3 Time::
{leaf} TESGroup PersonaDep DigitalCertificateDep DateTimeBound
o _> Agent {leaf} {leaf} + End: DateTimeStamp
_____ - Agent.Market +__Start: DateTimeStamp|
Auditor
Agent.Prosumer

Overview of the Permissions’ package components.

39

PNNL-32687

4.3.10 Grid object models

The diagram/package shown in Figure 18 provides the basic constructs used to model electrical
systems. This includes the ability to store matrix data (for impedance), represent complex power
and its direction. The contained classes represent only a subset of electrical-related objects and
must be updated depending on the TES' application requirements. These base objects leverage
the definitions found on IEC 61968-9 and IEEE 2030.5, potentially enabling interoperability with
existent technological deployments based on these standards.

The Blockchain-aware TES Template Model

40

PNNL-32687

ComplexPowerStorage
«enumeration» «enumeration» «dataType» 4.3.4 Math:: P b Real
FlowDirectionKind ElectricalStatus Complex Arraylist<Complex> | | + Q: Real
forward On - Imag: Real + getPF(): void
leading Off - Real: Real + getS(): void
net Indeterminate + setPQ(Real, Real): void
none «enumeration» (from 4.3.4 Math)
q1MinusQ4 Impedancela N «enumeration» 4 c""’”’e"P"WEag:g
q1PlusQ2 isDiagonal PhaseCodeType Impeiie I
q1PlusQ3) . «interface» ComplexPower — «use»
Beal isFullMatrix 000 NA : I N
isLowerDiagonal - isPU: Boolean iComplexPower _% E—
qlPlusQ4 R 032C ; .
) isVector - isZ012:int >~

42MinusQ3 033.CN - lastUpdated: DateTimeStamp = PF:Real N
q2PlusQ3 Loty - rawData: ArrayList<Complex> - StReal |
q2PlusQ4 WEhE - TypeOfData: ImpedanceDataType .
g3MinusQ2 CERREE G 065 BN <interfacer ComplexPowerRealization
93PlusQ4 AccumulationBehaviourType 066 BC iuom
quadrantl 128 A Quantity <lﬂ «enumeration»
quadrant2 Cumulative 129 AN -
quadrant3 DeltaData 132 AB - UOM:UoMDedF — = — — — v Hom _ LoMie e
quadrant4 Indicating 224 ABC - Value: Real T
reverse NA 225 ABCN «enumeration» :
total Summation 016N UOMDep [-euse”
totalByPhase Instantaneous 017 NG {leaf}

Figure 18. Overview of the GridObjects s package components.

The Blockchain-aware TES Template Model

4.3.11 Persona object models
The diagram/package shown in Figure 19 groups an assortment of classes that can be used to
capture an entity's personal information. In addition, digital certificates and other locational
information can be used to support advanced identity services. These identity interfaces can be
referenced by other higher-level models to specify participants and provided a trusted-

operational platform.

GenericldentityDep
{leaf}

GenericldentityRealization

N

N
N
|
«use»

5

IdentityInterface

GenericDigldentityDep 4.3.8 LifecycleManagement::
r {leaf} LifecycleStatusDep
{leaf}
o ——
use» P s GenericDigldentityRealization
|
| Pad IGenericTrackable|
A 4.3.5 TrackableClass::

PNNL-32687

GenericTrackableRealization

DigitalldentityInterface (

«interface»
ildentityInterface

«interface»
iDigitalldentitylnterface

_hasDigitallD: int = True {redefines _hasDigitallD}

TES_Base
Genericldentity

_hasAddress: Boolean
_hasDigitallD: Boolean
Adresses: Address [0..*]
DigitalCertificate: DigitaICertificateDa I~
PersonaDetails: PersonaDep

+ o+ o+ o+ o+

Individual

DOB: DateStamp
FirstName: String

4 A

Address

TES_Base

City: String

Street: String
Street2: Strin|

_LFCStatus: LifecycleStatusDep

Country: String
PostalCode: String
StateProvince: String

8

=

LastName: String
MiddleName: String
Suffix: String

: Tittle: int
+ createldentity(): void | E
+ getldentity(): void : ThirdParty
+ updateldentity(PersonaType, int): void | - .
| GivenPermissions: String «use» | iPersona %7
v Representative: String PersonaDep
ThirdPersona: String {leaf} TES_Base
4.3.6 DigitalCertificates:: Validity Period: String anterrae
DigitalCertificateDep oo
{leaf} «enumeration» <_ 1
PersonaType L~_L PersonaType: PersonaType
LegalEntity AutomatedSystem Individual + _getAttributes(): void
- : 1| el iy + _LFCStatus(): LifecycleStatusDep|
CommonName: String CommonName: String ThirdParty + _setAttributes(): void
ConstitutionDate: DateStamp IdentifiableName: String ETEGEyE + serializeUniqueldentity(): String
ConstitutionLocation: String
Contact: Individual
Figure 19. Overview of the Persona’s package components.

4.3.12 Memberships

The classes presented in Figure 20 can be used to establish memberships among two different
systems. It is assumed that memberships requests are negotiated internally in between parties.
The process assumes that a request-approval process occurs in between a solicitor and a
target system, the target agent is responsible for evaluating the impacts/consequences of the

relationship.

The Blockchain-aware TES Template Model

42

PNNL-32687

i «interface»
i D iMemb:r:l::i:Map «enumeration» MembershipinteractionsDep
DstEntity: GenericldentityDep s {leaf}
RelationMap: MembershipMapDep + ActualRelation: Relations [0..*] i-= o T
SrcEntity: GenericldentityDep R Right=sRish 0] d \ supplier |
- - + DigitalCert: DigitalCertificateDep \ peer |
+ CreateMembership(): void + InteractionHandler: MembershipInteractionsDep N . |
+ DeleteMembership(): void + isDigitallySigned: Boolean | Comperl | A
+ Eval(): void + isValid: Boolean | __ —usen —
+ Src: GenericldentityDep :| ~ |
+ Target: GenericldentityDep N \: N\ MembershipInteractions
e . X N
MembershphTanEe + ValidityPeriod: DateTimeBound | \A 4,3.1.1 Persc_ma:: OptionallyTrackable
{leaf} + Add(): void : GenericldentityDep]
, + Eval(): void | {leaf}) «|nte.rface»)
| + Filter(GenericldentityDep): MembershiplnteractionsDe| | iMermbelshipleetory
«usle» + Remove(): void _ J - _Serialized_Request: SerializableObject
N ~ Vi - _Serialized_Response: SerializableObject
\\x ‘/V/ + Pastinteractions: GenericTrackableDep
MembershipMap Rights Renumeratas + Evalloin(Rights): void
\ i - AvailableRights + EvalOperation(Rights): void
isValid: Boolean = + EvalRemove(Rights): void
[MembershipMapRealization ’ 9 Righ‘f Avai!abIeRight§ 3 SubmitX - TrackOperation(Rights): void
- ValidityPeriod: DateTimeBound ReceiveY
Figure 20. Overview of the Membership’s package components.

4.3.13 Summary of basic interfaces

The diagram/package shown in Figure 21-Figure 24 summarizes the basic interfaces provided
by this report, the interfaces are generic and can be used to support most of the data and
communication needs of grid applications (and specifically TES systems). The provided
interfaces remain at the high-level, but still capture most of the common requirements and
functionalities that will require different modules to communicate, creating a highly-interoperable
network.

The Blockchain-aware TES Template Model

43

PNNL-32687

4.3.11 Persona leling::Per lization | — — — — — — —_——————————— == -0~ ~ 4.3.11 Persona
~ N modeling::
::iPersona N _ PersonaDep
+ PersonaType: PersonaType A - - {leaf}
«use»
::TES_Base 4.3.11 Persona modeling::
+ _UID:UID GenericldentityRealization ifersona
::IGenericTrackable)]
+ CreatedBy: GenericldentityDep :Genericldentity TESZBase
+ CreatedWhen: DateTimeStamp il —haSAfiqrESS:. Boolean «interface»
+ CurrentRecord: RecordTracker i _hasD|g|t'aIID. Boolean* 4.3.11 Persona modeling: :iPersona
+ DigestDescriptor: DigestFunctionType [0..1] i Afiliesses. A}idress on'] N
PO HASH: Boolean + DigitalCertificate: DigitalCertificateDep + PersonaType: PersonaType
; b + PersonaDetails: PersonaDep
+ isDeleted: Boolean . N s
B ersona A _IJID: uId + _LFCSta'tus(): Lifecy'cIeStatusDep
+ _getAttributes(): void il _seltA.ttnbu'tes()4 vcm? i
+ _LFCStatus(): LifecycleStatusDep ::Genericldentity - USRI Siing
+ _setAttributes(): void + createldentity(): void
+ serializeUniqueldentity(): String + getldentity(): void
**TES Base + updateldentity(PersonaType, int): void
+ _getUID() ::TES_Base identity\nterface
::SerializableObject + _getUID() A P,
+ Deserialize(Object): void ::SerializableObject enericldentity’
+ Serialize(): Object + Deserialize(Object): void ? «interface»
-:IGenericTrackable + Serialize(): Object ! 4.3.11 Persona modeling::
+ _OnCreate(): void / ildentityInterface
+ _OnDelete(): void ’I
+ _OnUpdate(): void
. . «wuse»
+ Cre?teDlg?st(). vold' 4.3.11 Persona modeling:: _1’
+ ValidateDigest(): void GenericldentityDep - v
{leaf}
=
- 7 4.3.5 TrackableObjects::
- -7 GenericTrackableRealization
4.3.9 Permissions&Qualifications::
. N | ::IGenericTrackable
Genericrer I . B
| — + CreatedBy: GenericldentityDep
-:iPermission | . «T_e o . . 7|+ CreatedWhen: DateTimeStamp
i 4.3.5Tr j icTr /
- AssignedRoles: int | Y + CurrentRecord: RecordTracker
- Grantee: PersonaDep L —|[£ CreatedBy: GenericldentityDep / + DigestDescriptor: DigestFunctionType [0..1]
- Grantor: PersonaDep + CreatedWhen: DateTimeStamp 5 i _hasHASH: Boolean
- GroupMembership: AssignableGroups + CurrentRecord: RecordTracker + isDeleted: Boolean
- Resources: UID + DigestDescriptor: DigestFunctionType [0..1] X
-TES Base + hasHASH: Boolean iGeneriﬁi’rackable ..IGergrl(c:Tra:kale N
g — X + nCreate(): voi
o + isDeleted: Boolean | W

+ _UIb:UID | + _OnDelete(): void

. e + _OnCreate(): void | + _OnUpdate(): void
::iPermission X .)

. " + _OnDelete(): void | + CreateDigest(): void
+ CheckPermissions(): void) | N . .
+ _OnUpdate(): void + ValidateDigest(): void
«TES_Base + CreateDigest(): void :
+ _getUID() + ValidateDigest(): void |
::SerializableObject L
+ Deserialize(Object): void 4.3.5 TrackableObjects::
+ Serialize(): Object . .. GenericTrackableDep
I To iPermission {leaf}
/ I
. . . 5 .
Figure 21. Overview of the Basiclnterface’s package components (Top-left view).

The Blockchain-aware TES Template Model

4.3.11 Persona modeling::

GenericDigldentityDep
{leaf}
Ve
Ve
s
«use»
Ve
Digitalldentity Interface|
Genericldentity

«interface»

4.3.11 Persona modeling: :iDigitalldentityInterface

- _hasDigitallD: int = True {redefines _hasDigitallD

4.3.7 BlockchainLedger::GenericBlockchainRealization

::iBlockchain
- BlochchainDescriptor: BlockchainStructure
- CurrentTransaction: SerializableObject

::LedgerBlock

- Data: BlockData

- Header: BlockHeader

- MetaData: BlockMetaData

4.3.11 Persona modeling::
GenericDigldentityRealization

::iDigitall dentitylnterface

::Genericldentity

+ _hasAddress: Boolean

+ _hasDigitallD: Boolean

+ Adresses: Address [0..*]
o
s

~
N DigitalCertificate: DigitalCertificateDep
PersonaDetails: PersonaDep
::TES_Base
+ _UID: UID

- _hasDigitallD: int = True {redefines _hasDigitallD}

<]—/ ::Genericldentity

+ createldentity(): void

+ getldentity(): void

+ updateldentity(PersonaType, int): void
::TES_Base

+ _getUID()

::SerializableObject

+ Deserialize(Object): void

+ Serialize(): Object

«use»

::iBlockchain

+ GetCurrentTransaction(): SerializableObject

- ReadOffChain(Int): void

- ReadOnChain(int): void

- StoreOffChain(int, Bytes): void

- StoreOnChain(int, Bytes): void

+ SubmitTx(Bytes, GenericDigldentityDep): void
::InmutableLedger

+ remove(int): Not_supported

InmutableLedger
LedgerBlock

«interface»
4.3.7 BlockchainLedger::iBlockchain

BlochchainDescriptor: BlockchainStructure
CurrentTransaction: SerializableObject

GetCurrentTransaction(): SerializableObject
ReadOffChain(Int): void

ReadOnChain(int): void

StoreOffChain(int, Bytes): void
StoreOnChain(int, Bytes): void
SubmitTx(Bytes, GenericDigldentity Dep): void

Figure 22.

The Blockchain-aware TES Template Model

PNNL-32687

4.3.7
BlockchainLedger::
GenericBlockchainDep

{leaf}

From iSmartContract

Overview of the Basiclnterface’s package components (Top-right view).

45

4.3.8

LifecycleStatusDep
{leaf}

LifecycleManagement:: — — —

4.3.8 LifecycleManagement::
LifecycleStatusRealizaton

:ciLifecycleStatus
+ LifecycleStatus: LifecycleManager

iLifecycleStatus

+ LifecycleStatus: LifecycleManager «interface»
4.3.9 Permissions&Quialifications::
+ OnTransition(): void iEntityQualifications
+ Transition_Abort(): void
+ Transition_Complete(): void - DigitalCertificate: DigitalCertificateDep [0..1]
+ Transition_Start(LifecycleStatusEnum): void - Qualifications: Qualification
4.3.9 Permissions&Quialifications:: - QualifiedEntity: PersonaDep
EntityQualificationRealization
+ hasCertification(): void
::iEntityQualifications /D + validateRights(): void
- DigitalCertificate: DigitalCertificateDep [0..1]
- Qualifications: Qualification
- QualifiedEntity: PersonaDep e — — - _ 4.3.9
VZ Permissions&Qualifications:
::iEntityQualifications / iEntityQualifications :EntityQualificationsDep
+ hasCertification(): void 7 4.3.1 Basic Objects: {leaf}
+ validateRights(): void :FireEventDep
FireEvent
{leaf} [_
«enumeration» Lom + Listen(): void ~.
4.3.10 Grid Objects: NN iy
:UOMRealization | _ _ — — — _ 4.3.1 Basic Objects:
~—_ Event 8
T~ - «enumeration» } FireEventRealization
«use» -
BN ST g | e
i :UOMDe i .
«interface» P -FireEvent
4.3.10 Grid Objects: {leaf}
:;iUomM + NotifyAll(): void
Figure 23. Overview of the Basiclnterface’s package components (Bottom-left view).

The Blockchain-aware TES Template Model

:ciLifecycleStatus

OnTransition(): void

Transition_Abort(): void
Transition_Complete(): void
Transition_Start(LifecycleStatusEnum): void

+ + + +

«interface»
4.3.8 LifecycleManagement::iLifecycleStatus

PNNL-32687

46

«interface»
4.3.6 DigitalCertificates::
iDigitalCertificate

Certificate: X509Certificatd

generateUID(): void
getPublicKey(): void
loadCertificate(): void
parseCertificate(): void
Validate(): void
ValidateWithOCSP(): void

+ + 4+ + + +

4.3.6
DigitalCertificates::
DigitalCertificateDep

{leaf}

/ 4.3.12 Memberships::
/ MembershipinteractionsDep
/ {leaf}

N\

iDigitalCertificate

«use»)
A\

Members

R

N\

4.3.6 DigitalCertificates::
DigitalCertificateRealization

OptionallyTrackable

«interface»
4.3.12 Memberships::
iMembershiplnteractions

4.3.12 Memberships::
MembershipinteractionsRealization

::iMembershipinteractions

- _Serialized_Request: SerializableObject

- _Serialized_Response: SerializableObject
+ PastInteractions: GenericTrackableDep

::OptionallyTrackable
- isTracked: Boolean

::IGenericTrackable

CreatedBy: GenericldentityDep
CreatedWhen: DateTimeStamp
CurrentRecord: RecordTracker
DigestDescriptor: DigestFunctionType [0..1]
hasHASH: Boolean

isDeleted: Boolean

+ 4+ o+ o+ o+ +

PNNL-32687

A

::iDigitalCertificate
- Certificate: X509Certificate

_Serialized_Request: SerializableObject
_Serialized_Response: SerializableObject

::iDigitalCertificate
generateUID(): void
getPublicKey(): void
loadCertificate(): void
parseCertificate(): void
Validate(): void
ValidateWithOCSP(): void

+ + + + + +

+ PastInteractions: GenericTrackableDep
+ Evalloin(Rights): void

+ EvalOperation(Rights): void

+ EvalRemove(Rights): void

TrackOperation(Rights): void

Figure 24.

Overview of the Basiclnterface’s package components (Bottom-right view).

The Blockchain-aware TES Template Model

::iMembershipinteractions
Evalloin(Rights): void
EvalOperation(Rights): void
EvalRemove(Rights): void

- TrackOperation(Rights): void

+ o+ o+

::OptionallyTrackable

+ _OnCreate(): void

+ _OnDelete(): void

+ _OnUpdate(): void
::IGenericTrackable

+ _OnCreate(): void

+ _OnDelete(): void

+ _OnUpdate(): void

+ CreateDigest(): void
+ ValidateDigest(): void

47

PNNL-32687

| /
. - . 4.3.10 Grid Objects:
From GenericPermissionRealization J
; :ComplexPowerDep
{leaf}
/
// 4.3.9
Permissions&Qualifications: N ~
_ — — 1 :GenericPermissionDep |
= {leaf} “omplexPowerStorage I
iPermission) «use»
«interface» |
4.3.10 Grid Objects: I
TES_Base :iComplexPower |
«interface» - PF:Real
4.3.9 Permissions&Quialifications:: - S:Real
iPermission |
] . ComplexPower I
- AssignedRoles: int |
- Grantee: PersonaDep /I
- Grantor: PersonaDep -
- GroupMembership: AssignableGroups
R Pr .UID o < o 4.3.10 Grid Objects::
e Clas ComplexPowerRealization
+ CheckPermissions(): void

—/‘D «interface»

4.6.3 Smart Contracts::iSmartContract To BIockchainLedger

4.6.3 Smart Contracts::

SmartContractRealization - _CurrentTransaction: SerializableObject
_ + ExposedFunctions: SCFunction [1..*]
iSma ntract| _

::iSmartContract InternalFunctions: SCFunction [0..*]
- _CurrentTransaction: SerializableObject - UnderlyingBlockchain: GenericBIockchainDe_Td r—
+ ExposedFunctions: SCFunction [1..*]
- InternalFunctions: SCFunction [0..*]
- UnderlyingBlockchain: GenericBlockchainDep

GetTime(): void
+ populateCurrentTransaction(): void

|
|
| + GetSubmitterldentity(): void
|
|
I

::iSmartContract «use»
+ GetSubmitterldentity(): void |
+ GetTime(): void : 4.6.3 Smart
+ populateCurrentTransaction(): void L contraces
SmartContractDep
{leaf}
Figure 25. Overview of the Basiclnterface’s package components (Auxiliary view).

The Blockchain-aware TES Template Model

4.4

PNNL-32687

Resources and Participants modeling

In this section an overview of templates that can be used to model a large variety of grid devices
and participants is introduced. These resources are the main building block of any TES-based
application, and represent the main contribution of the presented work, similar to the previous

section, these resources are explored in-depth within the annex.

441 Resources

The diagram/package shown in Figure 26 documents a variety of classes that work together to
represent grid equipment and expose it to a transactive system. The provided interfaces enable
to abstract the different levels of interactions that are expected to occur within a TES. The
proposed models have the ability to account for active as well as "dumb" devices, exposing only
capable equipment as a grid resource. From this point forward, grid resources can be controlled
and managed by dedicated transactive agents.

GridEquipmentDep 4.3.10 GridObjects:: 4.3.8 LifecycleManagement:: 4.3.11 Persona:: 4.5.1 GridModel::
{leaf} ComplexPowerDep LifecycleStatusDep GenericDigldentityDep GridCouplingPointDep
{leaf} {leaf} {leaf} {leaf}
-~
7
-
- s . - " ’
- GridEquipmentRealization 4.3.11 Persona:: GridResourceRealization
: GenericldentityDep
leaf} GridResourceDep 7
| - {
| _“use» A {leaf} 5
_____ — Twuse» T T =
GridEquipment GridResource
TES_Base TES_Base «interface»
«interface» InstalledSystem iGridResource
iGridEquipment

+ _LFCStatus: LifecycleStatusDep
- Capabilities: BaseCapabiIitiesj -~

E

-
Certifications: Certifications :‘ - =
[l Devicelnfo: Devicelnfo 1
| hasGridSupport: Boolean [
! isResponsive: Boolean [
| -t
| Status: CurrentStatus :‘ 1 |
! + GetStatus(): CurrentStatus : :
k\ + SetSchedule(): void 1
N Il
[
TES Base| | |
Devicelnfo (I
[
DeviceCertificate: DigitalCertificateDep [0..1] | | k
Manufacturer: String | AN
Model: String :
SerialNumber: String

Vv

TES_Base

BaseCapabilities

AvailableServices: ArrayOfGridServices
ConnectedPhases: PhaseCodeType

is3Phase: Boolean

MaxRampPerPhase: ComplexPowerDep [3]
RatedInputPerPhase: ComplexPowerDep [3]
RatedOutputPerPhase: ComplexPowerDep [3]

Figure 26.

Y

Gridequipment: GridEquipmentDep
GridInterface: GridCouplingPointDep [0..1]
isGridTied: Boolean

isResponsive: Boolean

Operatorldentity: GenericldentityDep
Ownerldentity: GenericldentityDep

+ isGridTied: Boolean = True

CurrentStatus

CurrentNetPerPhase: ComplexPowerDep [3]
CurrentRampPerPhase: ComplexPowerDep
isAvailable: Boolean

IsConnected: Boolean

3]

N\

«enumeration»
GridServices

TES_Base
Certifications

+ o+ o+ o+ o+

_LFC: GenericTrackableDep
Capability Certification: int
InstallCertification: int
LastCertification: int
OperationalCertification: int

getlastCertification(): void

Inertia

P_injection
Q_injection
P_absorption
Q_absortion
VoltageRegulation
Storage
BlackStartRegulation
GridForming
Segmentation
Protection
Attestation

+ isResponsive: Boolean = True

T

LocalController

ControllerManager: GenericDigldentity Dep
- ControllerName: String
+ Schedule: float [0..1]

GetStatus(): CurrentStatus
SetSchedule(): void

+ o+
r=

Agent
Sa 4.4.7 Hierarchy::TransactiveAgent
~
~
[£ LocalControllers: LocalController [0...%]
+ handleTimeStep(): void
+ SubscribeTo(): void
TR
ArrayOfGridServices
4.3.2 Primitives::
| 5
ArrayList
[y
< T->GridServices > + add(T): void
+ count(): int
+ remove(int): void

Overview of the Resources’ package components.

The Blockchain-aware TES Template Model

49

PNNL-32687

4.4.2 Load resources

The diagram/package shown in Figure 27 is a specialization of a grid resource, it illustrates the
two main types of loads that are present on the grid. Both load models present a conformant
interface to the GridEquipment requirements.

iGridEquipment

GridEquipmentRealization

Genericload

UnresponsivelLoad

::iGridEquipment
+ LFCStatus: LifecycleStatusDep + Capabilities: LoadBaseCapabilities {redefines Capabilitie;_}J F—
i Eapabilities: BaseCapabilities + isResponsive: Boolean = False {redefines isResponsive}

Certifications: Certifications
Devicelnfo: Devicelnfo

'hasGrldSu'pport: Bocedl LoadBaseCapabilities

isResponsive: Boolean

Status: CurrentStatus - ConnectedPhases: PhaseCodeType <=
«enumeration» ::TES_Base - is3Phase: Boolean

LoadModel + _UID:UID i— ————— [LoadModel: LoadModel
| MaxRampPerPhase: ComplexPowerDep [3]
ZIP ::iGridEquipment I RatedInputPerPhase: ComplexPowerDep [3] V\
ConstantZ + GetStatus(): CurrentStatus | RatedOutputPerPhase: None [3] |
Constantl + SetSchedule(): void | ZIPfactors: Real [3] |
ConstantP +TES_Base | :
Exponential + _getUID() : |
CompositeModel ::SerializableObject | . |
ZIPplusiM v + Deserialize(Object): void | R)
ExponentialplusiM | * ™\ - |
N + Serialize(): Object I + Capabilities: LoadBaseCapabilities {redefines Capabiliti@
~_ _ _ _ _ _ __________ o + isResponsive: Boolean = True {redefines isResponsive}
Figure 27. Overview of the LoadResources’ package components.

4.4.3 IBR-Based Generation Resources

The diagram/package shown in Figure 28 is a specialization of a grid resource, it enables end
users to model the features of an Inverter-Based generator. It documents specific examples to
model PV-based and wind-based resources which can further refined to satisfy the data
capturing needs of the end use.

The Blockchain-aware TES Template Model

PNNL-32687

iGridEquipment
IBR_resource 4.4.1 Resources:: InverterPrimarySourceDep
— o T GridEquipmentRealization {leaf}
- Capabilities: InverterCapabilities :|
- Status: InverterStatus RN /
::iGridEquipment W N «e.numeratlon» «interface» /
. A\ - = - PrimarySource " n |
+ _LFCStatus: LifecycleStatusDep InverterCapabilities ilnverterPrimarySource |
- Capabilities: BaseCapabilities -7 ™ Solar - - | «use»
- Certifications: Certifications | + Efficiency: double Wind [£ EnergySource: PrimarySource |
- Devicelnfo: Devicelnfo : + hasMultiPointEfficienty: boolean - (R int' i) InverterPrimarySource
- hasGridSupport: Boolean | + InputPowerSource: InverterPrimarySourceDep + InputController: SerializableObject
- isResponsive: Boolean | + PowerFactorCharactheristics: XYpointList - RatedDCCharactheristics: SerializableObject v
. . + RatedInputPerPhase: None [3] {redefines RatedInputPerPhase
Status: CurrentStatus : p BI1 P i + ChangeControllerMode(): void \I
::TES_Base | + GetCurrentOutput(): void + GetlnputPower(): void |
+ _UID: UID | + VerifylnputPowerLimits(): void |
[A '
::iGridEquipment | |
+ GetStatus(): CurrentStatus => InverterStatus |
+ SetSchedule(): void TES_Base !
-:TES Base + getCurrentNetPerPhase(): ComplexPowerDep(3] 4.4.1 Resources::BaseCapabilities) B
“TES_ InverterPrimarySourceRealization
+ _getUID() F - i R
- AvailableServices: ArrayOfGridServices
::SerializableObject - ConnectedPhases: PhaseCodeType A
+ Deserialize(Object): void Anam q . - is3Phase: Boolean
- i .4.1 Resources::Curren us i
+ Serialize(): Object - MaxRampPerPhase: ComplexPowerDep [3] W_«Zr;meﬁilt'o:»
ndControllerType
A - CurrentNetPerPhase: ComplexPowerDep [3] - RatedinputPerPhase: ComplexPowerDep [3] WindinputCharachteristics) e
- CurrentRampPerPhase: ComplexPowerDep [3] - RatedOutputPerPhase: ComplexPowerDep [3] FSEP
- isAvailable: Boolean - MaxVDC: int FSVP
- IsConnected: Boolean - RatedDCPower: int VSFP
+ VerifylnputPowerLimits(): void o
WindPrimary Windinverterinstallation /7 /
s /
. WindControllertvpe - ——————— L e
- PrimarySource: |nverterPn'marySourceDeE| ~ - InputController: WindControllerType :‘ - TurbineArray
~o - RatedDCCharachteristics: WindlnputCharachteristiE_‘ ——————— -
~= .
> - TurbineArray: TurbineArray :| e ————— ——— = —_—— e _> - RatedPower: int
. + ChangeControllerMode(): void + GetlnputPower(): void
SolarPrimary
- PrimarySource: InverterPrimarySourceDeE‘ ™ <
~
o PVlinverterinstallation
~
TES_Base ~ T:*
A - CellArray: PVSiteArray :l TN
PVCell
- InputController: SolarControllerType :l I~ < AN ﬁ
~ imitives::
- Devicelnfo: Devicelnfo _|~_ [RatedDCCharachteristics: PVInputCharactheristics 3 \\ Ve 4.3.2 Primitives::
- Maximum_DC_power:int |~ “ | TES_Base — 7 GIEr !
P E ~ | + ChangeControllerMode(): void | : i PVCellArray -
- RatedPower: int \ k | PVSiteArray <T->PVCell > + add(T): void
- RatedVDC: int \ o
\\ N | - Azimuth: int /4 - B
Q | . . + remove(int): void
TES_Base | - Installer: Genericldentity Deg /
4.4.1 Resources::Devicelnfo PVInputCharactheristics «enumeration» | - PVCells: PVCellArray :‘ -
SolarControllerType <| - RatedPower: int
- DeviceCertificate: DigitalCertificateDep [0..1] - MaxvDC:int P voud
- Manufacturer: String - RatedDCPower: int M il GetinputhoWEHINES
N odel: stri FourQuadrant
9 el String) + VerifylnputPowerlimits(): void
- SerialNumber: String

Figure 28. Overview of the IBR-BasedGeneratorResources’ package components.

The Blockchain-aware TES Template Model 51

PNNL-32687

4.4.4 Rotational Generation Resources

The diagram/package shown in Figure 29 is a specialization of a grid resource, it enables end
users to capture the components of a traditional power plant. The interface can be used to
provide (and extract) data from both the electromechanical energy conversion process, as well
as the mechanism used to capture the mechanical energy. By including the most common
energy generation processes (DER, Bulk, and storage) the provided templates can be
applicable a wide variety of application scenarios. Potentially enable the participation of a wide
variety of systems.

The Blockchain-aware TES Template Model

52

RotationalResource

Capabilities: RotationalCapabiIitiQ -——

Status: RotationalStatus

::iGridEquipment

+

_LFCStatus: LifecycleStatusDep
Capabilities: BaseCapabilities
Certifications: Certifications
Devicelnfo: Devicelnfo
hasGridSupport: Boolean
isResponsive: Boolean

:|__

TES_Base
4.4.1 Resources::BaseCapabilities

AvailableServices: ArrayOfGridServices
ConnectedPhases: PhaseCodeType

is3Phase: Boolean

MaxRampPerPhase: ComplexPowerDep [3]
RatedInputPerPhase: ComplexPowerDep [3]
RatedOutputPerPhase: ComplexPowerDep [3]

o

|
|
|
|
|
|
|
|
|
- Status: CurrentStatus |
I . -
-:TES Base | RotationalCapabilities
+ _UID:UID | + MechanicalSource: MechConversionProcessDa -
P . : - MomentOflnertia: MechanicaluOMs ~ _J|——— — — — |
S E PowerSource: EleConversionProcessDep |
+ GetStatus(): CurrentStatus | / |
+ SetSchedule(): void : / | + DynamicMaxRamps(): void |
::TES_Base | ! |+ SetSchedule(): void |
+ _getUID() | : :
::SerializableObject : (= |
+ Deserialize(Object): void I : i |
I Serialize():ﬁjec’c | EleConversionProcessDep |
\V | I :
iGri i |
GrideadiRRE | (L(U sex EleConversionProcessRealization | !
4.4.1 Resources::] N |
GridEquipmentRealization / \E ﬁ v :
/
tl/ «interface» |\

RotationalStatus

+ GetStatus(): void

EleConversionProcess

iEleConversionProcess

- Efficiency: Real

MechConversionProcessDep
{leaf}

/7 «use»

PNNL-32687

«enumeration»
FuelSource

MechConversionProcessRealization

\ 7
VYA

MechConversionProcess

Z

NaturalGas
Gasoline

Wind

Propane

Diesel

Hydro

Nuclear
Thermal
RecoverySteam

=

- MachineParameters: SerializableObject

4.4.1 Resources::CurrentStatus

CurrentNetPerPhase: ComplexPowerDep [3]
CurrentRampPerPhase: ComplexPowerDep [3]
isAvailable: Boolean

IsConnected: Boolean

Mechanicallnput: MechConversionProcessDep
NPoles: Integer

RPM: Integer

ZTh: Impedance

GetCurrentOutput(): Real
SetTargetOutput(Real): Real

Figure 29.

The Blockchain-aware TES Template Model

Quantity
MechanicalValueType

- Multiplier: PowerOfTenMultiplierType
- UOM: MechanicalUOMs {redefines UOI\E

Overview of the RotationalGenerationResources’ package components.

|
TES_Base| | «enumeration»
«interface» : IntermediaryCarrier
iMechConversionProcess |
/ Steam

- Efficiency: Real / Water

+ EnergySource: FuelSource :| /7 NA

+ IntermediaryCarrier: Intermedia ryCarrig'Td -

- MechanicalOutput: Real «enumeration»
RampDown: XYpointList TurbineState
Start_Cold_RampUp: XYpointList
Start_Hot_RampUP: XYpointList NA
Start_Warm_RampUp: XYpointList Cold
TurbineState: TurbineState - => Hot

Wark
+ GetCurrentOutput(): Real
+ SetTargetOutput(Real): Real
«enumeration»

MechanicalUOMs

kg*meter_sq
Ibf*ft*s_sq

53

PNNL-32687

445 Storage Resources

The diagram/package shown in Figure 30 presents an overview of a storage-based resource. It
expands on the interfaces presented earlier and divides the charging/delivery process into two
dedicated systems, which can be specified independently.

Attestation_resource [EaaEces
= 4.4.1 Resources::BaseCapabilities
Capabilities: StorageCapabiIitiesj - | _> StorageSystembep)
Status: StorageStatus k- I | - AvailableServices: ArrayOfGridServices | {leaf}
I) |
iGridEquipment | | .Connecte-dPhases. PhaseCodeType | i
) | is3Phase: Boolean
+ LFCStatus: LifecycleStatusDep | |
. I i | MaxRampPerPhase: ComplexPowerDep [3] «use» -
- Capabilities: BaseCapabilities | | / StorageSystemRealization
Certifications: Certifications bl RatedInputPerPhase: ComplexPowerDep [3] | (
i | ;
Devicelnfo: Devicelnfo | | RatedOutputPerPhase: ComplexPowerDep [3] : -
hasGridSupport: Boolean : L A |
isResponsive: Boolean | |
Status: CurrentStatus | | StorageSyste
| StorageCapabilities / enamera oS
e | / [E R StorageMechanism
+ uID: UID + StorageSystem: StorageSystemDep :|
= | «interface»)
::iGridEquipment ' + GetSoC(): void iStorageSystem o
X ! + SetSchedule(): void PumpedStorage
+ GetStatus(): CurrentStatus | 2 8 . §
setSchedule(): void - Efficiency_input: Real FlyWheel
+ SetSchedule(): voi \ Efficiency_output: Real LeadAcid
«TES_Base \Q StorageStatus - InputConverter: GridEquipmentDep LiPo
+ _getUID() - NCycles: int |
::SerializableObject + GetStatus(): void & - OutputConverter: GridEquipmentDep |
+ Deserialize(Object): void - RatedCapacity: Real P 7z
+ Serialize(): OWt 4.4.1 Resources::CurrentStatus + StorageMedium: StorageMechanism :‘
V
iGridEquipment - CurrentNetPerPhase: ComplexPowerDep [3] G CetCurrentOutput{)iReal
4.4.1 Resources:: CurrentRampPerPhase: ComplexPowerDep [3] + GetSoC(): Real
‘O - isAvailable: Bool + SetTargetOutput(Real): Real
GridEquipmentRealization i 2lable: EOCE
IsConnected: Boolean
. . s
Figure 30. Overview of the StorageResource’s package components.

4.4.6 Attestation Resources

The diagram/package shown in Figure 31 presents an overview of an attestation-capable
resource. In this case, it is assumed that an attestation device only exists on the digital domain
(although signal sampling can occur on the physical side). The proposed model ties the
attestation device to another's device sampling/measurement interface and can choose to
digitally sign/protect data if desired.

The Blockchain-aware TES Template Model

54

Storage_resource

- hasGridSupport: Boolean = True
- Status: StorageStatus
::iGridEquipment

+ _LFCStatus: LifecycleStatusDep
- Capabilities: BaseCapabilities

- Certifications: Certifications

- Devicelnfo: Devicelnfo

- hasGridSupport: Boolean

- isResponsive: Boolean

- Status: CurrentStatus
::TES_Base

+ _UID:UID

- Capabilities: AttestationCapa biIitE

:‘.

::iGridEquipment

+ GetStatus(): CurrentStatus
+ SetSchedule(): void
::TES_Base

+ _getUID()
::SerializableObject

+ Deserialize(Object): void
+ Serialize(): Object

V

iGridEquipment
4.4.1 Resources::
GridEquipmentRealization

Figure 31.

4.4.7

TES_Base
4.4.1 Resources::BaseCapabilities

AvailableServices: ArrayOfGridServices
ConnectedPhases: PhaseCodeType

is3Phase: Boolean

MaxRampPerPhase: ComplexPowerDep [3]
RatedInputPerPhase: ComplexPowerDep [3]
RatedOutputPerPhase: ComplexPowerDep [3]

e T B .

PNNL-32687

4.4.1 Resources::CurrentStatus

CurrentNetPerPhase: ComplexPowerDep [3]
CurrentRampPerPhase: ComplexPowerDep [3]
isAvailable: Boolean

IsConnected: Boolean

AttestationCapabilities

AttestationQualifications: EntityQuaIificationsD__ela
AttestedData: SerializableObject
DigitalCertificate: DigitalCertificateDep]
EndDevices: GridEquipmentDep [0..*]
isDataEncrypted: Boolean

MaxRampPerPhase: None 3]
RatedInputPerPhase: None [3]
RatedOutputPerPhase: None [3]

SetSchedule(): void

B

StorageStatus

GetAttestatedData(): void
+ GetStatus(): void

iEntityQualifications
4.3.9
Permissions&Quialifications:

:EntityQualificationsDep
faafl

4.3.6 DigitalCertificates::
DigitalCertificateDep
{leaf}

Overview of the AttestationResources’ package components.

Organizational Hierarchy

The diagram/package shown in Figure 32represents a reference hierarchy that can be used to

map the different types of actors/systems that may be present on a typical TES system where a
wide variety of participants may interact. This diagram is only intended to be illustrative and can
be adjusted to suit the application needs.

The Blockchain-aware TES Template Model

55

ildentitylnterface
EndUser 4.3.12 Memberships::Memberships o 43[;1 P?’;:"a":" o
- o o enericldentityRealization
[NonUtilityOwnedPoint - - ; Organizational ConsortiumParticipants tity
| - DstEntity: GenericldentityDep v 8
| R ; i . ~
| I;el:n:):yMgpA Mgr;be?tk;lgMapDep < |* Category: String <—
- rcEntity: GenericldentityDep . .
: EndUser E RelatedMemberships: Memberships iEntityQualifications
| UtilityOwnedPoint 3 CreateMembersh! : vo!d + MembershipServiceProvider(): void DelegatorUser 4.3.9
§ 3 DeITteMgmbemhl 2void 4.4.8 Permissions&Qualificatios:
v v 21{): void A AuthorityModel:: :EntityQualificationsDep
«interface» SysAdmins {leaf}
TypeOfOwnership BaseCapabilities
4.4.6 Resource_ i biliti
/‘; Independent ThirdPartyOperators
~J
iGridResource - Category: "Independent" - Permissions: GenericPermissionDep
Grid - Qualifcations: EntityQualificationsDep
4.4.1 Resources:: ﬁ K
GridResourceRealization - Category: "Grid"
Installers Auditors
AuthotizedThirdParty
InstalledEquipment A
C S Agent DelegatedUser:
- Ownership: TypeOfOwnership i i
- Ownership: TypeOfOwnership 3 o
A ZF - Qualifications: EntityQualificationsDep
EndDevice
DelegatedUser:
Resourf:eCapable TransactiveAgent Qualifiedinstallers
Equipment
- LocalControllers: LocalController [0..*] - Qualifications: EntityQualificationsDep CapacityTester Regulator
+ handleTimeStep(): void ZF
DelegatedDevice + SubscribeTo(): void
vare
= CertifiedEqinstaller
Z% UserOwnedAgent Suppliers
M et e Do - Ownership: NonUtilityOwnedPoint - Category: "Suppliers"
- GridLocation: GridCouplingPointDep K
d A Vendors
GridOwnedAgent ThirdPOperatedAgent Manufacturer

- Ownership: UserOwnedAgent B

Operator: AuthotizedThirdParty

Figure 32.

The Blockchain-aware TES Template Model

A

Supplier Z}

Distribuitor

OEM_Manufacturer

Reseller

Overview of the OrganizationalHierarchy’s package components.

PNNL-32687

56

PNNL-32687

4.4.8 Authority Model

The diagram/package shown in Figure 33 introduces a group of classes that represent the
subset of participants that have administrator-like rights over other participants. These
participants can manage other participants (such as dictating a role or permissions) as well as
defining processes and setting rules.

SubjectPermissions 4.3.9 Permissions&Qualifications:
:GenericPermissionDe,
ConfiguredTermissions: GenericPermissionDe__gl — — _> p{leaf)
4.4.7 Hierarchy::
NonUtilityOwnedPoint
\A GridResourceRealization
EndUser EndDevice InstalledEquipment
4.4.7 Hierarchy:: —_”,_D q— = 4'4'2 Hlel:;";hy :,: .
UtilityOwnedPoint sourcelapau g
Installers Z% Z%
4.4.7 Hierarchy::Qualifiedinstallers T
yi:Q DelegatedUser DelegatedDevice AtlestolcpCanatlieg
Qualifications: EntityQualificationsDep \D <l 4.4.7 Hierarchyz:
/V AttestationDevice
Auditors
4.4.7 Hierarchy::QualifiedAuditors
Qualifications: EntityQualificationsDep
AssignableGroups
ConsortiumParticipants
DelegatorUser
SysAdmins
Figure 33. Overview of the AuthorityModel’s package components.

4.49 Sample Hierarchy with associated actors

The diagram/package shown in Figure 34 represents a reference hierarchy that can be used to
map the different types of actors/systems that may be present on a typical TES system where a
wide variety of participants may interact. This diagram is only intended to be illustrative and can
be adjusted to suit the application needs. The diagram has been populated with actors that will

be used to demonstrate potential use cases.

The Blockchain-aware TES Template Model 57

PNNL-32687

- Ownership: UserOwnedAgent

4.4.7 Hierarchy::

EndUser
— 4.4.7 Hi o 4.3.12 Memberships::Memberships 4.3.11 Persona::
| iy CLCT . A A7 eV AN GenericldentityRealization
| NonUtilityOwnedPoint | - DstEntity: GenericldentityDep KA 4.4.7 Hierarchy::Organizational ConsortiumParticipants N L
| | ionMab: MembershioMapDep ~
+ Category: Strinj
! Encesey - SrcEntity: GenericldentityDep S~ . | e er = " .
: BT iEntityQualifications
| UtilityOwnedPoint il CreateMembersh! : Vofd + MembershipServiceProvider(): void DelegatorUser TES_Consortium instantiate» ne
\ T + DeleteMembership(): void «instantiate» N 4.3.
v + Eval(): void 4.4.8 <. Permissions&Qualificatiohs:
A AuthorityModel:: :EntityQualificationsDep
«interface» SysAdmins {leaf}
4.4.7 Hierarchy:: BaseCapabilities TES_Admin TES_Consortium_Memben
TypeOfOwnership 4.4.6 Resource_ i iliti
)C 4.4.7 Hierarchy::Independent 4.4.7 Hierarchy::ThirdPartyOperators
on " q 4.4.7 Hierarchy::
iGridResource - Category: "Independent’ - Permissions: GenericPermissionDep AuthotizedThirdParty
4.4.7 Hierarchy::Grid - Qualifcations: EntityQualificationsDep
4.4.1 Resources:: AR ~
< . .
GridResourceRealization - Category: "Grid" ﬂ R ————— «instantiate» :
) «instantiate» '
4.4.7 Hierarchy:: 4.4.7 H|e‘rarchy::
Installers Auditors
4.4.7 Hi h A NonQualified_Actor
-/ e i - i @ AuthorizedThirdPar
InstalledEquipment 4.4.7 Hierarchy:: 4.4.7 Hierarchy::Agent ty
C 8 DelegatedUser,
G q - Ownership: TypeOfOwnershi
- Ownership: TypeOfOwnership LB a 4.4.7 Hierarchy::QualifiedAuditors
Q_ 4.4.7 Hierarchy:: v «instantiate»
ZF /|'\ - Qualifications: EntityQualificationsDep Regulator SNa
«instantiate» |
EndDevice . 4.4.7 Hierarchy::TransactiveAgent DelegatedUser 4
4.4.7 Hierarchy:: 4.4.7 Hierarchy::Qualifiedinstallers , N .
ResourceCapable - LocalControllers: LocalController [0..*] 4.4.7 Hllerarchy:: T\«mstantlate»
Equipment - Qualifications: EntityQualificationsDep CapacityTester N Regulator_Actor
quPIE Customer_Actor + handleTimeStep(): void ~
+ SubscribeTo(): void ZF
Deleg \tedDevice
]
4.4.7 Higrarchy:: - i i
o v 4.4.7 Hierarchy:: <«_|ns_tannate» CapacityTester_Actor
Sl e e CertifiedEqinstaller
Certi _Actor
4.4.7 Hierarchy::UserOwnedAgent 4.4.7 Hierarchy::
Ownership: NonUtilityOwnedPoi LD
4.4.7 Hierarchy::MeteringDevice i wnership: NonUtilicy e
| - Category: "Suppliers"
- GridLocation: GridC i intDep |
/I'\ 4.4.7 Hierarchy:: | 4.4.7 Hierarchy::)
| GridOwnedAgent | ThirdPOperatedAgent 4.4.7 Hierarchy:: 4.4.7 Hierarchy::
«instantiate» | |
- I
|

Vendors Manufacturer
- Operator: AuthotizedThirdParty ﬁ /7 A

A A\

«instantiate» «insta nltiate» I
1

4.4.7 Hierarchy::
| «instantiate» 4.4.7 Hierarchy::
| ! Distribuitor

OEM_Manufacturer
'
N—__, N
I i | «instantiate»
UtilityAgent UserOwnedAgent ThirdPAgent Reseller

N

|
«instantiate» |
' Manufacturer_Actor

Supplier

Meter_Actor

Reseller_Actor

Figure 34. Overview of the SampleHierarchyWithActors’s package components.

The Blockchain-aware TES Template Model

58

The Blockchain-aware TES Template Model

PNNL-32687

4.5 Grid components
This section presents a grid modeling proposal that aims to retain the electrical topological
hierarchy of power systems while at the same time enabling grid support services to attach to
virtual grid points. This grid-resource modeling is expected to enable an efficient mapping in
between a traditional grid operation and a TES-enabled one.

45.1 Grid Model

The diagram/package shown in Figure 35 provides a reference architecture for modeling grid
connectivity on a relational database format. The proposed design exposes a grid coupling
interface that serves as a bridge to other TES components. The classes used to represent this
grid model were adapted from IEEE 2030.5 and the Common Smatrt Inverter Profile V2.0 (IEEE
Standard for Smart Energy Profile Application Protocol 2018). By leveraging these standards, it
is expected that grid participants can seamlessly integrate the proposed template architecture
with existing applications, such as Advanced Distribution Management Systems (ADMS) or via
DER aggregation services. It is expected, that as the template continues to mature, new (and
existent) objects will seek to become more standardized.

59

PNNL-32687

«interface»
iGridCouplingPoint TES Base ST T T T T T T ConnectionPointList PowerlnterfaceDetails
i / T o h
- Children: ArrayList > GridSystem / | - InterconnectionEquipment
- Powerlnterface: PowerlnterfaceDetails iGridCouplingPoint / .. | - Type:PI_Type[0.¥] _Ir—
- CommonName: String Vi > 4.3.2 Primitives:: | |
+ GetType(): void ST TTN L - Connections: ConnectionPointList | e GeolocationData | :
+ GetUID(): void 2 - GeoLocationInfo: GeoLocationDat I |
() «use» N\ eolLocationlnfo: GeolLocationData - B Cernentadiy— e |
/ D: UID + Geolocation: XYpointList
! GridCouplingPointDep| | - PCC_Charactherization: PCC_CharactheristicsDep W 1ype: LocT 'e e) cenumeranon,
4.3.11 Persona:: S -/ {leaf} - ResponsibleEntity: GenericldentityDep ype: yp / i e
GenericldentityDep / % T:*
{leaf} / DCDC_LineRegulator
/ o
, Grid_SystemISO o - - - - — - —((o __. <T->Grid_DSO>- — >>{ 4.3.2 Primitives: DIERE Wl izl iiar
= DSOList A Li DCDC_MechanicalConverter
M idCoupll ’ - children: DSOLisH~ /ST T T T T T T T < T->Grid_Subtransmission >— — <| > rrayList DCDC_SwitchedPowerSupply
ridCouplingRealization i . ->Gri i ¥
g AT parent!D: Null , 4 r——————- <T->Grid_Substation>_ — — — > add(T): void DCAC_Powerlnverter
Y / f=———————————— + count(): int DCAC_Mechanicallnverter
cenur . /\/\/\/\/\/\ // | <T->Grid_Feeder > ——— B emova(inoen DCAC_SwitchedPowerSupply
! : ; ACDC_Rectifier
N i : N .S / < T->Grid_FeederSection > =
4.3. :0 GridObjects: Grid_DSO P SubtransmissionList / ! 1 b ACDC_SwitchedPowerSupply
AR S A i N iecinnlidl / / / < T->Grid_Transformer > \ ACDC_MechanicalConverter
children: Subtransmission / /
000 NA L | ACAC_ldealTransformer
032C SubstationList FeederlList FeederSectionList TransformerList =y
033 CN _= = = ACAC_Powerlnverter
_- - - = ACAC_MechanicalTransformer
040 CA - _- ¢ —
0648 r : I r
225 BN Grid_Subtransmission | Grid_Substation | Grid_Feeder | Grid_FeederSection | Grid_Transformer Genercliuchub eea2uucy
6 BC 3 | | | TES_Base
128 A - children: SubstationList] - children: FeederLLC.—ﬂ — |- children: FeederSectionListlf = |- children: Transformerlist If — | children: Null 4.3.11 Persona::Address
129 AN
132 AB - _LFCStatus: LifecycleStatusDep
224 ABC - City: String
225 ABCN - Country: String
016 N - PostalCode: String
017 NG - StateProvince: String
- Street: String
/\ - Street2: String
|
_____________ 1
| <} PCC_CharactheristicsRealization | PCC_Charachteristics
4.3.10 GridObjects::Impedance | PCCParameters | N e e e e e e = T (e — — — - — — = -
|
- isPU: Boolean nShal Impedance: Impedance PCC_Voltage \ «use» N\
- isZ012:int '_1_-_ Phases: PhaseCodeType A
N . i i iabili - Reliabili i - ExcursionReq: SerializableObject :
lastUpdated: DaFeTlmeStamp ReliabilityInfo: Rell:?b!htyMetncsDep ' q] 4.6.2 Reliability:: «interface» PCC_CharactheristicsDep
- rawData: ArrayList<Complex> + VoltageCharachteristics: Voltage - Max: Real ReliabilityMetri iPCC_Charactheristics {leaf}
- TypeOfData: ImpedanceDataType \y\| - Min:Real elablity MEHICDEE i
\\ - Nominal: Real {leaf}
. . . s
Figure 35. Overview of the GridModel’s package components.

The Blockchain-aware TES Template Model 60

PNNL-32687

4.6 Smart Contract Modeling and Support Services
In this section a series of auxiliary grid monitoring services will be introduced (from a modeling
perspective). These services are expected to assist with the measurement, verification, and
eventual settlement of TES-based transactions. Following the approach given by the previous
sections, the presented diagrams remain at the high-level, the reader is encouraged to consult
more details within the annex section of this document.

4.6.1 Measurement and Verification

The diagram/package shown in Figure 36 contains a variety of data models that can be used to
record a variety of commodities, quantities, using a wide variety of data aggregation methods.
Most of the data models introduced by this section are based on the models contained in IEEE
2030.5

The Blockchain-aware TES Template Model

61

PNNL-32687

«enumeration» UsagePoint AttestationDevice «enumeration» «enumeration» «enumeration»
RoleFlagsType I _> 4.4.7 Hierarchy::MeteringDevice 4.3.10 GridObjects:: CommodityType DataQualifierType
A + MeterlD: string [0..1]][; - - - - 4.5.1 GridModel:: A lati haviourType
isDC - GridLocation: GrldCoulengPomtDeTﬂ r— ——> GridCoupli intDep Electricity_indirect_metered Average
isDER {leaf) Cumulative Electricity_direct_metered Maximum
isMirror - DeltaData Air Minimum
iSPEV/ <\) Indicating NaturalGas NA
isPremisesAggregationPoint \ SRR RLEED R —— NA Propane Normal
isRevenueQuaIity E roleFlags: RoleFlagsType eadinglypetin Summation PotableWater Std_Deviation_pop
isSubmeter , [£ serviceCategoryKind: ServiceKind - ReadingCharachteristics: ReadingType Instantaneous /7 Std_deviation_sample
/ [+ status: ElectricalStatus /’\ / 7
s N / /
, / -y 7 « ti
ol . e e - Py
et Y V ReadingType / 7 4.3.10 GridObjects:
ServiceKind . / / ; 25 :FlowDirectionKind
B % cenuman—. Mo + accumulationBehaviour: AccumulationBehaviourType :I / Y /
Electricity 4.3.10 GrldObjects: ne + calorificvalue: UnitValueType / Yz / forward
Gas I l N N T N / "
Wat :ElectricalStatus + description: string [0..1] i commo(}iltw CDmmOd.lthype . 7, «enumeration» o2l
ater + conversionFactor: UnitValueType / . net
Time —_ - :‘ / kindType
o «enumeration,dataType» + CEECIEEREE N Em e / none
[RIGEETE Off ! + flowDirection: FlowDirectionKind :I q q1MinusQ4
Heat UomType ; ; Attributes
- Indeterminate + kind: kindType - _ ____ =l corene e q1PlusQ2
Cooling NA + maxNumberOfintervals: Uint8 ! Demand: - q1PlusQ3
Amperes_RMS + measuringPeriod: MeasuringPeriod [0..1] F <~ - - EEmy i.nt lagging
Degree_Celsius + meterLimit: Real [0..1] - | Power"int q1PlusQ4
ReadingLink Joules + numberOfConsumptionBlocks: Uint8 T~— - . int' q2MinusQ3
Hertz + numberOfTouTiers: Uint8 T~ 02PlusQ3
Readings: Reading [0..*] :l ——————— Watts + phase: PhaseCodeType i~ _ S~ _ q2PlusQ4
\ - -~
\ Cubic_Meter + powerOfTenMultiplier: PowerOfTenMultiplierType | - =< ~~_ q3MinusQ2
\\ VoltAmperes + s_ublntervaILength: string [0..1] - \\ ~< - : q3PlusQ4
VoltAmperesReactive + tieredConsumptionBlocks: boolean \ . quadrantl
Reading <<= i ~~ |
CosTheta + uom: UomType \ ~< | quadrant2
«enumeration» Volt_Sq \J \: | quadrant3
QFlags t Ampere_Sq «enumeration» v : GUEGIRIfitH
Valid VAh 4.3.4 Math:: «enumeration» | :\t/;rse
Manual Value ReadingBase Vwr:h Quantity PowerOfTenMultiplierType 4.3.10 GridObjects: I\ totalByPhase
i a
Estimated_historical UnitValueT :PhaseCodeType
E;:::tzd_ulrs];r;ca < + consumptionBlock: string [0..1] Ah YPE oA yp! {\
N) . L "
BT Tl + qualityFlags: string [0..1] Cubic_Ft - Multiplier: PowerOfTenMultiplierType it 000 NA
Dervay + timePeriod: string [0..1] Ft3h - UOM: UomType {redefines UOM} -03 milli 032C «enumeration»
projected Forecasted [£ touTier: string [0..1] m3h 00 unit 033CN Measarinare el
: - / | + value: string [0..1] Gallon_US 03 kilo 040 CA
/ Gallon_Imperial ConsumptionTiers :dOEJa;\I/P‘:’ 06 mega 064 B 00 None'
TOUType Nt isApplicable: it 09giga 065 BN O e
Gallon_Imph - isApplicable: Boolean " - N 066 BC 02 fifteenMinute
—_— s U - touBlocks: TOUsBLocks - Upperlimits: ArrayList<Real> [1..*] - o 03 oneMinute
TOU_SCHEME: string BTU 129 AN 34 t\}:ventyfourHour
5 thirtyMinute
B 4.3.2 Primitives:: 1328 - i
Liter) 224 ABC iveMinute
: AV 07 sixtyMinute
Literh e 225 ABCN !
PA_absolute 4.3.4 Math:: <T->Real > + add(T): void 016 N 10 twoMinute
PA_relative ArrayList<Real> + count(): int 017 NG 15 prese?nt
Therm + remove(int): void 16 previous
31 twentyMinute

The Blockchain-aware TES Template Model

Figure 36.

Overview of the MV’s package components.

62

4.6.2

Reliability

PNNL-32687

The diagram/package shown in Figure 37 provides a reference implementation of a data
interface that can be used to capture grid reliability data. This interface can be leveraged to
provide additional details to market and monitoring applications that run on top of the TES stack.

Tge

4.3.2 Primitives::
OrderedArrayList

add(T): void
count(): int
previtem(T): T
remove(int): void

A\

+ o+ o+ o+

DistributionReliabilityMetrics

TES_Base

CAIDI: Real
CAIFI: Real

- MAIFI: Real
27|~ SAIDI: Real

7 - SAIFI: Real

TES_Base
TransmissionReliabilityMetrics

ReserveMargin: Real

4.3.11 Persona::
GenericldentityDep

{leaf}

7

|
I v
1 : (
< T->ReliabilityEvent >
: ¥ | DistributionReliability | TransmissionReliability
| |
ReliabilityEventList — 1 Metrics: DistributionReliability Metrics — =[x Metrics: TransmissionReliability Metrics
+ GetMetrics(GridSystem): SerializableObject + GetMetrics(GridSystem): SerializableObject
+ UpdateMetrics(GridSystem): void + UpdateMetrics(GridSystem): void
«enumeration»
4.3.3 Time:: Mﬁiauilitylvlcui(@
AggregationPeriods «user -
geregafionferlo’sy M LS NSy ———— —_——_—— ReliabilityMetricsDep)
01 week ReliabilityMetricsRealization UEETh
02 bi_weekly
03 semi_monthly \A]
04 month «interface»
05 bi_montly K- —————— = ~o ReliabilityMetrics
07 semester TES_Base l: AggregationPeriod: AggregationPeriods
08 year ReliabilityEvent - CaptureResposibleEntity: GenericldentityDep
06 quarter - [Z ReliabilityEvents: ReliabilityEventList «enumeration»
092years CapturedBy: GenericldentityDep + TypeOfData: TypeOfReliabilityData J « |_TypeOfReliabilityData
103years DateTime: DateTimeStamp
11 Syears Description: String + GetM etrics(§rid$y§tem): SerializableObject E Tfan‘smifsion
12 10years EventDetails: SerializableObject + UpdateMetrics(GridSystem) Distribution

Figure 37.

4.6.3

Smart Contracts
The diagram/package shown in Figure 38 presents an overview of the components found within
a smart contract. Most of the information of this model is abstract, and its functionality must be

defined by the underlying blockchain and unique application requirements.

The Blockchain-aware TES Template Model

Overview of the Reliability’s package components.

63

PNNL-32687

o
«interface» \l/ |
iSmartContract
SCFunction
_CurrentTransaction: SerializableObject i
+ ExposedFunctions: SCFunction [1..*] _hameSpace: int «enumeration»
InternalFunctions: SCFunction [0..*] _PrevFunction: SCFunction TypeOfFunction
UnderlyingBlockchain: GenericBlockchainDep Code: Bytes
FunctionType: TypeOfFunctic?n‘ - _> DataStorage
+ GetSubmitterldentity(): void Name: String LegalContract
+ GetTime(): void Parameters: SerializableObject Log|cAutomat!on
+ populateCurrentTransaction(): void MessagePassing
GetParameters(): void Computation
iSmartContract R
=~ N—
| — T T 7| SmartContractRealization
1
((USE))
1
SmartContractDep
{leaf} SmartContract_Fabric
_lOBasics: Object
- _SecurityContext: Object
+ _Stub: SerializableObject
+ PopulatelOBasics(): void
PopulateSecurity Context(): void
PopulateStub(): void
Figure 38. Overview of the SmartContracts’ package components.
4.7 Operations-Structural components

In this section, a sample set of structural components that may be relevant to a TES five-stage
operational model are presented. These structural components are intended to serve as a
reference and application developers will need to build their processes based on their needs
and templates introduced in the previous sections.

4.7.1 Qualification & Registration
Qualification diagram

The diagram/package shown in Figure 39 demonstrates the ability of the proposed template to

enable device-level qualifications assignments. This is done by creating a mapping in between:
1) A qualification instance that holds the qualification attributes, 2) A data model that references
an installed system object, and 3) An entity that can certify the physical capabilities of such

system.

The Blockchain-aware TES Template Model

64

4.8 Operational_Examples::
TESRequirments

- RegAttributes: int

PNNL-32687

PersonaRealization

4.3.11 Persona::AutomatedSystem

- CommonName: String

::iEntityQualifications
+ hasCertification(): void
+ validateRights(): void

v

iEntityQualifications

4.3.9 Permissions&Quialifications::
EntityQualificationRealization

Figure 39.

4.8

Operations-Examples

- RegMemberships: int QualifiedAuditors - ldentifiableName: String
4.4.7 Hierarchy::
CapacityTester Z%
TESResourceQuaification
- /7
- QualificationAgent: CapacityTester | InstalledSystemldentity
- QualifiedEntity: InstalledSystemIdentity :l —————————— ~ < N
+:iEntityQualifications E Resource: InstalledSysteE_l ~ -
- DigitalCertificate: DigitalCertificateDep [0..1] N
- Qualifications: Qualification \l/
- QualifiedEntity: PersonaDep TES_Base

4.4.1 Resources::InstalledSystem

- GridEquipment: GridEquipmentDep

- GridInterface: GridCouplingPointDep [0..1]
- isGridTied: Boolean

- isResponsive: Boolean

- Operatorldentity: GenericldentityDep

- Ownerldentity: GenericldentityDep

Overview of the Qualification’s package components.

This section contains examples that may serve as a reference for building more complex
systems. This examples only list the main steps and will need to be adapted to suit an

application’s needs.

4.8.1

Agent qualification

In this demo we assume that a non-qualified actor is interested in becoming a qualified DER
installer. To achieve this state the actor must first get a copy of the terms and conditions
(requirements), followed by getting all the documentation ready. Finally, the agent submits this
documentation (e.g., proof of courses taken) and its case gets evaluated in a transparent,
equitable manner by the blockchain-based solution.

4811 Agent Qualification Demo-Structural side

This diagram (Figure 40) presents the data dependencies needed to transition a non-qualifier
actor into a qualified actor. For example, a company may want to gain qualifications as a DER-
system capacity tester.

The Blockchain-aware TES Template Model

65

PNNL-32687

Actor's_Qualifications

CapacityTester RegistrationFN

- AssignedQualification: AvailableQualifications
I - QualifiedEntity: NonQualified_Actor

| |
«instantiate»

| T «insta’ntiate» NonQualified_Actor
\ll/ \‘I/ : \‘I/ (from 4.4.9
SampleActors)
4.6.3 Smart Contracts::SCFunction 4.3.9 Permissions&Qualifications::Qualification
- _nameSpace: int - AssignedQualification: AvailableQualifications
- _PrevFunction: SCFunction - EffectiveDates: DateTimeBound
+ Code: Bytes - isDigitallySigned: Boolean
- FunctionType: TypeOfFunction - isRevoked: Boolean
- Name: String - QualificationAuthority: QualificationOrg
+ Parameters: SerializableObject - QualifiedEntity: PersonaDep
- Signature: Bytes [0..1]
+ GetParameters(): void
+ CheckCertification(): void

Figure 40. Overview of the QualificationUseCase’s package components.

4.8.1.2 Agent Qualification Demo-Behavioral side

This diagram (Figure 41) presents a sequence diagram for transitioning a non-qualifier actor into
a qualified actor. It is assumed that a consortium has already decided on the terms and
conditions and the registration process for becoming a capacity tester has been outlined.

The Blockchain-aware TES Template Model 66

PNNL-32687

% % CapacityTester_RegistrationFN | Actor's_Qualifications InmutableLedger

TES_Consortium NonQualified_Actor
! ! T T T

(from 4.4.9 (from 4.4.9 (from 4.8.1.1 (from 4.8.1.1 (from 4.3.7

SampleActors) SampleActors) AgentQualification_Structural AgentQualification_Structural) BlockchainLedger)
l l [[[
: Specify rlegistration function() I : : Consortium sets terms and conditions for becoming a
] 1 >|j | | Qualified entity
| | Request_TandC() | | |
| Respond_TandC() | | Interested party queries the system for terms and
| ke — = e e -] | | applications.
: SubmitRegistration() I : :
I > | | Agent submits registration request, terms and conditions
| alt Qualification acceptance/ Update qualification() | I are accepted by requesting registration and submitting
| | requested parameters.
| [Actor meets requirements] Update Ledger() |
I If the request meets the terms and conditions the actor's
I < — —REtlEn—OIi)— — qualifications are updated, and stored in the ledger.
| Return Ok() |
I < - - - T - I
l e R I S
I [[[
| [Actor does not meet requirements] | |
| | Return Fail() | | If the request does not meet the terms and conditions the
| Iﬂ:" eturn ral | | actor's qualifications remain unmodified, actor is notified.
l [[
l l [[[
I . T T T
]] ' ' '

Figure 41. Overview of the 4.8.1 Registration&Qualification’s package components.

The Blockchain-aware TES Template Model

67

PNNL-32687

4.9 Sample: Developing a Smart Contract-Based
Permission Solution

TES-based solutions need to ensure that an agent’s private and competitive information
remains hidden from other competing participants. Ideally, this information should only be
shared with entities that have a valid need-to-know business requirement, which may include a
system operator or a third-party agent who can certify an agent’s capabilities. Other types of
information may have a more temporal need for privacy; for example, bids must remain sealed
at least until the market agent clears them (although in practice it may be beneficial to still
restrict access to competitors even after the bids get cleared to prevent behavioral analysis).

These privacy needs are often addressed by using access control mechanisms, which can limit
access to information based on a variety of conditions. One of the most commonly used
mechanisms is Role Based Access Control (RBAC). This method limits access to information
based on a user’s particular role in an organization. These roles and rules are typically assigned
by an administrator and the rules are usually defined using Access Control Lists (ACLs). Roles
define the access level that a group of users has for a particular resource. However, RBAC
starts displaying problems when a user has multiple assigned roles within a system and fails to
determine the relevant role that must be evaluated relative to the ACL.

A second approach is to use Attribute-Based Access Control (ABAC), a method for controlling
access by relying on pre-configured policies to determine a resource’s access permissions
based on certain attributes. These attributes can represent a wide variety of user, resource, or
system-level properties. Determining access with these extended attributes provides a much
more flexible, dynamic, and well-defined access control mechanism that would otherwise be
impossible with RBAC. However, ABAC has multiple components that must work together to
ensure that access is adequately managed. A detailed overview of the ABAC components is
given in Figure 42.

The Blockchain-aware TES Template Model

PNNL-32687

Enforcement infrastructure
Policy Enforcement Point Prevents unauthorized access at

Submit the edge level

request

User/application Seng dqt;:r
request (or denial)

Submit request to PDP

Policy Decision Point
PIP
(73 ‘

Retrieve data from data
source (if approved)

Policy Information Point

Data source
AN

Decision infrastructure

Get system Grants data access

attributes

Support infrastructure
Provides system attributes and filters
policies based on them

Management
infrastructure Submits
Allows administrators/ business
authorized entities to

establish/modify rules

System administrator/
operator

Figure 42. The components of an ABAC system.

49.1 TES execution model in Hyperledger fabric

This package/diagram represents an abstract representation of the base-class used to interface

any object-oriented class with a Blockchain-based ledger, it contains all the bootstrap functions
to streamline the creation, loading, updating of any object.

The Blockchain-aware TES Template Model

69

4.3.9

iPermission

Permissions&Qualifications:

GenericPermissionRealization

L

BaseClass

o

_autoref: Object
LastFunction: SCFunction

+ + + + +

_initBasic(): void
_loadDependency_ByFQID(): void
create(): void

delete(): void

init(): void

PNNL-32687

4.3.7 BlockchainLedger::
GenericBlockchainDep
{leaf}

«interface»
4.6.3 Smart Contracts::iSmartContract

_CurrentTransaction: SerializableObject
+ ExposedFunctions: SCFunction [1..%]
- InternalFunctions: SCFunction [0..*]
- UnderlyingBlockchain: GenericBIockchainDe;J -

GetSubmitterldentity(): void

populateCurrentTransaction(): void

SerializableObject iBlockchain A
4.3.2 Primitives:: .
Tesia 4.3.7 BlockchainLedger:: «interface» iBlockchain
= GenericBlockchainRealization <H -+ GetStub(): SerializableObject|” = =~ ™ 2 f;w_» T
+ _UID:UID
+ _getUID()
o SmartContracts':: —/_l> 4.6.3 Smart Contracts::
SmartContract_Fabric SmartContractRealization
i 7
_IOBas.lcs. Object . iSmartCostract
- _SecurityContext: Object
l': + _Stub: SerializableObject
s
—— = + PopulatelOBasics(): void V2
AN PopulateSecurity Context(): void (
AN : VOil -
\\ + PopulateStub(): void : «Use»
|
4.6.3 Smart Contracts::SCFunction
j <1 4.6.3 Smart
i _:amESp:e. mStCF - | Contracts:: A
- revFunction: unction]
w SmartContractDep " & oryF
+ Code: Bytes {lea) + GetTime(): void
- FunctionType: TypeOfFunction 1
- Name: String
+ Parameters: SerializableObject
+ GetParameters(): void
Figure 43. Overview of the BaseTES’ package components.

The Blockchain-aware TES Template Model

70

PNNL-32687

4.9.2 ABAC Implementation on Blockchain

Following the architectural overview presented in section 4.9, the structural elements required to
implement the Policy Decision Point (PDP), along with the Policy Retrieval Point (PRP) and the
Policy Information Point (PIP) were modeled in UML. These components mostly rely on the
ledger to serve as the PRP and the SC to serve as the PDP and PIP. It is assumed that a Policy
Administration Point (PAP) can be implemented by the developer and presented to the system
administrator in a user-friendly manner. It is important to note that the Policy Enforcement Point
(PEP) is directly implemented by the PDP.

4.9.2.1 The Policy Resource Class

Based on the ABAC characteristics, it was determined that there is a many-to-many relationship
between policies and resources (e.g., a resource can have multiple policies, and a policy can
apply to multiple resources). To represent this relationship, an intermediary object—the
PolicyResource class—was created. This class maintains references to a policy, a resource’s
name, and a subject’s role. This class acts as an associative entity that resolves the many-to-
many relationships between policies and resources. When a policy evaluation is requested, a
logical function can search the ledger by either looking at ResourceName or the subject’s role to
identify relevant policies. A UML class diagram of the PolicyResource class is presented in
Figure 44.

4.9.2.2 The Policy Class

In this case a policy represents the basic component of an access control mechanism, and the
policy defines the operations that must be evaluated as being true to grant a permission. In
addition, the policy contains a field for storing a comment, plus a reference to the function that is
requesting access.

4.9.2.3 The Policy Operation Class

This container is used to store the attribute-based rules that are evaluates as being either true
or false. A rule contains three components: a PolicyOperator and two operands. The first
operand can be a dynamic attribute or a fixed value that will be compared by the PIP. The
second operand is a run-time attribute, which value is determined on demand (again by the
PIP). The PolicyOperator represents the operation that takes place between the two operands.

4.9.2.4 The Logical Evaluation of ABAC

The proposed ABAC implementation relies on the SC logic to enforce the ABAC logical
requirements. The ABAC mechanism has been inherited into all classes by bootstrapping a
CheckPermissions function in the BaseClass object. This function is called during an object-
initiation phase to ensure that access is checked before the SC (and therefore the agent) has
access to an object, and the access control function is divided into three main phases. The first
phase is used to quickly find all policies that are relevant to the resource that is being loaded,
followed by a second phase in which an identity-based filter enables the SC to find policies that
intersect both the resource and the user role (see Figure 45).

Once the subset of applicable policies has been identified, a third algorithm iterates through all
policies to determine a user’s effective access level. Within this algorithm, attribute-based rules

The Blockchain-aware TES Template Model

71

PNNL-32687

are evaluated by the PIP using recursion and dynamic comparisons between objects. As a

security measure, a string-based dictionary of allowable objects and properties is used to avoid

the risks of fully dynamic evaluations.

g
. .= I | 4.3.2 Primitives::
4.6.3 Smart Contracts::SCFunction L UIDList <T->UID> 'D ArrayList
nameSpace: int 2 g
= iy i / <T->Policy > + add(T): void
- _PrevFunction: SCFunction Y, + count(): int
+ Code: Bytes / Policy + remove(int): void
FunctionType: TypeOfFunction < _____ —— 4=
- Name: String \ comment: String
+ Parameters: SerializableObject \ operation: PolicyOperators |~ PolicyOperation
PolicyList [parameters: SCFunction =
+ GetParameters(): void e . 5
permission: AccessPermissions[— T Operand1: Object
V [Operand2: Object
SmarcContractIFabng <}__ﬁl\ \7?— + Evaluate(): Boolean | Operator: PolicyOperation]
TES_Base | N\ | |
| | .
4.9.1 BaseTES::BaseClass | | v «enumeration» |
| | PolicyOperators !
- _autoref: Object | PolicyResource) «enumeration» |
+ LastFunction: SCFunction Jf--- , 4.3.9 AND :
™ - - PolicyRefs: PolicyList :‘ cenumer, Permissi Qualifi OR .
+ _initBasic(): void - PolicyResourcelD: int 4.3.9 :AccessPermissions == <<
+ _loadDependency_ByFQID(): void <I - Resource: UID . - B >
pl te(): void . Permissions&Qualificatiol
create(): voi RoleName: TESGroup |\ .1£s6rou Attributes <
+ delete(): void . P R int -
+ init(): void CheckPermissions(): Boolean Agent W: int .
Agent.Market X:int NOT.IN.SET
Auditor RW: int IN.SET
Agent.Prosumer RWX: int
iPermission
4.3.9
Permissions&Qualifications::
GenericPermissi lizati
Figure 44. Objects used to represent the ABAC architecture.
The checkPermission function is called with
the three parameters - -
Operation (the action the
user requests to perform),
Parameters (the object's
y parameters), and
The user's identity and Transaction (which
the name of the contains data related to
resource is retreived the user)
The function uses the The function
resources name to query determines if at-least
and return every policy one policy evaluates to
related to the resource true
-) If so, grant user
The policies are filtered ¢
by the users role access. If not, deny
Y | USer access.
Each policy that is
related to the user
and the resource is
evaluated
Figure 45. The policy-filtering algorithm finds policies based on the target resource and a

The Blockchain-aware TES Template Model

user’s role (covering the first and second algorithm).

72

A loop ensures that
each policy is
evaluated

¥

The operation the user is
attempting to perform is
compared to the allowable
actions defined in the
policies

If the operation is in the
allowable actions and the
ownership of the asset is
verified, if needed, then the
operation is satified

Each rule that is contained
in the policy is evaluated by

Once the evaluateRuleExpression

reaches an operand that is not another
rule expression the getAttribute function is

called to resolve the attribute string

v

The getAttribute function first
determines whether or not if the
attribute is a number. If it is not,

the getAttribute function uses the
SuperObj to resolve the attribute
and returns it

v

The evaluateRuleExpression
function uses the attributes

PNNL-32687

calling the returned to resolve the rule
evaluateRuleExpression expressions
function ¥
- If all the rules evaluate
to true, then the rules
The evaluateRuleExpression function are satisfied
uses prefix evaluation principles and 3
recursion to each rule expression that
may be nested in the rule object If the operation and the

rules are satified then

|

the policy is satified

Figure 46. The internal algorithm used to evaluate attribute-based rules (the third algorithm).
In addition to the aforementioned mechanism, an experimental, off-the-chain mechanism is
undergoing testing for use in further restricting an agent’s access to the ledger. This mechanism
works by encrypting data and distributing the keys used to encrypt the data across multiple
systems (referred as to the key keepers). When a valid request is received (evaluated by a
distributed policy engine), the original key keepers release their partial keys to the system that is
requesting access. At this point the requester assembles the partial keys and is able to recover
the original information stored in the ledger. An overview of the experimental approach is
presented in Figure 47. In this case, the off-chain key provider is implemented in Python and
relies on the use of Identity-Based Encryption to encrypt the data blocks. More research is
needed to create a seamless solution.

The Blockchain-aware TES Template Model

73

PNNL-32687

Off-chain platform -
Request Read keys |-

ABAC enforcement layer (PEP)

Peer 1 environment

Blockchain channel covering a peer networ
D
J o\

DB ER ERE B

Progressive DB

Revised rules Current rules

Figure 47. Implementing an ABAC system within a permissioned blockchain environment.

The Blockchain-aware TES Template Model

74

PNNL-32687

5.0 Conclusion

In this report, a series of templates designed for blockchain-based TES environments were
presented. The proposed templates have been developed in a blockchain-agnostic manner,
with flexibility and interoperability in mind. These templates are built based on the traits and
design goals identified by prior researchers, with key elements been carried having been
forward from their proposed models into the now reported templates. In addition, these
templates have been based on existing standards, such as IEEE 2030.5 to promote
interoperability with existent solutions.

To achieve this, the research team identified the key building blocks of a TES from an
engineering perspective and captured them using behavioral and data models with blockchain
as a TES-enabling technology. The resulting diagrams are expected to be easily implemented in
SC solutions. Due to the template’s inheritance and composite capabilities, researchers will be
able to easily customize the template to suit their own TES application needs, irrespective of the
underlying DLT, based on an underlying assumption that their choice of blockchain offers SC-
like capabilities as an inherent feature.

The current template version contains various objects that are intended to be representative of
grid devices. In the current state, the template contains mechanisms for storing and accessing a
participant’s identity and permissions while also enabling abstract grid resource modeling. The
current components address the registration/qualification, negotiation, and operation processes
of the ESI model.

Conclusion

75

PNNL-32687

6.0 References

Andoni, Merlinda, Valentin Robu, David Flynn, Simone Abram, Dale Geach, David Jenkins,
Peter McCallum, and Andrew Peacock. 2019. "Blockchain technology in the energy
sector: A systematic review of challenges and opportunities.” Renewable and
Sustainable Energy Reviews, 143-174.

Antonopoulos, Andreas M., and Gavin Wood. 2018. Mastering Ethereum. O'Reilly Media.

Boeyen, Sharon, Stefan Santesson, Tim Polk, Russ Housley, Stephen Farrell, and David
Cooper. 2008. "Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile." Request for Comments, May.

Burns, Martin, Eugine Song, and David Holmberg. 2018. The Transactive Energy Abstract
Component Model. NIST.

Buterin, Vitalik. 2013. "Ethereum white paper."

Cali, Umit, Claudio Lima, Xuefei Li, and Yasuhiko Ogushi. 2019. "DLT / Blockchain in
Transactive Energy Use Cases Segmentation and Standardization Framework." IEEE
PES Transactive Energy Systems Conference (TESC). Minneapolis, Mn: IEEE.

Cazalet, Edward, William Cox, Alexander Krstulovic, William Miller, and Wilco Wijbrandi. 2016.
"Transactive Energy Challenge: Common Transactive Services."

Eisele, Scott, Carlos Barreto, Abhishek Dubey, Xenofon Koutsoukos, Taha Eghtesad, Aron
Laszka, and Anastasia Mavridou. 2020. "Blockchains for Transactive Energy Systems:
Opportunities, Challenges, and Approaches." Computer 66-76.

Eisele, Scott, Carlos Barreto, Abhishek Dubey, Xenofon Koutsoukos, Taha Eghtesad, Aron
Laszka, and Anastasia Mavridou. 2020. "Blockchains for Transactive Energy Systems:
Opportunities, Challenges, and Approaches." Computer 66-76.

Gourisetti, S., S. Widergren, M. Mylrea, P. Wang, M. Borkum, A. Randall, and B. Bhattarai.
2019. Blockchain Smart Contracts for Transactive Energy Systems. PNNL Tech. Report
29017, Pacific Northwest National Laboratory.

Gourisetti, SNG, DJ Sebastian-Cardenas, Bishnu Bhattarai, Peng Wang, Steve Widergren,
Mark Borkum, and Alysha. Randall. 2021. "Blockchain smart contract reference
framework and program logic architecture for transactive energy systems." Applied
enegy.

GridWise Architecture Council. 2015. GridWise Transactive Energy Framework Version 1.0.
PNNL Tech. Report 22946, Richland: Pacific Northwest National Lab.

Hahn, Adam, Rajveer Singh, Chen-Ching Liu, and Sijie Chen. 2017. "Smart contract-based
campus demonstration of decentralized transactive energy auctions." IEEE
Power&Energy Society Innovative Smart Grid Technologies Conference . Arlington, Va.

Hammerstrom, Donald. 2019. The Tranasctive Network Template Metamodel. Pacific Northwest
National Laboratory (PNNL Report 28420).

Holmberg, David, Martin Burns, Steven Bushby, Avi Gopstein, Tom McDermott, Yingying Tang,
Qiuhua Huang, et al. 2019. NIST Transactive EnergyModeling and Simulation Challenge
Phase Il Final Report. NIST.

IEEE Std 2030.5-2018 (Revision of IEEE Std 2030.5-2013). 2018. "IEEE Standard for Smart
Energy Profile Application Protocol.”

Kuzlu, Murat, Manisa Pipattanasomporn, Levent Gurses, and Saifur Rahman. 2019.
"Performance Analysis of a Hyperledger Fabric Blockchain Framework: Throughput,
Latency and Scalability." IEEE International Conference on Blockchain. 536-540,.

Li, Zhiyi, Shay Bahramirad, Aleksi Paaso, Mingyu Yan, and Mohammad Shahidehpour. 2019.
"Blockchain for decentralized transactive energy management system in networked
microgrids.” The Electricity Journal.

References

PNNL-32687

Liang, Xueping, Sachin Shetty, Deepak Tosh, Yafei Ji, and Danyi Li. 2018. "Towards a Reliable
and Accountable Cyber Supply Chain in Energy Delivery System Using Blockchain."
International Conference on Security and Privacy in Communication Systems. 122-138.

Lima, Claudio. 2018. "Developing Open and Interoperable DLTV/Blockchain Standards."
Computer.

Mokhtari, Sasan, and Farrokh Rahimi. 2021. "Grid-Edge Blockchain-Based Transactive Energy
Platform: Design and implementation." IEEE Electrification Magazine.

Mylrea, Michael, and Sri Nikhil Gupta Gourisetti. 2018. "Blockchain for Supply Chain
Cybersecurity, Optimization and Compliance." Resilience Week.

Mylrea, Michael, Sri Nikhil Gupta Gourisetti, and H Culley. 2018. Keyless Infrastructure Security:
Technology Landscape Analysis Report. Tech. Rep. 27453, Richland: Pacific Northwest
National Laboratory.

Nakamoto, Satoshi. 2008. "Bitcoin: A Peer-to-Peer Electronic Cash System."

Patel, Dhiren, Benita Britto, Sanidhya Sharma, Kaustubh Gaikwad, Yash Dusing, and Mrinal
Gupta. 2020. "Carbon Credits on Blockchain." International Conference on Innovative
Trends in Information Technology (ICITIIT). 1-5.

Sebastian, David J., Sri Nikhil Gupta Gourisetti, Michael Mylrea, Anthony Morlaez, Garrett Day,
Vinod Tatireddy, Craig H. Allwardt, et al. 2021. "Digital data provenance for the power
grid based on a Keyless Infrastructure Security Solution." IEEE Resilience Week. Salt
Lake City, UT.

Tonghe, Wanga, Guobc Jian, Aib Songpu, and Caob Junwei. 2021. "RBT: A distributed
reputation system for blockchain-based peer-to-peer energy trading with fairness
consideration." Applied Energy.

Troncia, M., M. Galici, M. Mureddu, E. Ghiani, and F. Pilo. 2019. "Distributed ledger
technologies for peer-to-peer local markets in distribution networks." Energies 3249.

Tucker, David, and Grant , Johnson. 2021. "Blockchain for Optimized Security and Energy
(BLOSEM)." May 2019. https://netl.doe.gov/sites/default/files/netl-
file/21SC_Tucker_B.pdf.

Wang, Rui, Kejiang Ye, and authorCheng-Zhong Xu. 2019. "Performance Benchmarking and
Optimization for Blockchain Systems: A Survey." International Conference on
Blockchain. 171-185.

Widergren, Steve. 2018. Interoperability Strategic Vision. Pacific Northwest National Lab, PNNL
Report - 27320.

—. 2016. "Transactive Energy for Distributed Resource Integration.” Edited by AIT Austrian
Institute of Technology.

Yaga, Dylan, Peter Mell, Nik Roby, and Karen Scarfone. 2018. "Blockchain Technology
Overview."

Zheng, Xiaoying, Zhu Yongxin, and Si Xueming. 2019. "A Survey on Challenges and
Progresses in Blockchain Technologies: A Performance and Security Perspective."
Applied Sciences 4731.

References 77

PNNL-32687

Appendix A — Blockchain-Architecture for Transactive
Energy Systems in-depth review.

A.1 Basic Data Types

In this section a collection of basic data types that are used within the template are introduced. The details of these
objects will be explored in these upcoming sections.

A.1.1 Basic Object Models
This package provides an overview of foundational classes that are used as the base constructs for the Blockchain
Architecture Transactive Energy Systems (B-A TES) template framework. These elements work together to 1)
Uniquely identify objects; and 2) support an event-based architecture.

RandomizableEvent 4.3.7 BlockchainLedger::GenericBlockchainDep
{leaf}

+ randomizeDuration: TimeSpan [0..1] =0
+ randomizeStart: TimeSpan [0..1] =0

V 7
: uiD

Event - -
E Blockchainlnterface: GenericBlockchainDep
+ creationTime: TimeType - SeqID: Int64
+ interval: DateTimelnterval - TypelD: Int32
FireEventDep - TypeVersion: VersionType
Z% el + computeFQID(Int64, Int32, VersionType): int
+ Listen(): void + GetFQID(): int
interraee + GetObject(VersionType, Int32): Object
FireEvent / + getVersion(): void
+ Loadinstance(Int64, Int32, VersionType): Object
+ NotifyAll(): void FireEvent ~< + LoadinstanceFromFQID(int): Object

Z% LN R

SingleFireEventRealizati IdentifiedObject
Int16
_hasFired: Boolean VersionType + description: String [0..1]
+ mRID: mRIDType
+ version: VersionType [0..1] =0

Figure 48. Overview of the BasicObjects' package components

A.1.1.1 FireEvent
Class «interface» in package '4.3.1 Basic Objects'

STRUCTURAL PART OF FireEvent

¥ FireEvent: Providedinterface
OUTGOING STRUCTURAL RELATIONSHIPS
= Generalization from «interface» FireEvent to Event

Appendix A

PNNL-32687

OPERATIONS

% NotifyAll (): void Public
Details:

A.1.1.2 FireEventDep
Class in package '4.3.1 Basic Objects'
Details: This is a listener.

CONNECTORS

/" Dependency Source -> Destination
From: : FireEventDep : Class, Public
To: FireEvent : ProvidedInterface, Public

OPERATIONS

@ Listen (): void Public
Details:

A.1.1.3 FireEventRealization
Class in package '4.3.1 Basic Objects'

OUTGOING STRUCTURAL RELATIONSHIPS

= Realization from FireEventRealization to FireEvent
= Generalization from FireEventRealization to «interface» FireEvent

A.1.1.4 SingleFireEventRealization
Class in package '4.3.1 Basic Objects’
Details: This type of event can only occur once. The object fires as soon as the start of the interval

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from SingleFireEventRealization to FireEvent
4= Generalization from SingleFireEventRealization to «interface» FireEvent

ATTRIBUTES

Details:

A.1.15 UID

Class in package '4.3.1 Basic Objects’
Details: This class enables to uniquely identify any instance of an object using two indexes. It also provides static
methods from loading data from the blockchain.

Appendix A 79

PNNL-32687

CONNECTORS
' Dependency Source -> Destination

From: :UID : Class , Public
To: GenericBlockchainDep : Class , Public

ATTRIBUTES

Blockchainlnterface : GenericBlockchainDep Private
Details:
W SeqlD: Int64 Private
Details: This represents an instance number within the object denoted by TypelD
Alias: mRID_High
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
W TypelD : Int32 Private
Details: This represents a unique number that can be used to globally identify an object type within the template. Similar to a
GUID but can be shorten to satisfy an application needs
Alias: mRID_Low
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
TypeVersion : VersionType Private
Details: This is a reference to the object's version.
In general a system should be designed to be backwards compatible, or at least backward-aware. Having this property ensures
that new SC versions do not corrupt the world state.
Alias: version
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% computeFQID (SeqID : Int64 , TypelD : Int32 , TypeVersion : VersionType) : int Public
Details: This function enables an SC to compute the Fully Qualified Identity of any given instance if the object ID, instance ID
and version information is provided.

W GetFQID () : int Public
Details: Computes an object's FQID from an object that is already loaded into memory

¥ GetObject (Version : VersionType , TypelD : Int32) : Object Public
Details: Enables to retrieve an object prototype given a unique object ID, and its version. Static method

% getVersion () : void Public
Details:

% LoadInstance (SeqID : Int64 , TypelD : Int32 , TypeVersion : VersionType) : Object Public
Details: Enables to load a specific instance using the object ID, its sequence and version number. This function should rely on
the BlockchainInterface to load the requested object.

% LoadInstanceFromFQID (FQID : int) : Object Public
Details: Enables to load a specific instance using a FQID

A.1.1.6 IdentifiedObject

Class in package '4.3.1 Basic Objects'
Details: This object was adapted/taken from IEEE 2030.5. This is a root class to provide common identity scheme
for all objects needing to be uniquely identifiable.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from ldentifiedObjectto UID

Appendix A

80

PNNL-32687

ATTRIBUTES

description : String Public

Details: This property was adapted/taken from IEEE2030.5. The description is a text describing the object function, it can also
capture notes

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

mRID : mRIDType Public

Details: This property was adapted/taken from IEEE2030.5. Used to represent the global identifier of the object, is the
concatenation of TypelD||SeqlD

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

version : VersionType Public =0

Details: Contains the version number of the object. Useful in handling multiple versions within the ledger
Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

A.1.1.7 Event

Class in package '4.3.1 Basic Objects'
Details: This object was adapted/taken from IEEE 2030.5. An Event indicates information that applies to a
particular period of time. Events follow the BC-agreed time reference.

ATTRIBUTES

W creationTime : TimeType Public

Details: This property was adapted/taken from IEEE2030.5. Indicates the time at which the Event was created.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

interval : DateTimelnterval Public

Details: This property was adapted/taken from IEEE2030.5 The period during which the Event applies.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.1.8 RandomizableEvent

Class in package '4.3.1 Basic Objects'
Details: This object was adapted/taken from IEEE 2030.5. This is an Event that can indicate time ranges over which
the start time and duration can be randomized over a period of time.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from RandomizableEventto Event

ATTRIBUTES

randomizeDuration : TimeSpan Public =0

Details: Number of seconds boundary inside which a random value must be selected to be applied to the associated interval
duration, to avoid sudden synchronized demand changes. If related to price level changes, sign may be ignored. Valid range is
-3600 to 3600. If not specified, 0 is the default.

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

randomizeStart : TimeSpan Public =0

Details: Number of seconds boundary inside which a random value must be selected to be applied to the associated interval
start time, to avoid sudden synchronized demand changes. If related to price level changes, sign may be ignored. Valid range is
-3600 to 3600. If not specified, 0 is the default.

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

A.1.1.9 VersionType

Class in package '4.3.1 Basic Objects'
Details: This object was adapted/taken from IEEE 2030.5. This field indicates an object's version. An object should
maintain the same TypelD across its life-cycle, while advancing the version when properties are added or changed

Appendix A 81

PNNL-32687

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from VersionType to Int16

Appendix A

82

PNNL-32687

A.1.2 Primitives

In this package an overview of data primitives is introduced. These data type models are intended to support a wide
variety of data needs, provide generic structures and in general support more complex template models. In addition,
they provide clearance on the size, supported operations and intended usage.

XYpointList GeolocationData
- ElementAddress: Address .
<= — — [+ GeoLocation: XYpointList e
FATP LocType
+ Type: LocType :| — —
N Point
h N Rectangle
Int64 < T->XYpoint >\ - Path
- Data: Bytes = <size=8>
ArraylList Object
Int32 + add(T): void
+ count(): int
- Data: Bytes = <size=4> . + remove(int): void
n
\b Lk
- Data: Bytes T: [}
Int16 - isLE:int
B D OrderedArrayList . .
- Data: Bytes = <size=2> + getValue(): void J SerializableObject
f cervallElie : add('[()):.Yo;d + Deserialize(Object): void
Int8 s + Serialize(): Object
+ previtem(T): T
- Data: Bytes = <size=1> + remove(int): void Q

ree
TES_Base
Byt
b~ —_ .[> Array + _UID: UID
- size:int < T->Byte > - dataBuffer: T + _getUID()
- sizerint
BitEncodedStri
Byte Bit oo + create(Int): void]
I - bitLen: Integer + getBufferLen(): int Choice
- value: Bit[8] I} => - Name: String << [Bits: Bit[0..*] + getElement(int): T
- Position: Integer - Name: String - setBufferLen(int): void
- Value: Boolean + setElement(int, T): void
Figure 49. Overview of the Primitives' package components

A.1.21 Array

Class in package '4.3.2 Primitives'
Details: This is a generic structure used to represent any array of T elements. An array has a fixed length given by
size, this value is not modifiable after the initial setup.

ATTRIBUTES

dataBuffer : T Private
Details: This is the underlying structure that contains array data, its is assumed that
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Appendix A 83

PNNL-32687

ATTRIBUTES

W size:int Private
Details:

OPERATIONS

“ create (Size : Int) : void Public
Details: This function initializes the array size.

i getBufferLen () : int Public
Details: This gets the total amount of elements that can fit in this array.

% getElement (I : int) : T Public
Details: This function retrieves an element at position |

i setBufferLen (len : int) : void Private
Details: This is an internal function that gets called during initialization.

i setElement (index : int , value : T) : void Public
Details: This function sets a value at position | from the array.

A.1.2.2 ArraylList
Class in package '4.3.2 Primitives'

Details: This is a generic structure used to represent any arrayList of T elements. Elements within an arrayList can
be added/removed at any time.

OPERATIONS

% add (T : T): void Public
Details: This function is used to add an element of type T into the array list.

% count () : int Public
Details: This function retrieves the number of items contained in the array list.

‘% remove (Index : int) : void Public
Details: This function removes an object from the list.

A.1.2.3 Bit
Class in package '4.3.2 Primitives'
Details: This represents a single Bit (0,1). It can have a name and a position, with the LSb referenced as 0.

CONNECTORS
' Dependency Source -> Destination

From: : BitEncodedString : Class , Public
To: Bit: Class, Public

A Dependency Source -> Destination
From: : Byte : Class , Public

To: Bit: Class, Public

ATTRIBUTES
Name : String Private

Appendix A

84

PNNL-32687

ATTRIBUTES

Details: This can be used to define a bit name, useful for bit masking
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Position : Integer Private

Details: This denotes the bit position, the LSb is considered to be at position 0
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Value : Boolean Private

Details: This can be a 0 or 1, potentially representing a True/False value
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.2.4 BitEncodedString
Class in package '4.3.2 Primitives'
Details: This represents a string of bits with predetermined length, with each bit position representing a T/F flag.

CONNECTORS

Dependency Source -> Destination
From: : BitEncodedsString : Class , Public
To: Bit: Class, Public

ATTRIBUTES

W bitLen : Integer Private

Details: This field denotes the size of the bit string (size given in bits)
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bits : Bit Private

Details: An array of bits, the length of the array matches bitLen
Multiplicity: (0..*, Allow duplicates: 0, Is ordered: False)

Name : String Private

Details: This is the name of the string of zeros and ones

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.2,5 Byte
Class in package '4.3.2 Primitives'
Details: This represents a collection of 8 bits, order goes from MSb to LSh.

CONNECTORS
Dependency Source -> Destination
From: : Byte : Class , Public
To: Bit: Class, Public

ATTRIBUTES

W value : Bit Private
Details: Constraints: <256 :
>=0:

A.1.2.6 Bytes
Class in package '4.3.2 Primitives'
Details: This represents an array of bytes.

Appendix A

85

PNNL-32687

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from Bytesto Array

CONNECTORS
' Dependency Source -> Destination
From: : BlockData : Class , Public

To: Bytes: Class, Public
A Dependency Source -> Destination
From: : BlockHeader : Class , Public
To: Bytes: Class, Public

Dependency Source -> Destination
From: : BlockData : Class , Public
To: Bytes: Class, Public
Ve Dependency Source -> Destination
From: : BlockHeader : Class , Public
To: Bytes: Class, Public

ATTRIBUTES

W size:int Private
Details: Used to denote the size of the byte array (in bytes)
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.2.7 Choice

Class in package '4.3.2 Primitives'
Details: This class symbolizes an object from only one option should be selected. Objects that inherit this class
should rely on ports to present options. E.g., select exactly one option from the list of available ports.

A.1.2.8 GeolLocationData
Class in package '4.3.2 Primitives'

STRUCTURAL PART OF GeolLocationData

W Property : Property

CONNECTORS ‘
' Dependency Source -> Destination

From: : GeoLocationData : Class , Public
To: LocType : Enumeration , Public

P Dependency Source -> Destination
From: : GeoLocationData : Class , Public
To: XYpointList : Class , Public

P Dependency Source -> Destination
From: : GridSystem : Class , Public

To: GeolLocationData : Class , Public

Appendix A 86

PNNL-32687

ATTRIBUTES

ElementAddress : Address Private
Details:
GeoLocation : XYpointList Public
Details:
W@ Type: LocType Public
Details:

A.1.2.9 Int

Class in package '4.3.2 Primitives'
Details: Is a generic Int of size(Data). Default is Big Endian, can be encoded in Little Endian.

ATTRIBUTES

W Data: Bytes Private
Details:

W isLE :int Private
Details:

OPERATIONS

@ getValue () : void Public
Details:
Properties:
native = true

W setValue () : void Public
Details:

A.1.2.10 Intl1l6
Class in package '4.3.2 Primitives'
Details: This is a 2 byte integer, unsigned unless otherwise noted. Usually with the range 0-65,535.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Int16 to Int

ATTRIBUTES

W Data: Bytes Private = <size=2>
Details: Data should be transparently handled as an integer of N bytes.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.2.11 Int32
Class in package '4.3.2 Primitives'
Details: This is a 4 byte integer, unsigned unless otherwise noted. Usually with the range 0-4,294,967,295.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Int32 to Int

Appendix A

87

PNNL-32687

ATTRIBUTES

Data: Bytes Private = <size=4>
Details: Data should be transparently handled as an integer of N bytes.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.2.12 Int64

Class in package '4.3.2 Primitives'
Details: This is a 8 byte integer, unsigned unless otherwise noted. Usually with the range 0-
18,446,744,073,709,551,615.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Int64 to Int

ATTRIBUTES

Data: Bytes Private = <size=8>
Details: Data should be transparently handled as an integer of N bytes.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.2.13 Int8
Class in package '4.3.2 Primitives'
Details: This is a 1 byte integer, unsigned unless otherwise noted. Usually with the range 0-255.

OUTGOING STRUCTURAL RELATIONSHIPS
= Generalization from Int8to Int

ATTRIBUTES

i Data: Bytes Private = <size=1>
Details: Data should be transparently handled as an integer of N bytes.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.2.14 Object
Class in package '4.3.2 Primitives'
Details: This entity represents a collection of properties, attributes and methods. This is an abstract representation,

all objects in this template are assumed to inherit this object.

A.1.2.15 OrderedArrayList
Class in package '4.3.2 Primitives'
Details: This is a generic structure used to represent any ordered arrayList of T elements. This type of array is

guaranteed to maintain order, items can be removed from anywhere, but new elements are always added to the end.

OPERATIONS

% add (T: T): void Public
Details: This function is used to add an element of type T into the ordered array list.

Appendix A

88

PNNL-32687

OPERATIONS

% count () : int Public
Details: This function retrieves the total number of items in the list.

% previtem (T: T): T Public
Details: This function return the item located before item T.

% remove (Index : int) : void Public
Details: This function removes the item given by index from the list.

A.1.2.16 SerializableObject

Class in package '4.3.2 Primitives'
Details: This class represents the ability of an object to be serialized into another object (usually a string). This
enables interoperability across systems to occur.

OUTGOING STRUCTURAL RELATIONSHIPS
‘4= Generalization from SerializableObject to Object

OPERATIONS

% Deserialize (SerilizedObject : Object) : void Public
Details: Takes the underlying object and serializes into another object (usually as string). The serialization results should
remain compatible with other systems.

@ Serialize () : Object Public

Details: This function loads an object based on a previously serialized result. The source object can be any object or format,
common examples include:

JSON

Datapack

Protocol buffers.

A.1.2.17 TES Base

Class in package '4.3.2 Primitives'
Details: This represents the parent object that most objects within the TES template should reference. Its main
properties are being able to have a unique ID and being serializable/deserializable.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from TES Base to SerializableObject

ATTRIBUTES

@ _UID:UID Public
Details:

OPERATIONS

@ _getUID () : Public
Details:

Appendix A

89

PNNL-32687

A.1.2.18 XYpointList
Class in package '4.3.2 Primitives'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from XYpointList to ArrayList

Vs Dependency Source -> Destination
From: : GeoLocationData : Class , Public
To: XYpointList : Class , Public

A.1.2.19 LocType
Enumeration in package '4.3.2 Primitives'

CONNECTORS ‘
' Dependency Source -> Destination

From: : GeolocationData : Class , Public
To: LocType : Enumeration , Public

ENUMERATION:
Point
Rectangle
Path

Appendix A

90

A13

Time

PNNL-32687

This package presents an overview of time-related constructs that will be used in this work. The data models are
intended to support a common ground, in which all applicants are subject to the same time references and
requirements.

«enumeration»
AggregationPeriods

«dataType»
DateStamp

«dataType»
TimeStamp

01 week
02 bi_weekly
03 semi_monthly

day: int
month: int
year: int

04 month

05 bi_montly
07 semester
08 year

06 quarter
09 2years
10 3years

11 Syears

12 10years

DateTimeBound

i
i

End: DateTimeStampj
Start: DateTimeStamE‘

A.13.1

R

hour: int
minute: int
second: int

+ o+ o+

TotalSeconds: Int64

«dataType»

«enumeration»
UTCOffset

Cour

p

57

«dataType»
DateTimeStamp

Figure 50.

DateTimeBound

Class in package '4.3.3 Time'

From:
To:

TimeX509 : Class , Public

™

«dataType»

TimeStampBound

+ +

+

days: int
months: int
TotalDays: Int64
years: int

- TotalSeconds: Int64

«dataType»
DateTImeStampTZ

timeZone: UTCOffs§|

Overview of the TimeObjects' package components

&

«dataType»
TimeSpan

CONNECTORS
' Dependency Source -> Destination

: DateTimeBound : Class , Public

-12:00
-11:00
-10:00
-09:30
-09:00
-08:00
-07:00
-06:00
-05:00
-04:00
-03:30
-03:00
-02:00
-01:00
00:00

+01:00
+02:00
+03:00
+03:30
+04:00
+04:30
+05:00
+05:30
+05:45
+06:00
+06:30
+07:00
+08:00
+08:45
+09:00
+09:30
+10:00
+10:30
+11:00
+12:00
+12:45
+13:00
+14:00

A

From:
To:

Dependency

Source -> Destination
: DateTimeBound : Class , Public

DateTimeStamp : DataType , Public

Appendix A

91

PNNL-32687

CONNECTORS
' Dependency Source -> Destination

From: : DateTimeBound : Class , Public
To: TimeX509: Class, Public

A Dependency Source -> Destination
From: : DateTimeBound : Class , Public
To: DateTimeStamp : DataType , Public

ATTRIBUTES
W End: DateTimeStamp Public
Details:
W Start : DateTimeStamp Public
Details:

A.1.3.2 AggregationPeriods

Enumeration in package '4.3.3 Time'
Details: This enumeration represent aggregation periods, or periods of time in which measurements, records, and
other related activity are aggregated.

CONNECTORS

' Dependency Source -> Destination
From: : ReliabilityMetrics : Class , Public
To: AdqggregationPeriods : Enumeration , Public

ENUMERATION:

01 week

02 bi_weekly
03 semi_monthly
04 month

05 bi_montly
07 semester
08 year

06 quarter
09 2years

10 3years

11 5years

12 10years

A.1.3.3 CountStamp
DataType in package '4.3.3 Time'

W@ days:int Public
Details:

“ months : int Public
Details:

W TotalDays : Int64 Private
Details:

W years: int Public
Details:

Appendix A

92

PNNL-32687

A.1.3.4 DateStamp
DataType in package '4.3.3 Time'

ATTRIBUTES
W day :int Private
Details:
W month : int Private
Details:
W year:int Private
Details:

A.1.3.5 DateTimeStamp
DataType in package '4.3.3 Time'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from DateTimeStamp to TimeStamp
4= Generalization from DateTimeStamp to DateStamp

CONNECTORS

Dependency Source -> Destination
From: : DateTimeBound : Class , Public
To: DateTimeStamp : DataType , Public
P Dependency Source -> Destination
From: : DateTimeBound : Class , Public
To: DateTimeStamp : DataType , Public

A.1.3.6 DateTlmeStampTZ
DataType in package '4.3.3 Time'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from DateTImeStampTZ to DateTimeStamp

CONNECTORS

Dependency Source -> Destination
From: : DateTImeStampTZ : DataType , Public
To: UTCOffset : Enumeration , Public

ATTRIBUTES

¥ timeZone : UTCOffset Private
Details:

A.1.3.7 TimeSpan
DataType in package '4.3.3 Time'
Details: This structure can be used to represent long-term time spans that can be on the order of years.

Appendix A

93

PNNL-32687

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from TimeSpan to CountStamp
4= Generalization from TimeSpan to TimeStampBound

A.1.3.8 TimeStamp
DataType in package '4.3.3 Time'

ATTRIBUTES

hour :int Public

Details:

minute : int Public

Details:

W second : int Public

Details:

i# TotalSeconds : Int64 Private
Details:

A.1.3.9 TimeStampBound
DataType in package '4.3.3 Time'
Details: This object is designed to automatically roll over

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from TimeStampBound to TimeStamp

ATTRIBUTES
W TotalSeconds : Int64 Private

Details: Constraints: value<86400 : Invariant

A.1.3.10 UTCOffset
Enumeration in package '4.3.3 Time'
Details: This enumeration lists all valid UTC offsets used to express time zones.

CONNECTORS ‘
' Dependency Source -> Destination

From: : DateTImeStampTZ : DataType , Public
To: UTCOffset : Enumeration , Public

ENUMERATION:
-12:00
-11:00
-10:00
-09:30
-09:00
-08:00
-07:00

Appendix A

94

PNNL-32687

ENUMERATION:

-06:00
-05:00
-04:00
-03:30
-03:00
-02:00
-01:00
00:00
+01:00
+02:00
+03:00
+03:30
+04:00
+04:30
+05:00
+05:30
+05:45
+06:00
+06:30
+07:00
+08:00
+08:45
+09:00
+09:30
+10:00
+10:30
+11:00
+12:00
+12:45
+13:00
+14:00

Appendix A

95

PNNL-32687

A.1.4 Math
This package groups objects that have mathematical or engineering applicability but are usually not natively
supported by programming languages. This diagram may be expanded in the future to introduce more definitions.

T:*
e | p—— 4'3':::1';:3:: «dataType» «enumeration»
oy < T->Complex > Y Complex PowerOfTenMultiplierType
+ add(T): void - Imag: Real P,
+ count(): int N o i
Arraylist<Real> f———— — — -D o Wl vt Real:|Real -06 micro
< T->Real > -03 milli
00 unit
«dataType» 03 kilo
XYpoint 06 mega
Vertex2D - ;
© - X:Real 09 giga
Y: Real
Figure 51. Overview of the Math's package components

A.1.4.1 ArrayList<Complex>
Class in package '4.3.4 Math'
Details: This class represents an ArrayList of complex numbers.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from ArrayList<Complex>to ArrayList

A.1.4.2 ArrayList<Real>

Class in package '4.3.4 Math'
Details: This class represents an array of real numbers.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from ArrayList<Real>to ArrayList

A.1.4.3 Vertex2D

Class in package '4.3.4 Math'
Details: This object represents a vertex, which is an specialization of an XYpoint

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from Vertex2D to XYpoint

A.1.4.4 Complex

DataType in package '4.3.4 Math'
Details: This data type is used to represent a complex number.

Appendix A

96

PNNL-32687

ATTRIBUTES

W Imag : Real Private

Details: This represents the imaginary part of a complex number.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Real : Real Private

Details: This represents the real part of a complex number, the underlying data type is numeric/float/double/real.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.45 PowerOfTenMultiplierType
Enumeration in package '4.3.4 Math'
Details: This enumeration is used to represent a power of ten multiplier, indexes can be negative or positive.

-9 = nano=x10"-9

-6 = micro=x10"-6

-3 = milli=x10"-3

0 = none=x1 (default, if not specified)

1 = deca=x10

2 = hecto=x100

3 = kilo=x1000

6 = Mega=x10"6

9 = Giga=x10"9

This object was taken from IEEE 2030.5

CONNECTORS
' Dependency Source -> Destination

From: : ReadingType : Class , Public
To: PowerOfTenMultiplierType : Enumeration , Public

ENUMERATION:

-09 nano
-06 micro
-03 milli
00 unit
03 kilo
06 mega
09 giga

A.1.46 XYpoint
DataType in package '4.3.4 Math’
Details: This data type represents an XY coordinate point.

ATTRIBUTES

X:Real Private

Details: This represents the X coordinate on an XY system.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Y :Real Private

Details: This represents the Y coordinate on an XY system.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Appendix A

97

PNNL-32687

A.1.5 TrackableObjects

In this case, the diagram contains presents classes that can be used to track an object's changes through the trackable
interface. Objects that inherit these interfaces can be used to track an instance's particular history across its lifecycle.
The interface can be used to store a full copy of the previous state (e.g., when a ledger is present),or two store a hash
only (for off-chain applications).

OptionallyTrackable
GenericTrackableDep - isTracked: Boolean
R leaf
:) + _OnCreate(): void GenericTrackableRealization
| + _OnDelete(): void
1/ : + _OnUpdate(): void \A ::IGenericTrackable
iGenericTrackable + CreatedBy: GenericldentityDep
_______________________________ + CreatedWhen: DateTimeStamp
+ CurrentRecord: RecordTracker
v + DigestDescriptor: DigestFunctionType [0..1]
«interface» «enumeration» : h;SF:AtS: SQO:ean
IGenericTrackable DigestFunctionType bt =1
— —1[+ CreatedBy: GenericldentityDep SHA256 +:IGenericTrackable)
: + CreatedWhen: DateTimeStamp SHA3-256 + _OnCreate(): "Ofd
e —[£ currentRecord: RecordTracker = SHAKE128 + _OnDelete(): Vo"jj
I + DigestDescriptor: DigestFunctionType [0..11]|~ HMAC-SHA1 o _OnUpd_ate(): vo@
1 + hasHASH: Boolean HMAC-SHA256 + CreéteDlg?st(): vmdA
Il |+ isDeleted: Boolean HMAC-MD5.SIG-ALG.REG.INT + ValidateDigest(): void
I
1 + _OnCreate(): void
I + _OnDelete(): void N
| af —— =
| : + _OnUpd.ate(). VOld_ — > DigestDescriptor Definition «interface»
1 + Cre?teDlgfest(): VOId. ; - : - FunctionEval
1 + ValidateDigest(): void) - FunctionDescriptor: DigestFunctionType _ ,7
1 FunctionEval | - FynctionEval: FunctionEval " + CreateDigest(Object, Object): void
: =)_ - FunctionParameters: FunctionParameters) N + ValidateDigest(Object): Boolean
| RecordTracker FunctionParameters N
- _ “N
| i)) - e 1 «realization» L Q «interface»
| = D!gestDescrlptor. DigestDescriptorDefinition | SHA256 FunclionPar e ae.
| - DigestValue: Bytes | O—
: - pastRecord: RecordTracker b= FunctionEval | + Create(Object, Object): void o [: + Certificate: X509Certificate
| - UpdatedBy: GenericldentityDep | T C + CreateDigest(Object, Object): void + PrivateKey: Bytes
N\ - UpdatedWhen: DateTimeStamp | . + SetParameters(Object): void + PublicKey: Bytes
N | FunctionParameters | Validate(Object): Boolean
JI + ValidateDigest(Object): Boolean + SetParameters(Object): void
GenericldentityDep << -
leafl
tleaf}
. . \
Figure 52. Overview of the TrackableClass' package components

A.1.5.1 DigestDescriptorDefinition
Class in package '4.3.5 TrackableObjects'

CONNECTORS

P Dependency Source -> Destination

From: : DigestDescriptorDefinition : Class , Public
To: FunctionEval : Interface , Public

A Dependency Source -> Destination
From: : DigestDescriptorDefinition : Class , Public
To: FunctionParameters : Interface , Public

A Dependency Source -> Destination
From: . 1GenericTrackable : Class , Public
To: DigestDescriptorDefinition : Class , Public

Appendix A

98

PNNL-32687

ATTRIBUTES

FunctionDescriptor : DigestFunctionType Private
Details:

FunctionEval : FunctionEval Private

Details:

¥ FunctionParameters ;: FunctionParameters Private
Details:

A.1.5.2 GenericTrackableDep

Class in package '4.3.5 TrackableObjects'
Details: Objects that inherit this class expose an interface requirement to access an objects past history

CONNECTORS
' Dependency Source -> Destination
From: : GenericTrackableDep : Class , Public

To: iGenericTrackable : ProvidedInterface , Public

A.1.5.3 GenericTrackableRealization

Class in package '4.3.5 TrackableObjects'
Details: This inheritable class provides the basic mechanisms to track an object's existence though a system.
Specific callbacks can be attached to the OnCreate(), onUpdate(), onDelete() functions. For blockchain-based
implementations onDelete() can be used to mark a record as active.

STRUCTURAL PART OF GenericTrackableRealization

¥ ProvidedInterface? : ProvidedInterface

¥ ProvidedInterface3 : ProvidedInterface

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from GenericTrackableRealization to «interface» 1GenericTrackable
+= Realization from GenericTrackableRealization to iGenericTrackable

A.1.5.4 IGenericTrackable
Class «interface» in package '4.3.5 TrackableObjects'

STRUCTURAL PART OF IGenericTrackable

L iGenericTrackable : Providedinterface

Appendix A

99

PNNL-32687

CONNECTORS
Dependency Source -> Destination

From: : 1GenericTrackable : Class , Public

To: questDescrlptorDeflnltlon Class Public

A Dependency Source -> Destination

From: : 1GenericTrackable : Class , Public

To: DigestFunctionType : Enumeration , Public
Dependency Source -> Destination

From: : 1GenericTrackable : Class , Public

To: RecordTracker : Class , Public
Dependency Source -> Destination

From: : 1GenericTrackable : Class , Public

To: GenericldentityDep : Class , Public

ATTRIBUTES

i CreatedBy : GenericldentityDep Public

Details:

CreatedWhen : DateTimeStamp Public
Details:

¥ CurrentRecord : RecordTracker Public
Details:

DigestDescriptor : DigestFunctionType Public
Details:

hasHASH : Boolean Public

Details:

isDeleted : Boolean Public

Details:

OPERATIONS

% _OnCreate () : void Public
Details:

W _OnDelete () : void Public
Details:

% _OnUpdate () : void Public
Details:

i CreateDigest () : void Public
Details:

i ValidateDigest () : void Public
Details:

A.1.5.5 OptionallyTrackable
Class in package '4.3.5 TrackableObjects'
Details: This class represents a inheritable class that can enable tracking as an optional service.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from OptionallyTrackable to GenericTrackableRealization
ATTRIBUTES

W isTracked : Boolean Private

Appendix A 100

PNNL-32687

ATTRIBUTES
Details:

OPERATIONS

&% _OnCreate () : void Public
Details: This is an internal wrapper that can call the parent method only if the isTracked flag is set to True.

&% _OnDelete () : void Public
Details: This is an internal wrapper that can call the parent method only if the isTracked flag is set to True.

% _OnUpdate () : void Public
Details: This is an internal wrapper that can call the parent method only if the isTracked flag is set to True.

A.1.5.6 RecordTracker
Class in package '4.3.5 TrackableObjects'

CONNECTORS

Dependency Source -> Destination
From: : RecordTracker : Class , Public
To: RecordTracker : Class, Public

Dependency Source -> Destination
From: : RecordTracker : Class , Public
To: GenericldentityDep : Class , Public
A Dependency Source -> Destination
From: : 1GenericTrackable : Class , Public
To: RecordTracker : Class, Public

Dependency Source -> Destination
From: : RecordTracker : Class , Public
To: RecordTracker : Class , Public

DigestDescriptor : DigestDescriptorDefinition Private
Details:

i# DigestValue : Bytes Private

Details:

pastRecord : RecordTracker Private

Details:

UpdatedBy : GenericldentityDep Private

Details:

UpdatedWhen : DateTimeStamp Private

Details:

A.1.5.7 SHA256

Class «Realization» in package '4.3.5 TrackableObjects’
Details: This object represents a sample digest class that must implement the function evaluation functions along
with the function parameters. Developers need to build realization of FunctionEval and FunctionParameters to
enable dynamic checking.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from «Realization» SHA256 to FunctionParameters
4= Realization from «Realization» SHA256 to FunctionEval

Appendix A 101

PNNL-32687

OPERATIONS

i Create (rawData : Object , parameters : Object) : void Public
Details: This field represents the actual creation logic that a digest must provide.
Properties:
Implements = FunctionEval.Create
ImplementsGuid = {1CBF9EDD-4F74-4537-BD99-7E59D05E18D7}

% CreateDigest (rawData : Object , parameters : Object) : void Public
Details:
Properties:
Implements = FunctionEval.CreateDigest
ImplementsGuid = {1CBF9EDD-4F74-4537-BD99-7E59D05E18D7}

SetParameters (Any : Object) : void Public
Details: This field should load/search for the required parameters needed to validate or create a digest.
Properties:
Implements = FunctionParameters.SetParameters
ImplementsGuid = {0904F664-E2E0-4384-B994-B71255974B3A}

i Validate (rawData : Object) : Boolean Public
Details: This field represents the actual validation logic that a digest must provide.
Properties:
Implements = FunctionEval.Validate
ImplementsGuid = {8FC53EE3-99AE-440a-820F-31AF8180E090}

‘% ValidateDigest (rawData : Object) : Boolean Public
Details:
Properties:
Implements = FunctionEval.ValidateDigest
ImplementsGuid = {8FC53EE3-99AE-440a-820F-31AF8180E090}

A.1.5.8 FunctionEval
Interface in package '4.3.5 TrackableObjects'

Details: This interface illustrates the minimal functions that a Digest function must support.

CONNECTORS
' Dependency Source -> Destination

From: : DigestDescriptorDefinition : Class , Public
To: FunctionEval : Interface , Public

OPERATIONS

i CreateDigest (rawData : Object , parameters : Object) : void Public
Details:

% ValidateDigest (rawData : Object) : Boolean Public
Details:

A.1.5.9 FunctionParameters
Interface in package '4.3.5 TrackableObjects'

Appendix A 102

PNNL-32687

Details: This is a generic interface that all Digest functions must implement. Actual field data will be dependent on
the function that realizes this interfaces.

CONNECTORS
' Dependency Source -> Destination
From: : DigestDescriptorDefinition : Class , Public

To: FunctionParameters : Interface , Public

ATTRIBUTES
W Certificate : X509Certificate Public
Details: This space is reserved for storing certificate data (if supported by the implementation function)
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
W PrivateKey : Bytes Public
Details:
PublicKey : Bytes Public
Details:

OPERATIONS

SetParameters (Any : Object) : void Public
Details:

A.1.5.10 DigestFunctionType

Enumeration in package '4.3.5 TrackableObjects'
Details: This field represents a subset a of digest or keyed-hashed authentication codes that can provide digital
fingerprint services. The system should ideally provide run-time function of these functions to all participants so that
all agents can validate data.

CONNECTORS

Dependency Source -> Destination
From: . 1GenericTrackable : Class , Public
To: DigestFunctionType : Enumeration , Public

ENUMERATION:

SHA256

SHA3-256

SHAKE128

HMAC-SHA1 This represents a digest function, as defined by its
standardized name. For additional references, consult
RFC4635, FIPS 198.

HMAC-SHA256
HMAC-MD5.SIG-ALG.REG.INT

Appendix A 103

PNNL-32687

A.1.6 DigitalCertificates

This diagram contains assets that can be used to create a secure, digital representation of a subjects identity. This
digital identity relies on the X.509 certificate model described by rfc5280.

The presented interface The presented interface allows static validation (by walking the certificate tree), and an
online verification mechanism that checks for revoked certificates using Certificate Revocation Lists.

Appendix A 104

PNNL-32687

DigitalCertificateDep
{leaf} | - «interface»
TN~ iDigitalCertificate
\E :
P - Certificate: X509Certificate
- iDigitalCertificate
DigitalCertificateRealization + generateUID(): void
N, + getPublicKey(): void
ASN10bjectidentifier + loadCertificate(): void
Algorithmidentifier + parseCertificate(): void
+ ASN1Objectldentifier(String): Oldentifier < - + Validate(): void
- E algorithm: ASN10Objectldentifier <_ ____________ N + ValidateWithOCSP(): void
«interface» = -I= PacameteEiit
AlgorithmPa ters
O ¢ - X509Certificate
+ getParameters(): void :]) M& L - [Z signatureAlgorithm: Algorithmidentifier
| SubjectPublicKeyInfo Algorithmldentifier cusen - SignatureValue: Bytes
[E— E algorithm: Algorithmidentifier - TbsCertificate: TBSCertificate :|
/7 SubjectPublicKey: =< --1= subjectPublicKey: Bytes V\ \'I/
2ujectubleley: «use» N V
Pid Bytes « N\
e AN N N TBSCertificate
-
a BitEncodedStrin, N i
- KeyUsageMask ! 2| ——=>——=2c— _~=—|Extensions: X509V3ExtensionsType [0..1] _ _To X509V3ExtensionsType
s ~ -
e e Uniqueldentifier h N AN T\ ~ t s rName :I B
- N " _0s- Bit = digitalSi = _ ~ - issuerUniquelD: Uniqueldentifier [0..1]
(e il S e N --- ~=- ~ ~ 1 T—|[£ serialNumber: CertificateSerialNumber ~To Name
| - Bit<pos=1>: Bit = nonRepudiation ... I NN | N N) - e
| - Bit<pos=25: int = keyEncipherment SO j\l E Slgn.atureAIgonthm: Algorithmldentifier P -
| - Bit<pos=3>: int = dataEncipherment =~ + L\ N S“b_JECtNa"Te: Rl i N .
: - Bit<pos=4>; int = keyAgreement TN = subj.ectPul.)Icheylnfo.:SubJectl?u_bIcheylnfo /TO Va||d|tyType
| R int = keyCertSign AuthorityKeyldentifier ' E subjectUniquel D: Uniqueldentifier [0..1] _-
| | - Int= cRLSign L1 |- validity: validityType Jr .
| - Bit<pos=7>: int = encipherOnly - authorityCertlssuer: GeneralName [0..1] 1L - Version: X509Version = V1 “J-—-—--To X509Version
| - Bit<pos=8>: int = decipherOnly - authorityCertSerialNumber: CertificateSerialNumber [0..1]] \A
| < - keylden eyldentifier [0..1] | Int32
: N N : CertificateSerialNumber
«enumeration» N N N (
| KeyPur poseObor Policylnformation N | «dataType» |
I Wi NS X509V3ExtensionsType J «dataType»
| S Ny P o o
| (S:Ie';\:rltj;h S~ | = Authoritykeyldentifier: int - CelEgmsia i
| ientAu ~ N " A . ————
| CodeSigning I\ KeyPurposeld ~No N BasicConstraints: BasicConstraints | PN isCertificateAuthority: boolean
| EmailProtecti | E CertificatePolicies: Policylnformation [1..*] - PpathLenConstraint: int
| T.malstm - _lon + toOID(): void < — i - CRLDistributionPoints: DistributionPoint [1“*]:' —- o
! o"cnsePS'a dhie) B e T~ istributionPoi - To DistributionPointName
| ‘gning |- [= InhibitAnyPolicy: SkipCerts SN DistributionPoint /
| - = I iveName: IName [1..*]JF — = N ’, I
! - T T T - — —[Z KeyUsage: KeyUsageMasks \ i ssuer GenerNemlIC] / To ReasonFlags
| Int32 e yUsage: y & . —- N distributionPoint: DistributionPointName [0.4E 4
| i - NameConstr.alnti NamedConstraintsClass Y B ons: ReasonroE
| SkipCerts Poficy Constraints - PKUsagePeriod: None- Deprecated \ \
| & <~ —— = PolicyConstraints: Policy Constraints \ \ To GeneralSubtrees
: inhibitPolicyMapping: SkipCerts [Z Policymappings: PolicyMappingsSeq \\ N NamedConstraintsClass
8 A /- i i L |- - .
| requireExplicitPolicy: SkipCerts ; Subj.ectA!tematlveNéme. Gener.alName .4 H\ \ - excludedSubtrees: GeneralSubtrees)| ~ — — — — —
| - SubjectDirectoryAttributes: Attribute [0..*] \ \ | ermittedSubtrees: GeneralSubtreeh|— — — — — — -
| A 1 £ subjectkeyldentifier: Keyldentifier \ \ e . ﬁ =
| |
! PolicyMappingsSeq | Vo = EEL
! | Ve i)
: issuerDomainPolicy: CertPolicyld ~ Keyldentifier A e — i
| subjectDomainPolicy: CertPolicyld AP s To GeneralName =]
| —=
b - o
=1

Figure 53. Overview of the DigitalCertificates’ package components (Left side).

Appendix A 105

L/ o " TTe——_
ASNS1ubject Attribute «enumeration» TeletexString
; = AttributeType
- Type: AttnbuteType__| I~ > gption_Teletex
Aty I<— - E Value: AttributeValue Country . -
Organization option_Printa (FLEE
/I'\ OrganizationalUnit -
. | DistinguishedNameldentifier . . _\ - =
Option_rdnSequence | o option_Boption_tf&on_String UniversalString
Choice | CommonName : N
N =~ RDNSequence : SerialNumber | .
! tring EDIPartyN
—=7] - RDNSequence: Attribute [1..*] :‘ t—- I ks 110
-7 7 «interface» - nameAssigner: int
- | - i
s Bl t
P e Validity Type Option_Time mpStive N
. Choice =7| + GeneralTime: int
+ End:Timexso9 _] T, o117 SO
+ Start: TimeX509 :‘ 1 N AnotherName IA5String N
. «interface» N ~
From TBS certificate [i utcTime Ko N
. | i M N
“;’;‘;’;“7:;‘:"‘» | pron Te + utcTime: int g Vel LRy b \l
| (0-1] i 1 |
- V1 : DPN_nameRelativeToCRLIssuer A : : [
V2 L . [11!
vi 0 =0 [nameRelativeToCRLIssuer: RDNSequence «interface» «interface» 1 «interface» [
option_NameRelativi otherName rfc822Name 1 DNSName I : :
- I
. - |
Choice| .- + otherName: AnotherName + rfc822Name: IASString]F — — L [DNsName: 1ASString | | : :
T q N . - |
DistributionPointName — DistributionPointName _fullName Opt otherNamel[0..1 ,\ /7 : T | : :
option_FullName! Ve «interface»]
N - fullName: GeneralName [1A3 S - - GeneralName v P J x400Address P
P ~\| oOpt_rfc822Namel0..1] - [
, _-=" _—==7]'+ xa00Address: ORAddress| — | !
o ittt Opt_DNSName[0..1] -7 I
From DistributionPoint Int32 ReasonFlags - I
Opt_X400Address[0..1] «interface» [N
BaseDistance - Bit<pos=0>: Bit = unused P _> directoryName 1
- Bit<pos=1>: Bit = keyCompromise Opt_directoryName[0..1]| [~~~ — : :
- 2 int = cACompromise ... N + directoryName: Name |
/I'\ (A + int = affiliationChan... Qpt eciPartyhamSlogl T ——_ _ : |
| - L= epaeizi] Opt_URI[0..1] ~ Tt N «interface» I
GeneralSubtrees [< int = cessationOfOper... =~ N [l
/I /I - int = certificateHold Opt._IPAddress[0..1} T e 1
. ~ -~
) i i oL N 3 ~ 1|
From NamedConstraintClass base: GenerBaINagni gyyj !nt- p:\glegewuljdrawn g Opt_registeredID[0..1] ~ N ~ N + ediPartyName: EDIPartyNamal[--
- maximum: BaseDistan - + int = aACompromise Z
/ P! =7) |
- minimum: BaseDistance] \ - 7 ~ |
- _______ g v «interface» |
S —__- uniformResourceldentifier
From X509V3ExtensionType ~~~~~~~ "~ """ mo oo o - e e |
registeredID IPAddress + IA5String: IASStringj _____

Figure 54.

Appendix A

[registered|D: Oldentifier

+ IPAddress: |Poet§t||~ -

Overview of the DigitalCertificates’ package components (Right side).

PNNL-32687

106

PNNL-32687

A.1.6.1 Algorithmldentifier
Class in package '4.3.6 DigitalCertificates'
Details: This object serves to encode an encryption algorithm according to rfc3279.

CONNECTORS

/" Dependency Source -> Destination
From: : Algorithmlidentifier : Class , Public
To: AlgorithmParameters : Interface , Public

/" Dependency Source -> Destination
From: : Algorithmldentifier : Class , Public
To: ASN1Obijectldentifier : Class , Public

P Dependency Source -> Destination
From: : X509Certificate : Class , Public
To: Algorithmldentifier : Class , Public

Dependency Source -> Destination
From: : SubjectPublicKeylnfo : Class , Public
To: Algorithmldentifier : Class , Public

ATTRIBUTES

algorithm : ASN1Objectldentifier Private

Details: This field is used to encode the type of signature algorithm used, common examples are:
sha224WithRSAEnNcryption

sha256WithRSAENcryption

sha384WithRSAENcryption

sha512WithRSAEnNcryption

For more details read rfc4055.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W parameters : int Private
Details: This field is used to provide additional parameter to the encryption algorithm.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.2 AnotherName
Class in package '4.3.6 DigitalCertificates'
Details: This is a specialization of a general name which can be be used to provide alternative names.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from AnotherName to otherName

ATTRIBUTES

W type-id : int Private
Details: This value is hard coded according to the OID.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W value : Oldentifier Private
Details: This is the actual value of the field.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.3 ASN1Objectldentifier
Class in package '4.3.6 DigitalCertificates'
Details: This object describes represents an object on OID notation.

Appendix A

107

PNNL-32687

CONNECTORS ‘
' Dependency Source -> Destination

From: : Algorithmlidentifier : Class , Public
To: ASN1Obijectldentifier : Class , Public

OPERATIONS

‘# ASN1Objectldentifier (identifier : String) : Oldentifier Public
Details: This function maps a string into an Object Identifier (OID) details can be found in rfc3279.
Examples:
id-ecdsa-with-shake128 OBJECT IDENTIFIER ::= {iso(1)
identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) algorithms(6)
32

id-ecdsa-with-shake256 OBJECT IDENTIFIER ::= {iso(1)
identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) algorithms(6)
33}

A.1.6.4 ASNSlubject
Class in package '4.3.6 DigitalCertificates'
Details: This represents typical information found on a Subject/Issuer RDNSequence.

CONNECTORS

" Dependency Source -> Destination
From: : AttributeType : Enumeration , Public
To: ASNS1lubject : Class , Public

A.1.6.5 Attribute
Class in package '4.3.6 DigitalCertificates'
Details: This represents attributes expressed via OIDs. This object is often referenced as AttributeTypeValue.
Alias AttributeTypeValue

CONNECTORS ‘
' Dependency Source -> Destination

From: : Attribute : Class , Public

To: AttributeValue : Class , Public
Dependency Source -> Destination

From: . Attribute : Class , Public

To: AttributeType : Enumeration , Public
Dependency Source -> Destination

From: : RDNSequence : Class , Public

To: Attribute : Class, Public

ATTRIBUTES

W Type : AttributeType Private

Details: This represents the type of the attribute (standardized OID notation).
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Value : AttributeValue Private

Appendix A 108

PNNL-32687

ATTRIBUTES

Details: This represents the value within the attribute. The encoding will be subject to the OID rules.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.6 AttributeValue

Class in package '4.3.6 DigitalCertificates'
Details: This can be any value, as long as it fits the type defined by AttributeType

CONNECTORS
' Dependency Source -> Destination
From: : Attribute : Class , Public

To: AttributeValue : Class , Public

A.1.6.7 AuthorityKeyldentifier
Class in package '4.3.6 DigitalCertificates'

CONNECTORS
' Dependency Source -> Destination

From: : X509V 3ExtensionsType : DataType , Public
To: AuthorityKeyldentifier : Class , Public

ATTRIBUTES

i authorityCertlssuer : GeneralName Private

Details: If this field is populated, the AuthorityCertSerialNumber should also be present

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

W authorityCertSerialNumber : CertificateSerialNumber Private

Details: If this field is populated, the AuthorityCertlssuer should also be present

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

keyldentifier : Keyldentifier Private

Details: The value of the keyldentifier field SHOULD be derived from the public key used to verify the certificate's signature
or a cryptographic method.

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

A.1.6.8 BaseDistance
Class in package '4.3.6 DigitalCertificates'
Details: Base distance is an integer of size 32.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from BaseDistance to Int32
CONNECTORS
' Dependency Source -> Destination

From: : GeneralSubtrees : Class , Public
To: BaseDistance : Class , Public

A Dependency Source -> Destination
From: : GeneralSubtrees : Class , Public

To: BaseDistance : Class , Public

Appendix A 109

PNNL-32687

A.1.6.9 BmpString

Class in package '4.3.6 DigitalCertificates'
Details: This represents a Unicode String encoded in a tag-Length-Value triplet.

CONNECTORS
*' Dependency Source -> Destination
From: : option_Bmp : Port , Public

To: BmpsString : Class , Public

A.1.6.10 CertificateSerialNumber

Class in package '4.3.6 DigitalCertificates'
Details: This is a positive number usually encoded into an integer that represents the certificate serial number.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from CertificateSerialNumber to Int32

CONNECTORS
' Dependency Source -> Destination
From: : TBSCertificate : Class , Public

To: CertificateSerialNumber : Class , Public

A.1.6.11 CertPolicyld
Class in package '4.3.6 DigitalCertificates'
Details: This is an OID-encoded policy that describes the certificate policies.

CONNECTORS
' Dependency Source -> Destination

From: : PolicyMappingsSeq : Class , Public
To: CertPolicyld : Class, Public

A Dependency Source -> Destination
From: : PolicyMappingsSeq : Class , Public
To: CertPolicyld : Class, Public

A.1.6.12 DigitalCertificateDep

Class in package '4.3.6 DigitalCertificates'
Details: Objects whom reference this class expect an object that realizes the DigitalCertificate Interface. This class
is an abstract leaf and is only intended to serve as a data type reference.

Appendix A 110

PNNL-32687

CONNECTORS ‘
' Dependency Source -> Destination
From: : DigitalCertificateDep : Class , Public

To: iDigitalCertificate : ProvidedInterface , Public

A Dependency Source -> Destination

From: : AttestationCapabilities : Class , Public

To: DigitalCertificateDep : Class , Public
Dependency Source -> Destination

From: : Genericldentity : Class , Public

To: DigitalCertificateDep : Class , Public

A.1.6.13 DigitalCertificateRealization

Class in package '4.3.6 DigitalCertificates'
Details: This realization can be used to implement custom functions related to digital certificates (such as
establishing, validating and revoking them).

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from DigitalCertificateRealization to iDigitalCertificate
4= Generalization from DigitalCertificateRealization to «interface» iDigitalCertificate

A.1.6.14 DirectoryString

Class in package '4.3.6 DigitalCertificates'
Details: This class enables to represent a variety of strings in a machine-readable manner. Useful to encode
descriptions, values or any other text-based data.

STRUCTURAL PART OF DirectoryString

% option_Bmp : Port

W option_Printable : Port

W option_String : Port

O option_Teletex : Port

% option_Utf8 : Port
OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from DirectoryString to Choice

A.1.6.15 DistributionPoint

Class in package '4.3.6 DigitalCertificates'

Appendix A 111

PNNL-32687

Details: This extension provides information about the Certificate Revocation List (CRL) locations. This object is
not mandatory but its use is recommended.

CONNECTORS

Dependency Source -> Destination
From: : DistributionPoint : Class , Public
To: DistributionPointName : Class , Public
A Dependency Source -> Destination
From: : DistributionPoint : Class , Public
To: ReasonFlags : Class, Public
Ve Dependency Source -> Destination
From: : X509V 3ExtensionsType : DataType , Public
To: DistributionPoint : Class , Public

ATTRIBUTES

CRLIssuer : GeneralName Private

Details: This represents the entity that signs and issues the CRL

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

W distributionPoint : DistributionPointName Private

Details: This field represents a sequence of general names, that can be used to retrieve a Certificate Revocation List, all
distribution points must contain the same information.

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

reasons : ReasonFlags Private

Details: This field provides the reason for the certificate revocation.

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

A.1.6.16 DistributionPointName

Class in package '4.3.6 DigitalCertificates'
Details: This structure represents a sequence of general names, that can be used to retrieve a Certificate Revocation
List.

STRUCTURAL PART OF DistributionPointName

W option_FullName : Port

4 option_NameRelative : Port

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from DistributionPointName to Choice

.

CONNECTORS
' Dependency Source -> Destination
From: : DistributionPoint : Class , Public

To: DistributionPointName : Class , Public

A.1.6.17 DistributionPointName _fullName
Class in package '4.3.6 DigitalCertificates'
Details: This is used to provide a stand-alone reference to a the CLR distribution point.

Appendix A 112

PNNL-32687

Either this field or the nameRelativeToCRLIssuer field must be populated.

CONNECTORS
' Dependency Source -> Destination
From: : DistributionPointName _fullName : Class , Public

To: GeneralName : Class , Public

A Dependency Source -> Destination

From: : option_FullName : Port , Public

To: DistributionPointName _fullName : Class , Public

ATTRIBUTES

¥ fullName : GeneralName Private
Details:

A.1.6.18 DPN_nameRelativeToCRLIssuer

Class in package '4.3.6 DigitalCertificates'
Details: This is used to provide a reference to a the CLR distribution point, which is dependent on the CRLIssuer
location.
Either this field or the fullName field must be populated.

CONNECTORS ‘
' Dependency Source -> Destination

From: : DPN_nameRelativeToCRLIssuer : Class , Public
To: RDNSequence : Class, Public
Dependency Source -> Destination
From: . option_NameRelative : Port , Public
To: DPN_nameRelativeToCRLIssuer : Class , Public

ATTRIBUTES

nameRelativeToCRLIssuer : RDNSequence Private
Details:

A.1.6.19 EDIPartyName
Class in package '4.3.6 DigitalCertificates'

CONNECTORS
' Dependency Source -> Destination
From: : ediPartyName . Interface , Public

To: EDIPartyName : Class , Public

ATTRIBUTES

¥ nameAssigner : int Private
Details:

W partyName : int Private
Details:

A.1.6.20 GeneralName
Class in package '4.3.6 DigitalCertificates'

Appendix A 113

PNNL-32687

Details: This represents a generic name structure. Specializations can be used to encode data according to the field
required parameters.

STRUCTURAL PART OF GeneralName

4 Opt_directoryName : Port
@ Opt_DNSName : Port

8 Opt_ediPartyName : Port
4 Opt_IPAddress : Port

O Opt_otherName : Port
8% Opt_registeredID : Port
% Opt_rfc822Name : Port
4 Opt_URI : Port

4% Opt_X400Address : Port

CONNECTORS
*' Dependency Source -> Destination

From: 1 X509V 3ExtensionsType : DataType , Public
To: GeneralName : Class , Public
s Dependency Source -> Destination
From: 1 X509V 3ExtensionsType : DataType , Public
To: GeneralName : Class , Public
s Dependency Source -> Destination
From: : DistributionPointName _fullName : Class , Public
To: GeneralName : Class , Public
Dependency Source -> Destination
From: : GeneralSubtrees : Class , Public
To: GeneralName : Class , Public

A.1.6.21 GeneralSubtrees

Class in package '4.3.6 DigitalCertificates'
Details: This structure can be used to represent any subtree. A subtree such as orgXYZ.com allows to place subjects
in these levels:
*.0rgXYZ.com
..0orgXYZ.com
***orgXYZ.com

CONNECTORS
' Dependency Source -> Destination

From: : GeneralSubtrees : Class , Public
To: BaseDistance : Class , Public
A Dependency Source -> Destination
From: : GeneralSubtrees : Class , Public
To: BaseDistance : Class , Public
Dependency Source -> Destination
From: : GeneralSubtrees : Class , Public
To: GeneralName : Class , Public
A Dependency Source -> Destination
From: : NamedConstraintsClass : Class , Public
To: GeneralSubtrees : Class , Public

Appendix A 114

PNNL-32687

CONNECTORS
' Dependency Source -> Destination

From: : NamedConstraintsClass : Class , Public
To: GeneralSubtrees : Class , Public

ATTRIBUTES

base : GeneralName Private

Details: This field is used to represent the base tree address. In our example this can be orgXYZ.com.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

maximum : BaseDistance Private

Details: This field set the minimum level of subdomains that must exist in a tree.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

minimum : BaseDistance Private

Details: This field set the maximum level of subdomains that must exist in a tree.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.22 1A5String
Class in package '4.3.6 DigitalCertificates'
Details: This is a type of string that contains characters that can be encoded in a URL or a domain name.

CONNECTORS
“ Dependency Source -> Destination
From: : uniformResourceldentifier . Interface , Public

To: 1A5String : Class , Public
e Dependency Source -> Destination
From: : DNSName : Interface , Public
To: 1A5String : Class , Public
Dependency Source -> Destination
From: : rfc822Name . Interface , Public
To: 1A5String : Class , Public

A.1.6.23 iDigitalCertificate
Class «interface» in package '4.3.6 DigitalCertificates'

STRUCTURAL PART OF iDigitalCertificate

% iDigitalCertificate : ProvidedInterface

ATTRIBUTES

W Certificate : X509Certificate Private
Details:

OPERATIONS

% generateUID () : void Public
Details:

W getPublicKey () : void Public
Details:

Appendix A 115

PNNL-32687

OPERATIONS

“ loadCertificate () : void Public
Details:

i parseCertificate () : void Public
Details:

% Validate () : void Public
Details: This function makes a static validation by walking the certificate chain until the CA is reached. This is done by
continuously applying Public-Private key evaluations to ensure validity.

% ValidateWithOCSP () : void Public
Details: This function incorporates the Validate function and complements it with an online check to ensure that the
certificate has not been revoked yet.

A.1.6.24 Instance:Algorithmldentifier
Entity in package '4.3.6 DigitalCertificates'

A.1.6.25 I|POctet

Class in package '4.3.6 DigitalCertificates'
Details: This represents an IP address using an X amount of bytes, depending on the protocol.

CONNECTORS
' Dependency Source -> Destination
From: : IPAddress : Interface , Public

To: IPOctet : Class , Public

A.1.6.26 Keyldentifier
Class in package '4.3.6 DigitalCertificates'
Details: This structure helps to identify the key pair that is applicable to this certificate in case the issuer has

multiple public keys.

CONNECTORS
' Dependency Source -> Destination

From: : Keyldentifier : Class , Public

To: SubjectPublicKey:Bytes : Object, Public
Dependency Source -> Destination

From: : X509V3ExtensionsType : DataType , Public

To: Keyldentifier : Class, Public

&% getKeyldentifier () : Bytes Public
Details: This represents a substring of the subjectPublicKey. In this model it is represented as a dynamic function, however in
reality this will be a static value.

Appendix A 116

PNNL-32687

A.1.6.27 KeyPurposeld

Class in package '4.3.6 DigitalCertificates'
Details: This field can be used to limit the certificate applicability, for example, limiting its use to code signing,
client identification, or time stamping. Fields should be encoded using OID.

CONNECTORS
/" Dependency Source -> Destination
From: : KeyPurposeOptions : Enumeration , Public

To: KeyPurposeld : Class , Public

/" Dependency Source -> Destination

From: : X509V 3ExtensionsType : DataType , Public
To: KeyPurposeld : Class , Public

OPERATIONS

% toOID () : void Public
Details:

A.1.6.28 KeyUsageMasks
Class in package '4.3.6 DigitalCertificates'
Details: This structure defines the intended purpose/allowed usage for the current certificate.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from KeyUsageMasks to BitEncodedString

CONNECTORS
' Dependency Source -> Destination
From: 1 X509V 3ExtensionsType : DataType , Public

To: KeyUsageMasks : Class , Public

ATTRIBUTES

W Bit<pos=0>: Bit Private = digitalSignature

Details: This bitmask indicates that the certificate can be used to digitally sign data.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bit<pos=1>: Bit Private = nonRepudiation

Details: This bitmask indicates that the certificate can be used for content commitment (verifu digital signatures).
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bit<pos=2>: int Private = keyEncipherment

Details: This bitmask indicates that the certificate can be used enciphering private or secret keys.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bit<pos=3>: int Private = dataEncipherment

Details: This bitmask indicates that the certificate can be used to directly provide data encipherment without an intermediary
symmetric key.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bit<pos=4>: int Private = keyAgreement

Details: This bitmask indicates that the subject's public can be used for key exchange.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bit<pos=5>: int Private = keyCertSign

Details: This bitmask indicates that the certificate can be used to verify other certificates.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bit<pos=6>: int Private = cRLSign

Details: This bitmask indicates that the certificate can be used to verify signatures from certificate revocation lists (CRL).

Appendix A 117

PNNL-32687

ATTRIBUTES

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bit<pos=7>: int Private = encipherOnly

Details: This bitmask is undefined if keyAgreement is not set, else the data encipherment is only allowed during key
agreement.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Bit<pos=8>: int Private = decipherOnly

Details: This bitmask is undefined if keyAgreement is not set, else the data deciphering is only allowed during key agreement.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.29 Name
Class in package '4.3.6 DigitalCertificates'
Details: This is a choice-like object where the issuer identity is recorded.

STRUCTURAL PART OF Name

% Option_rdnSequence : Port

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Name to Choice
CONNECTORS
' Dependency Source -> Destination

From: : TBSCertificate : Class , Public
To: Name : Class, Public

A Dependency Source -> Destination
From: : TBSCertificate : Class , Public

To: Name : Class, Public

A.1.6.30 Name_RDNSequence
Class in package '4.3.6 DigitalCertificates'
Details: This represents a sequence of RelativeDistinguishedName, a sequence of properties. In this case it contains
a sequence of properties typically observed in an issuer field.
Alias RelativeDistinguishedName

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Name_RDNSequence to RDNSequence

CONNECTORS
' Dependency Source -> Destination
From: : Option_rdnSequence : Port , Public

To: Name_RDNSequence : Class , Public

ATTRIBUTES
CommonName : Attribute Private
Details: This is the common name that identifies a resource.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
W Country : Attribute Private

Appendix A 118

PNNL-32687

ATTRIBUTES

Details: Documents the country, using an 1SO standardized 2 letter code
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
DistinguishedNameQualifier : Attribute Private
Details:

Organization : Attribute Private

Details:

OrganizationalUnit : Attribute Private

Details:

SerialNumber : Attribute Private

Details:

i# StateProvinceName : Attribute Private

Details:

A.1.6.31 NamedConstraintsClass

Class in package '4.3.6 DigitalCertificates'
Details: This class is used to define a set of black-listed and white-listed naming schemes. These are represented
using trees that can define multiple paths. Black-listed trees take precedence over white-listed trees.

CONNECTORS
' Dependency Source -> Destination

From: : NamedConstraintsClass : Class , Public

To: GeneralSubtrees : Class , Public

A Dependency Source -> Destination

From: : NamedConstraintsClass : Class , Public

To: GeneralSubtrees : Class , Public

A Dependency Source -> Destination

From: : X509V 3ExtensionsType : DataType , Public
To: NamedConstraintsClass : Class , Public

ATTRIBUTES

w excludedSubtrees : GeneralSubtrees Private

Details: These represents the tree structures in which the CA is not allowed to place subjects. E.g. a CA may be prohibited
from signing subjects under the domain *.com or *.energy.com.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W permittedSubtrees : GeneralSubtrees Private

Details: These represents the tree structures in which the CA is permitted to place subjects. E.g. a CA may place subjects
under its own organization *.orgABC.com.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.32 Oldentifier

Class in package '4.3.6 DigitalCertificates'
Details: This represents an object Identified as standardized by ITU, ISO/IEC.
Example of valid OIDs are:
US government:
{joint-iso-itu-t (2) country(16) us(840) organization(1l) gov(101)}
Linux syslog:
{iso (1) identified-organization(3) dod(6) internet(l) private(4) enterprise(l) 37476
products (2) oidplus(5) v2(2) plugins(4) logger(7) linux-syslog(100)}
Pacific Northwest National Laboratory:
{iso (1) identified-organization(3) dod(6) internet(l) private(4) enterprise(l) 2325}

Appendix A 119

PNNL-32687

CONNECTORS
' Dependency Source -> Destination
From: : registeredID : Interface , Public

To: Oldentifier : Class , Public

A.1.6.33 ORAddress
Class in package '4.3.6 DigitalCertificates'
Details: An originator/recipient address within a domain name. Extensive used on email addresses.

CONNECTORS

/" Dependency Source -> Destination
From: 1 Xx400Address . Interface , Public
To: ORAddress : Class , Public

A.1.6.34 PolicyConstraints

Class in package '4.3.6 DigitalCertificates'
Details: This field is used to encode the start and end depth for which the policyMapping attributes can be copied.To
remain compliant either the inhibitPolicyMapping field or the requireExplicitPolicy field MUST be present

CONNECTORS
' Dependency Source -> Destination

From: : PolicyConstraints : Class , Public

To: SkipCerts : Class, Public

A Dependency Source -> Destination

From: : PolicyConstraints : Class , Public

To: SkipCerts : Class, Public

A Dependency Source -> Destination

From: : X509V 3ExtensionsType : DataType , Public
To: PolicyConstraints : Class , Public

ATTRIBUTES

inhibitPolicyMapping : SkipCerts Private

Details: This is the maximum number of chained certificates that can use the policyMappings information. After this number
is reached policyMappings cannot longer be replicated.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W requireExplicitPolicy : SkipCerts Private

Details: This is the minimum number of chained certificates after which the the policyMappings information can be used.
Before this number is reached policyMappings cannot be replicated.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.35 PolicyInformation

Class in package '4.3.6 DigitalCertificates'
Details: This object is used to describe the allowed uses of the certificate. Due to its complexity, the attributes of
this object have not been defined. Consult RFC 5280 for more details.

Appendix A 120

PNNL-32687

CONNECTORS
' Dependency Source -> Destination
From: 1 X509V 3ExtensionsType : DataType , Public

To: Policylnformation : Class, Public

A.1.6.36 PolicyMappingsSeq

Class in package '4.3.6 DigitalCertificates'
Details: This object maps issuer-domain policies to the subject-domain space. Useful when applications accept
inherited permissions.

CONNECTORS

/" Dependency Source -> Destination
From: : PolicyMappingsSeq : Class , Public
To: CertPolicyld : Class, Public
/" Dependency Source -> Destination
From: : PolicyMappingsSeq : Class , Public
To: CertPolicyld : Class, Public
Dependency Source -> Destination
From: 1 X509V 3ExtensionsType : DataType , Public
To: PolicyMappingsSeq : Class , Public

ATTRIBUTES

issuerDomainPolicy : CertPolicyld Private

Details: This represents the fields that the issuer wants to map into the subject policies.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

subjectDomainPolicy : CertPolicyld Private

Details: This represents the fields that the subject will present as its policies.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.37 PrintableString
Class in package '4.3.6 DigitalCertificates'

Details: This represents a string with a limited characther set that was typical of mainframe computers. E.g.,
A-Z

a-—-z

0-9

"() + , - ./ : = 7? [space]

CONNECTORS
' Dependency Source -> Destination

From: : option_Printable : Port , Public
To: PrintableString : Class , Public

A.1.6.38 RDNSequence
Class in package '4.3.6 DigitalCertificates'
Details: This is a generic sequence of attributes that can be used to describe a subject.

Appendix A 121

PNNL-32687

CONNECTORS
' Dependency Source -> Destination

From: : RDNSequence : Class , Public
To: Attribute : Class, Public
A Dependency Source -> Destination
From: : DPN_nameRelativeToCRLIssuer : Class , Public
To: RDNSequence : Class, Public
Dependency Source -> Destination
From: : Option_rdnSequence : Port , Public
To: RDNSequence : Class, Public

ATTRIBUTES

RDNSequence : Attribute Private
Details:

A.1.6.39 ReasonFlags

Class in package '4.3.6 DigitalCertificates'
Details: This provides additional details that led to the certificate being revoked. This is a bitmask that can be used
to select multiple option as the same time.

/" Dependency Source -> Destination
From: : DistributionPoint : Class , Public
To: ReasonFlags : Class, Public

ATTRIBUTES

Bit<pos=0> : Bit Private = unused

Details:

W Bit<pos=1>: Bit Private = keyCompromise

Details: The subject's key was compromised.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Bit<pos=2>: int Private =cACompromise

Details: The CA root key was compromised.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Bit<pos=3>: int Private = affiliationChanged

Details: The subject has no longer an affiliation with the reported entities (e.g. country, division)
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bit<pos=4>: int Private = superseded

Details: A new certificate that replaces this one has been issued.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Bit<pos=5>: int Private = cessationOfOperation

Details: The root CA certificate has been revoked

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bit<pos=6>: int Private = certificateHold

Details: A temporal hold has been placed on this certificate.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bit<pos=7>:int Private = privilegeWithdrawn

Details: The priviledges listed in the certificate do not longer hold true and a revocation is requested.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Bit<pos=8>: int Private =aACompromise

Details: This is used to indicate that attribute's aspects have been compromised.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Appendix A 122

PNNL-32687

A.1.6.40 SkipCerts
Class in package '4.3.6 DigitalCertificates'
Details: This object dictates the number of hops for which constraints are applicable to this certificate.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from SkipCerts to Int32

CONNECTORS

/" Dependency Source -> Destination

From: : PolicyConstraints : Class , Public

To: SkipCerts : Class, Public

/" Dependency Source -> Destination

From: 1 X509V 3ExtensionsType : DataType , Public
To: SkipCerts : Class , Public

/" Dependency Source -> Destination

From: : PolicyConstraints : Class , Public

To: SkipCerts : Class , Public

A.1.6.41 SubjectPublicKeylnfo
Class in package '4.3.6 DigitalCertificates'
Details: This represents the subject's public key algorithm details

CONNECTORS
' Usage Source -> Destination

From: : SubjectPublicKeylnfo : Class , Public
To: SubjectPublicKey:Bytes : Object , Public
A Dependency Source -> Destination

From: : SubjectPublicKeylnfo : Class , Public
To: Algorithmldentifier : Class , Public

V Dependency Source -> Destination

From: : TBSCertificate : Class , Public

To: SubjectPublicKeylnfo : Class , Public

ATTRIBUTES

i algorithm : AlgorithmIdentifier Private
Details: This field holds the algorithm and parameters used to encode the subject's public key

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W subjectPublicKey : Bytes Private

Details: This field contains the actual public key in raw bytes. The subject keeps its private key in a secure location.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.42 TBSCertificate

Class in package '4.3.6 DigitalCertificates'
Details: This represents the main structure present on all X509 certificates. Users must implement at least two
functions:
Validate: To ensure that a certificate can be traced cryptographically to the source CA.
ValidateWithOCSP: To ensure that the certificate has not been revoked.

Appendix A 123

PNNL-32687

CONNECTORS
' Dependency Source -> Destination

From: : TBSCertificate : Class , Public
To: Name: Class, Public
A Dependency Source -> Destination
From: : TBSCertificate : Class , Public
To: Name : Class, Public

Dependency Source -> Destination
From: : TBSCertificate : Class , Public
To: Unigueldentifier : Class , Public

Dependency Source -> Destination
From: : TBSCertificate : Class , Public
To: CertificateSerialNumber : Class, Public
A Dependency Source -> Destination
From: : TBSCertificate : Class , Public
To: Unigueldentifier : Class , Public
A Dependency Source -> Destination
From: : TBSCertificate : Class , Public
To: SubjectPublicKeylnfo : Class , Public
A Dependency Source -> Destination
From: : TBSCertificate : Class , Public
To: ValidityType : Class , Public
A Dependency Source -> Destination
From: : TBSCertificate : Class , Public
To: X509Version : Enumeration , Public
V Dependency Source -> Destination
From: : TBSCertificate : Class , Public
To: SignatureAlg:Algorithmldentifier : Object , Public
/" Dependency Source -> Destination
From: : TBSCertificate : Class , Public
To: X509V3ExtensionsType : DataType, Public
/" Dependency Source -> Destination
From: : X509Certificate : Class , Public
To: TBSCertificate : Class , Public

ATTRIBUTES

Extensions : X509V3ExtensionsType Private

Details:

W IssuerName : Name Private

Details: This field identifies the entity that has created this certificate.

This represents a sequence of RelativeDistinguishedName, a sequence of properties. In this case it contains a sequence of
properties typically observed in an issuer/subject field.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W issuerUniquelD : Uniqueldentifier Private

Details:

SerialNumber : CertificateSerialNumber Private

Details: This is a unique serial number that uniquely identifies a subject to the CA. Limited to 20 bytes.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

SignatureAlgorithm : Algorithmldentifier Private

Details: This field is a repetition of the information provided in the header of an X509 certificate.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

SubjectName : Name Private

Details:

subjectPublicKeyInfo : SubjectPublicKeylnfo Private

Details: This field stores the subject's public key for which this certificate describes.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

subjectUniquelD : Uniqueldentifier Private

Details:

W Validity : ValidityType Private

Appendix A 124

PNNL-32687

ATTRIBUTES

Details:

W@ Version : X509Version Private = V1

Details: This field is used to encode the version of the encoded certificate
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.43 TeletexString
Class in package '4.3.6 DigitalCertificates'
Details: This is a string that precedes the UTF8 standard that allows to encode character data using 1 or 2 bytes.

CONNECTORS

" Dependency Source -> Destination
From: : option_Teletex : Port , Public
To: TeletexString : Class , Public

A.1.6.44 TimeX509

Class in package '4.3.6 DigitalCertificates'
Details: This object represents the choice of time reference in creating the certificate. Certificate validity tests
should account for this choice.

STRUCTURAL PART OF TimeX509

4% Option UTC : Port

¥ Option_Time : Port

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from TimeX509 to Choice
CONNECTORS ‘
*' Dependency Source -> Destination

From: : ValidityType : Class , Public
To: TimeX509 : Class, Public
Dependency Source -> Destination
From: : DateTimeBound : Class , Public
To: TimeX509 : Class, Public
A Dependency Source -> Destination
From: : ValidityType : Class , Public
To: TimeX509 : Class, Public
A Dependency Source -> Destination
From: : DateTimeBound : Class , Public
To: TimeX509 : Class, Public

A.1.6.45 Uniqueldentifier
Class in package '4.3.6 DigitalCertificates'

Appendix A 125

PNNL-32687

Details: This object can be used to uniquely identify the subject using a numerical notation. This field can be useful
in tying a physical identity to a digital identity.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Uniqueldentifier to Int32

CONNECTORS

' Dependency Source -> Destination
From: : TBSCertificate : Class , Public

To: Uniqueldentifier : Class , Public

A Dependency Source -> Destination
From: : TBSCertificate : Class , Public
To: Uniqueldentifier : Class , Public

A.1.6.46 UniversalString
Class in package '4.3.6 DigitalCertificates'
Details: This repesents an string encode using the ISO/IEC 10646 rules.

CONNECTORS

' Dependency Source -> Destination
From: : option_String : Port , Public
To: UniversalString : Class , Public

A.1.6.47 Utf8String
Class in package '4.3.6 DigitalCertificates'
Details: This represents a UTF-encoded string.

CONNECTORS

' Dependency Source -> Destination
From: : option_Utf8 : Port , Public
To: Utf8String : Class , Public

A.1.6.48 ValidityType

Class in package '4.3.6 DigitalCertificates'
Details: This structure describes the validity period through which the certificate is considered valid, unless revoked
by a CRL.

CONNECTORS
' Dependency Source -> Destination

From: : ValidityType : Class , Public
To: TimeX509 : Class, Public

Dependency Source -> Destination
From: : ValidityType : Class , Public
To: TimeX509 : Class, Public

Appendix A 126

PNNL-32687

CONNECTORS ‘
' Dependency Source -> Destination

From: : TBSCertificate : Class , Public
To: ValidityType : Class , Public

ATTRIBUTES

W End: TimeX509 Public
Details:
W Start: TimeX509 Public
Details:

A.1.6.49 X509Certificate
Class in package '4.3.6 DigitalCertificates'
Details: This represents the top-level container of a X509 certificate.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from X509Certificate to DigitalCertificateRealization

CONNECTORS
' Dependency Source -> Destination

From: : X509Certificate : Class , Public
To: TBSCertificate : Class , Public
e Dependency Source -> Destination
From: : X509Certificate : Class , Public
To: Algorithmldentifier : Class , Public
Usage Source -> Destination
From: : X509Certificate : Class , Public
To: SignatureAlg:Algorithmldentifier : Object , Public

ATTRIBUTES

SignatureAlgorithm : Algorithmldentifier Private

Details: This field encodes the algorithm and parameters used by the CA to sign the certificate. Although V1 is used by
default, modern implementations rely on V3.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

SignatureValue : Bytes Private

Details: This field contains the actual signature in raw bytes. The validity of the signature can be accessed base on the
signatureAlgorithm and the TBSCertificate contents.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W ThsCertificate : TBSCertificate Private

Details:

A.1.6.50 AlgorithmParameters

Interface in package '4.3.6 DigitalCertificates'
Details: This is a structure that represents an algorithm's parameters. This is encoded during the certificate creation
time and its contents are dependent on the chosen algorithm.

CONNECTORS

" Dependency Source -> Destination
From: : Algorithmldentifier : Class , Public
To: AlgorithmParameters : Interface , Public

Appendix A 127

PNNL-32687

OPERATIONS

‘% getParameters () : void Public
Details:

A.1.6.51 directoryName
Interface in package '4.3.6 DigitalCertificates'
Details: This represents a valid string that can be used to encode a directory within a server.

CONNECTORS

Vs Dependency Source -> Destination
From: : Opt_directoryName : Port , Public
To: directoryName . Interface , Public

ATTRIBUTES

i# directoryName : Name Public
Details:

A.1.6.52 DNSName
Interface in package '4.3.6 DigitalCertificates'
Details: This is a string that can encode any Dynamic Name Server address.

CONNECTORS
Dependency Source -> Destination

From: : DNSName : Interface , Public
To: 1A5String : Class, Public

A Dependency Source -> Destination
From: : Opt_DNSName : Port , Public
To: DNSName : Interface , Public

ATTRIBUTES

DNSName : IA5String Public
Details:

A.1.6.53 ediPartyName
Interface in package '4.3.6 DigitalCertificates'
Details: This represents a string that can encode an Electronic Data Interchange entity. See RFC 5280 for more

details.
CONNECTORS ‘
' Dependency Source -> Destination
From: : ediPartyName . Interface , Public

To: EDIPartyName : Class , Public

P Dependency Source -> Destination

From: : Opt_ediPartyName : Port , Public

To: ediPartyName : Interface , Public

Appendix A 128

PNNL-32687

ATTRIBUTES

ediPartyName : EDIPartyName Public
Details:

A.1.6.54 generalTime
Interface in package '4.3.6 DigitalCertificates'
Details: This interface is used to encode/decode time data using the time zone offsets. YYYYMMDDHHMMSSZ.

CONNECTORS

/" Dependency Source -> Destination
From: : Option_Time : Port , Public
To: generalTime : Interface , Public

ATTRIBUTES

W GeneralTime : int Public
Details: Time encoded in local time.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.55 IPAddress
Interface in package '4.3.6 DigitalCertificates'
Details: This string can encode a IPv6 or IPv4 address using octets.

CONNECTORS

Dependency Source -> Destination
From: . IPAddress : Interface , Public
To: IPOctet : Class, Public
A Dependency Source -> Destination
From: : Opt_IPAddress : Port , Public
To: IPAddress : Interface , Public

ATTRIBUTES

W IPAddress : IPOctet Public
Details:

A.1.6.56 otherName
Interface in package '4.3.6 DigitalCertificates'

CONNECTORS

Dependency Source -> Destination
From: : Opt_otherName : Port , Public
To: otherName : Interface , Public

ATTRIBUTES

i otherName : AnotherName Public
Details:

Appendix A 129

PNNL-32687

A.1.6.57 registeredID
Interface in package '4.3.6 DigitalCertificates'
Details: This represents an name which is already contained in the OID database.

CONNECTORS

/" Dependency Source -> Destination
From: : registeredID : Interface , Public
To: Oldentifier : Class , Public

/" Dependency Source -> Destination
From: : Opt_registeredID : Port , Public
To: registeredID : Interface , Public

ATTRIBUTES

W registeredID : Oldentifier Public
Details:

A.1.6.58 rfc822Name
Interface in package '4.3.6 DigitalCertificates'

CONNECTORS ‘
' Dependency Source -> Destination
From: : rfc822Name > Interface , Public

To: 1A5String : Class , Public

A Dependency Source -> Destination

From: : Opt_rfc822Name : Port , Public

To: rfc822Name : Interface , Public

ATTRIBUTES

W rfc822Name : IA5String Public
Details:

A.1.6.59 uniformResourceldentifier
Interface in package '4.3.6 DigitalCertificates'
Details: This string can encode a Uniform Resource Identifier, comparable to an WWW address.

CONNECTORS ‘
' Dependency Source -> Destination
From: : uniformResourceldentifier . Interface , Public

To: 1A5String : Class , Public

P Dependency Source -> Destination

From: : Opt_URI : Port , Public

To: uniformResourceldentifier . Interface , Public

ATTRIBUTES

W@ IA5String : 1A5String Public
Details:

Appendix A 130

PNNL-32687

A.1.6.60 utcTime
Interface in package '4.3.6 DigitalCertificates'
Details: This interface is used to encode/decode time data using the Coordinated Universal Time reference.

CONNECTORS

/" Dependency Source -> Destination
From: : Option UTC : Port , Public
To: utcTime : Interface , Public

ATTRIBUTES

W utcTime : int Public
Details: Time encoded in UTC time.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.61 x400Address
Interface in package '4.3.6 DigitalCertificates'
Details: This is a string that can encode any email address.

CONNECTORS ‘
' Dependency Source -> Destination
From: : x400Address . Interface , Public

To: ORAddress : Class , Public
A Dependency Source -> Destination
From: : Opt_X400Address : Port , Public

To: x400Address . Interface , Public
ATTRIBUTES

W x400Address : ORAddress Public

Details:

A.1.6.62 SignatureAlg:Algorithmldentifier

Object in package '4.3.6 DigitalCertificates'
Details: This is an specific instance of the Algorithmldentifier. It is used to symbolize that both the header and the
TBSCertificate SignatureAlgorithm contain the same data.

CONNECTORS |
' Usage Source -> Destination

From: : X509Certificate : Class , Public

To: SignatureAlg:Algorithmlidentifier : Object , Public
P Dependency Source -> Destination

From: : TBSCertificate : Class , Public

To: SignatureAlg:Algorithmlidentifier : Object , Public

A.1.6.63 SubjectPublicKey:Bytes
Object in package '4.3.6 DigitalCertificates'
Details: This is an instance of the subject's public key

Appendix A 131

PNNL-32687

CONNECTORS
' Usage Source -> Destination

From: : SubjectPublicKeylnfo : Class , Public
To: SubjectPublicKey:Bytes : Object , Public
A Dependency Source -> Destination

From: : Keyldentifier : Class , Public

To: SubjectPublicKey:Bytes : Object , Public

A.1.6.64 AttributeType

Enumeration in package '4.3.6 DigitalCertificates'
Details: These enumeration represents some of the common attributes present in certificates, these must be encoded
in OID format.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from AttributeType to DirectoryString
CONNECTORS
' Dependency Source -> Destination

From: : AttributeType : Enumeration , Public
To: ASNSlubject : Class, Public

P Dependency Source -> Destination

From: : Attribute : Class , Public

To: AttributeType : Enumeration , Public

ENUMERATION:

Country

Organization
OrganizationalUnit
DistinguishedNameldentifier
StateProvince
CommonName
SerialNumber

A.1.6.65 BasicConstraints

DataType in package '4.3.6 DigitalCertificates'
Details: This object is used to determine the maximum valid certification depth and to indicate if the certificate
corresponds to a CA.

CONNECTORS
' Dependency Source -> Destination

From: : X509V 3ExtensionsType : DataType , Public
To: BasicConstraints : DataType , Public

ATTRIBUTES
W isCertificateAuthority : boolean Private
Details: THis is a boolean flag used to identify if the certificate corresponds to a CA.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
PathLenConstraint : int Private

Appendix A 132

PNNL-32687

ATTRIBUTES

Details: This field determines the maximum number of certificates that can be walked during validation.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.6.66 KeyPurposeOptions

Enumeration in package '4.3.6 DigitalCertificates'
Details: This enumeration represents the allowed key uses. This object is descriptive, actual implementation use
OID-encoded representations.

CONNECTORS
' Dependency Source -> Destination

From: . KeyPurposeOptions : Enumeration , Public
To: KeyPurposeld : Class , Public

ENUMERATION:

ServerAuth This certificate can be used for HTTPs server
authentication.

ClientAuth This certificate can be used for HTTPs client
authentication.

CodeSigning This certificate can be used to sign executable code.

EmailProtection This certificate can be used to provide email protection
services.

TimeStamping This certificate can be used to time stamp objects.

OCSPSigning This certificate can be used to provide/create Online

Certificate Status Protocol (OCSP).

A.1.6.67 Propertyl
Property in package '4.3.6 DigitalCertificates'

A.1.6.68 X509V3ExtensionsType
DataType in package '4.3.6 DigitalCertificates'

CONNECTORS
' Dependency Source -> Destination

From: : X509V 3ExtensionsType : DataType , Public
To: GeneralName : Class , Public
Dependency Source -> Destination
From: 1 X509V 3ExtensionsType : DataType , Public
To: GeneralName : Class , Public
A Dependency Source -> Destination
From: 1 X509V 3ExtensionsType : DataType , Public
To: Keyldentifier : Class, Public
P Dependency Source -> Destination
From: 1 X509V 3ExtensionsType : DataType , Public
To: AuthorityKeyldentifier : Class , Public
Dependency Source -> Destination
From: 1 X509V 3ExtensionsType : DataType , Public
To: NamedConstraintsClass : Class , Public

Appendix A 133

PNNL-32687

#" Dependency Source -> Destination

From: 1 X509V 3ExtensionsType : DataType , Public
To: PolicyConstraints : Class, Public

A Dependency Source -> Destination

From: 1 X509V 3ExtensionsType : DataType , Public
To: DistributionPoint : Class , Public

A Dependency Source -> Destination

From: 1 X509V 3ExtensionsType : DataType , Public
To: SkipCerts : Class, Public

A Dependency Source -> Destination

From: : X509V 3ExtensionsType : DataType , Public
To: BasicConstraints : DataType , Public

A Dependency Source -> Destination

From: : X509V 3ExtensionsType : DataType , Public
To: Policylnformation : Class , Public

A Dependency Source -> Destination

From: : X509V 3ExtensionsType : DataType , Public
To: PolicyMappingsSeqg : Class , Public

A Dependency Source -> Destination

From: : X509V 3ExtensionsType : DataType , Public
To: KeyUsageMasks : Class , Public

o Dependency Source -> Destination

From: : X509V 3ExtensionsType : DataType , Public
To: KeyPurposeld : Class , Public

V Dependency Source -> Destination

From: : TBSCertificate : Class , Public

To: X509V3ExtensionsType : DataType , Public

ATTRIBUTES

¥ AuthorityKeyldentifier : int Private

Details: This field enables to specify the public key that must be used to verify this certificate, useful when the issuer has
multiple identities/key pairs.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

¥ BasicConstraints : BasicConstraints Private

Details: This field contains a flag to determine if the public key is a root CA (e.g. it can be used to validate signed certificates).
It also sets the maximum path walk in a chain of verification structure.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W CertificatePolicies : Policylnformation Private

Details: This field can be used to set the optional policy qualifiers, these are used mostly in CA certificates to limit the types
of certificates that can be signed.

Multiplicity: (1..*, Allow duplicates: 0, Is ordered: False)

% CRLDistributionPoints : DistributionPoint Private

Details: This field describes the mechanisms that must be used to access the Certificate Revocation Lists (CRLs). CRLs must
be periodically checked to ensure that the provided credentials have not been compromised (i.e. private keys were stolen).
Multiplicity: (1..*, Allow duplicates: 0, Is ordered: False)

W ExtendedKeyUsage : KeyPurposeld Private

Details: This field indicates additional certificate's purposes. This option is intended for end-user certificates, where no further
certificate signing is expected to occur.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

“ InhibitAnyPolicy : SkipCerts Private

Details: This is used to override the effects of anyPolicy extension on root certificates. If this flag is set then a blanket "Allow
all" can only be used by intermediary certificates.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W IssuerAlternativeName : GeneralName Private

Details: This enables to provide multiple names for the issuer's name. Constraints are not enforced in these names
Multiplicity: (1..*, Allow duplicates: 0, Is ordered: False)

W KeyUsage : KeyUsageMasks Private

Details: This field defines the allowed uses of this certificate.

Appendix A 134

PNNL-32687

ATTRIBUTES

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

NameConstraints : NamedConstraintsClass Private

Details: This field is only used in CA certificates and allows to define the paths or naming schemes for which this certificate
can be used to create subjects' certificates.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

PKUsagePeriod : None- Deprecated Private

Details: This field is deprecated

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

PolicyConstraints : PolicyConstraints Private

Details: This field is reserved for CA certificate use. It lists the policy mappings that subjects are allowed to use
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

PolicyMappings : PolicyMappingsSeq Private

Details: This field enables to map issuer properties to the subject.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W SubjectAlternativeName : GeneralName Private

Details: This field enables to provide multiple naming schemes to identify the subject. This may include additional IPs,
multiple DNS mails, email addresses.

Multiplicity: (1..*, Allow duplicates: 0, Is ordered: False)

SubjectDirectoryAttributes : Attribute Private

Details: This extension enables to provide additional identification attributes to the subject such as country, organization
Multiplicity: (0..*, Allow duplicates: 0, Is ordered: False)

W SubjectKeyldentifier : Keyldentifier Private

Details:

A.1.6.69 X509Version
Enumeration in package '4.3.6 DigitalCertificates'
Details: This enumeration represent the three versions currently in use by the X509 reference implementation.

CONNECTORS
/" Dependency Source -> Destination
From: : TBSCertificate : Class , Public

To: X509Version : Enumeration , Public

ENUMERATION:

V1
V2
V3

Appendix A 135

PNNL-32687

A.1.7 BlockchainLedger

This diagram provides the basic representation of a blockchain environment. It is intended to serve as a reference for
software engineers implementing this technology. Many of the blocks presented in this diagram must be overridden,
extended or otherwise adjusted to correctly represent a blockchain environment. Nevertheless, the basic read/write
functionalities, and an immutable ledger must continue to hold.

Appendix A 136

GenericBlockchainRealization

iBlockchain
BlochchainDescriptor: BlockchainStructure
CurrentTransaction: SerializableObject
LedgerBlock
Data: BlockData
Header: BlockHeader
MetaData: BlockMetaData

GenericBlockchainDep
{leaf}

BlockchainStructure

«enumeration»
TypesOfBlockchain

z-=")

«wuse»

BlockchainType: TypesOfBIockchaEI
ConsensusType: TypeOfConsesusj
LedgerType: TypesOfLedger :|

Permissioned

IBlockchain

+

::iBlockchain

GetCurrentTransaction(): SerializableObject

ReadOffChain(Int): void

ReadOnChain(int): void

StoreOffChain(int, Bytes): void

StoreOnChain(int, Bytes): void

SubmitTx(Bytes, GenericDigldentityDep): void
InmutablelLedger

remove(int): Not_supported

«interface»
iBlockchain

BlochchainDescriptor: BlockchainStructure
CurrentTransaction: SerializableObject

Lo

|

PNNL-32687

Appendix

GetCurrentTransaction(): SerializableObject
ReadOffChain(Int): void

ReadOnChain(int): void

StoreOffChain(int, Bytes): void
StoreOnChain(int, Bytes): void
SubmitTx(Bytes, GenericDigldentityDep): void

InmutableLedger

ol

remove(int): Not_supported

il _\\ Permissionless
\ \ Hybrid
\ \ «enumeration»
\ Ve — = - => TypeOfConsesus
_> «enumeration» ProofOfElapseTime
TypesOflLedger ProofOfStake
ProofOf ...
MerkleTree ProofOfWork
RadixTree ProofOfVote
_______________ -

BlockData

- dataHash: Byta

4.3.11 Persona modeling::
GenericDigldentityDep
{leaf}

R

LedgerBlock

BlockMetaData

- Data: BlockData :‘
- Header: BlockHeader :‘

- TransactionID: int

E SubmissionAgent: GenericDigldentityDep
- SubmissionTime: TimeStamp

E MetaData: BlockMetaData

A

Figure 55.

rawData: Byt6__|

/ BlockHeader

PrevHash: By
- SegNumber: int

- BlockHash: By.t_els_ -

<T->LedgerBlock > \

N
N
N N\
N
A 4.3.2 Primitives::
Bytes
- == ;7 - sizerint

Overview of the BlockchainLedger's package components

4.3.2 Primitives::
OrderedArrayList

+ 4+ 4+ o+

add(T): void
count(): int
previtem(T): T
remove(int): void

137

PNNL-32687

A.1.7.1 BlockchainStructure

Class in package '4.3.7 BlockchainLedger'
Details: This structure is used to describe the underlying blockchain characteristics such as the ledger type
consensus type, etc.

CONNECTORS
*' Dependency Source -> Destination

From: : BlockchainStructure : Class , Public

To: TypesOfLedger : Enumeration , Public

P Dependency Source -> Destination

From: : BlockchainStructure : Class , Public

To: TypesOfBlockchain : Enumeration , Public

P Dependency Source -> Destination

From: : BlockchainStructure : Class , Public

To: TypeOfConsesus : Enumeration , Public
Dependency Source -> Destination

From: : iBlockchain : Class , Public

To: BlockchainStructure : Class , Public

ATTRIBUTES

i# BlockchainType : TypesOfBlockchain Private

Details: This entry represent the type of blockchain used in the implementation.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

" ConsensusType : TypeOfConsesus Private

Details: This field defines the underlying consensus method.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

" LedgerType : TypesOfLedger Private

Details: This field describes the ledger type used in the blockchain implementation.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.7.2 BlockData
Class in package '4.3.7 BlockchainLedger'
Details: This structure holds both the raw data (from the transaction) and its corresponding hash.

CONNECTORS

s Dependency Source -> Destination
From: : BlockData : Class , Public
To: Bytes: Class, Public
/" Dependency Source -> Destination
From: : BlockData : Class , Public
To: Bytes: Class, Public

Dependency Source -> Destination
From: : LedgerBlock : Class , Public
To: BlockData : Class , Public

ATTRIBUTES
W dataHash : Bytes Private
Details: This is the hash corresponding to the underlying data. Note that the hashing/digest function is abstracted but should be
specified by the documentation to ensure agents can perform external verifications
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
W rawData : Bytes Private

Appendix A 138

PNNL-32687

ATTRIBUTES

Details: This is the raw object. For interoperability reasons, objects should be encoded into a universal format that is
understood by all parties. Examples include serialization formats such as JSON, protobuf, MessagePack.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.7.3 BlockHeader

Class in package '4.3.7 BlockchainLedger'
Details: This object stores information about the linkage of a block, this may include pointer to a parent,or past
blocks depending on the blockchain/ledger implementation.

CONNECTORS
' Dependency Source -> Destination

From: : BlockHeader : Class , Public
To: Bytes: Class, Public
A Dependency Source -> Destination
From: : BlockHeader : Class , Public
To: Bytes: Class, Public

Dependency Source -> Destination
From: : LedgerBlock : Class , Public
To: BlockHeader : Class , Public

ATTRIBUTES

BlockHash : Bytes Private

Details: This represents the fingerprint for the entire block. This will usually contains all the blocks, pointers and transaction
information that lead to the stored state.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W PrevHash : Bytes Private

Details: This provides a copy of digest to the previous block. Agents can walk back into the genesis blocks using these digests
to validate the integrity of the ledger.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W SegNumber : int Private

Details: This can be used to uniquely identify a block within a blockchain. This may be sequential or not, as long as it is
unique.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.7.4 BlockMetaData

Class in package '4.3.7 BlockchainLedger'
Details: This object represents the metadata that some blockchain environments attach to a block to keep track of
the transactions details.

CONNECTORS
' Dependency Source -> Destination

From: : BlockMetaData : Class , Public
To: GenericDigldentityDep : Class , Public
A Dependency Source -> Destination
From: : LedgerBlock : Class , Public

To: BlockMetaData : Class , Public

ATTRIBUTES

SubmissionAgent : GenericDigldentityDep Private

Appendix A 139

PNNL-32687

ATTRIBUTES

Details: This contains a reference to the agent/system submitted the transaction. This is mostly applicable to permissioned
systems, but can also be used to track the mining/proposing system address if applicable.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

SubmissionTime : TimeStamp Private

Details: This represents the time at which the transaction was initially submitted into the system.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

TransactionID : int Private

Details: This represents a unique identifier, transaction counter, that enables a system to uniquely identify a request.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.7.5 GenericBlockchainDep

Class in package '4.3.7 BlockchainLedger'
Details: Objects whom reference this class expect an object that realizes the Blockchain Interface. This class is a
leaf and is only intended to serve as a data type.

CONNECTORS

" Usage Source -> Destination
From: : GenericBlockchainDep : Class , Public

To: IBlockchain : ProvidedInterface , Public
A Dependency Source -> Destination
From: :UID : Class , Public

To: GenericBlockchainDep : Class , Public
A Dependency Source -> Destination
From: : iSmartContract : Class , Public
To: GenericBlockchainDep : Class , Public
V Dependency Source -> Destination
From: : BaseClass : Class , Public

To: GenericBlockchainDep : Class , Public

A.1.7.6 GenericBlockchainRealization

Class in package '4.3.7 BlockchainLedger'
Details: This abstract class implements the Blockchain interface, classes derived from this class should satisfy all of
the service and data requirements.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from GenericBlockchainRealization to «interface» iBlockchain
4= Realization from GenericBlockchainRealization to IBlockchain

A.1.7.7 iBlockchain
Class «interface» in package '4.3.7 BlockchainLedger

STRUCTURAL PART OF iBlockchain

4 |Blockchain : Providedinterface

Appendix A 140

PNNL-32687

STRUCTURAL PART OF iBlockchain

¥ ProvidedInterfacel : ProvidedInterface

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from «interface» iBlockchain to InmutableLedger
4= Generalization from «interface» iBlockchain to LedgerBlock

CONNECTORS

Dependency Source -> Destination
From: . iBlockchain : Class , Public
To: BlockchainStructure : Class , Public

ATTRIBUTES

w BlochchainDescriptor : BlockchainStructure Private

Details:

W CurrentTransaction : SerializableObject Private

Details: Contains a copy of the current transaction. This can be used to inspect the transaction contents, such as the identity of
the submitter, calling parameters, endorsers, etc.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% GetCurrentTransaction () : SerializableObject Public
Details: This function gets the CurrentTransaction. This function may proof useful when smart contracts are implemented.

% ReadOffChain (FQID : Int) : void Private
Details: This function should be implemented via a smart contract or other alike logic mechanism. It is the responsibility of
the logic to ensure data read is validated before being returned (via a fingerprint/digest comparison

‘% ReadOnChain (FQID : int) : void Private
Details: This is a function that should be supported by the underlying Blockchain. This function asynchronous and the data
obtained can be from a local peer copy or retrieved from another remote peer via a SC invokatio

“ StoreOffChain (FQID : int, anObject : Bytes) : void Private
Details: This function should be implemented via a smart contract or other alike logic mechanism. It is the responsibility of
the logic to ensure data is properly secured by storing the data's fingerprint in the ledge

% StoreOnChain (FQID : int, AnObject : Bytes) : void Private
Details: This is a function that should be supported by the underlying Blockchain. This function asynchronous and occurs
after consensus and ordering occurs

% SubmitTx (rawRequest : Bytes , SubmissionAgentldentity : GenericDigldentityDep) : void Public

Details: This represents a ledger ability to accept transactions that contain within itself the data, parameters or commands
required to update the ledger state.

Sample requests may include:

Putting raw data into the ledger.

Calling an non-parameterized SC function.

Calling a parameterized SC function.

A.1.7.8 InmutableLedger
Class in package '4.3.7 BlockchainLedger'

Appendix A 141

PNNL-32687

Details: This structuture represents an immutable ledger. This particular implementation follows the common "chain
of blocks" idea by using an OrderedArrayList minus the remove operation. Note that although most blockchains use

a Merkle-tree like structure, the walk from the current state to the genesis block can be represented using an ordered

array list.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from InmutableLedger to OrderedArrayList

OPERATIONS

% remove (Index : int) : Not_supported Public
Details: This operation represents the lack of data removal capabilities from a ledger.

A.1.7.9 LedgerBlock

Class in package '4.3.7 BlockchainLedger'
Details: This structure represents a data block within the ledger. Strictly speaking a data and signature field are
required, this object model presents a more extensible model based on Hyperledger Fabric .

CONNECTORS
' Dependency Source -> Destination

From: : LedgerBlock : Class , Public
To: BlockMetaData : Class , Public

A Dependency Source -> Destination
From: : LedgerBlock : Class , Public
To: BlockHeader : Class , Public

A Dependency Source -> Destination
From: : LedgerBlock : Class , Public
To: BlockData : Class, Public

ATTRIBUTES

w Data: BlockData Private

Details: This field represents the raw data appended with a digital fingerprint.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Header : BlockHeader Private

Details: This field contains information about the block, it can be used to map/identify a block within the ledger.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

MetaData : BlockMetaData Private

Details: This field is used to store metadata about the block origins. This may include transaction tracking information,
approval information and any other related metadata.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.7.10 LedgerStorage
Class in package '4.3.7 BlockchainLedger'
Details: This is an abstract class that represents any DLT/blockchain system that operates over a ledger-like system.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from LedgerStorage to InmutableLedger
4= Generalization from LedgerStorage to LedgerBlock

Appendix A 142

PNNL-32687

A.1.7.11 TypeOfConsesus

Enumeration in package '4.3.7 BlockchainLedger'
Details: This enumeration is used to describe the type of consensus used to propose and append a new block.
Usually named Proof of X. This is not an exhaustive list and it is only representative.

/" Dependency Source -> Destination
From: : BlockchainStructure : Class , Public

To: TypeOfConsesus : Enumeration , Public

ENUMERATION:

ProofOfElapseTime
ProofOfStake
ProofOf ...
ProofOfWork
ProofOfVote

A.1.7.12 TypesOfBlockchain

Enumeration in package '4.3.7 BlockchainLedger'
Details: This enumeration is used to indicate the type of blockchain being used.

CONNECTORS
' Dependency Source -> Destination
From: : BlockchainStructure : Class , Public

To: TypesOfBlockchain : Enumeration , Public

ENUMERATION:

Permissioned

Permissionless

Hybrid This represents a blockchain that has properties of both
permissioned/permissionless.

A.1.7.13 TypesOfLedger
Enumeration in package '4.3.7 BlockchainLedger’
Details: This enumeration is used to describe the manner in which data blocks are ordered or structured.

CONNECTORS ‘
' Dependency Source -> Destination
From: : BlockchainStructure : Class , Public

To: TypesOfLedger : Enumeration , Public

ENUMERATION:

MerkleTree
RadixTree

Appendix A 143

PNNL-32687

A.1.8 LifecycleManagement

This diagram contains the necessary object templates and interfaces required to track an asset's state across its
operational lifecycle. The provided interface is designed to function in an ad-hoc behavior (e.g., on demand). This
contrasts with the mechanisms provided by the trackablelnterface which are designed to be inheritable (and thus
always tracking the changes in state).

) N 4.3.1 Basic Objects::Event
LifecycleStatusDep LifecycleStatusRealizaton
{leaf} + creationTime: TimeType
iLifecycleStatus + interval: DateTimelnterval
7/ + LifecycleStatus: LifecycleManager
/
/ oofiiP
/ iLifecycleStatus IGenericTrackable
LifecycleStat 5 - 1+ OnTransition(): void 4.3.5 TrackableObjects::
- + Transition_Abort(): void . s
- - A GenericTrackableRealization
+ Transition_Complete(): void
+ Transition_Start(LifecycleStatusEnum): void
«interface»
iLifecycleStatus «enumeration»
LifecycleStatusEnum
+ LifecycleStatus: LifecycleManager - ~ LifecycleManager
\A Unprovisioned
+ OnTransition(): void - _inTransition: Boolean > Active
+ Transition_Abort(): void - CurrentState: LifecycleStatusEnuEJ r— Suspended
+ Transition_Complete(): void - NextState: LifecycleStatusEnum Retired
+ Transition_Start(LifecycleStatusEnum): void - Reason: String Provisioned
Figure 56. Overview of the LifecycleManagement's package components

A.1.8.1 iLifecycleStatus
Class «interface» in package '4.3.8 LifecycleManagement'

STRUCTURAL PART OF iLifecycleStatus

¥ jLifecycleStatus : Providedinterface

CONNECTORS
“ Dependency Source -> Destination

From: : iLifecycleStatus : Class , Public
To: LifecycleManager : Class , Public

ATTRIBUTES

i LifecycleStatus : LifecycleManager Public
Details:

OPERATIONS

% OnTransition () : void Public
Details:

% Transition_Abort () : void Public
Details:

Appendix A 144

PNNL-32687

OPERATIONS

% Transition_Complete () : void Public
Details:

% Transition_Start (newState : LifecycleStatusEnum) : void Public
Details:

A.1.8.2 LifecycleManager
Class in package '4.3.8 LifecycleManagement'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from LifecycleManager to GenericTrackableRealization

CONNECTORS

Dependency Source -> Destination
From: : LifecycleManager : Class , Public
To: LifecycleStatusEnum : Enumeration , Public
A Dependency Source -> Destination
From: . Individual : Class , Public
To: LifecycleManager : Class , Public

Dependency Source -> Destination
From: : Address : Class , Public
To: LifecycleManager : Class , Public
A Dependency Source -> Destination
From: : iLifecycleStatus : Class , Public
To: LifecycleManager : Class , Public
A Dependency Source -> Destination
From: : iGridEquipment : Class , Public
To: LifecycleManager : Class , Public

_inTransition : Boolean Private

Details:

@ CurrentState : LifecycleStatusEnum Private

Details:

@ NextState : LifecycleStatusEnum Private

Details:

Reason : String Private

Details: This field can be used to provide an explanation on the reasoning behind the current lifecycle status.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.8.3 LifecycleStatusDep

Class in package '4.3.8 LifecycleManagement'
Details: Objects whom reference this class expect an object that realizes the LifeCycle Interface. This class is a leaf
and is only intended to serve as a data type.

Appendix A 145

PNNL-32687

CONNECTORS

" Dependency Source -> Destination
From: : LifecycleStatusDep : Class , Public
To: iLifecycleStatus : Providedinterface , Public

A.1.8.4 LifecycleStatusRealizaton
Class in package '4.3.8 LifecycleManagement'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from LifecycleStatusRealizaton to «interface» iLifecycleStatus
4= Realization from LifecycleStatusRealizaton to iLifecycleStatus

A.1.8.5 LifecycleStatusEnum
Enumeration in package '4.3.8 LifecycleManagement'

CONNECTORS
' Dependency Source -> Destination

From: : LifecycleManager : Class , Public
To: LifecycleStatusEnum : Enumeration , Public

ENUMERATION:
Unprovisioned
Active
Suspended
Retired
Provisioned

Appendix A 146

PNNL-32687

A.1.9 Permissions&Qualifications

This diagram contains the basic interfaces for defining access control permissions to resources, as well as
mechanisms for assigning qualifications/attributes to entities. These interfaces must be configured to suit the
application/use case needs. For example, different types of qualifications may exist within a single TES
implementation, each of them applicable to different set of agents, participants or external service providers.

Appendix A 147

Certifications: Certifications([]

Appendix A

GenericPermissionDept— N1 — — — — — _ _ _ _ _ _ _ _ GenericPer Ii
{leaf) iPermission
«enumeration»
TES_Base AccessPermissions
«interface»]
iPermission Atiibutes
AssignedPersonalPermission = GB(ns
- AssignedRoles: int - W:int
- Grantee: PersonaDep - _lsActiverint - Xoint
- Grantor: PersonaDep - Authority: int - RW:int
- GroupMembership: AssignableGroups - DateAcq: int - RWX:int
- Resources: UID - Details: int
- Permission: int :| r— /:\
+ CheckPermissions(): void |
-7) J
7~
s // Z
e
AssignedRoles // IRl ;0 -
PersonaPermissions -

- AccessPermissions: int | AssignableGroups

«interface»
iEntityQualifications

QualificationOrg

- DigitalCertificate: DigitalCertificateDep [0..1]
- Qualifications: Qualification
- QualifiedEntity: PersonaDep

AvailableQualifications: AvailableQualifications [1..1—]]

DigitalCertificate: DigitalCertificateDep [0..1]
Organization: PersonaDep

+ hasCertification(): void
+ validateRights(): void

Qualification

AssignedQualification: AvailableQualifications
EffectiveDates: DateTimeBound
isDigitallySigned: Boolean

PNNL-32687

«enumeration»
AvailableQualifications

DERinstaller
DERprovisioning
DeviceCapability Tester

/
/7
- Access: int :‘%

- Description: int
- Resource: UID

E AccessPermissions: int

AssignedRoles: int
Groups: int

Figure 57.

[———= -———"\ isRevoked: Boolean — -
| iEntityQualifications \ QualificationAuthority: QualificationOrg —acceptance
e . TES_Member
| \ QualifiedEntity: PersonaDep i .
| . i ThirdPartyAttestation
Signature: Bytes [0..1] .
! EntityQualificationRealization U bR oAy
| CheckCertification(): void
|
|
EntityQualificationsDep «enumeration» 4.3.11 Persona 4.3.6 DigitalCertificates:: SRS U
{leaf} TESGroup modeling:: DigitalCertificateDep DateTimeBound
oS> Agent PersonaDe;IJ . {leaf} | | 4 Eng: DateTimeStamp
Agent.Market L=l Start: DateTimeStamp)
Auditor
Agent.Prosumer

Overview of the Permissions' package components

148

A.1.9.1 AssignableGroups
Class in package '4.3.9 Permissions&Qualifications'

CONNECTORS

PNNL-32687

/" Dependency Source -> Destination
From: : AssignableGroups : Class , Public
To: PersonaPermissions : Class , Public

/" Dependency Source -> Destination
From: : AssignableGroups : Class , Public
To: PersonaPermissions : Class , Public

/" Dependency Source -> Destination
From: : AssignableGroups : Class , Public
To: IndustryPersonaCertifications : Class , Public

Dependency Source -> Destination
From: : AssignableGroups : Class , Public
To: TESGroup : Enumeration , Public

ATTRIBUTES

W AccessPermissions : int Private

Details:

AssignedRoles : int Private
Details:

W Groups : int Private
Details:

A.1.9.2 AssignedPersonalPermission
Class in package '4.3.9 Permissions&Qualifications'

CONNECTORS

Dependency Source -> Destination
From: : AssignedPersonalPermission : Class , Public
To: AccessStatus : Enumeration , Public

e Dependency Source -> Destination
From: : AssignedPersonalPermission : Class , Public
To: PersonaPermissions : Class , Public

Dependency Source -> Destination
From: : AssignedRoles : Class , Public
To: AssignedPersonalPermission : Class , Public

@ _isActive : int Private
Details:

@ Authority @ int Private
Details:

W DateAcq : int Private
Details:

W Details : int Private
Details:

W Permission : int Private
Details:

Appendix A

149

PNNL-32687

A.1.9.3 AssignedRoles
Class in package '4.3.9 Permissions&Qualifications'

CONNECTORS

/" Dependency Source -> Destination

From: : AssignedRoles : Class , Public

To: Assigned IndustryPersonaCertifications : Class , Public
/" Dependency Source -> Destination

From: : AssignedRoles : Class , Public

To: AssignedPersonalPermission : Class , Public

ATTRIBUTES
W AccessPermissions : int Private
Details:
W Certifications : Certifications[] Private
Details:

A.1.9.4 EntityQualificationRealization

Class in package '4.3.9 Permissions&Qualifications'
Details: This class represents the qualifications that a given entity possesses, which may be composed of a wide
variety of individual qualifications obtained from trusted or well known systems.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from EntityQualificationRealization to iEntityQualifications
4= Generalization from EntityQualificationRealization to «interface» iEntityQualifications

A.1.9.5 EntityQualificationsDep

Class in package '4.3.9 Permissions&Qualifications'
Details: Objects whom reference this class expect an object that realizes the EntityQualifications Interface, an
interface that be used to describe an entity qualifications as certified by a trusted/known system. This class is a leaf
and is only intended to serve as a data type.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from EntityQualificationsDep to «interface» iEntityQualifications

CONNECTORS

s Dependency Source -> Destination
From: : EntityQualificationsDep : Class , Public

To: iEntityQualifications : ProvidedlInterface , Public

P Dependency Source -> Destination

From: : AttestationCapabilities : Class , Public

To: EntityQualificationsDep : Class , Public

P Dependency Source -> Destination

From: : QualifiedAuditors : Class , Public

To: EntityQualificationsDep : Class , Public
Dependency Source -> Destination

From: : QualifiedInstallers : Class , Public
To: EntityQualificationsDep : Class , Public

Appendix A 150

PNNL-32687

A.1.9.6 GenericPermissionDep

Class in package '4.3.9 Permissions&Qualifications'
Details: Objects whom reference this class expect an object that realizes the GenericPermission Interface, an
interface that be used to store the permissions associated with a given resource.

CONNECTORS
' Dependency Source -> Destination

From: : GenericPermissionDep : Class , Public
To: iPermission : ProvidedInterface , Public

i Dependency Source -> Destination

From: : SubjectPermissions : Class , Public
To: GenericPermissionDep : Class , Public

A.1.9.7 GenericPermissionRealization
Class in package '4.3.9 Permissions&Qualifications'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from GenericPermissionRealization to iPermission
= Generalization from GenericPermissionRealization to «interface» iPermission

A.1.9.8 GivenQualification
Class in package '4.3.9 Permissions&Qualifications'

A.1.9.9 iEntityQualifications
Class «interface» in package '4.3.9 Permissions&Qualifications'

STRUCTURAL PART OF iEntityQualifications

¥ iEntityQualifications : Providedinterface

CONNECTORS
' Dependency Source -> Destination
From: : iEntityQualifications : Class , Public

To: Qualification : Class , Public

ATTRIBUTES

DigitalCertificate : DigitalCertificateDep Private

Details: This is an optional parameter that enables to tie the persona to a digital certificate (to prevent identity theft).
Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

Qualifications : Qualification Private

Appendix A 151

PNNL-32687

ATTRIBUTES
Details: This represents all qualifications that an entity pertains to have.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
QualifiedEntity : PersonaDep Private
Details: This represents the entity for which this qualifications apply.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% hasCertification () : void Public
Details: This property enables external systems to evaluate if the entity satisfies a given qualification.

i validateRights () : void Public
Details: Given the current qualifications, and an input request, the entity should be able to determine if it has the correct rights.

A.1.9.10 iPermission
Class «interface» in package '4.3.9 Permissions&Qualifications'

STRUCTURAL PART OF iPermission

¥ iPermission : Providedinterface

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from «interface» iPermission to TES_Base

AssignedRoles : int Private
Details:
W Grantee : PersonaDep Private
Details:
W Grantor : PersonaDep Private
Details:
GroupMembership : AssignableGroups Private
Details:
Resources : UID Private
Details:

OPERATIONS
% CheckPermissions () : void Public
Details:

A.1.9.11 PersonaPermissions
Class in package '4.3.9 Permissions&Qualifications'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from PersonaPermissions to TES Base

Appendix A 152

PNNL-32687

CONNECTORS ‘
' Dependency Source -> Destination
From: : PersonaPermissions : Class , Public

To: AccessPermissions : Enumeration , Public
A Dependency Source -> Destination
From: : AssignableGroups : Class , Public
To: PersonaPermissions : Class , Public
Dependency Source -> Destination
From: : AssignableGroups : Class , Public
To: PersonaPermissions : Class , Public
A Dependency Source -> Destination
From: . AssignedPersonalPermission : Class , Public
To: PersonaPermissions : Class , Public

ATTRIBUTES

W Access : int Private

Details:
W Description : int Private
Details:
Resource : UID Private
Details:

A.1.9.12 Qualification
Class in package '4.3.9 Permissions&Qualifications'
Details: This object holds a single qualification for an individual

STRUCTURAL PART OF Qualification

¥ iPermission : Providedinterface

CONNECTORS
" Usage «Instantiate» Source -> Destination
From: : Actor's_Qualifications : Object , Public

To: Qualification : Class , Public

Dependency Source -> Destination
From: : iEntityQualifications : Class , Public
To: Qualification : Class , Public

ATTRIBUTES

AssignedQualification : AvailableQualifications Private
Details: This represents the qualification being given.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

EffectiveDates : DateTimeBound Private

Details: This field can be used to time-bound a given qualification
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W isDigitallySigned : Boolean Private

Details: This field can be used to establish if the qualification has been digitally signed. It requires the QualificationOrg to
possess a digitalCertificate.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

isRevoked : Boolean Private

Details: This field can be used to indicate an early revocation.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

QualificationAuthority : QualificationOrg Private

Appendix A 153

PNNL-32687

ATTRIBUTES
Details: This is a reference to the QuaficationAuthority.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
QualifiedEntity : PersonaDep Private
Details: This field represents the entity that has received the qualification.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
W Signature : Bytes Private
Details: This field can be used to store an optional signature that can be used to provide greater security.
Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

CheckCertification () : void Public
Details: This function can be used to check a certification, unless digitally signed this function may incorrectly return true for
the listed qualification.

A.1.9.13 QualificationOrg
Class in package '4.3.9 Permissions&Qualifications'
Details: This structure holds organizations that can issue qualifications to other members.

CONNECTORS
Dependency Source -> Destination

From: : QualificationOrg : Class , Public

To: AvailableQualifications : Enumeration , Public

ATTRIBUTES

AuvailableQualifications : AvailableQualifications Private

Details: This lists all the qualifications that an organization can issue. A system administrator is reponsible for creating this
organizations (similar to a CA)

Multiplicity: (1..*, Allow duplicates: 0, Is ordered: False)

DigitalCertificate : DigitalCertificateDep Private

Details: This is an optional field that can be used to digitally sign the issued qualifications.

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

Organization : PersonaDep Private

Details: This represents an organization or entity responsible for handling these qualifications.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.9.14 AccessPermissions

Enumeration in package '4.3.9 Permissions&Qualifications'
Details: This enumeration provides a sample of access permissions that can be given to a resource. The meaning of
each flag is:
R - Read is allowed
W - Write is allowed
X - Execution is allowed.

CONNECTORS
' Dependency Source -> Destination
From: : Policy : Class , Public

To: AccessPermissions : Enumeration , Public

Appendix A 154

CONNECTORS

Dependency Source -> Destination
From: : PersonaPermissions : Class , Public
To: AccessPermissions : Enumeration , Public

PNNL-32687

ENUMERATION:

‘

RW

RWX

A.1.9.15 AvailableQualifications
Enumeration in package '4.3.9 Permissions&Qualifications’

CONNECTORS
Dependency Source -> Destination

From: : QualificationOrg : Class , Public

To: AvailableQualifications : Enumeration , Public

ENUMERATION:
DERinstaller

e.g., being capable of installing DER equipment

DERprovisioning

e.g. Being capable of provisioning a DER system (setup
users, connection profile)

DeviceCapabilityTester

i.e., being able to test a generator output capabilities

TES_acceptance

To represent an entity that can accept a potential agent into
aTES.

TES Member

e.g., to be part of a TES.

ThirdPartyAttestation

Being capable of attesting for another party.

Legal power of attorney rights.

ThirdPartyPowerOfAttorney

A.1.9.16 TESGroup

Enumeration in package '4.3.9 Permissions&Qualifications'
Details: This enumeration represents typical group roles found within a TES. They are specific to the ABAC case

being demonstrated.

CONNECTORS

Dependency Source -> Destination
From: : PolicyResource : Class , Public
To: TESGroup : Enumeration , Public

A Dependency Source -> Destination
From: : AssignableGroups : Class , Public
To: TESGroup : Enumeration , Public

ENUMERATION:

Agent This represents any agent that can participate within the
deployed TES.

Agent.Market This represents an specialized agent that has market
running duties.

Auditor This represents an auditor within a TES.

Agent.Prosumer

This represents an specialized agent that has prosumer
capabilities.

Appendix A

155

Appendix A

PNNL-32687

A.1.10 Grid Object Models

This package provides the basic constructs used to model electrical systems. This includes the ability to store matrix
data (for impedance), represent complex power and its direction. The contained classes represent only a subset of
electrical-related objects and must be updated depending on the TES' application requirements.

ComplexPowerStorage
«enumeration» «enumeration» «dataType» 4.3.4 Math:: + P:Real
FlowDirectionKind ElectricalStatus Complex ArrayList<Complex> | [+ Q:Real
forward On - Imag: Real + getPF(): void
leading off - Real: Real + getS(): void
net) Indeterminate + setPQ(Real, Real): void
none «enumeration» (from 4.3.4 Math) 2 o -

i omplexPowerDep
q1!\/||musQ4 impedanceDataibe «enumeration» 4 {leaf}
q1PlusQ2 T

T isDiagonal PhaseCodeType Impedance
q R o «interface» ComplexPower ~ «use»
(- isFullMatrix 000 NA N
SIS isLowerDiagonal - isPU: Boolean CompieXEoREl 7"
q1PlusQ4 h 032¢C) 8 Cs% -
2MinusQ3 e 033CN 20 e PF: Real ~
a lastUpdated: DateTimeStamp i N
CPARLEeR e - rawData: ArrayList<Complex> i skedl A
qZPIl_JSCM WESE - TypeOfData: ImpedanceDataType ComplexPowerRealization
g3MinusQ2 «enumeratidi 065 BN «interface» a
a3PlusQ4 AccumulationBehaviourType 066 BC iuom <]
quajrantl | 1284 Quantity «enumeration»
quadrant2 Cumulative 129 AN Uom UOMRealizati
ealization
quadrant3 DeltaData 132 AB - UOM: UOMDeg[— — = — — 'v _
quadrant4 Indicating 224 ABC - Value: Real
reverse NA 225 ABCN «enumeration» cwser
total Summation 016 N UOMDep B
totalByPhase Instantaneous 017 NG {leaf}
. . . . '
Figure 58. Overview of the GridObjects' package components

A.1.10.1 ComplexPowerDep

Class in package '4.3.10 Grid Objects'
Details: Objects whom reference this class expect an object that realizes the ComplexPower Interface. This class is a
leaf and is only intended to serve as a data type.

CONNECTORS

" Usage Source -> Destination
From: : ComplexPowerDep : Class , Public
To: ComplexPower : Providedinterface , Public

A.1.10.2 ComplexPowerRealization
Class in package '4.3.10 Grid Objects'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from ComplexPowerRealization to «interface» iComplexPower
4= Realization from ComplexPowerRealization to ComplexPower

A.1.10.3 ComplexPowerStorage
Class in package '4.3.10 Grid Objects'

156

PNNL-32687

ATTRIBUTES

P:Real Public
Details:
@ Q:Real Public
Details:

OPERATIONS

@ getPF () : void Public
Details: This function is used to calculate PF on demand.

% getS () : void Public
Details: This function is used to calculate S on demand.

W setPQ (S : Real , PF : Real) : void Public
Details: This function sets the P,Q values based on a given S and a power factor.

A.1.10.4 iComplexPower
Class «interface» in package '4.3.10 Grid Objects'

STRUCTURAL PART OF iComplexPower

W ComplexPower : Providedinterface

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from «interface» iComplexPower to ComplexPowerStorage

ATTRIBUTES

¥ PF:Real Private
Details:
¥ S:Real Private
Details:

A.1.10.5 Impedance
Class in package '4.3.10 Grid Objects'
Details: This object stores the impedance characteristics at a particular node.

CONNECTORS

' Dependency Source -> Destination
From: : PCCParameters : Class , Public
To: Impedance : Class , Public

ATTRIBUTES
isPU : Boolean Private
Details: This field is used to define if the data provided is in per unit.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
W 52012 :int Private

Appendix A 157

PNNL-32687

ATTRIBUTES

Details: This field is used to indicate if the data is presented in Positive, Negative, Zero sequence. TypeOfData must be
isVector.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

lastUpdated : DateTimeStamp Private

Details: This field is used to indicate the last time this field was last updated.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

rawData : ArrayList<Complex> Private

Details: This field contains the raw data, the order is: From the top, left to right.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

TypeOfData : ImpedanceDataType Private

Details: This specifies the structure of data being provided in the rawData array.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.10.6 iUOM

Class «interface» in package '4.3.10 Grid Objects'
Details: This interface should be realized by an Enum-like structure. It should contain the units of measurement that
are specific to the use domain

STRUCTURAL PART OF iUOM

¥ UOM : Providedinterface

A.1.10.7 Quantity
Class in package '4.3.10 Grid Objects’

CONNECTORS
' Dependency Source -> Destination

From: : Quantity : Class , Public
To: UOMDep : Enumeration , Public

ATTRIBUTES

UOM : UOMDep Private

Details: This field encodes the Unit Of Measure. This field should always be redefined according to the use case.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Value : Real Private

Details:

A.1.10.8 UOMDep
Enumeration «enumeration» in package '4.3.10 Grid Objects'

CONNECTORS
' Usage Source -> Destination
From: : UOMDep : Enumeration , Public

To: UOM : ProvidedInterface , Public

Appendix A 158

PNNL-32687

CONNECTORS

" Dependency Source -> Destination
From: : Quantity : Class , Public
To: UOMDep : Enumeration , Public

A.1.10.9 UOMRealization
Enumeration «enumeration» in package '4.3.10 Grid Objects'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from «enumeration» UOMRealization to UOM
4= Generalization from «enumeration» UOMRealization to «interface» iUOM

A.1.10.10 AccumulationBehaviourType

Enumeration in package '4.3.10 Grid Objects'
Details: This enumeration was taken from IEEE 2030.5, which lists the type of value that is being reported (with
respect a measurement).

0 = Not Applicable
3 = Cumulative

4 = DeltaData

6 = Indicating

9 = Summation

CONNECTORS
' Dependency Source -> Destination

From: : ReadingType : Class , Public
To: AccumulationBehaviourType : Enumeration , Public

ENUMERATION:

Cumulative "The sum of the previous billing period values".

DeltaData This number represents the change from the previously
reported quantity.

Indicating Represents an "instantaneous" value which has been
subject to "filtering" to obtain a more representative value

NA Not Applicable

Summation An accumulation of values with respect to a time reference,
e.g., integration.

Instantaneous A value measured instantaneously, using the minimum

amount of time to capture it.

A.1.10.11 ElectricalStatus
Enumeration in package '4.3.10 Grid Objects'

Details: This enumeration is used to indicate an electrical switch state. This enumeration was adapted from IEEE
2030.5

Appendix A 159

PNNL-32687

CONNECTORS
' Dependency Source -> Destination

From: : UsagePointBase : Class , Public
To: ElectricalStatus : Enumeration , Public

ENUMERATION:

On Switch is closed
Off Switch is open
Indeterminate The switch state cannot be determined.

A.1.10.12 FlowDirectionKind

Enumeration in package '4.3.10 Grid Objects’
Details: This enumeration lists the way that a quantity is being measured. This quantity is assumed to be in the
direction from the device that is performing the measurement.
E.g. if a generator is doing the measurement, a forward quantity means delivery into the PCC.

CONNECTORS
' Dependency Source -> Destination

From: : ReadingType : Class , Public
To: FlowDirectionKind : Enumeration , Public

ENUMERATION:

forward
leading

net

none
g1MinusQ4
g1PlusQ2
g1PlusQ3
lagging
g1PlusQ4
g2MinusQ3
g2PlusQ3
g2PlusQ4
g3MinusQ2
g3PlusQ4
guadrantl
guadrant2
guadrant3
guadrant4
reverse
total
totalByPhase

A.1.10.13 ImpedanceDataType
Enumeration in package '4.3.10 Grid Objects’
Details: This enumeration is used to characterize the type of data being stored.

ENUMERATION:

isDiagonal
isFullMatrix

Appendix A 160

PNNL-32687

ENUMERATION:

isLowerDiagonal
isVector

A.1.10.14 PhaseCodeType
Enumeration in package '4.3.10 Grid Objects'
Details: This enumeration object represents the phases typically found on an electrical power system.
This phase encoding was derived from the one found on IEEE 2030.5 and IEC (using a bitmask-like enumeration).
0 = Not Applicable (default, if not specified)
32 =Phase C (and S2)
33 =Phase CN (and S2N)
40 = Phase CA
64 = Phase B
65 = Phase BN
66 = Phase BC
128 = Phase A (and S1)
129 = Phase AN (and S1N)
132 = Phase AB
224 = Phase ABC
All other values reserved.

Code = Networked x 2*14 + Open x 213 + HighLeg x 2712 + Delta x 2*11 + Wye x 2210 + S1 x 279 + S2 x 28
+AL X2 + Bl x 27+ C1lx 25+ N1 x 2M + A2 x 2A3 + B2 x 2°2 + C1 x 21 + N2

CONNECTORS ‘
' Dependency Source -> Destination

From: : ReadingType : Class , Public
To: PhaseCodeType : Enumeration , Public
A Dependency Source -> Destination
From: : PCCParameters : Class , Public
To: PhaseCodeType : Enumeration , Public

ENUMERATION:

000 NA
032C
033 CN
040 CA
064 B
065 BN
066 BC
128 A
129 AN
132 AB
224 ABC
225 ABCN
016 N
017 NG

Appendix A 161

PNNL-32687

A.1.11 Persona modeling

This package groups an assortment of classes that can be used to capture an entity's personal information. In
addition, digital certificates and other locational information can be used to support advanced identity services.
These identity interfaces can be referenced by other higher-level models to specify participants, and provided a
trusted-operational platform.

GenericldentityDep N GenericDigldentityDep 4.3.8 LifecycleManagement::
{leaf} N [{leaf} LifecycleStatusDep
N I {leaf}
| | o ————
«use» «use» - GenericDigldentityR
GenericldentityRealization| ™ —\ | | - t g
QI | Ve g IGenericTrackable
% A 4.3.5 TrackableObjects::
. GenericTrackableRealization
IdentityInterface DigitalldentityInterface
. «interface» ;(i:terface » TES_Base
ildentityInterface iDigitalldentityInterface
ity F g oty fa Address
- _hasDigitallD: int = True {redefines _hasDigitall D} .
- _LFCStatus: LifecycleStatusDep
- City: String
- Country: String
- PostalCode: String
€5 B - StateProvince: String
_base Individual - Street: String
Genericldentity - Street2: String
- DOB: DateStamp
+ _hasAddress: Boolean - FirstName: String
+ _hasDigitallD: Boolean - LastName: String B PersonaRealization
+ Adresses: Address [0..*] - MiddleName: String
+ DigitalCertificate: DigitaICertificateDa ~— - Suffix: String
+ PersonaDetails: PersonaDep : - Tittle: int
+ createldentity(): void | E
+ getldentity(): void : ThirdParty
+ updateldentity(PersonaType, int): void | - .
| - GivenPermissions: String —«use» | iPersona
v - Representative: String PersonaDep
- ThirdPersona: String {leaf} TES_Base
4.3.}6.Dlgltall:‘ertlficate5:: - ValidityPeriod: String e,
DigitalCertificateDep <_ | o
{leaf} «enumeration»
PersonaType L'_L PersonaType: PersonaType
LegalEntity AutomatedSystem Individual + _getAttributes(): void
L [+ _LFCStatus(): LifecycleStatusDep|
- CommonName: String - CommonName: String _I;_i?rzls::;y + _setAttributes(): void
- ConstitutionDate: DateStamp - ldentifiableName: String AUtomatedsyaten + serializeUniqueldentity(): String
- ConstitutionLocation: String
- Contact: Individual
. . .
Figure 59. Overview of the Persona's package components

A.1.11.1 Address
Class in package '4.3.11 Persona modeling'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Addressto TES Base
4= Generalization from Address to GenericTrackableRealization

Appendix A 162

PNNL-32687

CONNECTORS
' Dependency Source -> Destination

From: » Address : Class , Public
To: LifecycleManager : Class , Public
_LFCStatus : LifecycleStatusDep Private
Details:

w City : String Private

Details:

W Country : String Private

Details:

PostalCode : String Private
Details:

¥ StateProvince : String Private
Details:

i# Street : String Private

Details:

W Street2 : String Private

Details:

A.1.11.2 AutomatedSystem

Class in package '4.3.11 Persona modeling'
Details: This is a sample realization of the Persona interface. It can be used to store data typically associated with
automated agents.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from AutomatedSystem to PersonaRealization

ATTRIBUTES

CommonName : String Private

Details: This field can be used to store a user-defined name that can generically describe the asset.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

IdentifiableName : String Private

Details: This field should be used to uniquely name the device within the system. For example Agent.0002, or in the format
Org.Division.Dept.Number.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.1.11.3 GenericDigldentityDep

Class in package '4.3.11 Persona modeling'
Details: Objects that reference this class expect an object that realizes the Digital Identity Interface. This class is a
leaf and is only intended to serve as a data type.

CONNECTORS
' Usage Source -> Destination
From: : GenericDigldentityDep : Class , Public

To: DigitalldentityInterface : ProvidedlInterface , Public
A Dependency Source -> Destination

From: : BlockMetaData : Class , Public

To: GenericDigldentityDep : Class , Public

Appendix A 163

PNNL-32687

A.1.11.4 GenericDigldentityRealization

Class in package '4.3.11 Persona modeling'
Details: This abstract class implements the Digitalldentity interface, classes derived from this class should satisfy all
of the service and data requirements. All realizations of this class must provide access to a digital certificate.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from GenericDigldentityRealization to «interface» iDigitalldentityInterface
4= Realization from GenericDigldentityRealization to DigitalldentityInterface

A.1.11.5 Genericldentity
Class in package '4.3.11 Persona modeling'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Genericldentity to TES Base
CONNECTORS

' Dependency Source -> Destination

From: : Genericldentity : Class , Public
To: DigitalCertificateDep : Class , Public

_hasAddress : Boolean Public
Details:
_hasDigitalID : Boolean Public
Details:
W Adresses : Address Public
Details:
w DigitalCertificate : DigitalCertificateDep Public
Details:
i# PersonaDetails : PersonaDep Public
Details:

OPERATIONS
“ createldentity () : void Public
Details:

% getldentity () : void Public
Details:

% updateldentity (Type : PersonaType , Parameters : int) : void Public
Details:

A.1.11.6 GenericldentityDep

Class in package '4.3.11 Persona modeling’
Details: Objects whom reference this class expect an object that realizes the Identity Interface. This class is a leaf
and is only intended to serve as a data type.

Appendix A 164

PNNL-32687

CONNECTORS ‘
' Usage Source -> Destination

From: : GenericldentityDep : Class , Public
To: ldentityinterface : Providedinterface , Public
A Dependency Source -> Destination
From: : iMembershipMap : Class , Public
To: GenericldentityDep : Class , Public
Dependency Source -> Destination
From: : iMembershipMap : Class , Public
To: GenericldentityDep : Class , Public
A Dependency Source -> Destination
From: : 1GenericTrackable : Class , Public
To: GenericldentityDep : Class , Public
A Dependency Source -> Destination
From: : RecordTracker : Class , Public
To: GenericldentityDep : Class , Public

A.1.11.7 GenericldentityRealization

Class in package '4.3.11 Persona modeling'
Details: This class represents an identity, which may be composed of an individual, entity, physical addresses and a
digital identity (if applicable).

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from GenericldentityRealization to «interface» ildentityInterface
4= Realization from GenericldentityRealization to IdentityInterface

A.1.11.8 iDigitalldentityInterface
Class «interface» in package '4.3.11 Persona modeling'

STRUCTURAL PART OF iDigitalldentityInterface

¥ DigitalldentityInterface : ProvidedInterface

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from «interface» iDigitalldentityInterface to Genericldentity

ATTRIBUTES

_hasDigitallD : int Private = True
Details:

A.1.11.9 ildentityIlnterface
Class «interface» in package '4.3.11 Persona modeling'

Appendix A 165

PNNL-32687

STRUCTURAL PART OF ildentityInterface

% IdentityInterface : Providedinterface

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from «interface» ildentitylnterface to Genericldentity

A.1.11.10 Individual
Class in package '4.3.11 Persona modeling'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Individual to PersonaRealization
CONNECTORS

' Dependency Source -> Destination

From: . Individual : Class , Public

To: LifecycleManager : Class , Public
Dependency Source -> Destination

From: . Individual : Class , Public

To: PersonStatus : Enumeration , Public

ATTRIBUTES
DOB : DateStamp Private
Details:
“ FirstName : String Private
Details:
LastName : String Private
Details:
MiddleName : String Private
Details:
W Suffix : String Private
Details:
W Tittle : int Private
Details:

A.1.11.11 iPersona
Class «interface» in package '4.3.11 Persona modeling'
Details: This represents a generic interface that offers the ability to retrieve basic info about an individual

STRUCTURAL PART OF iPersona

% jPersona : Providedinterface

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from «interface» iPersonato TES Base
4= Generalization from «interface» iPersona to GenericTrackableRealization

Appendix A 166

PNNL-32687

CONNECTORS

Dependency Source -> Destination
From: :iPersona : Class , Public
To: PersonaType : Enumeration , Public

ATTRIBUTES

W PersonaType : PersonaType Public
Details:

OPERATIONS

W _getAttributes () : void Public
Details:

W _LFCStatus () : LifecycleStatusDep Public
Details:

% _setAttributes () : void Public
Details:

‘% serializeUniqueldentity () : String Public
Details: This function takes any persona-like object and serializes into a string representation that is human readable.

A.1.11.12 LegalEntity

Class in package '4.3.11 Persona modeling'
Details: This sample realization of a persona can serve as the base object for defining a legal entity such as a
company, organization.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from LegalEntity to PersonaRealization

ATTRIBUTES

@ CommonName : String Private
Details:

ConstitutionDate : DateStamp Private
Details:

ConstitutionLocation : String Private
Details:

W Contact : Individual Private

Details:

A.1.11.13 Ownerinfo
Class in package '4.3.11 Persona modeling'

A.1.11.14 PersonaDep
Class in package '4.3.11 Persona modeling'

Appendix A 167

PNNL-32687

Details: Objects whom reference this class expect an object that realizes the Persona Interface. This class is a leaf
and is only intended to serve as a data type.

CONNECTORS
' Usage Source -> Destination
From: : PersonaDep : Class , Public

To: iPersona : ProvidedInterface , Public

A.1.11.15 PersonaRealization
Class in package '4.3.11 Persona modeling'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from PersonaRealization to iPersona
4= Generalization from PersonaRealization to «interface» iPersona

A.1.11.16 ThirdParty
Class in package '4.3.11 Persona modeling'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from ThirdParty to PersonaRealization

ATTRIBUTES

GivenPermissions : String Private
Details:

Representative : String Private
Details:

ThirdPersona : String Private
Details:

W ValidityPeriod : String Private
Details:

A.1.11.17 PersonaType
Enumeration in package '4.3.11 Persona modeling'
Details: This describes the type of persona that is contained within this object.

CONNECTORS

' Dependency Source -> Destination
From: . iPersona : Class , Public
To: PersonaType : Enumeration , Public

ENUMERATION:

Individual This represents a physical person.

LegalEntity These can be corporations, companies or any other
association that has individual-like properties but it is not a
person.

ThirdParty This represents an agent that acts on behalf of another
persona.

AutomatedSystem

Appendix A 168

PNNL-32687

A.1.12 Memberships

These classes can be used to establish memberships among two different systems. It is assumed that memberships
requests are negotiated internally in between parties. The process assumes that a request-approval process occurs in
between a solicitor and a target system, the target agent is responsible for evaluating the impacts/consequences of
the relationship.

q «interface»
(e iMembershipMap «enumeration» MembershipinteractionsDep
DstEntity: GenericldentityDep Rt {leaf}
RelationMap: MembershipMapDep + ActualRelation: Relations [0..*] = eiees i
SrcEntity: GenericldentityDep + ActualRights: Rights [0..*] 3 \ Supplier |
- - + DigitalCert: DigitalCertificateDep \ peer |
+ CreateMembership(): void + InteractionHandler: MembershipInteractionsDep \ X |
+ DeleteMembership(): void + isDigitallySigned: Boolean 1 Compehiy ! A
+ Eval(): void + isValid: Boolean | - ~cuser —
+ Src: GenericldentityDep :‘ ~ !
+ Target: GenericldentityDep :‘ ~ j\A Membershipinteractions
+ ValidityPeriod: DateTimeBound
ipMapDep 9 :\A CEERE Pf”s'_’_"a OptionallyTrackable
{leaf} + Add(): void | (e Eie)
, + Eval(): void H GenericldentityDep) «lnte.rface» .
| + Filter(GenericldentityDep): MembershiplnteractionsDe| | el e el
«usle» + Remove(): void _ J - _Serialized_Request: SerializableObject
~ N Vi - _Serialized_Response: SerializableObject
\A L/ + PastInteractions: GenericTrackableDep
MembershipMap Rights O + Evalloin(Rights): void
\ | - AvailableRights + EvalOperation(Rights): void
isValid: Boolean _ =7 + EvalRemove(Rights): void
MembershipMapRealization 3 Rightf Avai!abIeRights. J SubmitX - TrackOperation(Rights): void
- ValidityPeriod: DateTimeBound ReceiveY
Figure 60. Overview of the Memberships' package components

A.1.12.1 iMembershipinteractions

Class «interface» in package '4.3.12 Memberships'
Details: This inheritable class provides describes the functions that can be executed under the context of both
parties. This process is to be performed at the target system side. The target should verify that the presented rights

and conditions satisfy its requirements.

STRUCTURAL PART OF iMembershipInteractions

¥ Membershiplnteractions : ProvidedInterface

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from «interface» iMembershipInteractions to OptionallyTrackable

ATTRIBUTES

_Serialized_Request : SerializableObject Private

Details: This represents a serialized copy of the membership evaluation request.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

_Serialized_Response : SerializableObject Private

Details:

W Pastlnteractions : GenericTrackableDep Public

Details: This field can be used to track past interactions (if the class is configured to do so, via the inherited
OptionallyTrackable object.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Appendix A 169

PNNL-32687

OPERATIONS

“ EvalJoin (existentRights : Rights) : void Public
Details: This is a dedicated handler used to evaluate join operations

i EvalOperation (existentRights : Rights) : void Public
Details: This function can be used to evaluate all requested operations (other than the dedicated leave/join functions).
Common functions could include extend membership or live validation. Do not implement complex TES-related actions.

‘% EvalRemove (existentRights : Rights) : void Public
Details: This is a dedicated function for handling the removal/revocation of a existing membership

i TrackOperation (existentRights : Rights) : void Private
Details: This add-on function can be used to track a membership state if required.

A.1.12.2 iMembershipMap

Class «interface» in package '4.3.12 Memberships'
Details: This inheritable class provides the basic mechanisms to track memberships among a fixed set of parties.
Specific callbacks can be attached to the Join/Remove functions.

STRUCTURAL PART OF iMembershipMap

¥ MembershipMap : Providedinterface

CONNECTORS

Ve Dependency Source -> Destination
From: : iMembershipMap : Class , Public
To: GenericldentityDep : Class , Public

/" Dependency Source -> Destination
From: : iMembershipMap : Class , Public
To: GenericldentityDep : Class , Public

/" Dependency Source -> Destination
From: : iMembershipMap : Class , Public
To: Relations : Enumeration , Public

/" Dependency Source -> Destination
From: : iMembershipMap : Class , Public
To: Rights: Class, Public

ATTRIBUTES

ActualRelation : Relations Public

Details: This field can be used to establish the relationship in between parties. This field is mostly for informative purposes.

Multiplicity: (0..*, Allow duplicates: 0, Is ordered: False)

ActualRights : Rights Public

Details: This field is used to establish the rights that the SOURCE entity has with the TARGET entity. By default this rights
are not bidirectional.

Multiplicity: (0..*, Allow duplicates: 0, Is ordered: False)

DigitalCert : DigitalCertificateDep Public

Details: This is an optional certificate that can be attached to support the claimed membership rights.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

InteractionHandler : MembershipInteractionsDep Public

Details: This field is used to define the membership handling functions used for evaluating interactions between both parties.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

isDigitallySigned : Boolean Public

Appendix A 170

PNNL-32687

ATTRIBUTES

Details: This field can be used to describe if the membership map has been digitally signed by the grantee (the target
system/agent).

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

isValid : Boolean Public

Details: This field can be used to evaluate if the membership map as a whole is valid. This may be relevant when credentials
are compromised or a party member has reached the end of its lifecycle.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Src : GenericldentityDep Public

Details: This field is used to define the source party.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Target : GenericldentityDep Public

Details: This field is used to define the target party.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

ValidityPeriod : DateTimeBound Public

Details: This field can be used to enforce a time validity over all assigned rights.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% Add () : void Public
Details: This function can be used to add a membership right /relation.

% Eval () : void Public
Details: This function can be used to evaluate a function under the context of all applicable rights.

@ Filter (SrcDst : GenericldentityDep) : MembershiplnteractionsDep Public
Details: This static function can be used to filter memberships based on a source or target party identity.

% Remove () : void Public
Details: This function can be used to remove a membership right /relation.

A.1.12.3 MembershipinteractionsDep

Class in package '4.3.12 Memberships'
Details: Objects whom reference this class expect an object that realizes the Membershiplnteractions Interface. This
class is a leaf and is only intended to serve as a data type.

CONNECTORS

" Usage Source -> Destination
From: : MembershiplnteractionsDep : Class , Public

To: Membershiplinteractions : ProvidediInterface , Public

A.1.12.4 MembershipinteractionsRealization

Class in package '4.3.12 Memberships'
Details: This realization can be used to implement custom functions to handle basic membership interactions (such
as establishing, validating and revoking them). This interface should not be used to dictate complex agent behavior,
rather to demonstrate that a relation exists.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from MembershiplnteractionsRealization to «interface» iMembershiplInteractions
4= Realization from MembershiplnteractionsRealization to Membershiplnteractions

Appendix A 171

PNNL-32687

A.1.12.5 MembershipMapDep

Class in package '4.3.12 Memberships'
Details: Objects whom reference this class expect an object that realizes the MembershipMap Interface. This class is
a leaf and is only intended to serve as a data type.

CONNECTORS

Usage Source -> Destination
From: : MembershipMapDep : Class , Public
To: MembershipMap : ProvidedInterface , Public

A.1.12.6 MembershipMapRealization

Class in package '4.3.12 Memberships'
Details: This realization can be used to implement custom membership tracking systems among a fixed set of
parties

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from MembershipMapRealization to MembershipMap
4= Generalization from MembershipMapRealization to «interface» iMembershipMap

A.1.12.7 Memberships

Class in package '4.3.12 Memberships'
Details: This class represents any generic membership that can exist between two parties. The class depends on an
dependent interface to map each of the multiple relations that may exist in between a given Destiny/Source pair of
parties.

ATTRIBUTES

W DstEntity : GenericldentityDep Private

Details: This represents the source entity to which this memberships apply.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

RelationMap : MembershipMapDep Private

Details: This represent all memberships that exists in between the given parties.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

SrcEntity : GenericldentityDep Private

Details: This represents the destiny

entity to which this memberships apply.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% CreateMembership () : void Public
Details: This is a static function that can be used to create a new membership in between the given parties. It internally calls
the Join function defined by the membership provider method.

@ DeleteMembership () : void Public
Details: This is a static function that can be used to delete/revoke a membership in between the given parties. It internally calls
the remove function defined by the membership provider method.

% Eval () : void Public

Appendix A 172

PNNL-32687

OPERATIONS
Details: This function can be used to evaluate an action using the membership interface.

A.1.12.8 Rights
Class in package '4.3.12 Memberships'

CONNECTORS
' Dependency Source -> Destination

From: : Rights : Class , Public

To: AvailableRights : Enumeration , Public
a Dependency Source -> Destination
From: : iMembershipMap : Class , Public
To: Rights : Class , Public

ATTRIBUTES

isValid : Boolean Private

Details:

Right : AvailableRights Private

Details:

w ValidityPeriod : DateTimeBound Private
Details:

A.1.12.9 AvailableRights
Enumeration in package '4.3.12 Memberships'

CONNECTORS
' Dependency Source -> Destination

From: : Rights : Class , Public
To: AvailableRights : Enumeration , Public

ENUMERATION:

SubmitX
ReceiveY

A.1.12.10 Relations
Enumeration in package '4.3.12 Memberships'

CONNECTORS
' Dependency Source -> Destination

From: : iMembershipMap : Class , Public
To: Relations : Enumeration , Public

ENUMERATION:

Bussiness
Supplier
Peer
Competitor

Appendix A 173

PNNL-32687

A.1.13 Summary of basic interfaces

This section summarizes the basic interfaces provided by this report, the interfaces are generic and can be used to
support most of the data and communication needs of grid applications (and specifically TES systems). The
provided interfaces remain at the high-level, but still capture most of the common requirements and functionalities
that will require different modules to communicate, creating a highly-interoperable network.

Appendix A 174

Appendix A

4.3.11 Persona modeling::PersonaRealization

::iPersona

+ PersonaType: PersonaType
::TES_Base

+ _UID:UID

::IGenericTrackable

CreatedBy: GenericldentityDep
CreatedWhen: DateTimeStamp
CurrentRecord: RecordTracker
DigestDescriptor: DigestFunctionType [0..1]
hasHASH: Boolean

isDeleted: Boolean

+ o+ o+ o+ o+ +

::iPersona

_getAttributes(): void
_LFCStatus(): LifecycleStatusDep
_setAttributes(): void
serializeUniqueldentity(): String
::TES_Base

+ _getUID()

::SerializableObject

+ Deserialize(Object): void

+ Serialize(): Object

+
+
+
+

::IGenericTrackable

+ _OnCreate(): void

+ _OnDelete(): void

+ _OnUpdate(): void

+ CreateDigest(): void
+ ValidateDigest(): void

4.3.9 Permissions&Qualifications::
GenericPermissionRealization

::iPermission

- AssignedRoles: int

- Grantee: PersonaDep

- Grantor: PersonaDep

- GroupMembership: AssignableGroups
- Resources: UID

::TES_Base

+ _UID: UID

::iPermission

+ CheckPermissions(): void
::TES_Base

+ _getUID()
::SerializableObject

+ Deserialize(Object): void
+ Serialize(): Object

To iPermission !

Figure 61.

4.3.11 Persona modeling::
GenericldentityRealization

::Genericldentity

+ _hasAddress: Boolean

+ _hasDigitallD: Boolean

+ Adresses: Address [0..*]
o
+

PersonaDetails: PersonaDep
::TES_Base
+ _UID:UID

DigitalCertificate: DigitalCertificateDep

::Genericldentity
+ createldentity(): void
+ getldentity(): void

::TES_Base

+ _getUID()
::SerializableObject

+ Deserialize(Object): void
+ Serialize(): Object

+ updateldentity(PersonaType, int): void|

{dentityNterface

N

N modeling::
~ _ - PersonaDep
A - ea
«use»
iHersona

4.3.11 Persona

TES_Base

«interface»
4.3.11 Persona modeling::iPersona

+ PersonaType: PersonaType

_getAttributes(): void
_LFCStatus(): LifecycleStatusDep
_setAttributes(): void
serializeUniqueldentity(): String

+ o+ o+

4.3.11 Persona modeling::
GenericldentityDep

;7 {leaf}

/ /i 4.3.11 Persona modeling::

Genericldentity

«interface»

ildentityInterface

«use»
1

AR

«interface»

4.3.5 TrackableObjects::IGenericTrackable

CreatedBy: GenericldentityDep
CreatedWhen: DateTimeStamp
CurrentRecord: RecordTracker

hasHASH: Boolean
isDeleted: Boolean

|
+ o+ o+ o+]

K

DigestDescriptor: DigestFunctionType [0..1]
iGenerjg rackable

_OnCreate(): void
_OnDelete(): void
_OnUpdate(): void
CreateDigest(): void
ValidateDigest(): void

+ o+ o+ o+

Overview of the Basiclnterface’s package components (Top-left view).

Vv

PNNL-32687

4.3.5 TrackableObjects::
GenericTrackableRealization

::IGenericTrackable

CreatedBy: GenericldentityDep
CreatedWhen: DateTimeStamp
CurrentRecord: RecordTracker
DigestDescriptor: DigestFunctionType [0..1]
hasHASH: Boolean

isDeleted: Boolean

+ o+ o+ o+ o+ o+

::IGenericTrackable

+ _OnCreate(): void

+ _OnDelete(): void

+ _OnUpdate(): void

+ CreateDigest(): void
+ ValidateDigest(): void

4.3.5 TrackableObjects::
GenericTrackableDep
{leaf}

175

Appendix A

4.3.11 Persona modeling::

DigitalldentityInterfac

GenericDigldentityDep
{leaf}
s
Ve
Ve
«use»
s
Genericldentity

«interface»

4.3.11 Persona it rface Q—/

_hasDigitallD: int = True {redefines _hasDigitall D

4.3.7 BlockchainLedger::Generic

::iBlockchain

+

Figure 62.

4.3.11 Persona modeling::
GenericDigldentityRealization

::iDigitalldentitylnterface

- _hasDigitallD: int = True {redefines _hasDigitallD}
::Genericldentity

+ _hasAddress: Boolean

+ _hasDigitallD: Boolean

+ Adresses: Address [0..*]

+ DigitalCertificate: DigitalCertificateDep

+ PersonaDetails: PersonaDep

::TES_Base

+ _UID:UID

::Genericldentity

+ createldentity(): void

+ getldentity(): void

+ updateldentity(PersonaType, int): void
::TES_Base

+ _getUID()

::SerializableObject

+ Deserialize(Object): void

+ Serialize(): Object

PNNL-32687

BlochchainDescriptor: BlockchainStructure |~ LSS T T T T T T T T T BN N
CurrentTransaction: SerializableObject «use»

::LedgerBlock 4.3.7
Data: BlockData edger| inLedger::
Header: BlockHeader Ledgerlock GenericBlockchainDep
MetaData: BlockMetaData «interface» {leaf}

4.3.7 BlockchainLedger ::iBlockchain (

::iBlockchain
GetCurrentTransaction(): SerializableObject lochchainDescriptor: BlockchainStructure :
ReadOffChain(Int): void CurrentTransaction: SerializableObject |
ReadOnChain(int): void N - N |
StoreOffChain(int, Bytes): void GetCunentTransactlorT(): SerializableObject |
StoreOnChain(int, Bytes): void ReadOffCha_ln(.Int): VO-Id |

A . N . ReadOnChain(int): void |
SubmitTx(Bytes, GenericDigldentityDep): void StoreOffChainint, Bytes): void |
s:InmutableLedger StoreOnChain(int, Bytes): void |
remove(int): Not_supported SubmitTx(Bytes, GenericDigldentityDep): void :
|
|
/’“D «interface» |
4.6.3 Smart Contracts::iSmartContract :
4.6.3 Smart Contracts:: - -~ - |
SmartContractRealization - _CurrentTransaction: SerializableObject |
_ R 7% + ExposedFunctions: SCFunction [1..*] |
:ziSmartContract iSma ntract| _|yternalFunctions: SCFunction [0..%] |
- _CurrentTransaction: SerializableObject | - UnderlyingBlockchain: GenericBIockchainDa -
+ ExposedFunctions: SCFunction [1..¥] !) R .
- InternalFunctions: SCFunction [0..*] : : Ezg;ﬁz;ﬁjgﬁe"“woi void
- UnderlyingBlockchain: GenericBlockchainDep | N .
i + populateCurrentTransaction(): void
::iSmartContract «use»
+ GetSubmitterldentity(): void |
+ GetTime(): void | 4.6.3 Smart
+ populateCurrentTransaction(): void :_ Contracts::
T 7 7| smartcontractbep
{leaf}

Overview of the Basiclnterface’s package components (Top-right view).

176

/ . L .
/ From GenericPermissionRealization

!
!
I’ 4.3.9]
Permissions&Qualifications: 4. 3_' 8 LlfecycIeManag-ement: E
_ — 1 :GenericPermissionDep LifecycleStatusRealizaton
c —
{leaf} .
iPermission :ciLifecycleStatus
+ LifecycleStatus: LifecycleManager
TES_Base iLifecycleStatus . ccilifecycleStatus
T EEDy 4.3.8 v + OnTre?r?sition(): void)
4.3.9 Permissions&Quallficatit LifecycleManagement:: +———>(<l - —————————— 7 : Irans!:!on_ébort(l).tvg.d ar
iPermission LifecycleStatusDep rans! !on7 ompé €(): voi '
+ Transition_Start(LifecycleStatusEnum): void
. . {leaf}
- AssignedRoles: int
- Grantee: PersonaDep «interface»
- Grantor: PersonaDep 4.3.8 LifecycleM iLifecycle
- GroupMembership: AssignableGroups N
BNE < ources: UID. + LifecycleStatus: LifecycleManager «interface»
| 4.3.9 Permissions&Qualificatic
+ CheckPermissions(): void + OnTransition(): void iEntityQualifications
+ Transition_Abort(): void
+ Transition_Complete(): void - DigitalCertificate: DigitalCertificateDep [0..1]
+ Transition_Start(LifecycleStatusEnum): void - Qualifications: Qualification
4.3.9 Permissions&Qualifications:: - QualifiedEntity: PersonaDep
. . . EntityQualificationRealization
4.3.10 Grid Objects: + hasCertification(): void
.ComplexPaWé;:’Def;’ ::iEntityQualifications /P + validateRights(): void
= - DigitalCertificate: DigitalCertificateDep [0..1]
- Qualifications: Qualification
N - QualifiedEntity: PersonaDep e — — - _ 4.3.9
\I V2 Permissions&Qualifications:
::iEntityQualifications / iEnti i :EntityQualificationsDep
L | A : iEntityQualifications
omplexPowerStorage cwsen + hasCertification(): void 7 4.3.1 Basic Objects: {leaf}
«interface» | + validateRights(): void :FireEventDep FireEvent
4.3.10 Grid Objects: | {leaf} | _
:iComplexPower | o=
«enumeration» Uom + Listen(): void ~_
- PF:Real 4.3.10 Grid Objects: S~ P
- S:Real :UOMRedlization | _ _ — — — — 4.3.1 Basic Objects:
| ~—_ Event :
S~ «enumeration» . FireEventRealization
ComplexPower : «use» =~ 4.3.10 Grid Objects: «mter:facei) 4/
4.3.1 Basic Objects:
| «interface» :UOMDep -
s 3 i :FireEvent
~ 4.3.10 Grid Objects: {leaf}
:;iUoOM + NotifyAll(): void
4.3.10 Grid Objects::

ComplexPowerRealization

Appendix A

Figure 63.

Overview of the Basiclnterface’s package components (Bottom-left view).

177

Appendix A

«interface»
4.3.6 DigitalCertificates::
iDigitalCertificate

- Certificate: X509Certificate

generateUID(): void
getPublicKey(): void
loadCertificate(): void
parseCertificate(): void
Validate(): void
ValidateWithOCSP(): void

+ o+ o+ o+ o+ o+

4.3.6 DigitalCertificates::
DigitalCertificateRealization

::iDigitalCertificate
- Certificate: X509Certificate

::iDigitalCertificate
generateUID(): void
getPublicKey(): void
loadCertificate(): void
parseCertificate(): void
Validate(): void
ValidateWithOCSP(): void

+ o+ o+ o+ o+

Figure 64.

4.3.6
DigitalCertificates::
DigitalCertificateDep

{leaf}

/ 4.3.12 Memberships::
/ MembershiplnteractionsDep
/ {leaf}

/ N\

«use
iDigitalCertificate OV

PNNL-32687

4.3.12 Memberships::

Members|

OptionallyTrackable

«interface»
4.3.12 Memberships::
iMembershipinteractions

AN

::iMembershiplnteractions

- _Serialized_Request: SerializableObject
- _Serialized_Response: SerializableObject
+ PastInteractions: GenericTrackableDep
::OptionallyTrackable

- isTracked: Boolean

::IGenericTrackable

CreatedBy: GenericldentityDep
CreatedWhen: DateTimeStamp
CurrentRecord: RecordTracker
DigestDescriptor: DigestFunctionType [0..1]
hasHASH: Boolean

isDeleted: Boolean

+ o+ o+ o+

A

- _Serialized_Request: SerializableObject
- _Serialized_Response: SerializableObject
+ Pastinteractions: GenericTrackableDep

+ Evalloin(Rights): void

+ EvalOperation(Rights): void
+ EvalRemove(Rights): void

- TrackOperation(Rights): void

Overview of the Basiclnterface’s package components (Bottom-right view).

::iMembershiplnteractions
Evalloin(Rights): void
EvalOperation(Rights): void
EvalRemove(Rights): void
TrackOperation(Rights): void

+ o+ +

::OptionallyTrackable

+ _OnCreate(): void

+ _OnDelete(): void

+ _OnUpdate(): void
::IGenericTrackable

+ _OnCreate(): void

+ _OnDelete(): void

+ _OnUpdate(): void

+ CreateDigest(): void
+ ValidateDigest(): void

178

PNNL-32687

A.2 Resources and Participants modeling
In this section an overview of templates that can be used to model a large variety of grid devices and participants is

introduced. These resources are the main building block of any TES-based application and represent the main contribution of
the presented work.

A.2.1 Resources

This package documents a variety of classes that work together to represent grid equipment and expose it to a transactive
system. The provided interfaces enable to abstract the different levels of interactions that are expected to occur within a TES.
The proposed models have the ability to account for active as well as "dumb" devices, exposing only capable equipment as a
grid resource. From this point forward, grid resources can be controlled and managed by dedicated transactive agents.

Appendix A 179

PNNL-32687

GridEquipmentDep 4.3.10 Grid Objects:: 4.3.8 LifecycleManagement:: 4.3.11 Persona modeling:: 4.5.1 GridModel::
{leaf} ComplexPowerDep LifecycleStatusDep GenericDigldentityDep GridCouplingPointDep
{leaf} {leaf} {leaf} {leaf}
7
s/
7
- /
- GridEquipmentRealization 4.3.11 Persona modeling:: GridResourceRealization
: GenericldentityDep
leaf} GridResourceDep -
| = {
| _ “use» A {leaf} A
_____ — T«use» T T
GridEquipment GridResource
TES_Base TES_Base «interface»
«interface» InstalledSystem iGridResource
iGridEquipment ! - ! - .
- GridEquipment: GridEquipmentDep <|r + isGridTied: Boolean = True
+ _LFCStatus: LifecycleStatusDep - Gridinterface: GridCouplingPointDep [0..1] + isResponsive: Boolean = True
- Capabilities: BaseCapabilities :| -~ - isGridTied: Boolean
- Certifications: Certifications :| N —— _ - isResponsive: Boolean 1
— |: Devicelnfo: Devicelnfo [- Operatorldentity: GenericldentityDep 1
| - hasGridSupport: Boolean (I - Ownerldentity: GenericldentityDep
I - isResponsive: Boolean Pl _ LocalController
! e
| - Status: CurrentStatus :| | C tS
| Lo L urrentStatus - ControllerManager: GenericDigldentityDep
+ GetStatus(): CurrentStatus I A - ControllerName: String
k B s.tschedule() voud | - CurrentNetPerPhase: ComplexPowerDep [3] + Schedule: float[0..1]
N i : : - CurrentRampPerPhase: ComplexPowerDep [3] ’ =
Lo - isAvailable: Boolean + GetStatus(): CurrentStatus
TES Base| | | - IsConnected: Boolean + SetSchedule(): void
Devicelnfo [
[/:\
- DeviceCertificate: DigitalCertificateDep [0..1] | | k «enumeration» § Agent
- Manufacturer: String | AN GridServices N 4.4.7 OrganizationalHierarchy::
- Model: String I \A i N N TransactiveAgent
; - | Inertia
- SerialNumber: String | L - N
v TES_Base P_injection [Z LocalControllers: LocalController [0..%]
= Q_injection
TES_Base Certifications P_absorption + handleTimeStep(): void
BaseCapabilities + _LFC: GenericTrackableDep Q_absortion SubscribeTo(): void oaC
+ CapabilityCertification: int VoltageRegulation i e
- AvailableServices: ArrayOfGridServices i y' . I o fravOfGiBei
- tedPh o @t + InstallCertification: int Storage '
- 'z;::ec é] alses. aseCodeType + LastCertification: int BlackStartRegulation ; 4.3.2 Prlmlflves..
- "ase: bookean + OperationalCertification: int GridForming L LTRSS
- MaxRampPerPhase: ComplexPowerDep [3] SeEmenTan - T T
- RatedInputPerPhase: ComplexPowerDep [3] + getlastCertification(): void Protection <T->GridServices > + add(T): \{0|d
- RatedOutputPerPhase: ComplexPowerDep [3] . + count(): int
+ remove(int): void
Figure 65. Overview of the Resources' package components

Appendix A 180

PNNL-32687

A.2.1.1 ArrayOfGridServices
Class in package '4.4.1 Resources'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from ArrayOfGridServices to ArrayList

A.2.1.2 BaseCapabilities

Class in package '4.4.1 Resources'
Details: This object captures the basic attributes of a device that has an energy consumption/generation interface. This object
has been expanded from the definition given in the "tiger" model.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from BaseCapabilities to TES Base

/" Dependency Source -> Destination
From: : iGridEquipment : Class , Public
To: BaseCapabilities : Class , Public

ATTRIBUTES

W AvailableServices : ArrayOfGridServices Private

Details: This field encodes all grid services that a device can provide.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

ConnectedPhases : PhaseCodeType Private

Details: This field can be used to indicate the phases that are actually connected to an electrical network.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W is3Phase : Boolean Private

Details: This flag can be used to determine if the equipment under question is intended to operate on 3 phases.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

MaxRampPerPhase : ComplexPowerDep Private

Details: This field can be used to determine the maximum ramping rate for the resource. More complex devices can provide an
XY curve to capture more dynamic ramping characteristics.

Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

RatedInputPerPhase : ComplexPowerDep Private

Details: This represents the amount of complex power the device can absorb per unit of time (e.g., per hour)

Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

RatedOutputPerPhase : ComplexPowerDep Private

Details: This field can be used to indicate the maximum output capabilities of the equipment being captured. This quantity is
assumed to be per unit of time (e.g., and hour).

Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

A.2.1.3 Certifications

Class in package '4.4.1 Resources'
Details: This object can be used to capture an agents certification/inspection results. A device should refrain from operate
unless an operational certification has been issued.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Certifications to TES Base

Appendix A 181

PNNL-32687

CONNECTORS

Dependency Source -> Destination
From: : iGridEquipment : Class , Public
To: Certifications : Class , Public

ATTRIBUTES

_LFC: GenericTrackableDep Public

Details: This field can be used to track the certifications history.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W CapabilityCertification : int Public

Details: This field is intended to hold a capability certification.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

InstallCertification : int Public

Details: This field is intended to hold a install certification.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W LastCertification : int Public

Details: This field is intended to hold a reference to the latest certification.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OperationalCertification : int Public

Details: This field is intended to hold an operational certification.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

i getLastCertification () : void Public
Details: This field is intended to return the latest certification available.

A.2.1.4 CurrentStatus
Class in package '4.4.1 Resources'
Details: This class represents the current device status. It should not be committed to the blockchain, rather an "on-demand”

callback should be implemented.

CONNECTORS

Dependency Source -> Destination
From: : iGridEquipment : Class , Public
To: CurrentStatus : Class , Public

ATTRIBUTES

i CurrentNetPerPhase : ComplexPowerDep Private

Details: This field represents the current net power output (- for loads).

Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

CurrentRampPerPhase : ComplexPowerDep Private

Details: This represents the current ramping rate that the device is executing either to a scheduled event or due to capacity
constraints.

Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

isAvailable : Boolean Private

Details: This field represents the dynamic ability of some systems to momentarily stop participating as a responsive system.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

1sConnected : Boolean Private

Details: This field can be used to determine if the device is connected to the grid or has been isolated.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Appendix A 182

PNNL-32687

A.2.1.5 Devicelnfo

Class in package '4.4.1 Resources'
Details: This object can be used to describe the basic properties of a device/equipment.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Devicelnfoto TES Base

CONNECTORS

/" Dependency Source -> Destination
From: : iGridEquipment : Class , Public
To: Devicelnfo : Class , Public

/" Dependency Source -> Destination
From: :PVCell : Class , Public

To: Devicelnfo : Class , Public

ATTRIBUTES

DeviceCertificate : DigitalCertificateDep Private

Details: This optional field can be used to store a device digital certificate (if provided/generated).
Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

W Manufacturer : String Private

Details: This represents the manufacturer/vendor that developed, assembled or sold the equipment.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Model : String Private

Details: This field represents the model, models are manufacturer's specific.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

SeriaNumber : String Private

Details: This field represents a unique number that represents a device.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.2.1.6 GridEquipmentDep

Class in package '4.4.1 Resources'
Details: Objects whom reference this class expect an object that realizes the GridEquipment Interface. This class is a leaf and
is only intended to serve as a data type.

CONNECTORS

' Usage Source -> Destination
From: : GridEquipmentDep : Class , Public
To: GridEquipment : ProvidedInterface , Public

A.2.1.7 GridEquipmentRealization

Class in package '4.4.1 Resources'
Details: This abstract class implements the GridEquipment interface which allows to implement grid devices that rely on
power delivery. Classes derived from this class should satisfy all of the service and data requirements.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from GridEquipmentRealization to «interface» iGridEquipment
4= Realization from GridEquipmentRealization to GridEquipment

Appendix A 183

PNNL-32687

A.2.1.8 GridResourceDep
Class in package '4.4.1 Resources'

s Usage Source -> Destination
From: : GridResourceDep : Class , Public
To: GridResource : ProvidedInterface , Public

A.2.1.9 GridResourceRealization
Class in package '4.4.1 Resources'
Details: This realization can serve as a base to implement different types of grid resources that are either responsive or can

provide on-demand support services.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from GridResourceRealization to «interface» iGridResource
4= Realization from GridResourceRealization to GridResource

A.2.1.10 iGridEquipment
Class «interface» in package '4.4.1 Resources'
Details: This is the base class for representing grid equipment, it can hold capability information, generic device info, as well

as CurrentStatus variables.

STRUCTURAL PART OF iGridEquipment

% GridEquipment : Providedinterface

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from «interface» iGridEquipment to TES Base
CONNECTORS ‘
' Dependency Source -> Destination

From: : iGridEquipment : Class , Public
To: Devicelnfo : Class , Public
Dependency Source -> Destination
From: : iGridEquipment : Class , Public
To: Certifications : Class , Public
Dependency Source -> Destination
From: : iGridEquipment : Class , Public
To: BaseCapabilities : Class , Public
a Dependency Source -> Destination
From: : iGridEquipment : Class , Public
To: CurrentStatus : Class , Public
a Dependency Source -> Destination
From: : iGridEquipment : Class , Public
To: LifecycleManager : Class , Public

Appendix A 184

PNNL-32687

ATTRIBUTES

W _LFCStatus : LifecycleStatusDep Public

Details: This field can be used to track an asset lifecycle status.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

i Capabilities : BaseCapabilities Private

Details: This field describes the electrical capabilities of the device in question.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Certifications : Certifications Private

Details: This field contains the authorizations or certifications necessary for operating the device.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Devicelnfo : Devicelnfo Private

Details: This field contains the device's basic identifying information.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

hasGridSupport : Boolean Private

Details: This flag is used to indicate that a resource can provide some type of grid support services to the electrical system.
This may include demand response, voltage regulation, remote measuring capabilities, etc.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

isResponsive : Boolean Private

Details: This flag is used to indicate that a resource is responsive in its energy demand. Most agents will require a responsive
device to operate.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Status : CurrentStatus Private

Details: This field contains a reference to t

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

W GetStatus () : CurrentStatus Public
Details:

% SetSchedule () : void Public
Details: This function represents a very powerful function that can set the output power levels within the bounds of RatedInput
and RatedOutput, at the MaxRamp rate.

A.2.1.11 InstalledSystem
Class in package '4.4.1 Resources'
Details: This object helps to map a device to a grid interconnection point once it gets installed. Notice that some devices can

be installed but remain off-grid.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from InstalledSystem to TES_Base

CONNECTORS
' Dependency Source -> Destination
From: . InstalledSystemldentity : Class , Public

To: InstalledSystem : Class , Public

ATTRIBUTES

GridEquipment : GridEquipmentDep Private

Details: This is a reference to the equipment being considered as installed.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

i# GridInterface : GridCouplingPointDep Private

Details: This is an OPTIONAL argument that can be used to describe the interconnection point.
Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False)

Appendix A 185

PNNL-32687

ATTRIBUTES

W isGridTied : Boolean Private

Details: This flag can be used to determine if the equipment is connected to the grid.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

isResponsive : Boolean Private

Details: This flag can be used to determine if the device is considered responsive. Note that resource availability does not
affect the responsive state in this context.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Operatorldentity : GenericldentityDep Private

Details: This field can be used to define the identity of the entity responsible for its operation.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Ownerldentity : GenericldentityDep Private

Details: This field can be used to define the identity of the entity that owns the device, which may not be the entity responsible
for its operation.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.2.1.12 LocalController

Class in package '4.4.1 Resources'
Details: This local controller model provide local intelligence to a resource. such intelligence is not limited to
load/generation controllers but also to voltage and protection devices, this object was adapted from the model found in the
Tiger's team report.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from LocalController to iResourcePhysicalStatus
4= Realization from LocalController to iLocalControl

CONNECTORS
' Dependency Source -> Destination

From: : LocalController : Class , Public
To: PowerGen : Interface , Public

s Dependency Source -> Destination
From: : TransactiveAgent : Class , Public
To: LocalController : Class , Public

ATTRIBUTES

ControllerManager : GenericDigldentityDep Private
Details: This fields represents the identity responsible for managing this controller. Due to its operational nature, it is expected
that this identity has a digital representation.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
ControllerName : String Private
Details: This field represents the controller's name
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
Schedule : float Public
Details: This field can be used to deploy an schedule of tasks.
Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Constraints: The "quantity" that makes up the
PowerRealQuantity of the PowerMeasurementsSet shall be greater than or equal to 0. : Invariant

ASSOCIATIONS

/" Association (direction: Source -> Destination)

Source: Public (Class) LocalController Target: Public upRamp (Class)
PowerRampSegmentType

Appendix A 186

PNNL-32687

ASSOCIATIONS

Association (direction: Source -> Destination)

Source: Public (Class) LocalController Target: Public downRamp (Class)
PowerRampSegmentType

Association (direction: Source -> Destination)

Source: Public (Class) LocalController Target: Public (Class) iGridResource «interface»
Cardinality: [1] Cardinality: [1]

/" Association (direction: Source -> Destination)

Source: Public (Class) LocalController Target: Public demandLimits (Class) PowerRatings

Association (direction: Source -> Destination)

Source: Public (Class) SupervisoryController Target: Public (Class) LocalController
Cardinality: [1..%]

OPERATIONS

% GetStatus () : CurrentStatus Public
Details: This function is intended to provide details on behalf of the resource to higher hierarchy systems such as a transactive
agent or a system-level controller.

@ SetSchedule () : void Public
Details:

A.2.1.13 iGridResource

Class «interface» in package '4.4.1 Resources'
Details: This interface can be used to indicate an equipment that is connected to the grid and can provide responsive features.
Such intelligence is not limited to load/generation elements but also to devices that can provide ancillary services or help in
grid operations (e.g. protection devices). This object was adapted from the model found in the Tiger's team report.

STRUCTURAL PART OF iGridResource

¥ GridResource : ProvidedInterface

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from «interface» iGridResource to iResourceControl
4= Generalization from «interface» iGridResource to InstalledSystem
4= Realization from «interface» iGridResource to iResourcePhysical
4= Realization from «interface» iGridResource to iWeatherData

ATTRIBUTES
% isGridTied : Boolean Public = True

Appendix A 187

PNNL-32687

ATTRIBUTES

Details: This field is used to indicate a requirement for devices to be connected, before being considered as a grid resource.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

isResponsive : Boolean Public = True

Details: This field is used to indicate a requirement for devices to be responsive, before being considered as a grid resource.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

ASSOCIATIONS

Association (direction: Source -> Destination)

Source: Public (Class) iGridResource «interface» Target: Public power (Class) Power

/" Association (direction: Source -> Destination)

Source: Public (Class) iGridResource «interface» Target: Public voltage (Class) Voltage

Association (direction: Source -> Destination)

Source: Public (Class) iGridResource «interface» Target: Public impedance (Class) Impedance

Association (direction: Bi-Directional)

Source: Public (Class) iGridResource «interface» Target: Private (Class) Grid

/" Association (direction: Source -> Destination)

Source: Public (Class) iGridResource «interface» Target: Public current (Class) Current

Association (direction: Source -> Destination)

Source: Public (Class) Weather Target: Public (Class) iGridResource «interface»

/" Association (direction: Source -> Destination)

Source: Public (Class) LocalController Target: Public (Class) iGridResource «interface»
Cardinality: [1] Cardinality: [1]

Association (direction: Source -> Destination)

Source: Public (Class) SupervisoryController Target: Public resources (Class) iGridResource
«interface»

A.2.1.14 GridServices

Enumeration in package '4.4.1 Resources'
Details: This enumeration contains a sample of grid services that can be provided by grid resources. Individual equipment
can select the services that it can provide, the quality of such services can be implemented by using a dedicated GridServices
Interface (future work).

Appendix A

188

PNNL-32687

ENUMERATION:

Inertia

P_injection

Q_injection

P_absorption

Q_absortion

VoltageRegulation

Storage

BlackStartRegulation

GridForming

Segmentation

Protection

Attestation

Appendix A

189

PNNL-32687

A.2.2 Load Resources
This package contains an specialization of a grid resource, it illustrates the two main types of loads that are present on the
grid. Both load models present a conformant interface to the GridEquipment requirements.

iGridEquipment
GridEquil Ronlirati Genericload
S UnresponsiveLoad
::iGridEquipment
+ _LFCStatus: LifecycleStatusDep + Capabilities: LoadBaseCapabilities {redefines Capabilitieg_}J r —I
- Capabilities: BaseCapabilities + isResponsive: Boolean = False {redefines isResponsive} |
Certifications: Certifications |
Devicelnfo: Devicelnfo |
‘hasGridSu.pport: Bockdl LoadBaseCapabilities :
isResponsive: Boolean]
Status: CurrentStatus - ConnectedPhases: PhaseCodeType <=
«enumeration» ::TES_Base - is3Phase: Boolean
LoadModel + _UID:UID i [LoadModel: LoadModel
| MaxRampPerPhase: ComplexPowerDep [3]
ZIP ::iGridEquipment | RatedInputPerPhase: ComplexPowerDep [3] T\
ConstantZ + GetStatus(): CurrentStatus | RatedOutputPerPhase: None [3] |
Constantl + SetSchedule(): void | ZIPfactors: Real [3] |
ConstantP +:TES_Base | :
Exponential + _getUID() : |
CompositeMode| ::SerializableObject | 5 |
ZIPpIusIM V\ + Deserialize(Object): void | i)
ExponertiaiRE N + Serialize(): Object : + Capabilities: LoadBaseCapabilities {redefines Capabilities}]
~_ _ _ _ _ _ __________ o + isResponsive: Boolean = True {redefines isResponsive}
Figure 66. Overview of the LoadResources' package components

A.2.21 GenericLoad
Class in package '4.4.2 LoadResources'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from GenericLoad to GridEquipmentRealization

A.2.2.2 LoadBaseCapabilities

Class in package '4.4.2 LoadResources'
Details: This object has been expanded from the definition given in the "tiger" model.

CONNECTORS
' Dependency Source -> Destination

From: : LoadBaseCapabilities : Class , Public
To: LoadModel : Enumeration , Public

P Dependency Source -> Destination

From: : Responsiveload : Class , Public

To: LoadBaseCapabilities : Class , Public

P Dependency Source -> Destination

From: : Unresponsivel oad : Class , Public
To: LoadBaseCapabilities : Class , Public

Appendix A 190

PNNL-32687

ATTRIBUTES

ConnectedPhases : PhaseCodeType Private

Details: This field can be used to indicate the phases that are actually connected to an electrical network.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

is3Phase : Boolean Private

Details: This flag can be used to determine if the equipment under question is intended to operate on 3 phases.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

LoadModel : LoadModel Private

Details:

MaxRampPerPhase : ComplexPowerDep Private

Details: This field can be used to determine the maximum ramping rate for the resource. More complex devices can provide an
XY curve to capture more dynamic ramping characteristics.

Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

RatedInputPerPhase : ComplexPowerDep Private

Details: This represents the amount of complex power the device can absorb per unit of time (e.g., per hour)

Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

i# RatedOutputPerPhase : None Private

Details: This field can be used to indicate the maximum output capabilities of the equipment being captured. This quantity is
assumed to be per unit of time (e.g., and hour).

Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

W ZIPfactors : Real Private

Details: This field can be used to provide a custom mixture of ZIP components. The LoadModel should be set to ZIP if this
field must be used. The sum of this factors must be equal to 1.0

Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

A.2.2.3 ResponsivelLoad
Class in package '4.4.2 LoadResources'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from ResponsiveLoad to GenericLoad
CONNECTORS
Dependency Source -> Destination

From: : ResponsivelLoad : Class , Public
To: LoadBaseCapabllltles Class , Publlc

ATTRIBUTES

i# Capabilities : LoadBaseCapabilities Public
Details:

isResponsive : Boolean Public = True
Details:

A.2.2.4 UnresponsivelLoad
Class in package '4.4.2 LoadResources'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from UnresponsiveLoad to GenericLoad

Appendix A 191

PNNL-32687

CONNECTORS ‘
' Dependency Source -> Destination

From: : Unresponsiveload : Class , Public
To: LoadBaseCapabilities : Class , Public

ATTRIBUTES

i# Capabilities : LoadBaseCapabilities Public
Details:
isResponsive : Boolean Public = False

Details:

A.2.25 LoadModel

Enumeration in package '4.4.2 LoadResources'
Details: This enumeration represents the different types of loads that can be present on the system.

CONNECTORS
' Dependency Source -> Destination
From: : LoadBaseCapabilities : Class , Public

To: LoadModel : Enumeration , Public

ENUMERATION:

ZIP A mixture of constant Impedance, Current and Power.
ConstantZ

Constantl

ConstantP

Exponential

CompositeModel

ZIPplusIM

ExponentialplusiM

Appendix A 192

PNNL-32687

A.2.3 IBR-Based Generation Resources
This diagram is an specialization of a grid resource, it enables end users to model the features of an Inverter-Based generator.

It documents specific examples to model PV-based and wind-based resources which can further refined to satisfy the data
capturing needs of the end use.

Appendix A 193

PNNL-32687

iGridEquipment|
IBR_resource 4.4.1 Resources:: InverterPrimarySourceDep
. _ T GridEquipmentRealization {leaf}
- Capabilities: InverterCapabilities :|
- Status: InverterStatus RN /
+:iGridEquipment \\\ N ;e.nume;at'on» «interface» |/
+ _LFCStatus: LifecycleStatusDep \ InverterCapabilities Pl £ ilnverterPrimarySource |
- Capabilities: BaseCapabilities -7 solar | «use»
- Certifications: Certifications | + Efficiency: double Wind - [EnergySource: PrimarySource |
- Devicelnfo: Devicelnfo : + hasMultiPointEfficienty: boolean - R int- i) InverterPrimarySource
- hasGridSupport: Boolean | + InputPowerSource: InverterPrimarySourceDep + InputController: SerializableObject
- isResponsive: Boolean | + PowerFactorCharactheristics: XYpointList - RatedDCCharactheristics: SerializableObject v
5 . + RatedinputPerPhase: None [3] {redefines RatedInputPerPhase
SR SRS : 2 B B ! + ChangeControllerMode(): void \I
::TES_Base | + GetCurrentOutput(): void + GetlnputPower(): void |
+ _UID:UID | + VerifylnputPowerLimits(): void |
[A '
::iGridEquipment | % |
+ GetStatus(): CurrentStatus = InverterStatus |
+ SetSchedule(): void TES_Base |
::TES. Base + getCurrentNetPerPhase(): ComplexPowerDep(3] 4.4.1 Resources::BaseCapabilities] B
e TEI InverterPrimarySourceRealization
+ _getUID() ¢ - AvailableServices: ArrayOfGridServices ﬂ
::SerializableObject - ConnectedPhases: PhaseCodeType A
+ Deserialize(Object): void ARG a S - is3Phase: Boolean
A i .4.1 Resources::Current us i
+ Serialize(): Object - MaxRampPerPhase: ComplexPowerDep [3] w'«zr(]:umera;lm:»
i indControllerType
A - CurrentNetPerPhase: ComplexPowerDep [3] - RatedinputPerPhase: ComplexPowerDep [3] WindinputCharachteristics
- CurrentRampPerPhase: ComplexPowerDep [3] - RatedOutputPerPhase: ComplexPowerDep [3] FSEP
- isAvailable: Boolean - MaxVDC: int ESVP
- IsConnected: Boolean - RatedDCPower: int VSFP
+ VerifylnputPowerLimits(): void DT
WindPrimary Windinverterlinstallation
B brimarySource: InverterPrimarySourceDeE ~ - InputController: WindControllerType 7 TurbineArray
~ o - RatedDCCharachteristics: WindlnputCharachteristics]
~= [
> - TurbineArray: TurbineArray :| I — —— e e _> - RatedPower: int
. + ChangeControllerMode(): void + GetlnputPower(): void
SolarPrimary
- PrimarySource: InverterPrimarySourceDeE‘ [~
~
N PVlinverterinstallation
~
TES_Base ~ r8v
A - CellArray: PVSiteArray :‘ TN
PVCell
- InputController: SolarControllerType :‘ ~ < \ ﬂ
~ imitives::
- Devicelnfo: Devicelnfo |~ [RatedDCCharachteristics: PVInputCharactheristics 5 \\ e 4.3.2 Primitives::
- Maximum_DC_power:int |~ “ | TES_Base _7 G
-DE_p P ~ | + ChangeControllerMode(): void |) _ PVCellArray -
- RatedPower: int \ | PVSiteArray <T->PVCell > + add(T): void
- RatedVDC: int \ 5 af
N\ \\\ I |- Azimuth: int /// countin
| .) + remove(int): void
TES_Base | - Installer: GenericldentityDeg /
4.4.1 Resolrcaipeviean PVinputCharactheristics «enumeration» | - PVCells: PVCellArray -~
SolarControllerType <| - RatedPower: int
- DeviceCertificate: DigitalCertificateDep [0..1] - MaxVDC:int T .
- Manufacturer: String - RatedDCPower: int MPPT + GetlnputPower(): voi
b FourQuadrant
= Model: String + VerifylnputPowerLimits(): void
- SerialNumber: String

Figure 67. Overview of the IBR-BasedGenerationResources' package components

Appendix A 194

PNNL-32687

A.2.3.1 IBR_resource
Class in package '4.4.3 IBR-BasedGenerationResources'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from IBR_resource to GridEquipmentRealization

CONNECTORS

/" Dependency Source -> Destination
From: 1 IBR_resource : Class , Public
To: InverterCapabilities : Class , Public
/" Dependency Source -> Destination
From: 1 IBR_resource : Class , Public
To: InverterStatus : Class , Public

ATTRIBUTES

Capabilities : InverterCapabilities Private

Details: This field overrides the default capability model, exposing more low-level details to the local controller.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Status : InverterStatus Private

Details: This field overrides the default status object, exposing more low-level details to the local controller.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.2.3.2 ilnverterPrimarySource

Class «interface» in package '4.4.3 IBR-BasedGenerationResources'
Details: This abstract class describes the interface requirements for an inverter-based primary energy source. The interface
provides standard interfaces for obtaining the power characteristics and defining the operational mode of the DC-side
components

STRUCTURAL PART OF ilnverterPrimarySource

% InverterPrimarySource : Providedinterface

CONNECTORS
' Dependency Source -> Destination
From: s ilnverterPrimarySource : Class , Public

To: PrimarySource : Enumeration , Public

ATTRIBUTES

W EnergySource : PrimarySource Public

Details:

W GetlnputPower : int Private

Details:

InputController : SerializableObject Public

Details:

RatedDCCharactheristics : SerializableObject Private
Details:

Appendix A

195

“# ChangeControllerMode () : void Public
Details:

% GetlnputPower () : void Public
Details:

@ VerifylnputPowerLimits () : void Public
Details:

A.2.3.3 InverterCapabilities

Class in package '4.4.3 IBR-BasedGenerationResources'
Details: This inverter model capability description is based on InverterModel introduced by the NIST-Challenge, within the

"Tiger" model.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from InverterCapabilities to BaseCapabilities

From: 1 IBR_resource : Class , Public

To: InverterCapabilities : Class , Public

CONNECTORS
' Dependency Source -> Destination

ATTRIBUTES

¥ Efficiency : double Public
Details: Efficiency of the inverter. This is assigned by inverter_type and cannot be overridden at this time. Unit: unit
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

hasMultiPointEfficienty : boolean Public
Details: This is use multipoint efficiency.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

InputPowerSource : InverterPrimarySourceDep Public
Details:

i# PowerFactorCharactheristics : XYpointList Public
Details:

RatedInputPerPhase : None Public
Details: This property refers to a system that cannot absorb power from the AC/grid side.
Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

ASSOCIATIONS

Association (direction: Source -> Destination)

Source: Public (Class) InverterCapabilities Target: Public (Class) Solar

Association (direction: Source -> Destination)

Source: Public (Class) Triplex_meter Target: Public invertor (Class) InverterCapabilities

/" Association (direction: Source -> Destination)

Source: Public (Class) House Target: Public (Class) InverterCapabilities

Appendix A

PNNL-32687

OPERATIONS

196

PNNL-32687

ASSOCIATIONS ‘

OPERATIONS

Details:

A.2.3.4 InverterPrimarySourceDep

Class in package '4.4.3 IBR-BasedGenerationResources'
Details: Objects whom reference this class expect an object that realizes the InverterPrimarySource Interface. This class is a
leaf and is only intended to serve as a data type.

CONNECTORS
' Usage Source -> Destination
From: . InverterPrimarySourceDep : Class , Public

To: InverterPrimarySource : ProvidedInterface , Public

A.2.3.5 InverterPrimarySourceRealization

Class in package '4.4.3 IBR-BasedGenerationResources'
Details: This abstract class implements the InverterPrimarySource interface which allows to model the DC power source of
an inverter. Classes derived from this class should satisfy all of the service and data requirements.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from InverterPrimarySourceRealization to InverterPrimarySource
4= Generalization from InverterPrimarySourceRealization to «interface» ilnverterPrimarySource

A.2.3.6 InverterStatus
Class in package '4.4.3 IBR-BasedGenerationResources'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from InverterStatus to InverterCapabilities
4= Generalization from InverterStatus to CurrentStatus

CONNECTORS
“ Dependency Source -> Destination
From: 1 IBR _resource : Class , Public

To: InverterStatus : Class , Public

OPERATIONS

Details:

Appendix A 197

PNNL-32687

A.2.3.7 PVCell

Class in package '4.4.3 IBR-BasedGenerationResources'
Details: This sample object illustrates the interface abilities to capture low-level details of an inverter-based, PV system,
while offering an standardized interface that can enable interoperability.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from PVCell to TES Base

CONNECTORS

#" Dependency Source -> Destination
From: 1 PVCell : Class , Public
To: Devicelnfo : Class , Public

ATTRIBUTES

Devicelnfo : Devicelnfo Private

Details: This field captures the solar cell manufacturer, model and serial number.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Maximum_DC_power : int Private

Details: This field captures the power characteristics of a PV module.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

RatedPower : int Private

Details: This field captures the power characteristics of a PV module.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W RatedVDC : int Private

Details: This field captures the power characteristics of a PV module.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.2.3.8 PVCellArray
Class in package '4.4.3 IBR-BasedGenerationResources'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from PVCellArray to ArrayList

CONNECTORS
' Dependency Source -> Destination
From: : PVSiteArray : Class , Public

To: PVCellArray : Class , Public

A.2.3.9 PVinputCharactheristics

Class in package '4.4.3 IBR-BasedGenerationResources'
Details: This sample object provides sample power characteristics that are applicable to PV-based systems.

CONNECTORS
' Dependency Source -> Destination
From: : PVlInverterlnstallation : Class , Public

To: PVInputCharactheristics : Class , Public

Appendix A 198

PNNL-32687

ATTRIBUTES
¥ MaxVDC : int Private
Details:
RatedDCPower : int Private
Details:
OPERATIONS
% VerifylnputPowerLimits () : void Public
Details:

A.2.3.10 PVlinverterinstallation
Class in package '4.4.3 IBR-BasedGenerationResources'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from PVlInverterInstallation to InverterPrimarySourceRealization
CONNECTORS

' Dependency Source -> Destination

From: : PVlInverterlnstallation : Class , Public
To: PVInputCharactheristics : Class , Public
e Dependency Source -> Destination
From: : PVlInverterlnstallation : Class , Public
To: PVSiteArray : Class , Public

Dependency Source -> Destination
From: : PVlInverterlnstallation : Class , Public
To: SolarControllerType : Enumeration , Public
e Dependency Source -> Destination
From: : SolarPrimary : Class , Public
To: PVllnverterlnstallation : Class , Public
P Dependency Source -> Destination
From: : PowerGen : Interface , Public
To: PVlinverterInstallation : Class , Public

ATTRIBUTES

W CellArray : PVSiteArray Private

Details: This is a interface-specific field that can be used to describe the underlying power generating source

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

InputController : SolarControllerType Private

Details: This field is used to define the available control modes for this device.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

RatedDCCharachteristics : PVInputCharactheristics Private

Details: This field is used to describe the technical capabilities of the DC power source, along with methods to validate their
limits.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% ChangeControllerMode () : void Public
Details: This function can be invoked by the local controller to change the operational mode of the inverter.

Appendix A 199

A.2.3.11 PVSiteArray

Class in package '4.4.3 IBR-BasedGenerationResources'
Details: This object can be used to describe a PV-based installation from a physical perspective. A system like this could

enable a centralized data-store to track installation permits as well as enable TES participation.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from PVSiteArray to TES Base

CONNECTORS

#" Dependency Source -> Destination
From: : PVSiteArray : Class , Public
To: PVCellArray : Class , Public

P Dependency Source -> Destination
From: : PVlInverterlnstallation : Class , Public
To: PVSiteArray : Class , Public

ATTRIBUTES

@ Azimuth : int Private
Details: This represents the horizontal angle of a PV solar array
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Installer : GenericldentityDep Private
Details: This field can be used to track the individual/company that performed the solar installation.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

PVCells : PVCellArray Private
Details:

¥ RatedPower : int Private
Details:

W GetlnputPower () : void Public
Details:

OPERATIONS

A.2.3.12 SolarPrimary

Class in package '4.4.3 IBR-BasedGenerationResources'
Details: This object represents a solar-based, inverter-based resource. It relies on custom interface to specify the primary

energy source of the inverter.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from SolarPrimary to IBR_resource

CONNECTORS
' Dependency Source -> Destination
From: : SolarPrimary : Class , Public

To: PVlInverterlnstallation : Class , Public

ATTRIBUTES

PrimarySource : InverterPrimarySourceDep Private
Details:

Appendix A

PNNL-32687

200

PNNL-32687

A.2.3.13 TurbineArray

Class in package '4.4.3 IBR-BasedGenerationResources'
Details: This structure can be used to define the power ratings of the device, along with installation-specific details (id
desired).

#" Dependency Source -> Destination
From: : WindlInverteriInstallation : Class , Public

To: TurbineArray : Class , Public

ATTRIBUTES

i RatedPower : int Private
Details:

OPERATIONS

@ GetlnputPower () : void Public
Details:

A.2.3.14 WindInputCharachteristics
Class in package '4.4.3 IBR-BasedGenerationResources'
Details: This structure represents a sample construct that can be used to define a wind-based system capabilities.

CONNECTORS

Dependency Source -> Destination
From: : WindInverterlInstallation : Class , Public
To: WindlnputCharachteristics : Class , Public

ATTRIBUTES
¥ MaxVDC : int Private
Details:
RatedDCPower : int Private
Details:
OPERATIONS
@ VerifylnputPowerLimits () : void Public
Details:

A.2.3.15 WindInverterinstallation
Class in package '4.4.3 IBR-BasedGenerationResources'
Details: This sample object implements the InverterPrimarySource Interface to provide support for wind-based generation.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from WindInverterInstallation to InverterPrimarySourceRealization

Appendix A 201

PNNL-32687

CONNECTORS

Dependency Source -> Destination
From: : WindInverterlInstallation : Class , Public
To: WindlnputCharachteristics : Class , Public
A Dependency Source -> Destination
From: : WindInverterlInstallation : Class , Public
To: TurbineArray : Class , Public

Dependency Source -> Destination
From: : WindInverterlInstallation : Class , Public
To: WindControllerType : Enumeration , Public
A Dependency Source -> Destination
From: : WindPrimary : Class , Public
To: WindlInverterinstallation : Class , Public

ATTRIBUTES

InputController : WindControllerType Private

Details: This field is used to define the available control modes for this device.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

i RatedDCCharachteristics : WindInputCharachteristics Private

Details: This field is used to describe the technical capabilities of the DC power source, along with methods to validate their
limits.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

TurbineArray : TurbineArray Private

Details: This is a interface-specific field that can be used to describe the underlying power generating source

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

Details: This function can be invoked by the local controller to change the operational mode of the inverter.

A.2.3.16 WindPrimary

Class in package '4.4.3 IBR-BasedGenerationResources'
Details: This object represents a wind-based inverter-based resource. It relies on custom interface to specify the primary
energy source of the inverter.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from WindPrimary to IBR_resource

CONNECTORS
“ Dependency Source -> Destination
From: : WindPrimary : Class , Public

To: WindlnverterInstallation : Class , Public

ATTRIBUTES

Details:

A.2.3.17 PrimarySource

Enumeration in package '4.4.3 IBR-BasedGenerationResources'
Details: This enumeration can be used to describe the primary energy source. This list is illustrative and can be expanded to
suit the end-user needs.

Appendix A 202

PNNL-32687

CONNECTORS
' Dependency Source -> Destination

From: . ilnverterPrimarySource : Class , Public
To: PrimarySource : Enumeration , Public

ENUMERATION:

Solar
Wind

A.2.3.18 SolarControllerType
Enumeration in package '4.4.3 IBR-BasedGenerationResources'
Details: This object offers a PV-specific definition of the controller

CONNECTORS
*' Dependency Source -> Destination

From: : PVlInverterlnstallation : Class , Public
To: SolarControllerType : Enumeration , Public

ENUMERATION:

MPPT
FourQuadrant

A.2.3.19 WindControllerType
Enumeration in package '4.4.3 IBR-BasedGenerationResources'
Details: This enumeration lists the common types of controllers available in wind-based generators.

CONNECTORS
' Dependency Source -> Destination
From: : WindlInverterInstallation : Class , Public

To: WindControllerType : Enumeration , Public

ENUMERATION:

FSFP Fixed-speed fixed-pitch
FSVP Fixed-speed variable-pitch
VSFP Variable-speed fixed-pitch
VSVP Variable-speed variable-pitch

Appendix A 203

PNNL-32687

A.2.4 Rotational Generation Resources

This diagram is an specialization of a grid resource, it enables end users to capture the components of a traditional power
plant. The interface can be used to provide (and extract) data from both the electromechanical energy conversion process, as
well as the mechanism used to capture the mechanical energy. By including the most common energy generation processes
(DER, Bulk, and storage) the provided templates can be applicable a wide variety of application scenarios. Potentially enable
the participation of a wide variety of systems.

Appendix A 204

RotationalResource

- Capabilities: RotationalCapa bilitiesl| — — —
- Status: RotationalStatus |
::iGridEquipment

+ _LFCStatus: LifecycleStatusDep
- Capabilities: BaseCapabilities

- Certifications: Certifications

- Devicelnfo: Devicelnfo

- hasGridSupport: Boolean

|

|

|

|

|

|

|

|

- isResponsive: Boolean |

- Status: CurrentStatus |

|

::TES_Base I

+ _UID:UID I

|

::iGridEquipment |

+ GetStatus(): CurrentStatus |
+ SetSchedule(): void : /
::TES_Base | I
+ _getUID() | :
::SerializableObject : |

+ Deserialize(Object): void I

+ Serialize(): @bject |

y: .

iGridEquipment :

4.4.1 Resources:: J

GridEquipmentRealization /

1/
V

RotationalStatus

+ GetStatus(): void

TES_Base

4.4.1 Resources::BaseCapabilities

AvailableServices: ArrayOfGridServices
ConnectedPhases: PhaseCodeType

is3Phase: Boolean

MaxRampPerPhase: ComplexPowerDep [3]
RatedInputPerPhase: ComplexPowerDep [3]
RatedOutputPerPhase: ComplexPowerDep [3]

~ a0

7

RotationalCapabilities

+

I._| !

MechanicalSource: MechConversionProcessD@
MomentOfinertia: MechanicalUOMs
PowerSource: EleConversionProcessDep

DynamicMaxRamps(): void
SetSchedule(): void

EleConversionProcessDep

(

«use»

{x

EleConversionProcess

-

EleConversionProcessRealization

«interface»

iEleConversionProcess

- Efficiency: Real

4.4.1 Resources::CurrentStatus

- NPoles: Integer

- isAvailable: Boolean
- IsConnected: Boolean

- CurrentNetPerPhase: ComplexPowerDep [3]
- CurrentRampPerPhase: ComplexPowerDep [3]

+ RPM: Integer
- ZTh: Impedance

- MachineParameters: SerializableObject
- Mechanicallnput: MechConversionProcessDep

+ GetCurrentOutput(): Real
+ SetTargetOutput(Real): Real

Figure 68.

Appendix A

MechConversionProcessDep

PNNL-32687

«enumeration»
{leaf} FuelSource
Z I NaturalGas
- | cuser Gasoline
I i B Wind
| MechConversionProcessRealization
| Propane
| Diesel
k o Hydro
\ A < Nuclear
4 Thermal
MechConversionProcess (/ RecoverySteam
|
TES_Base : «enumeration»
«interface» | IntermediaryCarrier
iMechConversionProcess | Steam
/
- Efficiency: Real / Water
+ EnergySource: FuelSource 1 /7 NA
+ IntermediaryCarrier: IntermediaryCa rried | —
- MechanicalOutput: Real «enumeration»
RampDown: XYpointList TurbineState
- Start_Cold_RampUp: XYpointList
- Start_Hot_RampUP: XYpointList NA
- Start_Warm_RampUp: XYpointList Cold
- TurbineState: TurbineState - = Hot
Wark
+ GetCurrentOutput(): Real
+ SetTargetOutput(Real): Real
«enumeration»

Quantity
MechanicalValueType

Multiplier: PowerOfTenMultiplierTy pe

UOM: MechanicalUOMs {redefines UOI\E N

Overview of the RotationalGenerationResources' package components

MechanicalUOMs

kg*meter_sq
Ibf*ft*s_sq

205

PNNL-32687

A.2.4.1 EleConversionProcessDep

Class in package '4.4.4 RotationalGenerationResources'
Details: Objects that reference this class expect an object that realizes the EleConversionProcessDep Interface. This class is a
leaf and is only intended to serve as a data type.

CONNECTORS

Usage Source -> Destination
From: : EleConversionProcessDep : Class , Public
To: EleConversionProcess : Providedinterface , Public
P Dependency Source -> Destination
From: : RotationalCapabilities : Class , Public
To: EleConversionProcessDep : Class , Public

A.2.4.2 EleConversionProcessRealization

Class in package '4.4.4 RotationalGenerationResources'
Details: This abstract class implements the EleConversionProcess interface which allows to transform a mechanical
rotational force into electricity. Classes derived from this class should satisfy all of the service and data requirements.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from EleConversionProcessRealization to EleConversionProcess
4= Generalization from EleConversionProcessRealization to «interface» iEleConversionProcess

A.2.4.3 iEleConversionProcess

Class «interface» in package '4.4.4 RotationalGenerationResources'
Details: This interface aggregates the necessary properties to define an electromechanical system. It is assumed that the
machine operates as a generator but by setting the TargetOutput to a negative number a machine-like behavior can be
achieved.

STRUCTURAL PART OF iEleConversionProcess

¥ EleConversionProcess : Providedinterface

¥ MechConversionProcess : Providedinterface

ATTRIBUTES

W Efficiency : Real Private

Details: This represents the systems efficiency. This number is only to serve as a general reference, since actual conversion
rates can be variable across the operational range

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

MachineParameters : SerializableObject Private

Details: This field is used to encode the machine characteristics so accurate electrical models can be build (e.g., to model a
synchronous machine).

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

i Mechanicallnput : MechConversionProcessDep Private

Appendix A 206

PNNL-32687

ATTRIBUTES

Details: This field references the mechanical input that will be used to provide the input power.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

NPoles : Integer Private

Details: This field can be used to store the number of poles on the machine.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

RPM : Integer Public

Details: This field documents the nominal Revolutions Per Minute that the machine performs.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W ZTh: Impedance Private

Details: This field stores the equivalent Thevenin impedance (from the internal components).
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

@ GetCurrentOutput () : Real Public
Details: This function can be used to determine the current mechanical output.

% SetTargetOutput (ValuekW : Real) : Real Public
Details: This function can be used to schedule a system generation capacity (from a mechanical standpoint), it returns the
number of hours that it will take to reach the requested state.

A.2.4.4 iMechConversionProcess
Class «interface» in package '4.4.4 RotationalGenerationResources'

STRUCTURAL PART OF iMechConversionProcess

¥ MechConversionProcess : Providedinterface

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from «interface» iMechConversionProcess to TES_Base

CONNECTORS ‘
" Dependency Source -> Destination
From: : iMechConversionProcess : Class , Public

To: FuelSource : Enumeration , Public
Dependency Source -> Destination

From: : iMechConversionProcess : Class , Public

To: IntermediaryCarrier : Enumeration , Public

i Dependency Source -> Destination

From: : iMechConversionProcess : Class , Public

To: TurbineState : Enumeration , Public

ATTRIBUTES

W Efficiency : Real Private

Details: This represents the systems efficiency. This number is only to serve as a general reference, since actual conversion
rates can be variable across the operational range

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

EnergySource : FuelSource Public

Details: This field encode the primary energy source. Multiple conversion objects must be instantiated if recovery mechanism
are installed in series.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Appendix A 207

PNNL-32687

ATTRIBUTES

IntermediaryCarrier : IntermediaryCarrier Public

Details: This field identifies the intermediary mechanism used to move a turbine.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

MechanicalOutput : Real Private

Details: This value represents the rated mechanical output.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

RampDown : XYpointList Private

Details: This field can be used to encode the ramping down characteristics of a turbine-based system.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

i Start_Cold_RampUp : XYpointList Private

Details: This field is used to encode the ramp up characteristics when the turbine is in a cold state.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Start_Hot_RampUP : XYpointList Private

Details: This field is used to encode the ramp up characteristics when the turbine is in a hot state.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Start_Warm_RampUp : XYpointList Private

Details: This field is used to encode the ramp up characteristics when the turbine is in a warm state.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

TurbineState : TurbineState Private

Details: This field stores the current turbine state. This state along with the associated ramp up capabilities determines the time
to reach a new state.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% GetCurrentOutput () : Real Public
Details: This function can be used to determine the current mechanical output.

@ SetTargetOutput (ValuekW : Real) : Real Public
Details: This function can be used to schedule a system generation capacity (from a mechanical standpoint), it returns the
number of hours that it will take to reach the requested state.

A.2.45 MechanicalValueType
Class in package '4.4.4 RotationalGenerationResources'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from MechanicalValueType to Quantity

CONNECTORS

Dependency Source -> Destination
From: : MechanicalVValueType : Class , Public
To: MechanicalUOMs : Enumeration , Public
a Dependency Source -> Destination
From: : RotationalCapabilities : Class , Public
To: MechanicalVValueType : Class , Public

ATTRIBUTES
W Multiplier : PowerOfTenMultiplierType Private
Details:

¥ UOM : MechanicalUOMs Private
Details:

Appendix A 208

PNNL-32687

A.2.4.6 MechConversionProcessDep

Class in package '4.4.4 RotationalGenerationResources'
Details: Objects that reference this class expect an object that realizes the MechConversionProcess Interface. This class is a
leaf and is only intended to serve as a data type.

CONNECTORS
s Usage Source -> Destination
From: : MechConversionProcessDep : Class , Public

To: MechConversionProcess : ProvidedInterface , Public
/" Dependency Source -> Destination

From: : RotationalCapabilities : Class , Public

To: MechConversionProcessDep : Class , Public

A.2.4.7 MechConversionProcessRealization

Class in package '4.4.4 RotationalGenerationResources'
Details: This abstract class implements the MechConversionProcess interface which allows to capture a source of energy and
translate it into a mechanical rotational force. Classes derived from this class should satisfy all of the service and data
requirements.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from MechConversionProcessRealization to «interface» iMechConversionProcess
= Realization from MechConversionProcessRealization to MechConversionProcess

A.2.4.8 RotatingMachineModel
Class in package '4.4.4 RotationalGenerationResources'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from RotatingMachineModel to Manufacturerinfo

CONNECTORS

Dependency Source -> Destination
From: : RotatingMachineModel : Class , Public
To: FuelSource : Enumeration , Public
Dependency Source -> Destination
From: : RotatingMachineModel : Class , Public
To: FuelSource : Enumeration , Public
P Dependency Source -> Destination
From: : PowerGen : Interface , Public
To: RotatingMachineModel : Class , Public

W Efficiency : int Private
Details:

W Fuell :int Private
Details:

W FuellMix : int Private
Details:

Appendix A 209

PNNL-32687

ATTRIBUTES

W Fuel2 :int Private
Details:
i UID :int Private
Details:

A.2.4.9 RotationalCapabilities

Class in package '4.4.4 RotationalGenerationResources'
Details: This structure aggregates the mechanical energy capture process and the electromechanical generation process. The
object provides functions that can dynamically update the ramping characteristics to help the local controller make informed
decisions.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from RotationalCapabilities to BaseCapabilities

CONNECTORS
' Dependency Source -> Destination

From: : RotationalCapabilities : Class , Public
To: MechConversionProcessDep : Class , Public
s Dependency Source -> Destination

From: : RotationalCapabilities : Class , Public
To: MechanicalValueType : Class, Public

A Dependency Source -> Destination

From: : RotationalCapabilities : Class , Public
To: EleConversionProcessDep : Class , Public
A Dependency Source -> Destination

From: : RotationalResource : Class , Public
To: RotationalCapabilities : Class , Public

ATTRIBUTES

MechanicalSource : MechConversionProcessDep Public

Details: This object represents the mechanical, energy-capturing process.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

MomentOfinertia : MechanicalUOMs Private

Details: This value captures the rotational inertia that is available to the system.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W PowerSource : EleConversionProcessDep Private

Details: This field references the electromechanical process used to transform mechanical energy into electrical energy.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% DynamicMaxRamps () : void Public
Details: This function can automatically update the ramping rate based on the internal state of the mechanical interface.

% SetSchedule () : void Public
Details: This function can "schedule" a resources output capabilities across time.

A.2.4.10 RotationalResource
Class in package '4.4.4 RotationalGenerationResources'

Details: This class realizes a rotation machine specialization of the GridEquipment interface by extending the
GridEquipmentRealization class. It overrides the Capabilities and Status fields.

Appendix A

210

PNNL-32687

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from RotationalResource to GridEquipmentRealization

CONNECTORS

Dependency Source -> Destination
From: : RotationalResource : Class , Public
To: RotationalStatus : Class , Public

Dependency Source -> Destination
From: : RotationalResource : Class , Public
To: RotationalCapabilities : Class , Public

ATTRIBUTES

i Capabilities : RotationalCapabilities Private

Details: This field overrides the Capabilities definition to provide an in-depth model of a typical rotation machine, focusing on
capturing the properties of large-scale, bulk generator.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Status : RotationalStatus Private

Details: This field overrides the Status type to provide a specialized version that can account for the properties of a rotational
machine.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.2.4.11 RotationalStatus
Class in package '4.4.4 RotationalGenerationResources'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from RotationalStatus to CurrentStatus
CONNECTORS

' Dependency Source -> Destination

From: : RotationalResource : Class , Public

To: RotationalStatus : Class , Public

OPERATIONS

@ GetStatus () : void Public
Details:

A.2.4.12 FuelSource
Enumeration in package '4.4.4 RotationalGenerationResources'

CONNECTORS
' Dependency Source -> Destination
From: : iMechConversionProcess : Class , Public

To: FuelSource : Enumeration , Public

P Dependency Source -> Destination

From: : RotatingMachineModel : Class , Public
To: FuelSource : Enumeration , Public

Appendix A 211

PNNL-32687

CONNECTORS

Dependency Source -> Destination
From: : RotatingMachineModel : Class , Public
To: FuelSource : Enumeration , Public

ENUMERATION:

NaturalGas
Gasoline

Wind

Propane

Diesel

Hydro

Nuclear
Thermal
RecoverySteam

A.2.4.13 IntermediaryCarrier
Enumeration in package '4.4.4 RotationalGenerationResources'

CONNECTORS

Dependency Source -> Destination
From: : iMechConversionProcess : Class , Public
To: IntermediaryCarrier : Enumeration , Public

ENUMERATION:
Steam
Water
NA

A.2.4.14 MechanicalUOMs

Enumeration in package '4.4.4 RotationalGenerationResources'

Details: This enumeration is used to document the units on which the MomentOfinertia is being reported.

CONNECTORS

Dependency Source -> Destination
From: : MechanicalValueType : Class , Public
To: MechanicalUOMSs : Enumeration , Public

ENUMERATION:
kg*meter_sq
Ibf*ft*s_sq

A.2.4.15 TurbineState
Enumeration in package '4.4.4 RotationalGenerationResources'

Appendix A

212

PNNL-32687

CONNECTORS
' Dependency Source -> Destination

From: : iMechConversionProcess : Class , Public
To: TurbineState : Enumeration , Public

ENUMERATION:

NA
Cold
Hot
Wark

Appendix A 213

PNNL-32687

A.25 Storage Resources
This diagram presents an overview of a storage-based resource. It expands on the interfaces presented earlier and divides the
charging/delivery process into two dedicated systems, which can be specified independently.

Appendix A 214

Appendix A

Attestation_resource U e
= 4.4.1 Resources::BaseCapabilities
- Capabilities: StorageCapabilitiesj —— -
- Status: StorageStatus - | AvailableServices: ArrayOfGridServices
-:iGrdEquipment | : ConnectedPhases: PhaseCodeType
; LFCStatus: LifecycleStatusDep I | g5 hase: BoleRl
] Ea abilities.' BaseCapabilitics : | MaxRampPerPhase: ComplexPowerDep [3]
! Ceiification.S' Certifi?ations I | RatedlInputPerPhase: ComplexPowerDep [3]
- Devicelnfo: Devicelnfo | : RatedOutputPerPhase: ComplexPowerDep [3]
- hasGridSupport: Boolean : L A
- isResponsive: Boolean |
- Status: CurrentStatus | StorageCapabilities
+:TES_Base |
+ _UID: UID : + StorageSystem: StorageSystemDep
::iGridEquipment : + GetSoC(): void
+ GetStatus(): CurrentStatus | + _ SetSchedule(): void
+ SetSchedule(): void k
I \Q StorageStatus
+ _getUID()
::SerializableObject + GetStatus(): void &
+ Deserialize(Object): void
+ Serialize(): Owt 4.4.1 Resources::CurrentStatus
\/

iGridEquipment
4.4.1 Resources::
GridEquipmentRealization

Figure 69.

N - -

- isAvailable: Boolean
- IsConnected: Boolean

- CurrentNetPerPhase: ComplexPowerDep [3]
- CurrentRampPerPhase: ComplexPowerDep [3]

o

StorageSystemDep
{leaf}

/

/ «use»
/

(

StorageSystemRealization

StorageSyste

TES_Base

«interface»
iStorageSystem

«enumeration»
StorageMechanism

Efficiency_input: Real

Efficiency_output: Real

InputConverter: GridEquipmentDep
NCycles: int

OutputConverter: GridEquipmentDep
RatedCapacity: Real

StorageMedium: StorageMechanism :I

LION
PumpedStorage
FlyWheel
LeadAcid

LiPo

GetCurrentOutput(): Real
GetSoC(): Real
SetTargetOutput(Real): Real

Overview of the StorageResources' package components

PNNL-32687

215

PNNL-32687

A.2.5.1 Attestation_resource

Class in package '4.4.5 StorageResources'
Details: This class realizes a rotation machine specialization of the GridEquipment interface by extending the
GridEquipmentRealization class. It overrides the Capabilities and Status fields.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Attestation_resource to GridEquipmentRealization

CONNECTORS

#" Dependency Source -> Destination
From: : Attestation_resource : Class , Public
To: StorageStatus : Class , Public

ATTRIBUTES

Capabilities : StorageCapabilities Private

Details: This field overrides the Capabilities definition to represent the qualifications of a storage-like system, exposing
specialized properties such as the state of charge.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Status : StorageStatus Private

Details: This field overrides the standard Status type to provide a specialized version that can retrieve properties typically
associated with storage systems.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.25.2 iStorageSystem

Class «interface» in package '4.4.5 StorageResources'
Details: This base class defines the typical properties associated with storage systems. The interface considers that two
separate systems are responsible for putting and retrieving energy from the energy storage mechanism. It exposes certain
system-specific properties such as the system's state of charge (SoC).

STRUCTURAL PART OF iStorageSystem

% StorageSystem : ProvidedInterface

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from «interface» iStorageSystem to TES_Base

CONNECTORS

" Dependency Source -> Destination
From: : iStorageSystem : Class , Public
To: StorageMechanism : Enumeration , Public

ATTRIBUTES

W Efficiency_input : Real Private

Details: This represents a system's efficiency as measured from the input side (charging) to the storage medium. This number
is only to serve as a general reference, since actual conversion rates can vary depending on the level-of-charge,
consumption/charging currents.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Efficiency output : Real Private

Appendix A 216

PNNL-32687

ATTRIBUTES

Details: This represents a system's efficiency as measured from the storage point to the output point (delivery). This number
only serves as a general reference, since actual conversion rates can vary depending on the level-of-charge,
consumption/charging currents.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W InputConverter : GridEquipmentDep Private

Details: This field is used to document the input side equipment. This may typically be a rectifier, but also a mechanical
system (for pumped storage or a flywheel).

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

NCycles : int Private

Details: This property can be used to store the number of charge/discharge cycles. Useful for estimating degradation, or actual
capacity.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W OutputConverter : GridEquipmentDep Private

Details: This field can be used to define the output conversion equipment, which takes the stored energy and delivers it to the
grid. Typical equipment may be an inverter or a mechanical system (for a pumped storage system).

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W RatedCapacity : Real Private

Details: This value represents the rated power capacity (in KWH).

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

StorageMedium : StorageMechanism Public

Details: This field is used to define the storage medium used by the system.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% GetCurrentOutput () : Real Public
Details: This function can be used to determine the current output (from the output converter).

@ GetSoC () : Real Public
Details: This function gets the system's state of charge (if applicable).

@ SetTargetOutput (ValuekW : Real) : Real Public
Details: This function can be used to schedule the device power demand behavior. Positive numbers imply extracting energy
from the storage, negative numbers imply charging.

A.25.3 StorageCapabilities

Class in package '4.4.5 StorageResources'
Details: This structure aggregates functions and properties that are typical of a storage system. The object provides access to
the SoC function, which can be used by a TES agent to optimize resource usage.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from StorageCapabilities to BaseCapabilities

CONNECTORS
' Dependency Source -> Destination

From: : StorageCapabilities : Class , Public
To: StorageSystemDep : Class , Public

P Dependency Source -> Destination

From: . Attestation_resource : Class , Public
To: StorageCapabilities : Class , Public

Appendix A 217

PNNL-32687

ATTRIBUTES

" StorageSystem : StorageSystemDep Public
Details: This object represents the storage system, which may be an aggregation of multiple equipment
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% GetSoC () : void Public
Details: This function can automatically update the ramping rate based on the internal state of the mechanical interface.

% SetSchedule () : void Public
Details: This function can "schedule" a resources output capabilities across time.

A.2.5.4 StorageStatus
Class in package '4.4.5 StorageResources'
Details: This object holds functions that are specific to a storage system

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from StorageStatus to CurrentStatus

CONNECTORS

Dependency Source -> Destination
From: . Attestation_resource : Class , Public
To: StorageStatus : Class , Public

OPERATIONS

W GetStatus () : void Public
Details: This function will return the output/input values, and the SoC.

A.2.5.5 StorageSystemDep

Class in package '4.4.5 StorageResources'
Details: Objects that reference this class expect an object that realizes the StorageSystem Interface. This class is a leaf and is
only intended to serve as a data type.

CONNECTORS

Usage Source -> Destination
From: : StorageSystemDep : Class , Public
To: StorageSystem : ProvidedInterface , Public
P Dependency Source -> Destination
From: : StorageCapabilities : Class , Public
To: StorageSystemDep : Class , Public

A.2.5.6 StorageSystemRealization

Class in package '4.4.5 StorageResources'
Details: This abstract class implements the StorageSystem interface which allows to model a storage-like system. Classes
derived from this class should satisfy all of the service and data requirements.

Appendix A 218

PNNL-32687

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from StorageSystemRealization to «interface» iStorageSystem
4= Realization from StorageSystemRealization to StorageSystem

A.25.7 StorageMechanism

Enumeration in package '4.4.5 StorageResources'
Details: This enumeration is used to describe the storage medium used. The listed mediums are intended for reference and
should be expanded to suit the TES needs.

CONNECTORS
' Dependency Source -> Destination

From: : iStorageSystem : Class , Public
To: StorageMechanism : Enumeration , Public

ENUMERATION:
LiON
PumpedStorage
FlyWheel
LeadAcid
LiPo

Appendix A 219

PNNL-32687

A.26 Attestation Resources

This diagram presents an overview of an attestation-capable resource. In this case, it is assumed that an attestation device
only exists on the digital domain (although signal sampling can occur on the physical side). The proposed model ties the
attestation device to another's device sampling/measurement interface, and can choose to digitally sign/protect data if desired.

Appendix A 220

Appendix A

Storage_resource

Capabilities: AttestationCapabiIitB
hasGridSupport: Boolean = True

Status: StorageStatus

::iGridEquipment

+

_LFCStatus: LifecycleStatusDep
Capabilities: BaseCapabilities
Certifications: Certifications
Devicelnfo: Devicelnfo
hasGridSupport: Boolean
isResponsive: Boolean

Status: CurrentStatus

::TES_Base

+ _UID:UID
::iGridEquipment

+ GetStatus(): CurrentStatus
+ SetSchedule(): void
::TES_Base

+ _getUID()
::SerializableObject

+ Deserialize(Object): void
+ Serialize(): Object

V

iGridEquipment

4.4.1 Resources::
GridEquipmentRealization

Figure 70.

TES_Base

4.4.1 Resources::BaseCapabilities

AvailableServices: ArrayOfGridServices
ConnectedPhases: PhaseCodeType

is3Phase: Boolean

MaxRampPerPhase: ComplexPowerDep [3]
RatedInputPerPhase: ComplexPowerDep [3]
RatedOutputPerPhase: ComplexPowerDep [3]

SR S S

4.4.1

Resources::CurrentStatus

- CurrentNetPerPhase: ComplexPowerDep [3]
- CurrentRampPerPhase: ComplexPowerDep [3]

- isAvailable: Boolean
- IsConnected: Boolean

AttestationCapabilities

AttestationQualifications: EntityQuaIifications[l_elJ
AttestedData: SerializableObject
DigitalCertificate: DigitalCertificateDep :‘
EndDevices: GridEquipmentDep [0..*]
isDataEncrypted: Boolean

MaxRampPerPhase: None [3]
RatedInputPerPhase: None [3]
RatedOutputPerPhase: None [3]

SetSchedule(): void

&

StorageStatus

oy

GetAttestatedData(): void
GetStatus(): void

iEntityQualifications
4.3.9
Permissions&Qualifications:
:EntityQualificationsDep

Ilaafl

4.3.6 DigitalCertificates::
DigitalCertificateDep
{leaf}

Overview of the AttestationResources' package components

PNNL-32687

221

PNNL-32687

A.2.6.1 AttestationCapabilities

Class in package '4.4.6 AttestationResources'
Details: This structure aggregates functions and properties that are typical of a storage system. The object provides access to
the SoC function, which can be used by a TES agent to optimize resource usage.

OUTGOING STRUCTURAL RELATIONSHIPS
| 4= Generalization from AttestationCapabilities to BaseCapabilities

CONNECTORS

#" Dependency Source -> Destination

From: : AttestationCapabilities : Class , Public

To: DigitalCertificateDep : Class , Public
Dependency Source -> Destination

From: : AttestationCapabilities : Class , Public

To: EntityQualificationsDep : Class , Public

P Dependency Source -> Destination

From: : Storage_resource : Class , Public

To: AttestationCapabilities : Class , Public

ATTRIBUTES

AttestationQualifications : EntityQualificationsDep Private

Details: This field can be used to document a device's attestation rights/permissions.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

AttestedData : SerializableObject Private

Details: This field contains the serialized data being attested. The data format must be defined at runtime in order for
producers and consumers to communicate appropriately.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

DigitalCertificate : DigitalCertificateDep Private

Details: This field can be used to provide the certificate details that is used to sign or encrypt the attested data.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

EndDevices : GridEquipmentDep Public

Details: This object represents the systems for which digital attestation is being provided
Multiplicity: (0..*, Allow duplicates: 0, Is ordered: False)

isDataEncrypted : Boolean Private

Details:

MaxRampPerPhase : None Private

Details: This field overrides the ramping properties to assert that no power flexibility is offered.
Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

RatedInputPerPhase : None Private

Details: This field overrides the input power properties to assert that no power flexibility is offered.
Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

RatedOutputPerPhase : None Private

Details: This field overrides the output properties to assert that no power output is being offered.
Multiplicity: (3, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% SetSchedule () : void Public
Details: This function can be used to configured the attestation periodicity or end-points.

A.2.6.2 Storage_resource
Class in package '4.4.6 AttestationResources'

Appendix A

222

PNNL-32687

Details: This class realizes a rotation machine specialization of the GridEquipment interface by extending the
GridEquipmentRealization class. It overrides the Capabilities and Status fields.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Storage_resource to GridEquipmentRealization

CONNECTORS

' Dependency Source -> Destination
From: : Storage_resource : Class , Public
To: AttestationCapabilities : Class , Public
A Dependency Source -> Destination
From: : Storage_resource : Class , Public
To: StorageStatus : Class , Public

ATTRIBUTES

W Capabilities : AttestationCapabilities Private

Details: This field overrides the Capabilities definition to represent the qualifications of a storage-like system, exposing
specialized properties such as the state of charge.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W hasGridSupport : Boolean Private = True

Details:

¥ Status : StorageStatus Private

Details: This field overrides the standard Status type to provide a specialized version that can retrieve properties typically
associated with storage systems.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.2.6.3 StorageStatus
Class in package '4.4.6 AttestationResources'
Details: This object holds functions that are specific to a storage system

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from StorageStatus to CurrentStatus

CONNECTORS

Dependency Source -> Destination
From: : Storage_resource : Class , Public
To: StorageStatus : Class , Public

OPERATIONS

% GetAttestatedData () : void Public
Details:

% GetStatus () : void Public
Details: This function will return the output/input values, and the SoC.

Appendix A 223

PNNL-32687

A.2.7 OrganizationalHierarchy

This package introduces a reference hierarchy that can be used to map the different types of actors/systems that may be

present on a typical TES system where a wide variety of participants may interact. This diagram is only intended to be
illustrative and can be adjusted to suit the application needs.

Appendix A 224

ildentitylnterface
EndUser 4.3.12 Memberships::Memberships . 4'.3;;1 l:;;s};mal.:: -
r— o - ConsortiumParticipants enericldentityeaizaton
NonUtilityOwnedPoint izat
| ity DstEntity: GenericldentityDep Organizational
| . R o ~
| ;{el:tlan(asp. M'eln‘;be;shlgMapDep ~ o e Category: String q—
rcEntity: GenericldentityDe ; .
| EndUser iy WIRER [£ RelatedMemberships: Memberships iEntityQualifications
| - . 3R el
| UtilityOwnedPoint CrelateMembers:! B VO!d + MembershipServiceProvider(): void DelegatorUser 4.3.9
§ De eteMe.mbers ip(): void 4.4.8 Permissions&Qualificatiops:
v Eval(): void A AuthorityModel:: :EntityQualificationsDep
«interface» SysAdmins {leaf}
TypeOfOwnership BaseCapabilities
4.4.6 Resource_, biliti
/V Independent ThirdPartyOperators
iGridResource - Category: "Independent" - Permissions: GenericPermissionDep
Grid - Qualifcations: EntityQualificationsDep
4.4.1 Resources:: ﬁ K
GridResourceRealization - Category: "Grid"
Installers Auditors
AuthotizedThirdParty
InstalledEquipment A
Ci 3 Agent DelegatedUser!
- Ownership: TypeOfOwnership i i
- Ownership: TypeOfOwnership QualifiedAuditors
A ZF - Qualifications: EntityQualificationsDep
EndDevice
ResourceCapable b iveA Deleoztedtec
Equipment ransactiveAgent Qualifiedinstallers
- LocalControllers: LocalController [0..*] - Qualifications: EntityQualificationsDep CapacityTester Regulator
+ handleTimeStep(): void ZF
DelegatedDevice + SubscribeTo(): void
A Devi
m- CertifiedEqinstaller
Z% UserOwnedAgent Suppliers
MeerineDevks - Ownership: NonUtilityOwnedPoint - Category: "Suppliers"
- GridLocation: GridCouplingPointDep K
0 p Vendors
GridOwnedAgent ThirdPOperatedAgent

Appendix A

Ownership: UserOwnedAgent B

Operator: AuthotizedThirdParty

Figure 71.

Manufacturer

7

Supplier Z}

Distribuitor

OEM_Manufacturer

Reseller

Overview of the OrganizationalHierarchy' package components

PNNL-32687

225

PNNL-32687

A.2.7.1 Agent
Class in package '4.4.7 OrganizationalHierarchy'
Details: This class encompasses all agents that are either tied or have an effect on the grid state.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Agentto Grid

ATTRIBUTES

@ Ownership : TypeOfOwnership Private
Details:

A.2.7.2 AttestationDevice
Class in package '4.4.7 OrganizationalHierarchy'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from AttestationDevice to ResourceCapable Equipment
4= Generalization from AttestationDevice to AttestationCapabilities
4= Generalization from AttestationDevice to DelegatedDevice

A.2.7.3 Auditors

Class in package '4.4.7 OrganizationalHierarchy'
Details: This class encompasses independent entities that can audit/inspect grid related aspects. This may include equipment,
process flows or smart contract enforcement.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Auditors to Independent

A.2.7.4 AuthorizedInstallers
Class in package '4.4.7 OrganizationalHierarchy'

A.2.7.5 AuthotizedThirdParty
Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents third-party systems. In specific, entities that operate/represent another entity.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from AuthotizedThirdParty to ThirdPartyOperators

Appendix A 226

PNNL-32687

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : AuthorizedThirdParty : Actor , Public

To: AuthotizedThirdParty : Class , Public

A.2.7.6 CapacityTester

Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents a set of specialized agents than can assess a resource actual capabilities and can enforce
compliance requirements.

OUTGOING STRUCTURAL RELATIONSHIPS

‘4= Generalization from CapacityTester to QualifiedAuditors
CONNECTORS

! Usage «Instantiate» Source -> Destination

From: : CapacityTester Actor : Actor , Public
To: CapacityTester : Class , Public

e Dependency Source -> Destination

From: : TESResourceQuaification : Class , Public
To: CapacityTester : Class , Public

A.2.7.7 CertifiedEqglnstaller

Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents entities that are certified to install/commission certain types of devices (e.g., an inverter-based
resource).

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from CertifiedEqlnstaller to QualifiedInstallers

CONNECTORS

! Usage «Instantiate» Source -> Destination
From: : CertifiedInstaller Actor : Actor , Public
To: CertifiedEglnstaller : Class , Public

A.2.7.8 ConsortiumParticipants
Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents all entities that have decided to participate on a TES-BC based system.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from ConsortiumParticipants to Organizational

Appendix A 227

PNNL-32687

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : TES_Consortium : Actor , Public

To: ConsortiumParticipants : Class , Public

A.2.7.9 Customers

Class in package '4.4.7 OrganizationalHierarchy'
Details: Within this example, this class represents all customers with no specific role. A customer can own/operate devices or
transactive devices and become more specialized.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Customersto Grid

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : Customer_Actor : Actor , Public

To: Customers : Class , Public

A.2.7.10 Distribuitor
Class in package '4.4.7 OrganizationalHierarchy'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Distribuitor to Supplier
4= Generalization from Distribuitor to Vendors

A.2.7.11 Grid
Class in package '4.4.7 OrganizationalHierarchy'
Details: This class groups all objects that are connected, interact or have a relation with the grid.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Grid to Organizational

ATTRIBUTES

W Category : "Grid" Private
Details:

A.2.7.12 GridOwnedAgent

Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents transactive agents that are owned/operated by a utility (or other fully trusted organization that
responds to the utility)

Appendix A 228

PNNL-32687

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from GridOwnedAgent to TransactiveAgent
4= Generalization from GridOwnedAgent to UtilityOwnedPoint

CONNECTORS

/" Usage «Instantiate» Source -> Destination
From: : UtilityAgent : Actor , Public
To: GridOwnedAgent : Class , Public

ATTRIBUTES

Ownership : UserOwnedAgent Private
Details:

A.2.7.13 Independent

Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents actors who are independent of the grid but can participate as observers or indirect-system
providers.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Independent to Organizational

CONNECTORS
' Usage «Instantiate» Source -> Destination
From: : NonQualified_Actor : Actor , Public

To: Independent : Class , Public

ATTRIBUTES

W Category : "Independent" Private
Details:

A.2.7.14 InstalledEquipment
Class in package '4.4.7 OrganizationalHierarchy'
Details: This object model can be used to represent equipment that is installed/connected to the grid.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from InstalledEquipment to Grid

ATTRIBUTES

@ Ownership : TypeOfOwnership Private
Details:

A.2.7.15 Installers
Class in package '4.4.7 OrganizationalHierarchy'
Details: This class encompasses independent service providers that perform device installation/commissioning.

Appendix A 229

PNNL-32687

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Installers to Independent

A.2.7.16 Manufacturer
Class in package '4.4.7 OrganizationalHierarchy'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Manufacturer to Suppliers

A.2.7.17 MeteringDevice
Class in package '4.4.7 OrganizationalHierarchy'
Details: This object represents a trusted metering agent. This object has been adapted from IEEE 2030.5

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from MeteringDevice to AttestationDevice
CONNECTORS

' Dependency Source -> Destination

From: : MeteringDevice : Class , Public

To: GridCouplingPointDep : Class , Public

e Usage «Instantiate» Source -> Destination

From: : Meter_Actor : Actor , Public

To: MeteringDevice : Class , Public
Dependency Source -> Destination

From: : UsagePoint : Class , Public

To: MeteringDevice : Class , Public

ATTRIBUTES

GridLocation : GridCouplingPointDep Private
Details:

A.2.7.18 NonUtilityOwnedPoint

Class in package '4.4.7 OrganizationalHierarchy'
Details: This class realizes the properties of non-utility owned devices. This construct can be expanded to support cases
when multiple utilities are integrated into a single TES solution.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from NonUtilityOwnedPoint to TypeOfOwnership
4= Generalization from NonUtilityOwnedPoint to EndUser

A.2.7.19 OEM_Manufacturer
Class in package '4.4.7 OrganizationalHierarchy'

Appendix A

230

PNNL-32687

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from OEM_Manufacturer to Manufacturer

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : Manufacturer _Actor : Actor , Public

To: OEM Manufacturer : Class , Public

A.2.7.20 Organizational
Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents a typical organization's member. All members have an identity, roles/attributes, and in this case

memberships to support member to member relationships.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from Organizational to Memberships
4= Generalization from Organizational to GenericldentityRealization

ATTRIBUTES

W Category : String Public

Details: This field can be broadly describe the relationship with the organization/consortium.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

RelatedMemberships : Memberships Public

Details:

OPERATIONS

% MembershipServiceProvider () : void Public
Details:

A.2.7.21 QualifiedAuditors
Class in package '4.4.7 OrganizationalHierarchy'
Details: These class represents a category of entities that can audit grid operations. This may include market monitoring

agents, capacity evaluators and any other agent that can perform unbiased grid assessments.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from QualifiedAuditors to DelegatedUser
4= Generalization from QualifiedAuditors to Auditors

CONNECTORS

' Dependency Source -> Destination
From: : QualifiedAuditors : Class , Public
To: EntityQualificationsDep : Class , Public

ATTRIBUTES

Qualifications : EntityQualificationsDep Private
Details:

Appendix A 231

PNNL-32687

A.2.7.22 QualifiedInstallers

Class in package '4.4.7 OrganizationalHierarchy'
Details: These class represents a category of installers that are qualified to perform certain types of installations or perform
device commissioning. Examples may include those entities that have sufficient expertise to enroll a new
ResourceCapableEquipment or can deploy new agents on behalf of end users.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from QualifiedInstallers to DelegatedUser

CONNECTORS
Dependency Source -> Destination

From: : QualifiedInstallers : Class , Public
To: EntityQualificationsDep : Class , Public

ATTRIBUTES

Qualifications : EntityQualificationsDep Private
Details:

A.2.7.23 Regulator

Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents a set of specialized agents in charge of enforcing compliance requirements. Examples include
local energy commissions, market monitors, etc.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Regulator to QualifiedAuditors

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : Regulator_Actor : Actor , Public

To: Requlator : Class , Public

A.2.7.24 Reseller
Class in package '4.4.7 OrganizationalHierarchy'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Reseller to Distribuitor

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : Reseller_Actor : Actor , Public

To: Reseller : Class, Public

Appendix A 232

PNNL-32687

A.2.7.25 ResourceCapable Equipment
Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents any equipment that can provide grid services.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from ResourceCapable Equipment to InstalledEquipment
4= Generalization from ResourceCapable Equipment to GridResourceRealization
4= Generalization from ResourceCapable Equipment to EndDevice

A.2.7.26 Supplier
Class in package '4.4.7 OrganizationalHierarchy'

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Supplier to Manufacturer

A.2.7.27 Suppliers
Class in package '4.4.7 OrganizationalHierarchy'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Suppliers to Organizational

ATTRIBUTES

W Category : "'Suppliers" Private
Details:

A.2.7.28 ThirdPartyOperators

Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents third-party system-wide operators. In specific, entities that are allowed to act on behalf of
another entity or service. It also includes dedicated contractors.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from ThirdPartyOperators to Independent

ATTRIBUTES

W Permissions : GenericPermissionDep Private
Details:

Qualifcations : EntityQualificationsDep Private
Details:

A.2.7.29 ThirdPOperatedAgent
Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents transactive agents that are operated by a third party.

Appendix A 233

PNNL-32687

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from ThirdPOperatedAgent to TransactiveAgent

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : ThirdPAgent : Actor , Public

To: ThirdPOperatedAgent : Class , Public

ATTRIBUTES

W Operator : AuthotizedThirdParty Private
Details:

A.2.7.30 TransactiveAgent

Class in package '4.4.7 OrganizationalHierarchy'
Details: This object represents a high-level representation of a transactive agent. Such an agent may depend on a series of
local controllers to offer flexibility.
Under the TES-BC template approach, agents are not required to have a physical counterpart. Examples of agents that may
operate only in the digital domain include market, supervisory and data aggregation agents

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from TransactiveAgent to Agent

CONNECTORS

Dependency Source -> Destination
From: : TransactiveAgent : Class , Public
To: LocalController : Class , Public

Usage «Instantiate» Source -> Destination
From: : ThirdPAgent : Actor , Public
To: TransactiveAgent : Class , Public

ATTRIBUTES

¥ LocalControllers : LocalController Private
Details:

OPERATIONS

% handleTimeStep () : void Public
Details: This function can be configured to listen for time-step changes or dynamic events.

% SubscribeTo () : void Public
Details: This function can be used to subscribe to events, or any semi-automatic polling mechanism.

A.2.7.31 UserOwnedAgent
Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents transactive agents that are owned/operated by private entities.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from UserOwnedAgent to TransactiveAgent
4= Generalization from UserOwnedAgent to NonUTtilityOwnedPoint

Appendix A 234

PNNL-32687

CONNECTORS
! Usage «Instantiate» Source -> Destination

From: : UserOwnedAgent : Actor , Public
To: UserOwnedAgent : Class , Public

ATTRIBUTES

Ownership : NonUtilityOwnedPoint Private
Details:

A.2.7.32 UtilityOwnedPoint

Class in package '4.4.7 OrganizationalHierarchy'
Details: This class represents objects that are not owned/managed by the electrical utilities. These devices may have limited
control and visibility properties.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from UtilityOwnedPoint to EndUser
4= Realization from UtilityOwnedPoint to TypeOfOwnership

A.2.7.33 Vendors
Class in package '4.4.7 OrganizationalHierarchy'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Vendors to Suppliers

A.2.7.34 TypeOfOwnership

Interface in package '4.4.7 OrganizationalHierarchy'
Details: This interface can be used to describe the different types of ownership. In addition it may contain properties,
attributes and functions that are only found on certain types of ownership.

Appendix A 235

PNNL-32687

A.2.8 Authority Model

These group of classes represents the subset of participants that have administrator-like rights over other participants. These

participants can manage other participants (such as dictating a role or permissions) as well as defining processes and setting
rules.

Appendix A 236

Appendix A

4.4.7 Hierarchy::
NonUtilityOwnedPoint

4.4.7 Hierarchy::
UtilityOwnedPoint

4.4.7 Hierarchy::QualifiedInstallers

Installers

Qualifications: EntityQualificationsDep

4.4.7 Hierarchy::QualifiedAuditors

Auditors

Qualifications: EntityQualificationsDep

Figure 72.

/

}

DelegatorUser

<

SysAdmins

SubjectPermissions 4.3.9 Permissions&Qualifications:
:GenericPermissionDe
- ConfiguredTermissions: GenericPermissionDe__Q| — _> p{leaf)
GridResourceRealization
EndUser EndDevice InstalledEquipment
<_ 4.4.7 Hierarchy::
ResourceCapable Equipment
DelegatedUser DelegatedDevice AttesiztiopCupauiie
4.4.7 Hierarchy::
<] AttestationDevice
AssignableGroups
ConsortiumParticipants

Overview of the AuthorityModel' package components

PNNL-32687

237

PNNL-32687

A.2.8.1 DelegatedDevice

Class in package '4.4.8 AuthorityModel'
Details: This class can be used to assign permissions to devices/systems that have active participation roles within the
system. These may include managing or administering other systems' properties. This class may also be used to classify
services that have higher trust levels than end-point service providers.

OUTGOING STRUCTURAL RELATIONSHIPS

| 4= Generalization from DelegatedDevice to EndDevice \

A.2.8.2 DelegatedUser

Class in package '4.4.8 AuthorityModel'
Details: This class can be used to assign permissions to users that have active participation roles within the system. These
may include managing or administering other user's properties. This class may also be used to classify agents that have higher
trust levels than other peers.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from DelegatedUser to EndUser

A.2.8.3 DelegatorUser

Class in package '4.4.8 AuthorityModel'
Details: This class models entities that have strong management roles. This may include creating, updating and removing
entities, as well as managing their properties/permissions. These entities are fully trusted by the consortium.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from DelegatorUser to DelegatedUser
4= Generalization from DelegatorUser to DelegatedDevice
4= Generalization from DelegatorUser to AssignableGroups

A.2.8.4 EndDevice

Class in package '4.4.8 AuthorityModel'
Details: This class can be used to assign permissions to devices/systems that have limited participation scope. These may
include systems that have limited operational capacities, or that have no influence over other agents.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from EndDevice to SubjectPermissions

A.2.8.5 EndUser
Class in package '4.4.8 AuthorityModel'

Appendix A 238

PNNL-32687

Details: This class can be used to assign permissions to users that have limited participation scope. These may include users
that have limited operational capacities, or that have no influence over other agents.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from EndUser to SubjectPermissions

A.2.8.6 SubjectPermissions
Class in package '4.4.8 AuthorityModel'
Details: This class can be used to configure an entity permissions.

CONNECTORS

Dependency Source -> Destination
From: : SubjectPermissions : Class , Public
To: GenericPermissionDep : Class , Public

ATTRIBUTES

ConfiguredTermissions : GenericPermissionDep Private
Details:

A.2.8.7 SysAdmins

Class in package '4.4.8 AuthorityModel'
Details: This class represents the subset of participants that have administrator-like rights over other participants. These
participants can manage other participants (such as dictating a role or permissions) as well as defining processes and setting

rules.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from SysAdmins to ConsortiumParticipants
4= Generalization from SysAdmins to DelegatorUser

CONNECTORS
' Usage «Instantiate» Source -> Destination
From: : TES _Admin : Actor , Public

To: SysAdmins : Class , Public

Appendix A 239

PNNL-32687

A.29 Sample Hierarchy With Actors

This diagram represents a reference hierarchy that can be used to map the different types of actors/systems that may be
present on a typical TES system where a wide variety of participants may interact. This diagram is only intended to be

illustrative and can be adjusted to suit the application needs. The diagram has been populated with actors that will be used to
demonstrate potential use cases.

Appendix A 240

PNNL-32687

EndUser {> ildentitylnterface
P N 4.3.12 Memberships::Memberships 4.3.11 Persona::
! -7 Hie i it SR bIEEE N GenericldentityRealization
| NonUtilityOwnedPoint DstEntity: GenericldentityDep 4.4.7 Hierarchy::Organizational ConsortiumParticipants N
| .) A ~
| i Relatlo.nMap. M.ember_shlpMapDep ~o PG tesory: String
SrcEntity: GenericldentityDep =~ s o) (AP
! 4.4.7 Hierarchy:: + fsell e
| - N A/ ot X «instantiate» iEntityQualifications
UtilityOwnedPoint CreateMembership(lavoid + MembershipServiceProvider(): void DelegatorUser! TES_Consortium dinstantiate>
| 5 5 g N 4.3.9
L T DeleteMembership(): void «instantiate» N e
V Eval(): void 4:4-3 < — . Permissions&Qualificatiops:
A AuthorityModel:: :EntityQualificationsDep
«interface» SysAdmins {leaf}
4.4.7 Hierarchy:: BaseCapabilities TES_Admin TES_Consortium_Member,
TypeOfOwnership 4.4.6 Resource_| i iliti
~ ; 4.4.7 Hierarchy::Independent 4.4.7 Hierarchy::ThirdPartyOperators
< |— 4.4.7 Hierarchy::
- Category: "Independent” L fedtemas 4 it <I—
iGridResource it & UL S (SR ETIDRD AuthotizedThirdParty
4.4.7 Hierarchy::Grid = - Qualifcations: EntityQualificationsDep /'\
4.4.1 Resources:: >~
GridResourceRealization - Category: "Grid" ﬂ v S—— «instantiate» :
) «instantiate» '
4.4.7 Hierarchy:: 4.4.7 Hle‘ravchy::
Installers Auditors
4.4.7 Hierarchy:: A NonQualified_Actor
In;calll edEquipm e‘r‘n 4.4.7 Hierarchy:: 4.4.7 Hierarchy::Agent AuthorizedThirdParty
[« s DelegatedUser|
o A B O hip: TypeOfO hif
- Ownership: TypeOfOwnership T 4.4.7 Hierarchy::QualifiedAuditors
Q 4.4.7 Hierarchy:: V\ «instantiate»
ZF /I'\ Zﬁ - Qualifications: EntityQualificationsDep Regulator S
«instantiate» |
] '
EndDevice 4.4.7 Hierarchy::TransactiveAgent DelegatedUser 4
4.4.7 Hierarchy:: 4.4.7 Hierarchy::QualifiedInstallers 3 N N
ResourceCapable - LocalControllers: LocalController [0..*] 4.4.7 Hierarchy:: T\«l\nstantlate» AT
i - lifications: EntityQualificationsDep CapacityTester - egulator_ r
Equpmeny Customer_Actor + handleTimeStep(): voi e
_ p(): void ~
+ SubscribeTo(): void ZF
Deleg \tedDevice
]
4.4.7 Higrarchy:: o i i
AttestatibnD y 4.4.7 Hierarchy:: ﬁns_tantlate» CapacityTester_Actor
Lzl 20U CertifiedEqinstaller
Certifi _Actor
4.4.7 Hierarchy::UserOwnedAgent 4.4.7 Hierarchy::

4.4.7 Hierarchy::MeteringDevice

Ownership: NonUtilityOwnedPoint

- GridLocation: GridCouplingPointDep

A\

4.4.7 Hierarchy::
GridOwnedAgent

4.4.7 Hierarchy::
ThirdPOperatedAgent

4.4.7 Hierarchy::
Vendors

; . |
«instantiate» |
1

- Ownership: UserOwnedAgent

- Operator: AuthotizedThirdParty

Suppliers

- Category: "Suppliers"

Manufacturer

4.4.7 Hierarchy::

)

«instantiate»
1

Meter_Actor |

UtilityAgent

Figure 73.

Appendix A

/I'\
«instantiate» |
1

| «instantiate»
|
'

UserOwnedAgent ThirdPAgent

F

4.4.7 Hierarchy::

A

A\

Supplier

4.4.7 Hierarchy::
Distribuitor

4.4.7 Hierarchy::
OEM_Manufacturer

L 71
W\

A

4.4.7 Hierarchy::
Reseller

A

«instantiate» |
' Manufacturer_Actor

Reseller_Actor

Overview of the SampleHierarchyWithActors' package components

| «instantiate»
|

241

PNNL-32687

A.2.9.1 AuthorizedThirdParty
Actor in package '4.4.9 SampleHierarchyWithActors'
Details: This actor represents an entity that has been authorized to operate other's systems/devices.

#" Usage «Instantiate» Source -> Destination
From: : AuthorizedThirdParty : Actor , Public

To: AuthotizedThirdParty : Class , Public

A.2.9.2 CapacityTester_Actor

Actor in package '4.4.9 SampleHierarchyWithActors'
Details: This actor represents an individual that can assess an equipment/service qualities, or its actual capabilities based on
standardized tests.

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : CapacityTester Actor : Actor , Public

To: CapacityTester : Class , Public

A.2.9.3 Certifiedinstaller_Actor
Actor in package '4.4.9 SampleHierarchyWithActors'

Details: This actor represents an instance of a certified installer.

CONNECTORS
' Usage «Instantiate» Source -> Destination
From: : CertifiedInstaller_Actor : Actor , Public

To: CertifiedEqglnstaller : Class , Public

A.2.9.4 Customer_Actor

Actor in package '4.4.9 SampleHierarchyWithActors'
Details: This actor represents a customer with no specific attributes other than being connected to the grid. In this sample
architecture, a customer can become an specialized agent by installing/operating equipment or a transactive agent.

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : Customer_Actor : Actor , Public

To: Customers : Class , Public

A.2.9.5 Manufacturer_Actor
Actor in package '4.4.9 SampleHierarchyWithActors'

Appendix A 242

PNNL-32687

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : Manufacturer _Actor : Actor , Public

To: OEM Manufacturer : Class , Public

A.2.9.6 Meter_Actor

Actor in package '4.4.9 SampleHierarchyWithActors'
Details: This actor represents an instance of an electrical meter, installed on the grid.

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : Meter_Actor : Actor , Public

To: MeteringDevice : Class , Public

A.2.9.7 NonQualified_Actor

Actor in package '4.4.9 SampleHierarchyWithActors'
Details: This represents a non-qualified actor that has access to the TES-BC platform.

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : NonQualified Actor : Actor , Public

To: Independent : Class , Public

A.2.9.8 Regulator_Actor

Actor in package '4.4.9 SampleHierarchyWithActors'
Details: This actor represents a regulator body, usually in charge of compliance reviews.

CONNECTORS
' Usage «Instantiate» Source -> Destination
From: : Regulator_Actor : Actor , Public

To: Requlator : Class , Public

A.2.9.9 Reseller_Actor
Actor in package '4.4.9 SampleHierarchyWithActors'

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : Reseller_Actor : Actor , Public

To: Reseller : Class, Public

Appendix A 243

PNNL-32687

A.2.9.10 TES _Admin
Actor in package '4.4.9 SampleHierarchyWithActors'

#" Usage «Instantiate» Source -> Destination
From: : TES Admin : Actor , Public
To: SysAdmins : Class , Public

A.2.9.11 TES Consortium
Actor in package '4.4.9 SampleHierarchyWithActors'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from TES_Consortium to ConsortiumParticipants

CONNECTORS
' Usage «Instantiate» Source -> Destination
From: : TES Consortium : Actor , Public

To: ConsortiumParticipants : Class , Public

Usage «Instantiate» Source -> Destination
From: : TES Consortium_Member : Actor , Public
To: TES_Consortium : Actor, Public

A.2.9.12 TES_ Consortium_Member
Actor in package '4.4.9 SampleHierarchyWithActors'

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : TES_Consortium_Member : Actor , Public

To: TES Consortium : Actor , Public

A.2.9.13 ThirdPAgent
Actor in package '4.4.9 SampleHierarchyWithActors'
Details: This actor represents a transactive agent that is operated/managed by a third party.

CONNECTORS
' Usage «Instantiate» Source -> Destination

From: : ThirdPAgent : Actor , Public

To: ThirdPOperatedAgent : Class , Public

A Usage «Instantiate» Source -> Destination
From: : ThirdPAgent : Actor , Public

To: TransactiveAgent : Class , Public

Appendix A 244

PNNL-32687

A.2.9.14 UserOwnedAgent
Actor in package '4.4.9 SampleHierarchyWithActors'
Details: This actor represents a transactive agent that is owned and operated by a private user.

CONNECTORS

“! Usage «Instantiate» Source -> Destination
From: : UserOwnedAgent : Actor , Public
To: UserOwnedAgent : Class , Public

A.2.9.15 UtilityAgent
Actor in package '4.4.9 SampleHierarchyWithActors'
Details: This actor represents a transactive agent that is owned and operated by a utility.

CONNECTORS

! Usage «Instantiate» Source -> Destination
From: : UtilityAgent : Actor , Public
To: GridOwnedAgent : Class , Public

Appendix A 245

PNNL-32687

A.3 Grid Components

This section presents a grid modeling proposal that aims to retain the electrical topological hierarchy of power systems while
at the same time enabling grid support services to attach to virtual grid points. This grid-resource modeling is expected to
enable an efficient mapping in between a traditional grid operation and a TES-enabled one.

A.3.1 GridModel

This diagram provides a reference architecture for modeling grid connectivity on a relational database format. The proposed
design exposes a grid coupling interface that serves as a bridge to other TES components. The classes used to represent this
grid model were adapted from IEEE 2030.5 and the Common Smart Inverter Profile V2.0.

Appendix A 246

PNNL-32687

«interface» .
iGridCouplingPoint 5 e ittt ConnectionPointList PowerlnterfaceDetails
o / T " .
- Children: ArrayList — > GridSystem / | = Interconnectlonquilpment
- Powerlnterface: PowerlnterfaceDetails iGridCouplingPoint / . | - Type:Pl_Type[0.*] If 7
- CommonName: String / > 4.3.2 Primitives:: | |
+ GetType(): void j}é TN - Connections: ConnectionPointList ar 7 GeolocationData | |
. i : ! i |
+ GetUID(): void «use» \ Geolocationlnfo: GeoLocationData :l - ElementAddress: Address <T->> \‘|/
/ - ParentlD: UID . I
A 5 N L . . + Geolocation: XYpointList)
! GridCouplingPointDep| | - PCC_Ché mctherlzatlon. PFC_Ché ractheristicsDep N e T , Cenurap—
4.3.11 Persona:: S ————— _/ {leaf} - ResponsibleEntity: GenericldentityDep PI_Type
GenericldentityDep / % g+ -
{leaf} / DCDC_LineRegulator
, ’ S EEED ... <T->Grid_DSO >- — {>>{ 4.3.2 Primitives:: gggg_\’\/noltahgel?eglglator
i = = psotst | _ o ArrayList __MechanicalConverter
i i . - children: DSOLisk / < T->Grid_Subtransmission > D DCDC_SwitchedPowerSupply
GridCouplingRealization N1 parent!D: Null / r——————- <T->Grid_Substation>_ _ _ _ _ D + add(T): void DCAC_Powerlnverter
// / fo———————————— + count(): int DCAC_Mechanicallnverter
/\/\/\/\/\/\ // | <T->Grid_Feeder> - + remove(int): void DCAC_SwitchedPowerSupply
«enumeration» ! : : ACDC_Rectifier
N A g e < T->Grid_FeederSection > 3
4.3.10 GridObjects: Grid_DSO P SubtransmissionList // / = l> ACDC_SwitchedPowerSupply
:PhaseCodeType ! / i \ "
P - children: Subtransmission@l - / h < T->Grid_Transformer > | ACDC_MechanicalConverter
000 NA ACAC_ldealTransformer
032C SubstationlList FeederList FeederSectionlList TransformerList AEAE =y
033 CN _= = = ACAC_Powerlnverter
040 CA _--" _--" - _ - ACAC_MechanicalTransformer
- -
064 B I | r r
| I I I GenericTrackableRealization
065 BN Grid_Subtransmission | Grid_Substation | Grid_Feeder | Grid_FeederSection | Grid_Transformer
066 BC | | | TES_Base
128 A - children: SubstationList] - - children: FeederLis—IJ — |- children: FeederSectionListlf = | - children: TransformerList J{ — | _ children: Null 4.3.11 Persona::Address
129 AN
132 AB - _LFCStatus: LifecycleStatusDep
224 ABC - City: String)
225 ABCN - Country: String
016N - PostalCode: String
017 NG - StateProvince: String
- Street: String
- Street2: String
<} PCC_CharactheristicsRealization PCC Charachteristics
4.3.10 GridObjects::Impedance | PCCParameters | N e b e e e e (e - — — — - — = N
|
- isPU: Boolean Skl Impedance: Impedance PCC_Voltage «use» \ N
- isZ012:int = L-_L Phases: PhaseCodeType
- lastUpdated: DateTimeStamp - ReliabilityInfo: RefiabilityMetricsDep] zcursécn:‘EQ- SerializableObject 0.2 dntereS PCC._CharactheristicsDep
- rawData: ArrayList<Complex> + VoltageCharachteristics: Voltage - X . ; iPCC_Charactheristics {leaf}
3 - Min: Real ReliabilityMetricsDep =
- TypeOfData: ImpedanceDataType \ leaf
\\ - Nominal: Real {leaf}
. . . \
Figure 74. Overview of the GridModel' package components

Appendix A 247

PNNL-32687

A.3.1.1 ConnectionPointList
Class in package '4.5.1 GridModel’

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from ConnectionPointList to ArrayList

/" Dependency Source -> Destination
From: : GridSystem : Class , Public
To: ConnectionPointList : Class , Public

A.3.1.2 DSOList
Class in package '4.5.1 GridModel'
Details: This represents a list of DSOs that are managed by the ISO.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from DSOList to ArrayL.ist

CONNECTORS

' Dependency Source -> Destination
From: : Grid_SystemISO : Class , Public
To: DSOList : Class , Public

A.3.1.3 FeederlList
Class in package '4.5.1 GridModel'
Details: This represents a list of feeders that are connected to this grid subsystem.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from FeederListto ArrayList

CONNECTORS
' Dependency Source -> Destination
From: : Grid_Substation : Class , Public

To: FeederList : Class , Public

A.3.1.4 FeederSectionList

Class in package '4.5.1 GridModel’
Details: This represents a list of branches/feeder sections that are connected to this grid subsystem.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from FeederSectionListto ArrayList

Appendix A 248

PNNL-32687

CONNECTORS
' Dependency Source -> Destination
From: : Grid_Feeder : Class , Public

To: FeederSectionList : Class , Public

A.3.1.5 GenericObject
Class in package '4.5.1 GridModel’
Details: Hash
TableName
uIiD

CONNECT
' Dependency Source -> Destination

From: : GridSystem : Class , Public
To: GenericObject : Class , Public

ATTRIBUTES

W Hash :int Private
Details:

W TableName : int Private
Details:

@ UID/UUID :int Private
Details:

A.3.1.6 Grid_DSO

Class in package '4.5.1 GridModel'
Details: This sample implementation of the GridCouplingPoint represents a DSO-scale system.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Grid_DSO to GridCouplingRealization

CONNECTORS

Dependency Source -> Destination
From: : Grid_DSO : Class , Public
To: SubtransmissionList : Class , Public

ATTRIBUTES

i children : SubtransmissionList Private
Details:

A.3.1.7 Grid_Feeder

Class in package '4.5.1 GridModel’
Details: This sample implementation of the GridCouplingPoint represents a Feeder-scale system.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Grid_Feeder to GridCouplingRealization

Appendix A 249

PNNL-32687

CONNECTORS ‘
' Dependency Source -> Destination

From: : Grid_Feeder : Class , Public
To: FeederSectionList : Class , Public

ATTRIBUTES

children : FeederSectionList Private
Details:

A.3.1.8 Grid_FeederSection
Class in package '4.5.1 GridModel’
Details: This sample implementation of the GridCouplingPoint represents a feeder's branch-scale system.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Grid_FeederSection to GridCouplingRealization

CONNECTORS
' Dependency Source -> Destination

From: : Grid_FeederSection : Class , Public
To: TransformerList : Class , Public

ATTRIBUTES

i children : TransformerList Private
Details:

A.3.1.9 Grid_Substation
Class in package '4.5.1 GridModel’
Details: This sample implementation of the GridCouplingPoint represents a substation-scale system.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Grid_Substation to GridCouplingRealization

CONNECTORS ‘
' Dependency Source -> Destination

From: 1 Grid_Substation : Class , Public

To: FeederList : Class, Public

ATTRIBUTES

W children ; FeederList Private
Details:

A.3.1.10 Grid_Subtransmission
Class in package '4.5.1 GridModel'
Details: This sample implementation of the GridCouplingPoint represents a Subtransmission-scale system.

Appendix A 250

PNNL-32687

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Grid_Subtransmission to GridCouplingRealization

CONNECTORS
' Dependency Source -> Destination
From: : Grid_Subtransmission : Class , Public

To: SubstationList : Class , Public

ATTRIBUTES

i children ; SubstationList Private
Details:

A.3.1.11 Grid_SystemISO
Class in package '4.5.1 GridModel'
Details: This sample implementation of the GridCouplingPoint represents a ISO-scale system.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Grid_SystemISO to GridCouplingRealization

CONNECTORS

' Dependency Source -> Destination
From: : Grid_SystemISO : Class , Public
To: DSOList : Class , Public

ATTRIBUTES
W children : DSOList Private
Details:
parentID : Null Private
Details:

A.3.1.12 Grid_Transformer

Class in package '4.5.1 GridModel'
Details: This sample implementation of the GridCouplingPoint represents a distribution-scale transformer that serves low-
voltage customers.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Grid_Transformer to GridCouplingRealization

ATTRIBUTES

children : Null Private
Details:

A.3.1.13 GridCouplingPointDep

Class in package '4.5.1 GridModel’
Details: Objects that reference this class expect an object that realizes the GridCouplingPoint Interface. This class is a leaf
and is only intended to serve as a data type.

Appendix A 251

CONNECTORS

Usage Source -> Destination
From: : GridCouplingPointDep : Class , Public
To: iGridCouplingPoint : ProvidedInterface , Public

PNNL-32687

A Dependency Source -> Destination
From: : MeteringDevice : Class , Public
To: GridCouplingPointDep : Class , Public

A.3.1.14 GridCouplingRealization

Class in package '4.5.1 GridModel’
Details: This abstract class implements the GridCouplingPoint interface which enables resources to connect to the grid,

classes derived from this class should satisfy all of the service and data requirements.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from GridCouplingRealization to «interface» iGridCouplingPoint

4= Realization from GridCouplingRealization to iGridCouplingPoint

A.3.1.15 GridSystem

Class in package '4.5.1 GridModel'
Details: This class represents a generic grid system. This system has a geographical area that serves a list of customers. Its

voltage level remains the same within the service region (unless a child/parent is navigated)

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from GridSystem to TES_Base

CONNECTORS

Dependency Source -> Destination
From: : GridSystem : Class , Public
To: ConnectionPointList : Class , Public

A Dependency Source -> Destination
From: : GridSystem : Class , Public
To: GeolocationData : Class , Public

Dependency Source -> Destination
From: : GridSystem : Class , Public
To: GenericObject : Class , Public

CommonName : String Private

Details:

¥ Connections : ConnectionPointList Private

Details:

¥ GeoLocationInfo : GeoLocationData Private

Details:

W ParentlD : UID Private

Details:

@ PCC_Charactherization : PCC_CharactheristicsDep Private
Details:

Appendix A

252

PNNL-32687

ATTRIBUTES

ResponsibleEntity : GenericldentityDep Private
Details:

A.3.1.16 iGridCouplingPoint

Class «interface» in package '4.5.1 GridModel'
Details: This object represents a generic electrical interface. It is assumed that this interconnection point can occur at any
point of the hierarchical grid structure through the use of an intermediary device.

STRUCTURAL PART OF iGridCouplingPoint

W iGridCouplingPoint : ProvidedInterface

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from «interface» iGridCouplingPoint to GridSystem

ATTRIBUTES

W Children : ArrayList Private

Details: This field can be used to map lower hierarchy systems.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Powerlnterface : PowerInterfaceDetails Private

Details: This field defines the power interface used to connect different systems. Note that no implicit system scale is assumed
(e.g., a microgrid can connect to another microgrid).

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

W GetType () : void Public
Details: This field defines the coupling type from the grid perspective. This might proof useful when devices require to know
the "scale” of the interconnection on the other side.

% GetUID () : void Public
Details: This field gets the coupling UID from the grid perspective.

A.3.1.17 iPCC_Charactheristics
Class «interface» in package '4.5.1 GridModel'

STRUCTURAL PART OF iPCC_Charactheristics

W PCC_Charachteristics : Providedinterface

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from «interface» iPCC_Charactheristics to PCCParameters

Appendix A 253

PNNL-32687

A.3.1.18 PCC_CharactheristicsDep

Class in package '4.5.1 GridModel’
Details: Objects that reference this class expect an object that realizes the PCC_Charactheristics Interface. This class is a
leaf and is only intended to serve as a data type.

CONNECTORS

s Usage Source -> Destination
From: : PCC_CharactheristicsDep : Class , Public
To: PCC_Charachteristics : ProvidedInterface , Public

A.3.1.19 PCC_CharactheristicsRealization

Class in package '4.5.1 GridModel'
Details: This abstract class implements the PCC_Charactheristics interface which enables agents to retrieve grid properties
at the specified location, classes derived from this class should satisfy all of the service and data requirements.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from PCC_CharactheristicsRealization to «interface» iPCC_Charactheristics
4= Realization from PCC_CharactheristicsRealization to PCC_Charachteristics

A.3.1.20 PCC_Voltage
Class in package '4.5.1 GridModel'

Details: This object is used to define the typical voltage characteristics for the PCC.

CONNECTORS
' Dependency Source -> Destination
From: : PCCParameters : Class , Public

To: PCC Voltage : Class , Public

ATTRIBUTES

W ExcursionReq : SerializableObject Private

Details:

W Max : Real Private

Details: This field represents the maximum voltage that is considered normal within this grid system (in kV).
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Min: Real Private

Details: This field represents the minimum voltage that is considered normal within this grid system (in kV).
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Nominal : Real Private

Details: This field represents the nominal voltage that is experienced by this grid system (in kV).
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.3.1.21 PowerlnterfaceDetails

Class in package '4.5.1 GridModel’
Details: This class is used to describe the coupling type, along with the equipment used to facilitate such interconnection (i.e.
a cable or a transformer).

Appendix A 254

PNNL-32687

CONNECTORS ‘
' Dependency Source -> Destination

From: : PowerlnterfaceDetails : Class , Public
To: Pl Type : Enumeration , Public

ATTRIBUTES

InterconnectionEquipment : Private
Details:

W Type:Pl_Type Private

Details:

A.3.1.22 SubstationList
Class in package '4.5.1 GridModel'
Details: This represents a list of substations that are connected to this grid subsystem.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from SubstationList to ArrayL.ist

CONNECTORS
' Dependency Source -> Destination
From: : Grid_Subtransmission : Class , Public

To: SubstationList : Class , Public

A.3.1.23 SubtransmissionList
Class in package '4.5.1 GridModel'
Details: This represents a list of sub transmissions systems that are managed by the DSO.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from SubtransmissionList to ArrayL.ist

CONNECTORS
' Dependency Source -> Destination
From: 1 Grid_DSO : Class , Public

To: SubtransmissionList : Class , Public

A.3.1.24 TransformerList
Class in package '4.5.1 GridModel'
Details: This represents a list of transformers that are connected to this grid subsystem.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from TransformerList to ArrayList

Appendix A 255

PNNL-32687

CONNECTORS
' Dependency Source -> Destination
From: : Grid_FeederSection : Class , Public

To: TransformerList : Class , Public

A.3.1.25 PCCParameters
Class in package '4.5.1 GridModel’
Details: This class lists typical PCC parameters that can be used to decide the suitability of an interconnection point.

CONNECTORS

/" Dependency Source -> Destination
From: : PCCParameters : Class , Public
To: Impedance : Class , Public
e Dependency Source -> Destination
From: : PCCParameters : Class , Public
To: PCC Voltage : Class , Public
Dependency Source -> Destination
From: : PCCParameters : Class , Public
To: PhaseCodeType : Enumeration , Public

ATTRIBUTES

Impedance : Impedance Public

Details: This field represents the electrical impedance present at the PCC.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Phases : PhaseCodeType Public

Details: This field represents the electrical phases present at the PCC.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

ReliabilityInfo : ReliabilityMetricsDep Private

Details: This field captures the reliability info at the specified PCC.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

VoltageCharachteristics : Voltage Public

Details: This field captures the typical voltage characteristics at this PCC
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.3.1.26 Pl _Type
Enumeration in package '4.5.1 GridModel'
Details: This enumeration lists possible interconnection types according to the type of systems being connected (AC/DC).

CONNECTORS

“ Dependency Source -> Destination
From: : PowerlnterfaceDetails : Class , Public
To: Pl _Type : Enumeration , Public

ENUMERATION:

DCDC_LineRegulator
DCDC_VoltageRegulator
DCDC_MechanicalConverter
DCDC_SwitchedPowerSupply
DCAC_Powerlnverter
DCAC_Mechanicallnverter

Appendix A 256

PNNL-32687

ENUMERATION:

DCAC_SwitchedPowerSupply
ACDC_Rectifier
ACDC_SwitchedPowerSupply
ACDC_ MechanicalConverter
ACAC IdealTransformer
ACAC_Transformer
ACAC_Powerlnverter
ACAC_MechanicalTransformer

Appendix A 257

A.4 Smart Contract Modeling and Support Services

In this section a series of auxiliary grid monitoring services will be introduced (from a modeling perspective). These services

are expected to assist with the measurement, verification and eventual settlement of TES-based transactions.

A.4.1

Reliability

PNNL-32687

This diagram provides a reference implementation of a data interface that can be used to capture grid reliability data. This
interface can be leveraged to provide additional details to market and monitoring applications that run on top of the TES

stack.

4.3.2 Primitives::
OrderedArrayList

add(T): void
count(): int
previtem(T): T
remove(int): void

A

+ o+ + o+

TES_Base
DistributionReliabilityMetrics

TES_Base

_7

CAIDI: Real
CAIFI: Real
MAIFI: Real
SAIDI: Real
SAIFI: Real

TransmissionReliabilityMetrics

4.3.11 Persona

doli

- ReserveMargin: Real

GenericldentityDep
{leaf}

7

|
|
1 | (
< T->ReliabilityEvent > | . .
' | DistributionReliability | TransmissionReliability
| |
ReliabilityEventList —4[£ Metrics: DistributionReliability Metrics — [Metrics: TransmissionReliability Metrics
+ GetMetrics(GridSystem): SerializableObject + GetMetrics(GridSystem): SerializableObject
+ UpdateMetrics(GridSystem): void + UpdateMetrics(GridSystem): void
«enumeration»
4.3.3 Time:: Kﬁaﬁmymeuiu
AggregationPeriods (use» s
sgregat : e DS e - ——— — E—_s ReliabilityMetricsDep
01 week ReliabilityMetricsRealization (leaf}
02 bi_weekly
03 semi_monthly
04 month «interface»
05 bimeant] < ———— = ~ ReliabilityMetrics
= N
OZlsemestey TES_Base N E AggregationPeriod: AggregationPeriods
08 year ReliabilityEvent - CaptureResposibleEntity: GenericldentityDep
06 quarter = — [ReliabilityEvents: ReliabilityEventList «enumeration»
09 2years CapturedBy: GenericldentityDep + TypeOfData: TypeOfReliabilityData il .\ [BeC ekt n
10 3years DateTime: DateTimeStamp
11 5years Description: String + GetMetrics(GridSYstem): SerializableObject [lean'smis.sion
12 10years EventDetails: SerializableObiject + UpdateMetrics(GridSystem) Distribution
Figure 75. Overview of the Reliability' package components
A.4.1.1 DistributionReliability

Class in package '4.6.2 Reliability'

Details: This object serves as a sample for realizing the ReliabilityMetrics interface in distribution systems. In this case, both
the underlying metrics and the update/reporting functions are customized to suit the needs of a typical DSO.

OUTGOING STRUCTURAL RELATIONSHIPS

| 4= Generalization from DistributionReliability to ReliabilityMetricsRealization

Appendix A

258

PNNL-32687

CONNECTORS

Dependency Source -> Destination
From: . DistributionReliability : Class , Public
To: DistributionReliabilityMetrics : Class , Public

ATTRIBUTES

Metrics : DistributionReliabilityMetrics Public
Details:

OPERATIONS

% GetMetrics (GridPoint : GridSystem) : SerializableObject Public
Details: This function encodes the distribution metrics into a SerializableObject that the dependent assembly can parse.

% UpdateMetrics (GridPoint : GridSystem) : void Public
Details: This function can be periodically called to update the system metrics.

A.4.1.2 DistributionReliabilityMetrics
Class in package '4.6.2 Reliability'
Details: This object represents the typical distribution-scale reliability metrics.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from DistributionReliabilityMetrics to TES Base

CONNECTORS

Dependency Source -> Destination
From: : DistributionReliability : Class , Public
To: DistributionReliabilityMetrics : Class , Public

ATTRIBUTES

CAIDI : Real Private

Details: Customer Average Interruption Duration Index.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
CAIFI: Real Private

Details: Customer Average Interruption Frequency Index.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
MAIFI : Real Private

Details: Momentary Average Interruption Frequency Index.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
W SAIDI : Real Private

Details: System Average Interruption Duration Index.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)
W SAIFI: Real Private

Details: System Average Interruption Frequency Index.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.4.1.3 ReliabilityEvent

Class in package '4.6.2 Reliability'
Details: This represents a single reliability event, the event has enough metadata to trace the source and event time (along
with the event data).

Appendix A 259

PNNL-32687

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from ReliabilityEventto TES_Base

CONNECTORS
Dependency Source -> Destination

From: : ReliabilityMetrics : Class , Public
To: ReliabilityEvent : Class , Public

ATTRIBUTES

CapturedBy : GenericldentityDep Private

Details: This field is used to indicate the identity of the agent that has reported this event.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

DateTime : DateTimeStamp Private

Details: This field encodes the date/time at which this event was captured.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W Description : String Private

Details: This field can be used to provide a text-based description of the event.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

EventDetails : SerializableObject Private

Details: This field contains the actual event data. It is expected that the UpdateMetrics function can interpret the data as
intended.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.4.1.4 ReliabilityEventList
Class in package '4.6.2 Reliability"

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from ReliabilityEventList to OrderedArrayList
4= Realization from ReliabilityEventList to ArrayList

A.4.15 ReliabilityMetrics

Class «interface» in package '4.6.2 Reliability'
Details: This object represents the interface requirements that a reliability data producer/consumer must implement. It
abstracts the type of system by relying on a serialized object to provide data exchanges, along with a data descriptor
(TypeOfReliabilityData).

STRUCTURAL PART OF ReliabilityMetrics

¥ ReliabilityMetrics : ProvidedInterface

CONNECTORS
' Dependency Source -> Destination

From: : ReliabilityMetrics : Class , Public
To: ReliabilityEvent : Class , Public

Appendix A 260

PNNL-32687

CONNECTORS
' Dependency Source -> Destination

From: : ReliabilityMetrics : Class , Public

To: TypeOfReliabilityData : Enumeration , Public
A Dependency Source -> Destination

From: : ReliabilityMetrics : Class , Public

To: AdqggregationPeriods : Enumeration , Public

ATTRIBUTES

AggregationPeriod : AggregationPeriods Private

Details: This represents the aggregation period over which statistical records are computed.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

i CaptureResposibleEntity : GenericldentityDep Private

Details: This field defines the entity that is responsible for capturing the reliability metrics.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

ReliabilityEvents : ReliabilityEventList Private

Details: This ordered, arrayList can be used to store past reliability events. This type of field can be thought as a historical data
store.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

TypeOfData : TypeOfReliabilityData Public

Details: This field describes the data being provided to the reliability subscriber.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% GetMetrics (GridPoint : GridSystem) : SerializableObject Public
Details: This function can be used to retrieve the system reliability metrics using a serializable data container.

i UpdateMetrics (GridPoint : GridSystem) : Public
Details: This function enables subscribers to request data updates on-demand.

A.4.1.6 ReliabilityMetricsDep

Class in package '4.6.2 Reliability'
Details: Objects that reference this class expect an object that realizes the ReliabilityMetrics Interface. This class is a leaf and
is only intended to serve as a data type.

s Usage Source -> Destination
From: : ReliabilityMetricsDep : Class , Public

To: ReliabilityMetrics : ProvidedInterface , Public

A.4.1.7 ReliabilityMetricsRealization

Class in package '4.6.2 Reliability'
Details: This abstract class implements the ReliabilityMetrics interface which enables agents to get reliability information,
independent from the system or point of interconnection. Classes derived from this class should satisfy all of the service and
data requirements.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from ReliabilityMetricsRealization to ReliabilityMetrics
4= Generalization from ReliabilityMetricsRealization to «interface» ReliabilityMetrics

Appendix A 261

PNNL-32687

A.4.1.8 TransmissionReliability

Class in package '4.6.2 Reliability'
Details: This object serves as a sample for realizing the ReliabilityMetrics interface in transmission systems. In this case,
both the underlying metrics and the update/reporting functions are customized to suit the needs of NERC reporting
requirements.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from TransmissionReliability to ReliabilityMetricsRealization

CONNECTORS

Dependency Source -> Destination
From: : TransmissionReliability : Class , Public
To: TransmissionReliabilityMetrics : Class , Public

ATTRIBUTES

Metrics : TransmissionReliabilityMetrics Public
Details: Percentage of additional capacity over load
Reserve Margin (%) = (Capacity — Load)/Load X 100
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

Details: This function encodes the transmission metrics into a SerializableObject that the dependent assembly can parse.

% UpdateMetrics (GridPoint : GridSystem) : void Public
Details: This function can be periodically called to update the system metrics.

A.4.1.9 TransmissionReliabilityMetrics
Class in package '4.6.2 Reliability'
Details: This object represents the typical transmission-scale reliability metrics.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from TransmissionReliabilityMetrics to TES_Base

CONNECTORS
' Dependency Source -> Destination

From: : TransmissionReliability : Class , Public
To: TransmissionReliabilityMetrics : Class , Public

ATTRIBUTES

ReserveMargin : Real Private
Details: This number indicates the amount of reserves according to NERC
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Appendix A 262

PNNL-32687

A.4.1.10 TypeOfReliabilityData

Enumeration in package '4.6.2 Reliability'
Details: This enumeration can be used to identify the type of reliability data being reported.

CONNECTORS

#" Dependency Source -> Destination

From: : ReliabilityMetrics : Class , Public
To: TypeOfReliabilityData : Enumeration , Public

ENUMERATION:

Transmission
Distribution

Appendix A 263

PNNL-32687

A4.2 Measurement and Verification

This diagram contains a variety of data models that can be used to record a variety of commodities, quantities, using a wide
variety of data aggregation methods. It is expected that attestation-capable resources will be responsible for capturing this
data, while a mixture of on-chain and of-chain methods will be used to capture the streams of data.

Most of the data models introduced by this section are based on the models contained in IEEE 2030.5.

Appendix A 264

PNNL-32687

«enumeration» UsagePoint AttestationDevice «enumeration» «enumeration» «enumeration»
RoleFlagsType _ _> 4.4.7 Hierarchy::MeteringDevice 4.3.10 Grid Objects:: CommodityType DataQualifierType
+ MeterlD: string [0..1] :I F N - i i - 4.5.1 GridModel: Al lati t Type 1
isDC - GridLocation: GrldCoupImgPomtDeE b= == GridCouplingPointDep : EIectr!c!ty_erdlrect_metered Ave@ge
isDER fleaf} Cumulative Electricity_direct_metered Maximum
isMirror DeltaData Air Minimum
isPEV << A U Indicating NaturalGas NA
isPremisesAggregationPoint \ s Roaie NA Propane Normal
isRevenueQuality \E roleFlags: RoleFlagsType eacing Typetin Summation PotableWater Std_Dev‘iatlion_pop
isSubmeter , [+ serviceCategoryKind: ServiceKind - ReadingCharachteristics: ReadingType Instantaneous /7 Std_deviation_sample
P 7/ // [£ status: ElectricalStatus L / /7
/ / Vi 7 Vi oo, 4 «enumeration»
«enumeration» 4 / ReadingType 7 y - 4.3.10 Grid Objects:
ServiceKind p 7 ‘/ /7y, 25 :FlowDirectionKind
. MetarRa + accumulationBehaviour: AccumulationBehaviourType :| / Y /
Electricity A ;i:;u;gz:;r;;. e + calorificValue: UnitValueType /7,7 forward
o TR ’ + description: string [0..1] + commodity: Commodity Type dr 7 cenuma— leading
:ElectricalStatus 4
Water + conversionFactor: UnitValueType // KindType net
Time on] o T + dataQualifier: DataQualifierType | Y guns
Pressure Off enumel;aml:.r;;:ea ype + flowDirection: FlowDirectionKind] X q1MinusQ4
Heaf Indeterminate + kind: kindType N ——— — — — — _ _ _ __ __ BN e q1PlusQ2
Cooling NA + maxNumberOfintervals: Uint8 B Demarati q1PlusQ3
Amperes_RMS + measuringPeriod: MeasuringPeriod [0..1] | - - By lagging
Degree_Celsius + meterlimit: Real [0~_1] _ S—-— _ A q1P|l:ISQ4
ReadingLink Joules + numberOfConsHmptlénBlocks: Uint8 S—-—_ _ _ e q2MinusQ3
Hertz + numberOfTouTiers: Uint8 ~—_ - q2PlusQ3
Readings: Reading [0..*] :| ——————— \ Watts + phase: PhaseCodeType :I ~~_ ~<_ - q2PlusQ4
\ Cubic_Meter + powerOfTenMultiplier: PowerOfTenMultiplierType | - T~ S~ q3MinusQ2
\\ VoltAmperes + sublntervalLength: string [0..1] = \\ T~a - : q3PlusQ4
VoltAmperesReactive + tieredConsumptionBlocks: boolean \ T~a - | quadrantl
Reading <=[E uom: UomType =~ quadrant2
CosTheta B YP! \\J =~ |
«enumeration» Volt_Sq | | quadrant3
QFlags t Ampere_Sq «enumeration» v : GEGlciiL:
reverse
valid VAhh 4.3.4 Math:: «enumeration» | -
. Wi " T N N .
Manual_Value ReadingBase W Quantity PowerOfTenMultiplierType 4,3.;0 G::dobjects. I\ totalByPhase
i istori UnitValueType :PhaseCodeType
Ez:m::g-ﬂﬁ:ﬁcal = + consumptionBlock: string [0..1] Ah w -09 nano {\
QuestionaBIe y E qualityFlags: string [0...1] Cubic_Ft - Multiplier: PowerOfTenMultiplierType -06 m!cro 000 NA
o + timePeriod: string [0..1] Ft3h - UOM: UomType {redefines UOM} LBl 032¢ «enumeration»
© [£ touTier: string [0..1] m3h 00 unit 033CN MeasuringPeriod
Projected_Forecasted /7 B Valve: string [0%4) Gallon_US 03 kilo 040 CA
/ Gallon_Imperial ConsumptionTiers «dataType» 06 mega 064 B 00 N°"e_
il i] TOUsBlocks 09 giga 065 BN 01 tenMinute
TOUType eaianli - isApplicable: Boolean . 02 fifteenMinute
- b . - UpperLimits: ArrayList<Real> [1..*] .
NA: int Gallon_USh touBlocks: TOUsBLocks s A 03 oneer;ute
TOU_SCHEME: string BTU 129AN g‘; ::’en:m fr’lu’t:"“'
Il nui
BTUA 4.3.2 Primitives:: RS S
) 06 fiveMinute
Liter i 224 ABC
Arraylist 07 sixtyMinute
Literh [225 ABCN _
PA_absolute 4.3.4.Math:: <T->Real> + add(T): void 016N 1;) twoM |rt1ute
PA_relative Arraylist<Real> + count(): int 017 NG pres?n
Therm + remove(int): void ;? Srevfyul\s/l‘ "
wenty Minute

Appendix A

Figure 76.

Overview of the MeasurementandVerification' package components

265

PNNL-32687

A.4.2.1 ConsumptionTiers

Class in package '4.6.1 Measurement and Verification'
Details: This class allows the TES market operator to define the different pricing blocks that are in use. These are usually
broken according to the consumption over a period of time. This object model was taken from IEEE 2030.5

ATTRIBUTES

isApplicable : Boolean Private
Details:

touBlocks : TOUsBLocks Private
Details:

A.4.2.2 IdentifiedObject
Class in package '4.6.1 Measurement and Verification'
Details: This is a root class to provide common naming attributes for all classes needing naming attributes

ATTRIBUTES

i description : string Public

Details: The description is a human readable text describing or naming the object.

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 0

mRID : string Public

Details: The global identifier of the object.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 1

version : string Public

Details: Contains the version number of the object. See the type definition for details.

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 0

A.4.2.3 MeterReading

Class in package '4.6.1 Measurement and Verification'
Details: This class holds the quantities, and associated properties obtained from the meter. It is recommended that these data
readings are stored outside the blockchain network, although periodic checkpoints can be stored or hashed into the ledger.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from MeterReading to ReadingTypeLink
4= Generalization from MeterReading to MeteringDevice
4= Generalization from MeterReading to ReadingLink

ATTRIBUTES

W description : string Public

Details: The description is a human readable text describing or naming the object.

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 0

Appendix A 266

PNNL-32687

A.4.2.4 Reading
Class in package '4.6.1 Measurement and Verification'
Details: This class contains the specific value measured by a meter or other recording asset. Adapted from IEEE 2030.5

OUTGOING STRUCTURAL RELATIONSHIPS

| 4= Generalization from Reading to ReadingBase \

CONNECTORS

#" Dependency Source -> Destination
From: : ReadingLink : Class , Public
To: Reading : Class, Public

A.4.2.5 ReadingBase
Class in package '4.6.1 Measurement and Verification'
Details: This class stores the actual reading. The class augments a captured value by adding metadata related to its quality

and time of acquisition.

CONNECTORS
' Dependency Source -> Destination

From: : ReadingBase : Class , Public
To: TOUType : Class, Public

A Dependency Source -> Destination
From: : ReadingBase : Class , Public
To: QFlags : Enumeration , Public

ATTRIBUTES

consumptionBlock : string Public
Details: Indicates the consumption block related to the reading. REQUIRED if ReadingType numberOfConsumptionBlocks is
non-zero. If not specified, is assumed to be "0 - N/A".
Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 0

qualityFlags : string Public
Details: List of codes indicating the quality of the reading, using specification:

Bit 0 - valid: data that has gone through all required validation checks and either passed them all or has been verified
Bit 1 - manually edited: Replaced or approved by a human
Bit 2 - estimated using reference day: data value was replaced by a machine computed value based on analysis of historical
data using the same type of measurement.
Bit 3 - estimated using linear interpolation: data value was computed using linear interpolation based on the readings before
and after it
Bit 4 - questionable: data that has failed one or more checks
Bit 5 - derived: data that has been calculated (using logic or mathematical operations), not necessarily measured directly
Bit 6 - projected (forecast): data that has been calculated as a projection or forecast of future readings
Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs =0

W timePeriod : string Public
Details: The time interval associated with the reading. If not specified, then defaults to the intervalLength specified in the
associated ReadingType.

Appendix A 267

PNNL-32687

ATTRIBUTES

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs =0

touTier : string Public
Details: Indicates the time of use tier related to the reading. REQUIRED if ReadingType numberOfTouTiers is non-zero. If
not specified, is assumed to be "0 - N/A".
Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs =0

w value : string Public

Details: Value in units specified by ReadingType

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 0

A.4.2.6 ReadingLink
Class in package '4.6.1 Measurement and Verification'
Details: A Link to a list of readings. These readings should be stored off the blockchain.

CONNECTORS
' Dependency Source -> Destination

From: : ReadingLink : Class , Public
To: Reading: Class , Public

ATTRIBUTES

Readings : Reading Private
Details:

A.4.2.7 ReadingType

Class in package '4.6.1 Measurement and Verification'
Details: This structure serves to define a reading's characteristics. These characteristics are set once per type of reading. The
base class was adopted from IEEE 2030.5

CONNECTORS
' Dependency Source -> Destination

From: : ReadingType : Class , Public

To: AccumulationBehaviourType : Enumeration , Public

a Dependency Source -> Destination

From: : ReadingType : Class , Public

To: UomType : DataType , Public

A Dependency Source -> Destination

From: : ReadingType : Class , Public

To: DataQualifierType : Enumeration , Public
Dependency Source -> Destination

From: : ReadingType : Class , Public

To: UomType : DataType , Public

Appendix A 268

PNNL-32687

CONNECTORS
' Dependency Source -> Destination

From: : ReadingType : Class , Public

To: KkindType : Enumeration , Public

A Dependency Source -> Destination

From: : ReadingType : Class , Public

To: FlowDirectionKind : Enumeration , Public
Dependency Source -> Destination

From: : ReadingType : Class , Public

To: MeasuringPeriod : Enumeration , Public

A Dependency Source -> Destination

From: : ReadingType : Class , Public

To: PhaseCodeType : Enumeration , Public

A Dependency Source -> Destination

From: : ReadingType : Class , Public

To: PowerOfTenMultiplierType : Enumeration , Public

A Dependency Source -> Destination

From: : ReadingType : Class , Public

To: CommodityType : Enumeration , Public

ATTRIBUTES

i accumulationBehaviour : AccumulationBehaviourType Public
Details: The “accumulation behaviour” indicates how the value is represented to accumulate over time.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1

minOccurs = 0

w calorificValue : UnitValueType Public
Details: The amount of heat generated when a given mass of fuel is completely burned. The CalorificValue is used to convert
the measured volume or mass of gas into kWh. The CalorificValue attribute represents the current active value.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 0

commodity : CommodityType Public

Details: Indicates the commodity applicable to this ReadingType.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs =0

W conversionFactor : UnitValueType Public
Details: Accounts for changes in the volume of gas based on temperature and pressure. The ConversionFactor attribute
represents the current active value. The ConversionFactor is dimensionless. The default value for the ConversionFactor is 1,
which means no conversion is applied. A price server can advertise a new/different value at any time.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1

minOccurs =0

w dataQualifier : DataQualifierType Public
Details: The data type can be used to describe a salient attribute of the data. Possible values are average, absolute, and etc.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1

minOccurs = 0

flowDirection : FlowDirectionKind Public
Details: Anything involving current might have a flow direction. Possible values include forward and reverse.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1

minOccurs =0

@ kind : kindType Public

Details: Compound class that contains kindCategory and kindIndex

Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs =1
minOccurs =0

Appendix A 269

PNNL-32687

ATTRIBUTES

¥ maxNumberOfintervals : Uint8 Public
Details: To be populated for mirrors of interval data to set the expected number of intervals per ReadingSet. Servers may
discard intervals received that exceed this number.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 0

¥ measuringPeriod : MeasuringPeriod Public

Details: Default interval length specified in seconds.

Eq. to the Measuringperiod in IEC

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 0

¥ meterLimit : Real Public
Details: SupplyMeter->meterLimit.
Reflect the max amount of X that can reliably be measured.
Reflects the supply limit set in the meter. This value can be compared to the Reading value to understand if limits are being
approached or exceeded. Units follow the same definition as in this ReadingType.
Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 0

numberOfConsumptionBlocks : Uint8 Public
Details: Number of consumption blocks. 0 means not applicable, and is the default if not specified. The value needs to be at
least 1 if any actual prices are provided.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs =0

¥ numberOfTouTiers : Uint8 Public
Details: The number of TOU tiers that can be used by any resource configured by this ReadingType. Servers SHALL populate
this value with the largest touTier value that will ever be used while this ReadingType is in effect. Servers SHALL set
numberOfTouTiers equal to the number of standard TOU tiers plus the number of CPP tiers that may be used while this
ReadingType is in effect. Servers SHALL specify a value between 0 and 255 (inclusive) for numberOfTouTiers (servers
providing flat rate pricing SHOULD set numberOfTouTiers to 0, as in practice there is no difference between having no tiers
and having one tier).
Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1

minOccurs =0

W phase : PhaseCodeType Public

Details: Contains phase information associated with the type.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs =0

¥ powerOfTenMultiplier : PowerOfTenMultiplierType Public
Details: Indicates the power of ten multiplier applicable to the unit of measure of this ReadingType.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1

minOccurs = 0

“ sublntervalLength : string Public
Details: Default sub-interval length specified in seconds for Readings of ReadingType. Some demand calculations are done
over a number of smaller intervals. For example, in a rolling demand calculation, the demand value is defined as the rolling
sum of smaller intervals over the intervalLength. The subintervalLength is the length of the smaller interval in this calculation.
It SHALL be an integral division of the intervalLength. The number of sub-intervals can be calculated by dividing the
intervalLength by the subintervalLength.
Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1

minOccurs = 0

W tieredConsumptionBlocks : boolean Public

Details: Specifies whether or not the consumption blocks are differentiated by TOUTier or not. Default is false, if not
specified.

true = consumption accumulated over individual tiers

Appendix A 270

PNNL-32687

ATTRIBUTES

false = consumption accumulated over all tiers
Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs =0

uom : UomType Public

Details: Indicates the measurement type for the units of measure for the readings of this type.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs =0

A.4.2.8 ReadingTypeLink
Class in package '4.6.1 Measurement and Verification'
Details: This class is used as a placeholder for describing the reading type (as defined by IEEE 2030.5)

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from ReadingTypeLink to ReadingType

ATTRIBUTES

ReadingCharachteristics : ReadingType Private
Details:

A.42.9 TOUType

Class in package '4.6.1 Measurement and Verification'
Details: This class can be used to define the Time Of Use scheme to be used in price calculation.

CONNECTORS
' Dependency Source -> Destination
From: : ReadingBase : Class , Public

To: TOUType : Class, Public

ATTRIBUTES

NA:int Public
Details: Properties: maxOccurs = 1
minOccurs = 1

W TOU_SCHEME : string Public
Details: Properties: maxOccurs = 1
minOccurs = 1

A.4.2.10 UnitValueType

Class in package '4.6.1 Measurement and Verification'
Details: This class is an specialization of the quantity data type. It introduces a power of ten multiplier and re-defines the
UOM field.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from UnitValueType to Quantity

Appendix A 271

PNNL-32687

ATTRIBUTES

W Multiplier : PowerOfTenMultiplierType Private

Details: This field contains the power of ten multiplier by which the value must be multiplied to obtain the actual value
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

UOM : UomType Private

Details: This field can be used to identify the Unit Of Measure that is being used to report the value.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.4.2.11 UsagePoint
Class in package '4.6.1 Measurement and Verification'
Details: This class is used to document the measuring point identifier. This identifier allows end-users to abstract the grid

model from the measuring device data feed.
OUTGOING STRUCTURAL RELATIONSHIPS
‘4= Generalization from UsagePoint to UsagePointBase
CONNECTORS
' Dependency Source -> Destination

From: : UsagePoint : Class , Public
To: MeteringDevice : Class , Public

ATTRIBUTES

MeterID : string Public

Details: The UID of the source device. This attribute SHALL be present when mirroring.

Multiplicity: (0..1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 0

A.4.2.12 UsagePointBase

Class in package '4.6.1 Measurement and Verification
Details: This class is used to define the characteristics of the metering point.

CONNECTORS

Dependency Source -> Destination
From: : UsagePointBase : Class , Public
To: ElectricalStatus : Enumeration , Public
P Dependency Source -> Destination
From: : UsagePointBase : Class , Public
To: RoleFlagsType : Enumeration , Public
A Dependency Source -> Destination
From: : UsagePointBase : Class , Public
To: ServiceKind : Enumeration , Public

ATTRIBUTES

roleFlags : RoleFlagsType Public

Details: Specifies the roles that apply to the usage point.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: anonymousRole = true
default =
fixed =
form =

Appendix A 272

PNNL-32687

ATTRIBUTES

maxOccurs = 1
minOccurs =1

W serviceCategoryKind : ServiceKind Public

Details: The kind of service provided by this usage point.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 1

status : ElectricalStatus Public
Details: Specifies the current status of the service at this usage point.

0 = off

1=on

Multiplicity: (1, Allow duplicates: 0, Is ordered: False) Properties: maxOccurs = 1
minOccurs = 1

A.4.2.13 CommodityType

Enumeration in package '4.6.1 Measurement and Verification'
Details: This enumeration was taken from IEEE 2030.5. It can be used to identify the type of commodity being measured.

CONNECTORS

Dependency Source -> Destination
From: : ReadingType : Class , Public
To: CommodityType : Enumeration , Public

ENUMERATION:
Electricity_indirect_metered

Electricity_direct_metered

Air

NaturalGas

Propane

PotableWater

A.4.2.14 DataQualifierType

Enumeration in package '4.6.1 Measurement and Verification'
Details: This enumeration can be used to specify the data sampling mechanism used to capture the data (if applicable). This

enumeration was taken from IEEE 2030.5.

CONNECTORS

Dependency Source -> Destination
From: : ReadingType : Class , Public
To: DataQualifierType : Enumeration , Public

ENUMERATION:

Average Data readings are averaged.

Maximum Data reading is the maximum value observed.
Minimum Data reading is the minimum value observed.
NA

Normal The value reported is the actual value.

Std_Deviation_pop

Appendix A

273

PNNL-32687

ENUMERATION:
Std_deviation_sample

A.4.2.15 kindType

Enumeration in package '4.6.1 Measurement and Verification'
Details: This enumeration is used to specify the type of measurement that is being reported. This enumeration was taken
from IEEE 2030.5.

CONNECTORS

' Dependency Source -> Destination
From: : ReadingType : Class , Public
To: kindType : Enumeration , Public

ENUMERATION:

Currency
Demand
Energy
Power
NA

A.4.2.16 MeasuringPeriod

Enumeration in package '4.6.1 Measurement and Verification'
Details: This enumeration can be used to describe the aggregation time over which the measurement is reported. This
enumeration was obtained from IEEE 2030.5

CONNECTORS ‘
" Dependency Source -> Destination
From: : ReadingType : Class , Public

To: MeasuringPeriod : Enumeration , Public

ENUMERATION:

00 None

01 tenMinute

02 fifteenMinute
03 oneMinute
04 twentyfourHour
05 thirtyMinute
06 fiveMinute
07 sixtyMinute
10 twoMinute
15 present

16 previous

31 twentyMinute

A.4.2.17 QFlags
Enumeration in package '4.6.1 Measurement and Verification'
Details: This enumeration can be used to describe the quality properties of an individual reading.

Appendix A 274

PNNL-32687

CONNECTORS

Dependency Source -> Destination
From: : ReadingBase : Class , Public
To: QFlags : Enumeration , Public

ENUMERATION:

Valid

Manual_Value
Estimated historical
Estimated Linear
Questionable

Derived

Projected Forecasted

A.4.2.18 RoleFlagsType

Enumeration in package '4.6.1 Measurement and Verification'
Details: This enumeration can be used to describe the meter type. This can be a standalone system or be integrated into
another device. This enumeration was taken from IEEE 2030.5

CONNECTORS

Dependency Source -> Destination
From: : UsagePointBase : Class , Public
To: RoleFlagsType : Enumeration , Public

ENUMERATION:
isDC
isDER
isMirror
iSPEV
isPremisesAggregationPoint
isRevenueQuality
isSubmeter

A.4.2.19 ServiceKind

Enumeration in package '4.6.1 Measurement and Verification'
Details: This enumeration can be used to describe the type of service that is being measured, for the B-A TES framework it
is assumed that electricity is the primary kind. This enumeration was taken from IEEE 2030.5

CONNECTORS

Dependency Source -> Destination
From: : UsagePointBase : Class , Public
To: ServiceKind : Enumeration , Public

ENUMERATION:

Electricity
Gas
Water
Time
Pressure
Heat

Appendix A

275

PNNL-32687

ENUMERATION:
Cooling

A.4.2.20 TOUsBlocks

DataType in package '4.6.1 Measurement and Verification'
Details: This data type can be used to define multiple TimeOfUse data blocks, useful for calculating total costs in markets
with fixed tariffs.

ATTRIBUTES

UpperLimits : ArrayList<Real> Private
Details:

A.4.2.21 UomType

DataType «dataType» in package '4.6.1 Measurement and Verification'
Details: The enumeration provides unit of measurement that are intended for electricity applications. The values are listed in
IEEE 2030.5, and are themselves sourced from IEC 61968-9 [61968]. Other case-specific units of measure may be added.

CONNECTORS ‘
' Dependency Source -> Destination

From: : ReadingType : Class , Public
To: UomType : DataType , Public

ENUMERATION:

NA
Amperes_RMS
Degree_Celsius
Joules

Hertz

Watts
Cubic_Meter
VoltAmperes
VoltAmperesReactive
CosTheta
Volt_Sq
Ampere_Sq
VAh

Wh

Varh

Ah

Cubic Ft

Ft3h

m3h

Gallon _US
Gallon_Imperial
Kelvin
Gallon_Imph
Gallon_USh
BTU

BTUh

Liter

Literh
PA_absolute

Appendix A 276

PNNL-32687

ENUMERATION:

PA_relative
Therm

A.4.2.22 UomType
DataType in package '4.6.1 Measurement and Verification'

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from UomType to «dataType» UomType

CONNECTORS

' Dependency Source -> Destination
From: : ReadingType : Class , Public
To: UomType : DataType , Public

A.4.2.23 CommodityType - Copy

Enumeration in package '4.6.1 Measurement and Verification'
Details: 0 = Not Applicable (default, if not specified)
1 = Electricity secondary metered value (a premises meter is typically on the low voltage, or secondary, side of a service

transformer)

2 = Electricity primary metered value (measured on the high voltage, or primary, side of the service transformer)
4 = Air

7 = NaturalGas

8 = Propane

9 = PotableWater

10 = Steam

11 = WasteWater

12 = HeatingFluid

13 = CoolingFluid

All other values reserved.

ENUMERATION:

Electricity_indirect_metered
Electricity_direct_metered
Air

NaturalGas

Propane

PotableWater

Appendix A 277

PNNL-32687

A4.3 Smart Contracts

This diagram presents an overview of the components found within a smart contract. Most of the information of this model is
abstract, and its functionality must be defined by the underlying blockchain and unique application requirements.

1,1
«interface» \l/ |
iSmartContract
SCFunction
- _CurrentTransaction: SerializableObject i
+ ExposedFunctions: SCFunction [1..*] - _hameSpace: int «enumeratlo!w»
- InternalFunctions: SCFunction [0..*] - _PrevFunction: SCFunction TypeOfFunction
- UnderlyingBlockchain: GenericBlockchainDep + Code: Bytes
- FunctionType: TypeOfFunction | — — = Ratasiaee
+ GetSubmitterldentity(): void - Name: String LegalContract
GetTime(): void + Parameters: SerializableObject Logchutomat!on
+ populateCurrentTransaction(): void MessagePassing
+ GetParameters(): void Computation
iSmartContract K

| = — — — | SmartContractRealization
1
((USG)) %
—_—

SmartContractDep
{leaf} SmartContract_Fabric

- _lOBasics: Object
- _SecurityContext: Object
+ _Stub: SerializableObject

+ PopulatelOBasics(): void
PopulateSecurity Context(): void
PopulateStub(): void

Figure 77. Overview of the SmartContracts' package components

A.4.3.1 iSmartContract

Class «interface» in package '4.6.3 Smart Contracts'
Details: This interface summarizes the properties and capabilities of any smart contract. A smart contract current world-state

depends on the underlying blockchain implementation, while modifications are dictated by the functions/procedures stored
within.
It is likely that this basic properties can be extended or redefined depending on the actual blockchain being used.

STRUCTURAL PART OF iSmartContract

¥ iSmartContract : ProvidedInterface

CONNECTORS
' Dependency Source -> Destination
From: : iSmartContract : Class , Public

To: GenericBlockchainDep : Class , Public

Appendix A 278

PNNL-32687

ATTRIBUTES

_CurrentTransaction : SerializableObject Private

Details: This is a serialized version of the transaction. This info can be used to extract other properties such as the agent that
submitted the transaction and the time at which was created.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

ExposedFunctions : SCFunction Public

Details: This represents functions which can be called by the blockchain network via a transaction request.

Multiplicity: (1..*, Allow duplicates: 0, Is ordered: False)

InternalFunctions : SCFunction Private

Details: These are internal functions who remain hidden to the blockchain network but can be called by exposed or internal
functions.

Multiplicity: (0..*, Allow duplicates: 0, Is ordered: False)

" UnderlyingBlockchain : GenericBlockchainDep Private

Details: This contains a reference to the underlying blockchain implementation. It contains its description, underlying ledger
and the functions needed to access it.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

% GetSubmitterldentity () : void Public
Details: This function parses the transaction request to determine the identity of the submission agent.

% GetTime () : void Public
Details: This function parses the transaction request to determine the time at which the current transaction was
submitted/received.

% populateCurrentTransaction () : void Public
Details: This function loads the transaction request into a local object. The result should be put in _CurrentTransaction.

A.4.3.2 SCFunction

Class in package '4.6.3 Smart Contracts'
Details: This represents a Smart Contract function. This construct should be generic enough to be applicable to most
common blockchain implementations

CONNECTORS
' Dependency Source -> Destination

From: : SCFunction : Class , Public
To: SCFunction : Class , Public
A Dependency Source -> Destination
From: : SCFunction : Class , Public
To: TypeOfFunction : Enumeration , Public
A Dependency Source -> Destination
From: : Policy : Class , Public
To: SCFunction : Class , Public

Dependency Source -> Destination
From: : SCFunction : Class , Public
To: SCFunction : Class , Public
A Usage «Instantiate» Source -> Destination
From: : CapacityTester_RegistrationEN : Object , Public
To: SCFunction : Class , Public
P Dependency Source -> Destination
From: : BaseClass : Class , Public
To: SCFunction : Class , Public

Appendix A

279

PNNL-32687

ATTRIBUTES

W _nameSpace : int Private

Details: This is an internal reference to the namespace on which the function is currently being executed. Named spaces enable
developers to gain control over the properties and methods that are visible.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

W _PrevFunction : SCFunction Private

Details: This pointer can be used to assemble a virtual callstack, the callstack can be used to determine the original function
invocation/context.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Code : Bytes Public

Details: This field represents the logical code contained within a function. This code may be interpreted, compiled binary or a
mixture of them.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

FunctionType : TypeOfFunction Private

Details: This field can be used to classify the function type, this is informative and the actual usage will be dependent on the
code logic, provided parameters and execution context.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Name : String Private

Details: This field represents the function name.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

i# Parameters : SerializableObject Public

Details: This field represents the parameters passed to this function. The parameters should be encoded on a manner that it
supports the reconstruction of the callstack (see _PrevFunction).

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

@ GetParameters () : void Public
Details:

A.4.3.3 SmartContract_Fabric

Class in package '4.6.3 Smart Contracts'
Details: This class represents a reference implementation of SmartContracts within Hyperledger Fabric. The class inherits
the SmartContractRealization, thereby realizing the iSmartContract interfacee.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from SmartContract Fabric to SmartContractRealization

ATTRIBUTES
W _|OBasics : Object Private
Details:
_SecurityContext : Object Private
Details:
W _Stub : SerializableObject Public
Details:

OPERATIONS
% PopulatelOBasics () : void Public
Details:
% PopulateSecurityContext () : void Public
Details:
% PopulateStub () : void Public

Appendix A

280

PNNL-32687

OPERATIONS
Details:

A.4.3.4 SmartContractDep

Class in package '4.6.3 Smart Contracts'
Details: Objects whom reference this class expect an object that realizes the SmartContract Interface. This class is a leaf and
is only intended to serve as a data type.

CONNECTORS

' Usage Source -> Destination
From: : SmartContractDep : Class , Public
To: iSmartContract : Providedinterface , Public

A.4.3.5 SmartContractRealization

Class in package '4.6.3 Smart Contracts'
Details: This abstract class implements the SmartContract interface, classes derived from this class should satisfy all of the
service and data requirements.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from SmartContractRealization to «interface» iSmartContract
= Realization from SmartContractRealization to iSmartContract

A.4.3.6 TypeOfFunction

Enumeration in package '4.6.3 Smart Contracts'
Details: This list provides a set of examples that can be used to describe a smart contract funtion.

CONNECTORS
' Dependency Source -> Destination

From: : SCFunction : Class , Public
To: TypeOfFunction : Enumeration , Public

ENUMERATION:

DataStorage
LegalContract
LogicAutomation
MessagePassing
Computation

Appendix A 281

PNNL-32687

A.5 Operations-Structural components

In this section, a sample set of structural components that may be relevant to a TES five-stage operational model are
presented. These structural components are intended to serve as a reference and application developers will need to build
their processes based on their needs and templates introduced in the previous sections.

A.5.1 Qualification&Registration
Package in package '4.7 Operations-Structural components'

Qualification diagram

4.8 Operational_Examples:: PersonaRealization
TESRequirements 4.3.11 Persona::AutomatedSystem
- RegAttributes: int - CommonName: String
R ins: i - ldentifiableName: Strin
RegMemberships: int QualifiedAuditors g
4.4.7 Hierarchy::
CapacityTester %
TESResourceQuaification
- /7
- QualificationAgent: CapacityTester :| 1 InstalledSystemldentity
- QualifiedEntity: InstalledSystemldentity JpF--—————-——- ~ < A
D
:iEntityQualifications [Resource: InstalledSystem] ~_
- DigitalCertificate: DigitalCertificateDep [0..1] N
- Qualifications: Qualification \l/
- QualifiedEntity: PersonaDep TES_Base
- - - 4.4.1 Resources::InstalledSystem
::iEntityQualifications
+ hasCertification(): void - GridEquipment: GridEquipmentDep
+ validateRights(): void - Gridinterface: GridCouplingPointDep [0..1]
- isGridTied: Boolean
<7 - isResponsive: Boolean
. e - Operatorldentity: GenericldentityDep
iEntityQualifications - Ownerldentity: GenericldentityDep
4.3.9 Permissions&Qualifications::
EntityQualificationRealization

Figure 78. Overview of the Qualification' package components

A.5.1.1 Equipment
Class in package '4.7.1 Qualification&Registration’

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Equipment to GenericldentityRealization

CONNECTORS

' Dependency Source -> Destination
From: : Equipment : Class , Public
To: InstalledSystemldentity : Class , Public

ATTRIBUTES

W PersonaDetails : InstalledSystemldentity Public
Details:

Appendix A

282

PNNL-32687

A5.1.2 InstalledSystemldentity
Class in package '4.7.1 Qualification&Registration’
Details: This object

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from InstalledSystemldentity to AutomatedSystem

CONNECTORS

/" Dependency Source -> Destination

From: . InstalledSystemldentity : Class , Public

To: InstalledSystem : Class , Public

/" Dependency Source -> Destination

From: : Equipment : Class , Public

To: InstalledSystemldentity : Class , Public
Dependency Source -> Destination

From: : TESResourceQuaification : Class , Public

To: InstalledSystemldentity : Class , Public

ATTRIBUTES

Resource : InstalledSystem Private
Details:

A.5.1.3 TESResourceQuaification
Class in package '4.7.1 Qualification&Registration’

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from TESResourceQuaification to EntityQualificationRealization

CONNECTORS ‘
' Dependency Source -> Destination
From: : TESResourceQuaification : Class , Public

To: InstalledSystemldentity : Class , Public
Dependency Source -> Destination

From: : TESResourceQuaification : Class , Public

To: CapacityTester : Class, Public

ATTRIBUTES

QualificationAgent : CapacityTester Private
Details:

QualifiedEntity : InstalledSystemldentity Private
Details:

A.5.1.4 TESQualification
Enumeration in package '4.7.1 Qualification&Registration'

Appendix A 283

Appendix A

PNNL-32687

A.6 Operations-Examples

This section contains examples that may serve as a reference for building more complex systems. This examples only list the
main steps and will need to be adapted to suit an application’s needs.

A.6.1 Agent qualification

In this demo we assume that a non-qualified actor is interested in becoming a qualified DER installer. To achieve this state
the actor must first get a copy of the terms and conditions (requirements), followed by getting all the documentation ready.
Finally, the agent submits this documentation (e.g., proof of courses taken) and its case gets evaluated in a transparent,
equitable manner by the blockchain-based solution.

A.6.1.1 Qualification Use Case diagram
This diagram presents the data dependencies needed to transition a non-qualifier actor into a qualified actor. For example a
company may want to gain qualifications as a DER-system capacity tester.

Actor's_Qualifications

CapacityTester_RegistrationFN

- AssignedQualification: AvailableQualifications
| - QualifiedEntity: NonQualified_Actor

| I
«instantiate» . e
1 « msta’ntlate » NonQualified_Actor

\‘|/ \‘I/ : \‘l/ (from 4.4.9

SampleHierarchyWithActors)

4.6.3 Smart Contracts::SCFunction 4.3.9 Permissions&Qualifications::Qualification
- _nameSpace: int - AssignedQualification: AvailableQualifications
- _PrevFunction: SCFunction - EffectiveDates: DateTimeBound
+ Code: Bytes - isDigitallySigned: Boolean
- FunctionType: TypeOfFunction - isRevoked: Boolean
- Name: String - QualificationAuthority: QualificationOrg
+ Parameters: SerializableObject - QualifiedEntity: PersonaDep

- Signature: Bytes [0..1]
+ GetParameters(): void

+ CheckCertification(): void

Figure 79. Overview of the QualificationUseCase' package components

A.6.1.2 Actor's_Qualifications
Object in package '4.8.1.A Agent Qualification Demonstration-Structural side’

CONNECTORS
! Usage «Instantiate» Source -> Destination
From: : Actor's_Qualifications : Object , Public

To: Qualification : Class , Public

284

PNNL-32687

ATTRIBUTES

AssignedQualification : AvailableQualifications Private
Details:

QualifiedEntity : NonQualified_Actor Private

Details:

A.6.1.3 CapacityTester_RegistrationFN

Object in package '4.8.1.A Agent Qualification Demonstration-Structural side'
Details: This object represents an instance of the SCFunction class. The body of the function should enable non-qualified
actors to become qualified by providing the correct arguments (such as training requirements). The function should be
responsible for updating the actor's qualifications.

CONNECTORS
' Usage «Instantiate» Source -> Destination
From: : CapacityTester_RegistrationFN : Object , Public

To: SCFunction : Class , Public

Appendix A 285

PNNL-32687

A.6.1.4 Agent Qualification Demonstration-Structural side

This diagram presents a sequence diagram for transitioning a non-qualifier actor into a qualified actor.

It is assumed that a consortium has already decided on the terms and conditions and the registration process for becoming a
capacity tester has been outlined.

% % CapacityTester_RegistrationF Actor's_Qualification InmutableLedger
TES_Consortium NonQualified_Actor
I I T
(from 4.4.9 (from 4.4.9 (from4.3.7
SampleActors) SampleActors) BlockchainLedger)

Specify r‘egistration function() Consortium sets terms and conditions for becoming a

T
|
|
| |
I I I
|
‘ ‘ Qualified entity
O I \ I
] | Request_Tand(C() I I
| Respond_Tandc() | | Interested party queries the system for terms and
| e — == —— | | applications.
: SubmitRegistration() - : :
| Ll ! ! Agent submits registration request, terms and conditions
| alt Qualification acceptance / Update qualification() | | are accepted by requesting registration and submitting
! | o I requested parameters.
| [Acton meets requirements] Update Ledger() |
| ﬁ If the request meets the terms and conditions the actor's
I f<— _REtu_rni)lﬁ) N qualifications are updated, and stored in the ledger.
‘ le — — ReumOKk() _ _ __| !
I I
| . [S
| 1 X I | |
| [Actor does not meet requirements] | |
| | . | | If the request does not meet the terms and conditions the
| | Return Fail() . I
| u‘ | | actor's qualifications remain unmodified, actor is notified.
| |
| | I I I
| + t t t
i i '
Figure 80. Overview of the Registration&Qualification' package components

INTERACTION MESSAGES

1.0 "Specify registration function' from "TES_Consortium' sent to 'Capacity Tester_RegistrationFN'.

Synchronous Call. Returns void.

1.1 'Request_TandC" from 'NonQualified_Actor' sent to 'CapacityTester_RegistrationFN'.

Asynchronous Call. Returns void.

1.2 'Respond_TandC" from 'Capacity Tester_RegistrationFN' sent to 'NonQualified_Actor'.

Asynchronous Call. Returns void.

1.3 'SubmitRegistration’ from 'NonQualified_Actor' sent to 'CapacityTester_RegistrationFN'.

Synchronous Call. Returns void.

1.4 'Update qualification' from 'CapacityTester_RegistrationFN' sent to 'Actor's_Qualifications'.

Synchronous Call. Returns void.

Appendix A 286

PNNL-32687

=1 1.5 "Update Ledger' from 'Actor's_Qualifications' sent to 'InmutableLedger".
Asynchronous Call. Returns void.
=] 1.6 "Return OK' from 'Actor's_Qualifications' sent to 'Capacity Tester_RegistrationFN'.
Synchronous Call. Returns void.
=1 1.7 'Return OK' from 'CapacityTester_RegistrationFN' sent to 'NonQualified_Actor'.
Synchronous Call. Returns void.
=] 1.8 " from 'Capacity Tester_RegistrationFN' sent to 'Capacity Tester_RegistrationFN'.
Synchronous Call. Returns void.
= 1.9 'Return Fail® from 'Capacity Tester_RegistrationFN' sent to 'NonQualified_Actor'.
Synchronous Call. Returns void.

A.7 Sample: Developing a Smart Contract-Based Permission Solution

This section presents the low-level details of a TES-based Attribute Based Access Control mechanism that leverages the
objects/constructs introduced in the previous sections.

A7 Base TES execution model
This model represents an abstract representation of the base-class used to interface any object-oriented class with a
Blockchain-based ledger, it contains all the bootstrap functions to streamline the creation, loading, updating of any object.

Appendix A 287

PNNL-32687

SerializableObject iBlockchain
" . R Fabric 4.3.7 BlockchainLedger::
iPermission 4.3.2 Primitives:: 5 - . . .
TES Base 4.3.7 BlockchainLedger:: «interface» iBlockchain, GenericBlockchainDep
4.3.9 = GenericBlockchainRealization <H -+ GetStub(): SerializableObject|[” — = — 2fgw_» - = {leaf}
Permissions&Qualifications: + _UID:UID
GenericPermissionRealizatic + _getUID() /Ir\
4.6.3 Smart Contracts::

SmartContractRealization

i S 7
_IOBas‘|cs. Object 4 iSmartCotract
BaseClass - _SecurityContext: Object

‘{> + _Stub: SerializableObject

4.6.3 Smart Contracts::
4 SmartContract_Fabric /l>

- _autoref: Object

|
|
|
|
|
|
|
«interface» |
|
|
|
|
|
|

) ’ s
+ LastFunction: SCFunction J---— + PopulatelOBasics(): void s 4.6.3 Smart Contracts::iSmartContract
T - AN + PopulateSecurity Context(): void (
+ _initBasic(): void AN \ + PopulateStub(): void | «user» - _CurrentTransaction: SerializableObject
+ _loadDependency_ByFQID(): void = | + ExposedFunctions: SCFunction [1..*]
+ create(): void 4.6.3 Smart Contracts::SCFunction I - InternalFunctions: SCFunction [0..*]
+ delete(): void = 4.6.3 Smart - UnderlyingBlockchain: GenericBlockchainDep] [—
+ init(): void - nameSpace: int iy
| . | . . . H

- PrevFunction: SCFunction F— Contie s + GetSubmitterldentity(): void

. . Bytes SmartContractDep + GetTime(): void

- FunctionType: TypeOfFunction {leaf} + populateCurrentTransaction(): void

- Name: String
+ Parameters: SerializableObject

+ GetParameters(): void

Figure 81. Overview of the BaseTES' package components

Appendix A 288

PNNL-32687

A.7.1.1 BaseClass

Class in package '4.9.1 Base TES execution model'
Details: This base class contains all the bootstrap functions to streamline the creation, loading, updating of any object into
the ledger. In addition, it contains certain properties that can be used to support an ABAC system, such as providing
information about the blockchain transaction.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from BaseClassto TES Base
4= Generalization from BaseClass to GenericPermissionRealization
4= Generalization from BaseClass to SmartContract_Fabric

CONNECTORS

s Dependency Source -> Destination
From: : BaseClass : Class , Public

To: GenericBlockchainDep : Class , Public
/" Dependency Source -> Destination
From: : BaseClass : Class , Public

To: SCFunction : Class , Public

ATTRIBUTES

W _autoref : Object Private

Details: This field represents a reference to itself. Commonly known as this in programming languages.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

LastFunction : SCFunction Public

Details: This pointer references the last function which loaded or initialized this object.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS
% _initBasic () : void Public
Details: This is a generic function that can be used to bootstrap functions before an object becomes fully initialized. This
bootstrap is exploited to implement the ABAC system.

% _loadDependency ByFQID () : void Public
Details: This function loads an object dependency based on a known FQID.

% create () : void Public
Details: This is a bootstrap function that can be used to populate attributes that define an objects birth-right attributes, such as
owner, time of creation, etc.

@ delete () : void Public
Details: This is a bootstrap function that can be used to populate attributes or mark an object as inactive. Real data deletion is
an unsupported function of DLT-based technologies.

% init () : void Public
Details: This is a bootstrap function that can be used to dynamically obtain parameters upon object initialization.

A.7.1.2 Fabric
Class in package '4.9.1 Base TES execution model’

Appendix A 289

PNNL-32687

STRUCTURAL PART OF Fabric

¥ ProvidedInterfacel : ProvidedInterface

OUTGOING STRUCTURAL RELATIONSHIPS
4= Generalization from Fabric to GenericBlockchainRealization

OPERATIONS

‘% GetStub () : SerializableObject Public
Details: This is a Hyperledger Fabric-specific function that provides additional details about the execution context. It extends
the realization provided by iBlockchain interface

Appendix A 290

PNNL-32687

A.7.2 Attribute Base Access control (ABAC) implementation

This model represents the structural requirements for implementing an Attribute Based Access Control mechanism that can
be used to implement and enforce access controls over a resource. The proposed use case overrides the role-based permission

mechanism introduced by the GenericPermission interface. Demonstrating once more the templates ability to adapt to the
needs of an application.

Appendix A 291

Appendix A

== e ___ _[> 4.3.2 Primitives::
4.6.3 Smart Contracts::SCFunction | UIDList <T->UID> ArrayList
SE— -
- nameSpace: int ST T T T T g
i ~ . + add(T): void
- _PrevFunction: SCFunction // < T->Policy > + count(): int
+ Code:. Bytes / Policy + remove(int): void
- FunctionType: TypeOfFunction < L ———#—
- Name: String / \ - comment: String
+ Parameters: SerializableObject N\ |- operation: PolicyOperators | I PolicyOperation
. . ~
+ GetParameters(): void PolicyList [parameters: SCFunction
i - permission: AccessPermissions]f — _I - Operandl: Object
v © - Operand2: Object
Smartoniae <,_AI\ ? «—* EvaluateljSEREl | |- Operator: PolicyOperation|
TES_Base I \ |
| | .
4.9.1 Base TES execution model::BaseClass | | v «enumeration»
| I) PolicyOperators
- _autoref: Object | PolicyResource) «enumeration»
+ LastFunction: SCFunction - -- % 4.3.9 AND
N .) PolicyRefs: PolicyList] enimert Permissions&Qualificatipns: OR
+ _initBasic(): void PolicyResourcelD: int 4.3.9 :AccessPermissions ==
+ _loadDependency_ByFQID(): void <l Resource: UID Permissions&Qualifichtio S
+ create(): void RoleName: TESGroup | N\ TESGrou Attributes <
+ delete(): void : J - Riint >=
+ init(): void + CheckPermissions(): Boolean e _ Nwah .
Agent.Market - Xiint NOT.IN.SET
Auditor - RW:int IN.SET
Agent.Prosumer - RWX:int

Figure 82.

iPermission
4.3.9
Permissions&Quialifications::
GenericPermissionRealization

PNNL-32687

Overview of the ABAC' package components

<

292

PNNL-32687

A.7.2.1 Policy

Class in package '4.9.2 Attribute Base Access control (ABAC) implementation'
Details: This class represents a single policy. Its run-time evaluation determines the actual access permissions. These
permissions are dynamic and represent the core functionality of an ABAC system

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from Policy to BaseClass

CONNECTORS

#" Dependency Source -> Destination

From: : Policy : Class , Public

To: AccessPermissions : Enumeration , Public
Dependency Source -> Destination

From: : Policy : Class , Public

To: SCFunction : Class , Public

P Dependency Source -> Destination

From: : Policy : Class , Public

To: PolicyOperation : Class , Public

ATTRIBUTES

comment : String Private

Details:

" operation : PolicyOperators Private
Details:

W parameters : SCFunction Private
Details:

permission : AccessPermissions Private
Details:

OPERATIONS

% Evaluate () : Boolean Public
Details: This evaluation runs under the assumption of an AND operator. This means that all policy operators must return True.

A.7.2.2 PolicyList
Class in package '4.9.2 Attribute Base Access control (ABAC) implementation'
Details: This class represents a list of policies.

OUTGOING STRUCTURAL RELATIONSHIPS
4= Realization from PolicyList to ArrayList

CONNECTORS

' Dependency Source -> Destination
From: : PolicyResource : Class , Public
To: PolicyList : Class , Public

Appendix A 293

PNNL-32687

A.7.2.3 PolicyOperation

Class in package '4.9.2 Attribute Base Access control (ABAC) implementation'
Details: This object represents a comparison in between two objects. Each object can contain nested PolicyOperations to
create complex rule sets.

CONNECTORS

#" Dependency Source -> Destination
From: : PolicyOperation : Class , Public
To: PolicyOperators : Enumeration , Public
/" Dependency Source -> Destination
From: : Policy : Class , Public

To: PolicyOperation : Class , Public

ATTRIBUTES

Operandl : Object Private

Details: This operand can be a static value, another policyOperation or an object which can be dynamically evaluated.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Operand2 : Object Private

Details: This operand can be a static value, another policyOperation or an object which can be dynamically evaluated.
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Operator : PolicyOperation Private

Details: This field represents an operator that will be applied between both operands.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

A.7.2.4 PolicyResource
Class in package '4.9.2 Attribute Base Access control (ABAC) implementation'
Details: This object represents an intermediary agent that can relate both a set of policies and a resource.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Generalization from PolicyResource to GenericPermissionRealization
4= Generalization from PolicyResource to BaseClass

CONNECTORS

/" Dependency Source -> Destination
From: : PolicyResource : Class , Public
To: TESGroup : Enumeration , Public

/" Dependency Source -> Destination
From: : PolicyResource : Class , Public
To: PolicyList : Class , Public

ATTRIBUTES

PolicyRefs : PolicyList Private

Details:

PolicyResourcelD : int Private

Details: This field can be used as an identifier that can be used to track a decision.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

Resource : UID Private

Details: This represents a resource for which access is being restricted. Individual components of the UID can be left blank to
cover all objects, all versions or all instances with the same ID.

Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

RoleName : TESGroup Private

Details: This field can be used to determine the current role/context of the agent that is requesting access.

Appendix A 294

Appendix A

PNNL-32687

ATTRIBUTES
Multiplicity: (1, Allow duplicates: 0, Is ordered: False)

OPERATIONS

i CheckPermissions () : Boolean Public
Details: This function evaluates all policies using an OR scheme (e.g. any policy that grants access will be followed).

A.7.25 UIDList

Class in package '4.9.2 Attribute Base Access control (ABAC) implementation'
Details: This represents a list of UID numbers, It can be used to reference multiple objects at once.

OUTGOING STRUCTURAL RELATIONSHIPS

4= Realization from UIDListto ArrayList

A.7.2.6 PolicyOperators

Enumeration in package '4.9.2 Attribute Base Access control (ABAC) implementation’
Details: This enumeration provides samples of policy operators that can be evaluated by the ABAC platform

CONNECTORS
*' Dependency Source -> Destination

From: : PolicyOperation : Class , Public
To: PolicyOperators : Enumeration , Public

ENUMERATION:

AND
OR

>=
<=
NOT.IN.SET
IN.SET

295

Pacific Northwest
National Laboratory

902 Battelle Boulevard
P.O. Box 999

Richland, WA 99354
1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

