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Abstract 
The Generic Aquifer Model calculates the concentrations of dissolved salt and dissolved CO2 
surrounding a leaking legacy well. The Generic Aquifer model can also estimate the size of an 
“impact plume” where concentration changes exceed user-specified thresholds. The model is a 
component of NRAP-Open-IAM, an open-source Integrated Assessment Model (IAM) 
developed by the National Risk Assessment Partnership (NRAP) to perform risk assessment for 
geologic CO2 storage. The input parameters were selected to cover a wide range of 
groundwater aquifers and leakage rates. The generic aquifer model was developed using a 
generative adversarial deep learning network, trained using a large synthetic dataset of STOMP 
multiphase flow simulations. The deep learning model predictions of dissolved salt and 
dissolved CO2 in the aquifer compare well to the original STOMP simulation results. The extent 
of aquifer impacted by leaking CO2 or brine is calculated using a user-defined mass fraction 
threshold. The aquifer impact volumes calculated based on STOMP simulation results compare 
well to those calculated based on the deep learning model. In a provided python script, gridded 
observation results from the generic aquifer component of NRAP-Open-IAM are converted to 
HDF5 format files for monitoring design with the DREAM code. 
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Acronyms and Abbreviations 
CCUS Carbon capture, utilization, and storage 
EDX Energy Data Exchange 
IAM Integrated Assessment Model 
L1 Loss See MAE 
MAE The mean absolute error between STOMP and surrogate model 

predictions 
NETL National Energy Technology Laboratory 
NRAP National Risk Assessment Partnership 
ROM Reduced Order Model 
SDWA Safe Drinking Water Act 
US DOE United States Department of Energy 
USEPA United States Environmental Protection Agency 
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1.0 Introduction 
Carbon capture, utilization, and storage (CCUS) technologies are being developed, both 
domestically and internationally, for their potential to mitigate environmental impacts associated 
with atmospheric release of carbon dioxide (CO2) from anthropogenic sources, such as power 
production from fossil fuels and other large industrial sources. Over the last decade, the United 
States Department of Energy (US DOE) has invested millions of dollars developing carbon 
capture technologies and demonstrating safe and secure geologic carbon storage via a number 
of pilot-scale projects sited throughout the country (NETL 2015). To date, these projects have 
stored more than 16 million tonnes of CO2 (NETL 2018). 

Within the US, CO2 injection activities are overseen by the US Environmental Protection Agency 
(EPA) following regulations (the Class VI Rule) promulgated under the Safe Drinking Water Act 
(SDWA) (USEPA 2010). The Class VI regulations are designed to protect underground sources 
of drinking water (USDWs), and include strict requirements for site characterization, CO2 
injection well construction, injection operations, site monitoring, financial liability, and record 
keeping/reporting. Key elements of the Class VI permitting process include delineating an Area 
of Review (AoR) and defining an appropriate Post-Injection Site Care (PISC) period for the 
project, both of which require simulated CO2 saturations and pressure distributions from 
computational models. The models are based on site-specific data and are updated periodically 
during the lifetime of the project to evaluate reservoir performance and evolution of the storage 
system.  

Despite the sophistication of today’s multi-physics reactive transport codes, significant 
uncertainty exists in predicting the performance of geologic storage reservoirs. Challenges 
associated with developing greenfield sites include the inherit difficulty in scaling a few point 
source measurements of geological structure and reservoir permeability derived from 
characterization of borehole samples throughout the extensive area likely to be impacted by a 
commercial-scale CO2 injection, a lack of site-specific data on the behavior of supercritical CO2 
in the reservoir being evaluated, and understanding changes in the transport behavior of carbon 
dioxide caused by changes in pressure and/or temperature and the buoyant nature of CO2 over 
the long time scales required for geologic sequestration to have long-term benefit to 
atmospheric CO2 levels. Additionally, the computational resources required to run high fidelity 
simulations limits their usefulness in performing sensitivity analysis for uncertainty reduction.  

To help address this need, the US DOE established the National Risk Assessment Partnership 
(NRAP), an initiative across five US DOE national laboratories with the goal of developing 
defensible, science-based methodologies and platforms for quantifying risks amidst system 
uncertainty. In 2017, the NRAP team released a set of ten tools (i.e., the NRAP Toolset) that 
can be used to estimate risks associated with carbon sequestration 
(https://edx.netl.doe.gov/nrap/).  

NRAP-Open-IAM is an open-source Integrated Assessment Model (IAM) developed by the 
National Risk Assessment Partnership (NRAP) to perform risk assessment for geologic CO2 
storage (GCS) (Vasylkivska et al. 2021). The goal of NRAP-Open-IAM is to extend beyond risk 
assessment into risk management, containment assurance, and decision support. NRAP-Open-
IAM builds on many years of NRAP tool development for risk assessment, including the NRAP-
IAM-CS also developed by the NRAP project (Pawar et al. 2016). An open-source Python 
framework allows NRAP-Open-IAM to: 1) take advantage of standard Python libraries and other 
open source analytical libraries written in Python; 2) be applied on multiple platforms; 3) have 
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more flexible options of selecting modules for a specific study; and 4) give advanced users the 
option to modify the IAM to fit their need as well as enhancing the potential for community 
contributions to the software. The implementation of the reduced-order models and analytical 
tools within the NRAP-Open-IAM makes the risk assessment process computationally efficient 
enough to simulate an operational CO2 storage site, potential events and various scenarios in a 
probabilistic/ensemble manner. The NRAP-Open-IAM is equipped with capabilities to: 1) inform 
monitoring design; 2) assess model concordance to measured field data; 3) evaluate mitigation 
alternatives; and 4) provide probabilistic risk assessment and update the risk as new data 
becomes available. 

NRAP-Open-IAM models are created by linking reduced order representations of sophisticated 
component models together into a complete GCS system. Each component model describes 
the structure or flow behavior in a critical element of a GCS site. Component models are 
modular and are designed to be interchangeable. Users build NRAP-Open-IAM models by 
selecting component models and specifying inputs that represent the characteristics of their 
GCS site. Inputs to NRAP-Open-IAM component models can either be specified as a single 
value or a range of values. If a range of values is identified for some model inputs, these values 
will be randomly sampled when stochastic simulations are run. The component models of 
NRAP-Open-IAM fall are organized into four major categories: 

• Stratigraphy. The stratigraphy component details the structure of the GCS system. 
Stratigraphy inputs include the number of shale and aquifer layers in the model, the 
thicknesses of these layers, and the thickness of the reservoir.  

• Reservoir. The reservoir component describes the conditions in the reservoir during the 
simulation time period. NRAP-Open-IAM is not a reservoir simulator. However, users 
can simulate a simplified CO2 injection using the simple and analytical reservoir 
components. Inputs for these models include reservoir characteristics (permeability, 
porosity, thickness, extent), CO2 and brine characteristics (density, viscosity), and 
injection rate. More sophisticated reservoir behavior can be included in the NRAP-Open-
IAM by including simulation results from a high-fidelity numerical simulator as a look up 
table.  

• Leakage pathway. The leakage pathway component simulates the upward flow of CO2 
and brine out of the reservoir. NRAP-Open-IAM contains multiple interchangeable 
leakage pathway components that can simulate flow through cemented and uncemented 
wells, seals, and faults. Users must specify the properties of the leakage pathway, which 
vary depending on its type. For example, the inputs for the cemented wellbore 
component are the well radius, the permeability of the well cement, and the permeability 
of potential thief zones.  

• Receptor. The receptor component simulates either the flow of CO2 and brine in an 
aquifer (shallow or deep) or the atmosphere. Aquifer component models consider 
geochemical reactions and predict the size of CO2 and brine impact plumes. Several 
aquifer components exist that represent different types of aquifers (e.g., carbonate, deep 
alluvium). Model inputs for each aquifer component typically include general 
characteristics of the formation, such as its thickness, depth, porosity, permeability, and 
anisotropy. The atmosphere component simulates CO2 dispersion after leakage out of 
the ground. Inputs for the atmosphere component include ambient pressure and 
temperature, wind velocity, CO2 source temperature, and coordinates of potential 
receptors. 
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The characteristics of the aquifer component models for NRAP-Open-IAM have evolved over 
time. The first two aquifer component models developed for NRAP-Open-IAM were based on 
using site-specific data from two aquifers, the Edwards Aquifer (Bacon et al. 2016) and the High 
Plains Aquifer (Carroll et al. 2016). However, the models accept aquifer characteristics as 
variable inputs and so they may have more broad applicability. (Keating et al. 2016) concluded 
that pH and TDS predictions are the most transferable to other aquifers based on the analysis of 
the nine water quality metrics (pH, TDS, 4 trace metals, 3 organic compounds) and presented 
guidelines for determining the aquifer types for which those two surrogate models should be 
applicable.  

The FutureGen2 aquifer models were designed to be more general in order to encompass both 
carbonate and sandstone aquifers overlying the FutureGen 2.0 proposed carbon storage site 
(Bacon et al. 2019). Five monitoring metrics were used to indicate an aquifer impact: pressure, 
temperature, dissolved CO2, pH and TDS. The precision thresholds of sensors from the 
proposed monitoring plan for the FutureGen 2.0 site (FutureGen Industrial Alliance 2013) were 
used to delineate an impact for each of these metrics. 

The new Generic Aquifer Model described in this report calculates the concentrations of 
dissolved salt and dissolved CO2 surrounding a legacy well. The Generic Aquifer model can 
also estimate the size of an “impact plume” where concentration changes exceed user-specified 
thresholds. Dissolved CO2 was selected because Romanak et al. (2012) found that dissolved 
inorganic carbon (DIC) was a useful monitoring metric because changes in DIC with CO2 
leakage were consistent across geochemical environments, indicating that prior characterization 
of aquifer minerals may not be necessary if DIC is used as the primary monitoring parameter. 
Dissolved salt was selected because salinity often increases with depth (Bloomfield et al. 2020), 
resulting in a notable difference in salinity between the storage reservoir and an overlying 
aquifer. 

This report describes the  workflow for  development and testing of the Generic Aquifer 
component for NRAP-Open-IAM, summarized in Figure 1. 

 
Figure 1. Workflow summary for development and testing of the Generic Aquifer component of 
NRAP-Open-IAM.
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2.0 Input Parameters 
The input parameters shown in Table 1 were selected to cover a wide range of groundwater 
aquifers. Thickness is the aquifer thickness from bottom to top. Depth is the depth below ground 
surface (bgs) to the top of the aquifer. Porosity is the fraction of void space in the aquifer rock. 
Horizontal permeability is a measure of the ability of the aquifer rock to transmit fluid in the 
horizontal direction. Anisotropy is the ratio of the vertical to horizontal permeability. The initial 
aquifer salinity is the mass fraction of salt in the aquifer before a leak occurs. The leak salinity is 
the mass fraction of salt in fluid leaking into the aquifer. The CO2 and brine leakage rates are 
given in mass units of kilograms per second. Because permeability, anisotropy and leakage 
rates vary over several to many orders of magnitude, the log base 10 of their values are used as 
input. 

Table 1. Ranges of input parameters for the Generic Aquifer component. 

 

Parameter min max 

Thickness (m) 25 250 

Depth (m bgs) 100 4100 

Porosity 0.02 0.2 

Horizontal Permeability (log10 m2) -14 -10 

Anisotropy (log10 Kh/Kv) 0 3 

Initial Aquifer Salinity (mass fraction) 0 0.015 

Leak Salinity (mass fraction) 0.015 0.05 

CO2 Leak Rate (log10 kg/s) -9 1.5 

Brine Leak Rate (log10 kg/s) -9 1.5 

Random samples of the model input parameters were selected using Latin Hypercube Sampling 
(Iman et al. 1981), assuming that each parameter is uniformly distributed. The parameter space 
was divided into ten depth intervals of 400 m each, and 6250 samples were generated for each 
depth interval, for a total of 62,500 samples. Figure 2 shows a pair plot illustrating the 
distribution of parameter values for one of the depth intervals. The number of parameter 
samples is so large and evenly distributed that the datapoints appear as a nearly solid block of 
color. 
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Figure 2. Pair plot for input parameters of simulations used to train the aquifer model for the 
depth interval 2100 to 2400 m, showing the uniform distribution of values in 6250 samples. 
 

The sample set of input parameters for each depth interval was divided into three subsets: 
training, validation and test. The training dataset is the subset of data that is used to fit the 
model. The validation dataset is the subset of data that is used for an unbiased evaluation of a 
model fitted on the training dataset while tuning model hyperparameters (For example, see 
Section 5.0 for a discussion of adjustments to the model training rate). The testing dataset is the 
subset of data used for an unbiased evaluation of a final model fitted on the training dataset. 

An unbiased evaluation means that the model is validated and tested on data that has not been 
seen during training. Randomly splitting the entire dataset into three subsets is a common 
method for unbiased evaluation. In this case, 80% of the data was randomly selected to be in 
the training dataset, while the validation and testing datasets each received 10% of the data. 
This is commonly referred to as an 80-10-10 split, where 80% + 10% +10% = 100%. 
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3.0 STOMP Simulations 
The 62,500 STOMP simulations were conducted using the input parameters from Section 2.0. 
Simulations were performed using STOMP-CO2 (isothermal multiphase flow of CO2 and brine). 
Parameters were substituted into a template input file using a python script. The python script 
also performed the train-valid-test split as described in section 2.0 using Scikit-learn (Pedregosa 
et al. 2011). Both the template input file and the python script are listed in Appendix A.  

The initial temperature and pressure in the simulations were assumed to be a function of depth. 
Hydrostatic initial pressures and a geothermal gradient of 1.2 °F/100 ft (21.7 °C/km) (Vaught 
1980) were assumed. Simulations were run for a simulation time of 70 years, and model output 
saved at 0, 1, 2, 5, 10 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 and 70 years. 

To encompass impact plumes for both very small and very large CO2 or brine leaks, a radial grid 
of 50 miles (80,467 meters) in radius was used. Grid radii ranged in size from 3.24 m to 5,877 m 
in the horizontal direction. Ten vertical grids were used, each one-tenth of the aquifer thickness, 
for a total of 1000 nodes. For each of the leakage scenarios, distributions of dissolved CO2 and 
dissolved salt were calculated. 

As an example of STOMP simulation output, Figure 3 shows predicted dissolved CO2 mass 
fraction in an aquifer after 70 years of CO2 leakage at a rate of 2.56 kg/s and brine leakage at a 
rate of 9.6x10-6 kg/s. In another example, Figure 4 shows dissolved salt mass fraction in an 
aquifer after 70 years of brine leakage at a rate of 4.6x10-9 kg/s and brine leakage at a rate of 
16.6 kg/s. 

 
Figure 3. Dissolved CO2 mass fraction after 70-year CO2 leak at rate of 2.56 kg/s. 

 
Figure 4. Dissolved salt mass fraction after 70-year brine leak at rate of 16.6 kg/s. 
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4.0 Impact Delineation 
To delineate the impact of a leak on an aquifer, a threshold concentration must be set. The 
generic aquifer component allows the user to specify the threshold values for dissolved CO2 
mass fraction and dissolved salt mass fraction. These values may range between 0 and 1. 
However, it should be noted that the leak dissolved salt mass fraction is limited to a range of 
0.015 to 0.05, so these are practical limits for the dissolved salt mass fraction threshold. 

The impact metrics are volume, average radius and average thickness of the impact plume in 
the aquifer. An example grid of CO2 mass fraction predictions is shown in Figure 5. If the user 
sets the threshold for CO2 mass fraction to 0.04, then the grid cells that are shaded black will be 
considered a part of the impact plume. Volumes for each cell in the grid are shown in Figure 5.  

• To calculate the plume volume, the node volume for each cell above the threshold is 
summed.  

• To calculate the average thickness of the plume, the thickness of the plume in each 
column with cells above the threshold is averaged.  

• To calculate the average radius of the plume, the radius of the plume in each row with 
cells above the threshold is averaged. 

 
Figure 5. CO2 Mass Fraction in each grid cell of an example STOMP simulation. 
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Figure 6. Node volume for each grid cell close to the leak. 
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5.0 Training 
Deep learning surrogate models were trained to predict dissolved CO2 and dissolved salt mass 
fraction in an aquifer in response to CO2 and brine leakage, like the results shown in Figure 3 
and Figure 4. 

Pix2Pix is a Generative Adversarial Network, or GAN, model (Isola et al., 2017) that has been 
shown to have wide applicability to image-to-image translation problems with minimal 
modification. The similarity between image-to-image translation and the input-output fields 
utilized by flow models has been recognized, and the Pix2Pix method has been applied to 
predicting CO2 plume migration in two-dimensional horizontal heterogeneous formations by 
Zhong et al. (2019). Using example code as a starting point (Google, 2021), the method has 
been extended to reproducing outputs of the STOMP simulator based on a set of input 
parameters. The neural networks were implemented in Tensorflow 2.5 using Keras. 

The method uses two competing neural networks, a generator and a discriminator. The 
generator architecture, shown in Figure 7, is a modified U-Net (Ronneberger et al. 2015) 
regressor. Each encoder block is 2D Convolution → Batch normalization → Leaky ReLU. Each 
decoder block is Transposed 2D Convolution → Batch normalization → Dropout (applied to the 
first 3 blocks) → ReLU. Skip connections pass information directly between similarly-sized 
encoder and decoder layers. The discriminator architecture (Figure 8) is a classifier that 
classifies a patch of the model output as either real (STOMP output) or fake (generator output). 
Each discriminator block is 2D Convolution → BatchNorm → Leaky ReLU.  

All inputs were on a 100 x 10 grid. Input layers were padded to achieve dimensions that are 
powers of two (128 x 16) to enable symmetric convolution and deconvolution. Cropping layers 
are applied to output so that predictions are on the original 100 x 10 grid. 

Neural networks were trained separately for predicting dissolved CO2 and dissolved salt. The 
training batch size was 1. There were ten model inputs for the dissolved CO2 and dissolved salt 
deep learning models (Table 1). Given the STOMP grid dimensions of 100 x 10, the deep 
learning model inputs were a 4-dimensional tensor of size [batch size, 100, 10, 10] and model 
outputs were a 4-dimensional tensor of [batch size, 100, 10, 1].  

Isola et al. (2017) used the Adam optimizer for rapid convergence. However, use of this 
aggressive optimizer can lead to mode collapse of the GAN, wherein the generator predicts the 
same solution for every time step. Zhong et al. (2019) solved this problem using the SCP 
optimizer and only updating the discriminator every 5 epochs. However, that solution required 
thousands of training epochs. To avoid mode collapse, the original Adam optimizer was used 
with a reduced training rate for the discriminator (2x10-6) which was two orders of magnitude 
lower than that for the generator (2x10-4). This modification resulted in acceptable predictions in 
100 training epochs and avoided mode collapse. 
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Figure 7. Generator Architecture 
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Figure 8. Discriminator Architecture 

Figure 9 shows that on average the mean absolute error (L1 loss) between the dissolved salt 
mass fractions predicted by the deep learning model decreases with each training epoch.   
 

 
Figure 9. Generator L1 Loss during Training (2100-2499m salt mass fraction) 
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The generator loss function is equal to the GAN loss + lambda * L1 loss, where the L1 loss is 
the mean absolute error between STOMP simulation results and the machine learning model 
prediction. Lambda is a weighting factor to ensure that the two terms in the loss function are of 
the same order of magnitude. Values of 100 for lambda were used. The GAN loss is sigmoid 
cross entropy (binary classification), indicating how often a result generated by the machine 
learning model is classified correctly. The discriminator loss is equal to the sum of two binary 
classification losses, one for classifying “real” images (STOMP predictions) correctly and 
another for classifying “fake” images (generator predictions) correctly. If either the generator 
GAN loss or the discriminator loss gets very low it’s an indicator that one model is dominating 
the other, and the combined model is not training successfully. The value log(2) = 0.69 for the 
generator and 2 x log(2) = 1.395 for the discriminator are good reference points for these 
losses, as it indicates a perplexity of 2, where the discriminator is on average equally uncertain 
about the two options. The loss functions for the discriminator (Figure 10) and the generator 
(Figure 11) were monitored during training using Tensorboard to ensure that they remained 
close to these values.  
 

 
Figure 10. Discriminator Loss during Training (2100-2499m salt mass fraction) 

 
Figure 11. Generator GAN Loss during Training (2100-2499m salt mass fraction) 
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6.0 Validation 
During training, the model was saved every 20 epochs. Each saved model was run against the 
validation dataset representing 10% of the data. L1 loss is the mean absolute error between 
STOMP simulation results and the machine learning model prediction. The generator L1 loss for 
each depth interval for CO2 mass fraction is shown in Figure 12. 

 
Figure 12. Generator MAE during Validation (CO2 mass fraction). 

As long as the validation loss continues to decrease during training, the model is not overfitting. 
For each depth interval, the model with the lowest validation error is saved for further testing. 
For example, for the 900-1299m depth interval, the validation loss is lowest for the model saved 
after 100 training epochs, so this model is used for further testing. However, for the 2900-3299m 
depth interval, the validation loss is lowest for the model saved at 60 training epochs, so that 
model is used for further testing. A similar selection process was used to select the best models 
for testing aqueous salt models (Figure 13). 
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Figure 13. Generator MAE during Validation (Salt mass fraction). 
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7.0 Testing 
The optimal models identified during validation (Section 6.0) were run on the test dataset 
consisting of 10% of the data. Example results for a large (mostly) CO2 leak are shown in Figure 
14. The absolute error is generally low except for a few spots on the edge of the plume. The 
same is true for different example results of a (mostly) salt leak shown in Figure 15. 

 
Figure 14. Comparison of target and predicted CO2 mass fraction after leak consisting of 

7.09x108 kg CO2 and 2.57x103 kg water containing 1.01x102 kg salt. 

 
Figure 15. Comparison of target and predicted salt mass fraction after leak consisting of 1.26 kg 

CO2 and 4.39x109 kg water containing 1.93x108 kg salt. 
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The testing dataset for each depth interval consists of 625 simulations. With a grid of 100x10 = 
1000 cells and 17 saved time steps, this results in 10,625,000 different points in space and time 
to compare for each of the 10 depth intervals and 2 types of prediction (CO2 and salt). 
Scatterplots comparing the target STOMP results and the predictions of the machine learning 
model for each depth interval are shown in Figure 16 for aqueous CO2 mass fraction and in 
Figure 17 for aqueous salt mass fraction. The aqueous CO2 mass fraction range up to values on 
the order of 10-2 and aqueous salt mass fractions range up to values on the order of 10-1.   

The mean absolute error between mass fractions predicted by STOMP and the deep learning 
model for all points in each depth interval are shown in Table 2.  The mean absolute error was 
calculated using the following python functions: 
 
def_error(actual: np.ndarray, predicted: np.ndarray): 
    """ Simple error """ 
    return actual – predicted 
 
def mae(actual: np.ndarray, predicted: np.ndarray): 
    """ Mean Absolute Error """ 
    return np.mean(np.abs(_error(actual, predicted))) 
 

The mean absolute error between the aqueous CO2 and aqueous salt are two to three orders of 
magnitude lower, on the order of 10-4, with the worst fit being for CO2 in the shallowest depth 
interval. Since in the 100-499m depth interval the large variability of thermodynamic properties 
of free phase CO2 is expected as the conditions are close to its critical point, modeling is  more 
difficult to fit a single model. 

 
Table 2. Mean Absolute Error (MAE) for aqueous mass fraction predictions in each depth 

interval. 

Depth Interval 
MAE, Salt 

Mass Fraction 
MAE, CO2 

Mass Fraction 
100-499m 2.82E-04 5.56E-04 

500-899m 1.98E-04 2.58E-04 

900-1299m 2.03E-04 2.68E-04 
1300-1699m 1.98E-04 2.61E-04 

1700-2099m 2.13E-04 2.74E-04 

2100-2499m 2.37E-04 2.80E-04 

2500-2899m 1.90E-04 2.84E-04 
2900-3299m 3.15E-04 3.24E-04 

3300-3699m 2.06E-04 2.46E-04 

3700-4099m 2.70E-04 3.05E-04 
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Figure 16. Comparison of target and predicted CO2 mass fraction for all grid locations and times 

in the test dataset. 
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Figure 17. Comparison of target and predicted salt mass fraction for all grid locations and times 

in the test dataset. 
 

As seen in Figure 14 and Figure 15, the machine learning model seems to predict the shape of 
CO2 and salt plumes accurately. To confirm this, the plume volume was determined as 
described in Section 4.0, for both CO2 and salt for both the STOMP simulation and the machine 
learning model at all time steps in the test dataset for each depth interval. Assuming a threshold 
mass fraction of 0.02, the predicted plume volumes range in size up to 1010 m3 for aqueous CO2 
(Figure 18) and up to 109 m3 for aqueous salt (Figure 19). The mean absolute error between the 
target and predicted plume volumes (Table 3) is on the order of 107, which is several orders of 
magnitude lower than the maximum plume size.  
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Figure 18. Comparison of target and predicted plume volume (m3) assuming a threshold CO2 

mass fraction of 0.02. 
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Figure 19. Comparison of target and predicted plume volume (m3) assuming a threshold salt 

mass fraction of 0.02. 
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Table 3. Mean Absolute Error (MAE) for plume volume predictions in each depth interval. 

Depth Interval 

MAE, CO2 
Impact Volume 

(m3) 

MAE, Salt 
Impact Volume 

(m3) 
100-499m 3.00E+07 2.54E+06 

500-899m 1.16E+07 1.60E+06 
900-1299m 3.03E+07 1.41E+06 

1300-1699m 1.07E+07 1.46E+06 

1700-2099m 1.18E+07 1.28E+06 

2100-2499m 9.73E+06 1.64E+06 
2500-2899m 1.07E+07 1.71E+06 

2900-3299m 2.18E+07 1.80E+06 

3300-3699m 5.49E+06 1.54E+06 

3700-4099m 1.14E+07 1.57E+06 

Because the mass fractions and plume volumes have such different ranges, it is difficult to 
compare the accuracy between their models. For this comparison, a different error metric is 
used, normalized mean square error (NRMSE).  The NRMSE facilitates the comparison 
between models with different scales, and was calculated using the following python functions: 

 
def_error(actual: np.ndarray, predicted: np.ndarray): 
    """ Simple error """ 
    return actual – predicted 
 
def mse(actual: np.ndarray, predicted: np.ndarray): 
    """ Mean Squared Error """ 
    return np.mean(np.square(_error(actual, predicted))) 
 
 
def rmse(actual: np.ndarray, predicted: np.ndarray): 
    """ Root Mean Squared Error """ 
    return np.sqrt(mse(actual, predicted)) 
 
 
def nrmse(actual: np.ndarray, predicted: np.ndarray): 
    """ Normalized Root Mean Squared Error """ 
    return rmse(actual, predicted) / (actual.max() - actual.min()) 
 

The results shown in Figure 20 show that the NRMSE for CO2 volume predictions are 3-5 times 
lower than for CO2 mass fraction predictions. The NRMSE for salt volume predictions are on the 
same order as the NRMSE for salt mass fractions.  So in general, the accuracy of the plume 
predictions is either better or about the same as the pointwise mass fraction predictions. 
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Figure 20. Normalized Root Mean Square Error comparison for all deep learning model 
predictions in test dataset. 
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8.0 Output Processing for DREAM 
The Designs for Risk Estimation and Management (DREAM) tool was developed to assist in 
determining optimal placement of monitoring devices to detect carbon dioxide (CO2) leakage 
from storage formations. DREAM optimizes across user-provided output from subsurface 
leakage simulations with the objective of identifying monitoring schemes that minimize time to 
first detection of user-specified leakage indicators. DREAM employs a simulated annealing 
approach that searches the solution space by iteratively mutating potential monitoring schemes 
built of various configurations of monitoring locations and leak detection parameters. This 
approach has proven to be orders of magnitude faster than an exhaustive search of the entire 
solution space (Yonkofski et al. 2020).  

An example python script named iam_sys_analytical_mswell_generic_lhs.py can be found in 
the NRAP-Open-IAM examples/scripts folder and is listed in Appendix B. The script builds a 
system model consisting of an analytical reservoir component, a multisegmented wellbore 
component, and a generic aquifer component. Twenty-five simulations are run using Latin 
Hypercube Sampling. The results of these simulations are then converted into an HDF5 file 
format suitable for further analysis with DREAM. 

The generic aquifer component generates predictions on a 100x10 cylindrical grid, centered on 
each well. DREAM expects simulation results to be on a 3D structured grid. A utility gridding 
module named enmesh.py (included with NRAP-Open-IAM) facilitates this conversion. Finally, 
the results for each of the 25 results are written to HDF5 files in the required format. 
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9.0 Conclusions 
The new Generic Aquifer component of NRAP-Open-IAM calculates the concentrations of 
dissolved salt and dissolved CO2 surrounding a leaking legacy well, and estimate the volume of 
an “impact plume” where concentration changes exceed user-specified thresholds. The input 
parameters were selected to cover a wide range of groundwater aquifers and leakage rates. 
The generic aquifer model was developed using a generative adversarial deep learning 
network, trained using a large synthetic dataset of STOMP multiphase flow simulations. The 
deep learning model predictions of dissolved salt and dissolved CO2 in the aquifer compare well 
to the original STOMP simulation results. The extent of aquifer impacted by leaking CO2 or brine 
is calculated using a user-defined mass fraction threshold. The aquifer impact volumes 
calculated based on the deep learning model compare well to those calculated based on 
STOMP simulation results. Gridded observation results from the generic aquifer component of 
NRAP-Open-IAM can be converted to HDF5 format files to use as input for monitoring design 
with the DREAM code. 
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Appendix A – STOMP Input 
A.1 STOMP Input File Template 

 
~Simulation Title Card 
1, 
Generic Aquifers, 
D.H. Bacon, 
Pacific Northwest National Laboratory, 
03 Mar 2021, 
11:11 AM PDT, 
1, 
CO2 and brine leakage into aquifers 
  
~Solution Control Card 
Normal,  
STOMP-CO2E w/isothermal, 
2, 
0,s,100,yr,0.001,s,0.01,yr,1.05,16,1.e-06, 
100,yr,170,yr,0.001,s,0.001,yr,1.05,16,1.e-06, 
999999, 
Variable Aqueous Diffusion, 
Variable Gas Diffusion, 
0, 
 
~Grid Card 
Cylindrical, 
100,1,10, 
0.00,m, 3.24,m, 6.73,m, 10.49,m, 14.56,m, 18.94,m, 23.67,m, 28.77,m, 34.27,m, 
40.20,m, 46.60,m, 53.51,m, 60.96,m, 69.00,m, 77.67,m, 87.02,m, 97.11,m, 
107.99,m, 119.73,m, 132.40,m, 146.06,m, 160.80,m, 176.70,m, 193.85,m, 212.35,m, 
232.31,m, 253.84,m, 277.07,m, 302.12,m, 329.15,m, 358.31,m, 389.76,m, 423.69,m, 
460.29,m, 499.77,m, 542.37,m, 588.31,m, 637.88,m, 691.35,m, 749.03,m, 811.25,m, 
878.37,m, 950.77,m, 1028.88,m, 1113.14,m, 1204.04,m, 1302.09,m, 1407.87,m, 
1521.97,m, 1645.06,m, 1777.84,m, 1921.08,m, 2075.60,m, 2242.29,m, 2422.11,m, 
2616.08,m, 2825.33,m, 3051.06,m, 3294.57,m, 3557.25,m, 3840.61,m, 4146.29,m, 
4476.05,m, 4831.77,m, 5215.50,m, 5629.45,m, 6076.00,m, 6557.72,m, 7077.37,m, 
7637.94,m, 8242.66,m, 8895.00,m, 9598.71,m, 10357.83,m, 11176.74,m, 12060.13,m, 
13013.09,m, 14041.10,m, 15150.06,m, 16346.35,m, 17636.85,m, 19028.97,m, 
20530.72,m, 22150.73,m, 23898.32,m, 25783.53,m, 27817.19,m, 30011.01,m, 
32377.58,m, 34930.52,m, 37684.51,m, 40655.36,m, 43860.17,m, 47317.36,m, 
51046.79,m, 55069.92,m, 59409.86,m, 64091.57,m, 69141.96,m, 74590.06,m, 
80467.20,m, 
0.0,deg,1,deg, 
?bottom,m,?dz,m, 
 
~Rock/Soil Zonation Card 
1, 
Aquifer,1,100,1,1,1,10, 
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~Mechanical Properties Card 
Aquifer, 2650, kg/m^3, ?por, ?por, 1e-06, 1/m, Millington and Quirk, 
 
~Hydraulic Properties Card 
Aquifer,?permh, m^2, ?permh, m^2, ?permv, m^2, 
 
~Saturation Function Card 
Aquifer,Brooks and Corey w/ Entrapment, ?psi,, ?lambda, ?srw, 0.2, 
 
~Aqueous Relative Permeability Card 
Aquifer,Burdine,, 
 
~Gas Relative Permeability Card 
Aquifer,Burdine,, 
 
~Salt Transport Card 
Aquifer, 1.0, ft, 0.1, ft, 
 
~Solute/Porous Media Interactions Card 
Aquifer, 1.0, ft, 0.1, ft, 
 
~Thermal Properties Card 
Aquifer,Parallel,2.38,W/m K,2.38,W/m K,2.38,W/m K,930,J/kg K, 
 
~Species Link Card 
2, 
H+,pH, 
Total_CO2(aq),Aqueous CO2, 
 
~Initial Conditions Card 
Hydrostatic,32.0,MPa,-3169.5,m,23,C,0,m,-0.0217,C/m,?aquifer_salinity,-2700.0,m,0,1/m, 
 
~Boundary Conditions Card 
3, 
East,Aqueous Unit Gradient,Gas Initial Condition,Salt Outflow, 
100,100,1,1,1,10,1, 
0,s,,,,,,,,,,,,,,,,,,, 
Bottom,Aqueous Zero Flux,Gas Zero Flux,Salt Zero Flux, 
1,100,1,1,1,1,1, 
0,s,,,,,,,,,,,,,,,,,,, 
Top,Aqueous Zero Flux,Gas Zero Flux,Salt Zero Flux, 
1,100,1,1,10,10,1, 
0,s,,,,,,,,,,,,,,,,,,, 
 
~Source Card 
2, 
# CO2 Leak 
Gas Mass Source,Water Relative Humidity,1,1,1,1,2,9,1, 
100,yr,?source_pressure,MPa,?co2_rate,kg/s,0.0,,,,,, 
# Brine Leak 
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Aqueous Mass Source, Dissolved Salt Mass Fraction, NULL,1,1,1,1,2,9,1, 
100,yr,?source_pressure,MPa,?brine_rate,kg/s,?reservoir_salinity,,,,,,  
  
~Surface Flux Card 
2, 
Aqueous Mass Flux,kg/s,kg,East,100,100,1,1,1,10, 
Gas CO2 Flux,kg/s,kg,East,100,100,1,1,1,10, 
 
~Output Options Card 
1, 
1,1,5, 
1,1,year,m,deg,6,6,6, 
8, 
Integrated CO2 Mass,kg, 
Integrated CO2 Aqueous,kg, 
Integrated CO2 Gas,kg, 
Integrated CO2 Mass Source,kg, 
CO2 Aqueous Mass Fraction,, 
Gas Pressure,MPa, 
Temperature,C, 
Aqueous Salt Mass Fraction,, 
17, 
100,yr, 
101,yr, 
102,yr, 
105,yr, 
110,yr, 
115,yr, 
120,yr, 
125,yr, 
130,yr, 
135,yr, 
140,yr, 
145,yr, 
150,yr, 
155,yr, 
160,yr, 
165,yr, 
170,yr, 
23, 
X Node Centroid,m, 
Y Node Centroid,m, 
Z Node Centroid,m, 
Rock/Soil type,, 
Diffusive Porosity,, 
x-intrinsic permeability,m^2, 
z-intrinsic permeability,m^2, 
Gas Saturation,, 
Temperature,C, 
Aqueous Pressure,MPa, 
Gas Pressure,MPa, 
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CO2 Aqueous Mass Fraction,, 
Aqueous Salt Mass Fraction,, 
Aqueous Density,kg/m^3, 
xnc Aqueous Vol,m/yr, 
ync Aqueous Vol,m/yr, 
znc Aqueous Vol,m/yr, 
CO2 Mass Source Int,kg, 
H2O Mass Source Int,kg, 
CO2 Mass Source Rate,kg/s, 
H2O Mass Source Rate,kg/s, 
Salt Mass Source Int,kg, 
Salt Mass Source Rate,kg/s, 
 

A.2 Python Script to Generate STOMP Input Files 

 
import glob 
import numpy as np 
import os 
import string 
import re 
import argparse 
import pandas as pd 
from sklearn.model_selection import train_test_split 
 
def get_trailing_number(s): 
    m = re.search(r'\d+$', s) 
    return int(m.group()) if m else None 
 
def make_run_dirs(df, template_dir, out_dir): 
    input_list = [] 
 
    def substitute_parameters(parametername,parametervalue): 
        findstring = '?' + parametername 
        for m,line in enumerate(input_list): 
            if findstring in line: 
                line_list = [x.strip() for x in line.split(',')] 
                for n,i in enumerate(line_list): 
                    if findstring in i: 
                        line_list[n]=str(parametervalue) 
                input_list[m] = ",".join(line_list) 
 
    # input permeability in m^2 
    # output Brooks Corey parameters psi, lambda and residual saturation 
    def rel_perm(permeability): 
        if permeability < 4.06e-14: 
            return (4.116,0.83113,0.059705) 
        elif permeability >= 4.06e-14 and permeability < 2.28e-13: 
            return (1.573,0.62146,0.081005) 
        elif permeability >= 2.28e-13 and permeability < 9.01E-13: 
            return (1.45,1.1663,0.070762) 
        else: 



PNNL-32590 

Appendix A A.5 
 

            return (1.008,1.3532,0.044002) 
 
    cmd = "mkdir -p " + out_dir  
    os.system(cmd) 
 
    for i,sample in df.iterrows(): 
 
        # copy the template folder 
        dir = out_dir + "/run" + str(i+1) 
        print('Making directory ', dir) 
        cmd = "rm -rf " + dir 
        os.system(cmd) 
        cmd = "cp -r " + template_dir + " " + dir 
        os.system(cmd) 
 
        # read input template into a list 
        template = dir + "/input.template" 
        with open(template, 'r') as file_path: 
            input_list = file_path.readlines() 
        input_list = [x.strip() for x in input_list] 
        file_path.close() 
 
        # substitute parameters 
        layers = 10 
        dz = str(layers) + '@' + str(sample['thick']/layers) 
        substitute_parameters('dz',dz) 
        #substitute_parameters('depth',sampl['depth']) 
        bottom = sample['depth'] - sample['thick'] 
        substitute_parameters('bottom',bottom) 
        #salinity = -2.50e-05 * sample['depth'] - 1.11e-02 
        #substitute_parameters('salinity',salinity) 
        por = sample['por'] 
        substitute_parameters('por',por) 
        permh = 10.**sample['log_permh'] 
        substitute_parameters('permh',permh) 
        permv = permh / 10.**sample['log_aniso'] 
        substitute_parameters('permv',permv) 
        bc_psi, bc_lambda, bc_srw = rel_perm(permh) 
        substitute_parameters('psi',bc_psi) 
        substitute_parameters('lambda',bc_lambda) 
        substitute_parameters('srw',bc_srw) 
        co2_rate = 10**sample['log_co2_rate'] 
        substitute_parameters('co2_rate',co2_rate/(layers-2)/360) # 1 degree 
        brine_rate = 10**sample['log_brine_rate'] 
        substitute_parameters('brine_rate',brine_rate/(layers-2)/360) 
        source_pressure = 1-sample['depth']*1000*9.81/1E+6 # hydrostatic 
pressure 
        substitute_parameters('source_pressure',source_pressure) 
        aquifer_salinity = sample['aquifer_salinity'] 
        substitute_parameters('aquifer_salinity',aquifer_salinity) 
        reservoir_salinity = sample['reservoir_salinity'] 
        substitute_parameters('reservoir_salinity',reservoir_salinity) 
 
        # print out the new input file 
        inputfile = dir + '/input' 
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        thefile = open(inputfile, 'w') 
        for line in input_list: 
            print(line, file=thefile) 
 
if __name__ == "__main__": 
 
    # input arguments 
    parser = argparse.ArgumentParser(description='Make simulation 
directories') 
    parser.add_argument('--sample', help='sample file to read') 
    parser.add_argument('--template', help='template folder to copy') 
    args = parser.parse_args() 
 
    df = pd.read_csv(args.sample, delim_whitespace=True) 
 
    y = range(1,len(df)+1) 
     
    df_train, df_rem, y_train, y_rem = train_test_split( 
        df, y, train_size=0.8, random_state=42) 
    df_val, df_test, y_val, y_test = train_test_split( 
        df_rem, y_rem, test_size=0.5, random_state=42) 
 
    base=os.path.basename(args.sample) 
    out_dir = os.path.splitext(base)[0] 
 
    make_run_dirs(df_train, args.template, out_dir+'/train') 
    make_run_dirs(df_val, args.template, out_dir+'/valid') 
    make_run_dirs(df_test, args.template, out_dir+'/test') 
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Appendix B – Example NRAP-Open-IAM script generating 
DREAM Files 

 
''' 
This example couples the simple reservoir, multisegmented wellbore and 
generic aquifer models. The saturation/pressure output produced by simple 
reservoir model is used to drive leakage from a single multisegmented 
wellbore 
model, which is passed to the input of an adapter that provides well 
coordinates, |CO2| and brine leakage rates and cumulative mass fluxes to the 
generic aquifer model. HDF5 files for input to DREAM are created. 
 
Example of run: 
$ python iam_sys_reservoir_mswell_generic_lhs.py 
''' 
 
import sys,os 
sys.path.insert(0,os.sep.join(['..','..','source'])) 
import numpy as np 
from openiam import SystemModel, AnalyticalReservoir 
from openiam import MultisegmentedWellbore, GenericAquifer, RateToMassAdapter 
import matplotlib.pyplot as plt 
from scipy.interpolate import RegularGridInterpolator 
import openiam.enmesh as en 
import h5py 
 
if __name__ == "__main__": 
    # For multiprocessing in Spyder 
    __spec__ = None 
    # Define keyword arguments of the system model 
    num_years = 10 
    time_array = 365.25*np.arange(0.0,num_years+1) 
    sm_model_kwargs = {'time_array': time_array}   # time is given in days 
 
    # Create system model 
    sm = SystemModel(model_kwargs=sm_model_kwargs) 
 
    # legacy well location 
    xloc = 200 
    yloc = 200 
 
    # Add reservoir component 
    ares = sm.add_component_model_object(AnalyticalReservoir(name='ares', 
parent=sm, 
        injX=0., injY=0., locX=xloc, locY=yloc)) 
 
    # Add parameters of reservoir component model 
    ares.add_par('numberOfShaleLayers', value=3, vary=False) 
    ares.add_par('shale1Thickness', value=100.0, vary=False) 
    ares.add_par('aquifer1Thickness', value=100.0, vary=False) 
    ares.add_par('shale2Thickness', value=100.0, vary=False) 
    ares.add_par('aquifer2Thickness', value=100.0, vary=False) 
    ares.add_par('shale3Thickness', value=500.0, vary=False) 
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    ares.add_par('injRate', value=1.0, vary=False) 
 
    # Add observations of reservoir component model 
    ares.add_obs_to_be_linked('pressure') 
    ares.add_obs_to_be_linked('CO2saturation') 
    ares.add_obs('pressure') 
    ares.add_obs('CO2saturation') 
    ares.add_obs('mass_CO2_reservoir') 
 
    # Add multisegmented wellbore component 
    ms = 
sm.add_component_model_object(MultisegmentedWellbore(name='ms',parent=sm)) 
    ms.add_par('logWellPerm', min=-14.0, max=-12.0, value=-13.0) 
 
    # Add linked parameters: common to reservoir and wellbore components 
    ms.add_par_linked_to_par('numberOfShaleLayers', 
ares.deterministic_pars['numberOfShaleLayers']) 
    ms.add_par_linked_to_par('shale1Thickness', 
ares.deterministic_pars['shale1Thickness']) 
    ms.add_par_linked_to_par('shale2Thickness', 
ares.deterministic_pars['shale2Thickness']) 
    ms.add_par_linked_to_par('shale3Thickness', 
ares.deterministic_pars['shale3Thickness']) 
    ms.add_par_linked_to_par('aquifer1Thickness', 
ares.deterministic_pars['aquifer1Thickness']) 
    ms.add_par_linked_to_par('aquifer2Thickness', 
ares.deterministic_pars['aquifer2Thickness']) 
    ms.add_par_linked_to_par('reservoirThickness', 
ares.default_pars['reservoirThickness']) 
    ms.add_par_linked_to_par('datumPressure', 
ares.default_pars['datumPressure']) 
 
    # Add keyword arguments linked to the output provided by reservoir model 
    ms.add_kwarg_linked_to_obs('pressure', ares.linkobs['pressure']) 
    ms.add_kwarg_linked_to_obs('CO2saturation', 
ares.linkobs['CO2saturation']) 
 
    # Add observations of multisegmented wellbore component model 
    ms.add_obs_to_be_linked('CO2_aquifer1') 
    ms.add_obs_to_be_linked('CO2_aquifer2') 
    ms.add_obs_to_be_linked('brine_aquifer1') 
    ms.add_obs_to_be_linked('brine_aquifer2') 
    ms.add_obs_to_be_linked('mass_CO2_aquifer1') 
    ms.add_obs_to_be_linked('mass_CO2_aquifer2') 
    ms.add_obs_to_be_linked('brine_atm') 
    ms.add_obs_to_be_linked('CO2_atm') 
    ms.add_obs('brine_aquifer1') 
    ms.add_obs('CO2_aquifer1') 
 
    # Add adapter that transforms leakage rates to accumulated mass 
    adapt = 
sm.add_component_model_object(RateToMassAdapter(name='adapt',parent=sm)) 
    adapt.add_kwarg_linked_to_collection('CO2_aquifer1', 
        [ms.linkobs['CO2_aquifer1'], ms.linkobs['CO2_aquifer2']]) 
    adapt.add_kwarg_linked_to_collection('CO2_aquifer2', 



PNNL-32590 

Appendix B B.3 
 

        [ms.linkobs['CO2_aquifer2'], ms.linkobs['CO2_atm']]) 
    adapt.add_kwarg_linked_to_collection('brine_aquifer1', 
        [ms.linkobs['brine_aquifer1'], ms.linkobs['brine_aquifer2']]) 
    adapt.add_kwarg_linked_to_collection('brine_aquifer2', 
        [ms.linkobs['brine_aquifer2'], ms.linkobs['brine_atm']]) 
    adapt.add_obs_to_be_linked('mass_CO2_aquifer1') 
    adapt.add_obs_to_be_linked('mass_CO2_aquifer2') 
    adapt.add_obs_to_be_linked('mass_brine_aquifer1') 
    adapt.add_obs_to_be_linked('mass_brine_aquifer2') 
    adapt.add_obs('mass_CO2_aquifer1') 
    adapt.add_obs('mass_brine_aquifer1') 
    adapt.add_obs('mass_CO2_aquifer2') 
    adapt.add_obs('mass_brine_aquifer2') 
 
    # Add generic aquifer model object and define parameters 
    ga = sm.add_component_model_object(GenericAquifer(name='ga',parent=sm)) 
    ga.add_par_linked_to_par('aqu_thick', 
ares.deterministic_pars['aquifer1Thickness']) 
    # ga.add_composite_par('depth', 
    #     expr='ares.shale2Thickness + ares.shale3Thickness' + 
    #     '+ ares.aquifer2Thickness') 
    ga.add_composite_par('depth', 
expr=ares.deterministic_pars['shale2Thickness'].name+ 
        '+'+ares.deterministic_pars['shale3Thickness'].name+ 
        '+'+ares.deterministic_pars['aquifer2Thickness'].name) 
    ga.add_par('por', value=1.965259282453879763e-01, vary=False) 
    ga.add_par('log_permh', value=-1.191464515905165555e+01, vary=False) 
    ga.add_par('log_aniso', value=8.046003470121247947e-01, vary=False) 
    ga.add_par('aquifer_salinity', value=1.267995018132549341e-02, 
vary=False) 
    ga.add_par('reservoir_salinity', value=4.159677791928499679e-02, 
vary=False) 
    ga.add_par('dissolved_salt_threshold', value=0.015, vary=False) 
    ga.add_par('dissolved_co2_threshold', value=0.001, vary=False) 
 
    ga.add_kwarg_linked_to_obs('co2_mass', 
adapt.linkobs['mass_CO2_aquifer1']) 
    ga.add_kwarg_linked_to_obs('brine_mass', 
adapt.linkobs['mass_brine_aquifer1']) 
 
    # Add observations (output) from the generic aquifer model 
    ga.add_obs('dissolved_salt_volume') 
    ga.add_obs('dissolved_co2_volume') 
 
    # Define output folder to keep data files with gridded observations 
    output_dir = 'dream_data' 
 
    # Add gridded observations of the aquifer component 
    ga.add_grid_obs('r_coordinate', constr_type='matrix', 
output_dir=output_dir) 
    ga.add_grid_obs('z_coordinate', constr_type='matrix', 
output_dir=output_dir) 
    ga.add_grid_obs('dissolved_co2_mass_fraction', constr_type='matrix', 
output_dir=output_dir) 
    ga.add_grid_obs('dissolved_salt_mass_fraction', constr_type='matrix', 
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output_dir=output_dir) 
 
    print('------------------------------------------------------------------
') 
    print('                      UQ illustration ') 
    print('------------------------------------------------------------------
') 
 
    import random 
    num_samples = 25 
    ncpus = 1 
    # Draw Latin hypercube samples of parameter values 
    s = sm.lhs(siz=num_samples,seed=random.randint(500,1100)) 
 
    # Run model using values in samples for parameter values 
    results = s.run(cpus=ncpus,verbose=False) 
 
    print('------------------------------------------------------------------
') 
    print('                 Write DREAM File ') 
    print('------------------------------------------------------------------
') 
 
    # set boundaries of site grid 
    top = ares.deterministic_pars['aquifer2Thickness'].value + 
ares.deterministic_pars['shale2Thickness'].value + 
ares.deterministic_pars['shale3Thickness'].value 
    bottom = top + ares.deterministic_pars['aquifer1Thickness'].value 
    grid = en.Grid(xmin=0, xmax=1000, ymin=0, ymax=1000, zmin=top, 
zmax=bottom) 
 
    # set constant grid spacing for vertical axis 
    grid.get_axis('z').add_zone(min=grid.zmin, 
max=grid.zmax).add_ticks(min_spacing=10., mul=0) 
 
    # add wells 
    grid.add_well(x=xloc, y=yloc, name='Well 1') 
 
    # refine grid around wells 
    grid.refine_grid_around_wells(min_x_spacing=5, min_y_spacing=5, 
x_mul=1.5, y_mul=1.5) 
 
    # get 3D mesh with radial distance from well 
    xx,yy,zz = grid.get_vertices() 
    cx,cy,cz = grid.get_centroids() 
    cr = grid.get_radial_distance(xloc, yloc, cx, cy) 
    positions = np.vstack(list(zip(cr.ravel(), cz.ravel()))) 
     
    # Read Gridded Observation Coordinates 
    rcoord = 
np.load(os.path.join(output_dir,'ga_r_coordinate_sim_1_time_0.npz'))['data'] 
    zcoord = 
np.load(os.path.join(output_dir,'ga_z_coordinate_sim_1_time_0.npz'))['data'] 
    r_coord = rcoord[:,0] 
    z_coord = np.flip(zcoord[0,:]) 
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    # start simulation loop  
    for sim in np.arange(1, num_samples+1): 
 
        years = time_array/365.25 
        steps = years.astype(int) 
 
        # Open DREAM file 
        hdf5 = 
h5py.File(os.path.join(output_dir,'ga_sim_'+str(sim)+'.h5'),'w') 
 
        # write grid and geologic data 
        g1=hdf5.create_group('data') 
        g1.create_dataset('porosity', 
data=ga.deterministic_pars['por'].value*np.ones_like(cx),dtype='float32') 
        g1.create_dataset('steps',    data=steps,dtype='float32') 
        g1.create_dataset('times',    data=time_array,dtype='float32') 
        g1.create_dataset('vertex-x', 
data=np.array(xx)[:,0,0],dtype='float32') 
        g1.create_dataset('vertex-y', 
data=np.array(yy)[0,:,0],dtype='float32') 
        g1.create_dataset('vertex-z', 
data=np.array(zz)[0,0,:],dtype='float32') 
        g1.create_dataset('x',        
data=np.array(cx)[:,0,0],dtype='float32') 
        g1.create_dataset('y',        
data=np.array(cy)[0,:,0],dtype='float32') 
        g1.create_dataset('z',        
data=np.array(cz)[0,0,:],dtype='float32') 
        g1['x'].attrs['units'] = 'm' 
        g1['y'].attrs['units'] = 'm' 
        g1['z'].attrs['units'] = 'm' 
        g1['vertex-x'].attrs['units'] = 'm' 
        g1['vertex-y'].attrs['units'] = 'm' 
        g1['vertex-z'].attrs['units'] = 'm' 
        g1['z'].attrs['positive'] = 'down' 
        g1['vertex-z'].attrs['positive'] = 'down' 
 
        # write gridded observations 
        def write_obs(name, unit, positions, shape): 
 
            def snake_to_camel(name): 
                temp = name.split('_') 
                res = ''.join(ele.title() for ele in temp) 
                return res 
 
            name2 = snake_to_camel(name) 
            unit2 = snake_to_camel(unit) 
 
            means = [] 
            mins = [] 
            maxs = [] 
 
            for step in steps: 
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                # read gridded observation files 
                obs = 
np.load(os.path.join(output_dir,'ga_'+name+'_'+unit+'_sim_'+str(sim)+'_time_'
+str(step)+'.npz'))['data'] 
  
                # Interpolate Gridded Observations to Site Grid 
                interpolator = RegularGridInterpolator((r_coord, z_coord), 
obs, bounds_error=False) 
                interpolated = interpolator(positions) 
                reshaped = interpolated.reshape(shape) 
 
                means.append(np.mean(reshaped)) 
                mins.append(np.min(reshaped)) 
                maxs.append(np.max(reshaped)) 
 
 
                g2=hdf5.require_group('plot%i'%step) 
                g2.create_dataset(name2,data=reshaped,dtype='float32') 
 
                g2[name2].attrs['unit'] = unit2 
 
            # calculate min,mean,max over all time steps 
            g3=hdf5.require_group('statistics') 
            g3.create_dataset(name2, data=np.array([ 
np.min(np.array(mins)),np.mean(np.array(means)),np.max(np.array(maxs)) 
]),dtype='float32') 
 
        write_obs('dissolved_co2','mass_fraction',positions,cx.shape) 
        write_obs('dissolved_salt','mass_fraction',positions,cx.shape) 
 
        hdf5.close() 
 
        # end sim loop 
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