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Abstract 
This report summarizes an integrated co-simulation model used by the Distribution System 
Operator with Transactive (DSO+T) study to represent an electrical generation, delivery, and 
end-load systems for the purposes of assessing the viability and value proposition of transactive 
energy coordination of flexible assets versus a business-as-usual case. The integrated co-
simulation model includes the bulk generation and transmission system, including the day-
ahead and real-time scheduling and dispatch of thermal generators. Forty distribution system 
operators were modeled in detail, including tens of thousands of residential and commercial 
buildings and their flexible end loads. These included heating, ventilation, and cooling systems; 
residential water heaters; electric vehicles; and stationary behind-the-meter batteries. Both 
wholesale market and end-load results for the business-as-usual case are presented and 
compared to actual ERCOT system data to assess the accuracy and representativeness of the 
resulting model. 
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Summary 
The purpose of the Distribution System Operation with Transactive (DSO+T) study is to simulate 
and analyze how a distribution system operator (DSO) can engage flexible distributed energy 
resources (DERs) by utilizing a coordination strategy based on transactive energy mechanisms. 
It seeks to compare two transactive cases (one with flexible loads, the other with batteries) 
against a business-as-usual case. These three cases are analyzed over two renewable energy 
scenarios, the first with moderate levels (~15%) of annual renewable generation, the second 
with high levels of renewable generation (~40%). To successfully understand the impact of this 
demand flexibility on the distribution and bulk power system operation this study must simulate 
the fully integrated electrical system, all the way from generators on the transmission system, to 
individual flexible assets such as heating, ventilation, and cooling (HVAC) units, water heaters, 
and batteries on the distribution system. The Electric Reliability Council of Texas (ERCOT) 
region was selected as an ideal system to serve as the basis of this analysis as it has a 
generation mix representative of the country, is summer peaking, is served by an independent 
system operator (ISO) wholesale market, and is of tractable size with no interconnections to 
other regions. This report details the definition of this integrated electrical system model and 
provides illustrative results showing the level of accuracy obtained. It is one of five reports 
documenting the DSO+T study. 

The bulk generation and transmission system was modeled using Agent-Based Modeling of 
Electricity Systems (or AMES) to determine the day-ahead scheduling and real-time dispatch of 
the generation fleet and PYPOWER to solve the optimal power flow equation for the 
transmission system. A generation mix of coal, natural gas, nuclear, and wind generators was 
defined for the MR scenario to be representative of ERCOT and the nation as a whole. For the 
high renewables scenario solar generation was added along with an increase in wind generation 
capacity to achieve 40% annual renewable generation. Thermal generator startup and 
production costs, as well as performance parameters, were defined from existing literature. 
Wind and solar generation output was determined using existing models tuned to historical 
ERCOT generation and weather data. Forecast uncertainty was applied to day-ahead wind and 
solar generation estimates. Two synthetic transmission systems were used: an 8-bus model and 
a 200-bus model. 

The resulting performance of the bulk generation and transmission system was compared to 
historical system data. The generation dispatch and mix was compared to 2016 ERCOT data, 
while the day-ahead and real-time locational marginal prices were compared to wholesale 
market prices seen in ERCOT, California (CAISO), and PJM. The calculated locational marginal 
prices captured the daily and net-load trends seen for prices on the ERCOT system. DSO+T 
average day-ahead and real-time prices were slightly higher than 2016 ERCOT market prices, 
similar to PJM market prices, and lower than CAISO market prices. As such, the DSO+T model 
provides average prices representative of national wholesale markets. The DSO+T results do, 
however, underpredict the daily range in prices, particularly large irregular price excursions. This 
may be due to either 1) a need to better define the market model to capture such irregular price 
escalations, or 2) real market behavior (such as charging of scarcity rent or generator self-
scheduling) that is outside the capabilities of current market models. This is an area that 
warrants further investigation. 

The distribution system and end loads were modeled in GridLAB-D™. Forty different DSOs 
were modeled to capture a range of utility sizes, climate zones, region types (urban, suburban, 
and rural), and a diversity of residential, commercial, and industrial load mix. Taxonomy 
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distribution feeders were used to capture distribution losses and miscellaneous loads. These 
distribution feeders were populated with tens of thousands of residential and commercial 
building models. To ensure a representative diversity of building types and load profiles was 
achieved the age, size, envelope insulation, heating fuel type, and occupancy levels were varied 
for each building based on national survey data and other literature sources. In addition, HVAC 
units and water heaters had randomized variation in size, performance, and usage schedules. 
The resulting populations of buildings and their equipment end loads helped ensure diurnal and 
seasonal load profiles that were representative of the ERCOT region. 

The resulting distribution system load profiles were compared to 2016 ERCOT data. The 
DSO+T simulation model predicted the maximum and average system loads within ~5%. The 
minimum system load was predicted within 11%. The simulation did overpredict the daily range 
in system load by 37% on average. Other researchers, using different modeling approaches and 
datasets have also overpredicted this diurnal load change, particularly in the summer. This 
suggests that the research community requires either improved building population and 
parameter definition or the ability to capture additional phenomena in their modeling 
approaches. 

Finally, this report also documents the assumptions and approaches used to define the 
populations of electric vehicles (EVs) and behind-the-meter batteries used in this study. 
Because only small numbers of EVs and batteries have been deployed to date they were not 
implemented in the business-as-usual case for the MR scenario. The low level of adoption also 
limits available data on the expected population distribution of these DERs in the future. The 
resulting populations are based on vendor data as well as current sales data and extrapolation 
assumptions. 
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1.0 Introduction 
The Distribution System Operation with Transactive (DSO+T) study simulates and analyzes how 
a distribution system operator (DSO) can engage flexible distributed energy resources (DERs), 
such as air conditioners, water heaters, and batteries, in operation of the electric power system 
by using a coordination strategy based on transactive energy (Hammerstrom et al. 2007) 
mechanisms. This study is designed to: 

• Design a DSO transactive network capable of coordinating DERs deployed at scale to 
produce benefits at both the distribution and bulk system levels. 

• Test the design and estimate the benefits of a regional deployment at scale for a range of 
potential future grid scenarios using the valuation (Widergren et al. 2017) and co-simulation 
(Huang et al. 2019) frameworks developed previously for the U.S. Department of Energy’s 
Transactive Systems Program. 

• Issue the simulation and valuation framework to industry as an open challenge to the 
transactive energy community to develop and improve their designs in preparation for field 
experiments. 

The DSO+T study involves comparing the engineering and economic performance of business-
as-usual (BAU) cases representing today’s distribution utilities with fixed-price rates for all 
customer classes and no active participation of price-responsive DERs with that of transactive 
cases in which the distribution utilities have evolved into DSOs that reflect their operational 
costs in the form of local retail markets for energy (and eventually other) services. It assumes 
most customers have installed price-responsive DERs such as batteries, electric vehicles (EVs), 
or flexible heating, ventilation, and cooling (HVAC) and water heating systems, which interact 
with forecasts of day-ahead and real-time dynamic prices—i.e., bid into the retail markets that 
discover optimal and equitable real-time prices in a distributed fashion characteristic of 
transactive energy systems. 

A family of reports documents the study. The primary results are summarized in Volume 1 – 
Main Report (Reeve et al. 2022a), with considerable additional detail on the results of the 
analysis provided in Volume 5 – Study Results (Reeve et al. 2022b). The design of the 
transactive rates, retail markets, and DER control agents, and the presumed regulatory policies 
associated with the design, are described in Volume 3 – Transactive Energy Coordination 
Framework (Widergren et al. 2022). Volume 4 – Valuation and Economic Metrics (Pratt 2022) 
describes the process used to access the value of adopting the DSO+T strategy for all primary 
stakeholders by comparing the change in various metrics between any two cases of the study. 
This document (Volume 2) describes the instantiation of a large, multiscale, annual time-series 
co-simulation that is the foundation of the analysis, representing a nationally representative 
generation fleet, transmission system, and distribution system including retail customer building 
characteristics and controllable and uncontrollable loads and DERs. 

The remainder of this section discusses the scenarios and system that set the requirements of 
the co-simulation environment which is then discussed. This is followed by a review of prior 
relevant efforts and a summary of the report structure. 
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1.1 Analysis Scenarios 

At its most basic level, the study consists of two parallel analyses, each with its own BAU case 
to serve as a baseline. These are illustrated conceptually in Figure 1. The first analysis looks at 
the combined effect of a DSO engaging a fleet of flexible assets deployed at scale and 
connected with a transactive network, when there are moderate levels of renewables (moderate 
renewables [MR] scenario) in the power system. This level of renewable generation can 
reasonably be achieved for the U.S. as a whole in the absence of federal mandates, based on 
today’s levels in California or Texas (30% and 15%, respectively). The second analysis is 
similar but assumes a high level of annual renewable generation (high renewables [HR] 
scenario) corresponding to aggressive renewables portfolio standards set by a number of states 
(~50% or more). 

 
Figure 1. Summary of analysis scenarios: transactive flexible asset fleets with moderate and 

high levels of renewables. 

Each analysis compares two transactive cases against its respective BAU case: 

• The flexible load case assumes a high penetration of flexible loads with substantial 
customer participation as the primary component of the flexible asset fleet. It assumes that a 
majority of residential and commercial customers (~90%) install grid-responsive controls for 
primary end-use loads such as heating, cooling, and (residential) water heating. 

• The battery storage case assumes that continued breakthroughs in reducing the cost of 
stationary battery storage and reluctance on the part of most customers to provide flexibility 
from their loads results in distributed storage dominating the flexible asset fleet. A 
comparable amount of distributed battery storage will be assumed, sufficient to provide 
approximately the same size resource as the fleet of flexible assets in the flexible load case. 

The HR generation scenario also assumes that low-cost batteries spur a high level of 
penetration of EVs, with approximately 30% of homes having an EV. 

1.2 System Overview 

To successfully understand the impact of load flexibility on the distribution and bulk system 
operation, the study must simulate the fully integrated system, all the way from generators on 
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the transmission system to individual flexible assets such as HVAC units, water heaters, and 
batteries on the distribution system. Figure 2 shows the breadth of the DSO+T simulation. The 
bulk generation system contains a mix of thermal (natural gas, coal, nuclear) generators as well 
as wind and solar resources. They are connected to the distribution system via a 200-bus 
transmission model. The distribution system is represented by feeders that connect a 
combination of residential and commercial buildings, each with a combination of end loads. 

 
Figure 2. Overview of the system simulation breath, scale, and modeling platforms. 

To successfully specify and define this system a number of requirements need to be met to 
ensure it is tractable and representative of national conditions. For example, a small power 
system model footprint for the analysis offers the advantage of having fewer generators, 
transmission lines, and DSOs that must be represented. However, using a typical research 
transmission network testbed is inappropriate as the basis for this study because realistic loads 
by customer class, generation mix, level of reserves, etc. are all critical determinants of the 
relative value of different cases. An actual U.S. bulk power system contains, by definition, real 
examples of all these infrastructure interactions and is therefore deemed a more realistic 
topological footprint for the analysis. 

A number of desirable characteristics for the footprint were identified for consideration: 

• Summer peaking loads are predominant in the United States and ideally would have the hot 
and humid summer peaks characteristic of the East and South (areas with winter peaks 
were not considered). 

• Smaller is better with fewer generators, transmission lines, and buses being simpler to 
model and faster to simulate. 

• Served by an independent system operator (ISO) wholesale market, which eliminates any 
bias in infrastructure capacity compared to load that may be associated with vertically 
integrated utility environments. 

• One-to-one correspondence of the ISO and interconnection minimizes the need to model 
imports and exports. 
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• Existing renewables penetration comparable to the MR scenario minimizes the need to alter 
the grid model by retiring some fossil plants and adding more renewables. 

• A mix of generation typical of the United States, including steam turbines and natural gas 
plants, better represents the degree of inherent flexibility of the generation fleet for the MR 
BAU case. 

After considering a number of alternatives and tradeoffs such as size vs. complexity of the 
modeling effort, the Electric Reliability Council of Texas (ERCOT) region was selected as an 
ideal infrastructure for analysis of the bulk system in several respects. First, it is an entire 
interconnection with very little power transfer capability across its boundary. This offers the 
distinct advantage of allowing power imports and exports with load-serving entities and power 
generators outside the boundary of the analysis to be ignored. Simulating the entire Western 
Interconnection, for example, would be a much larger model, and the Eastern Interconnection 
even larger still. Both have substantial areas not served by ISOs. Limiting the footprint to the 
California Independent System Operator (CAISO) or New England ISO is more practical 
logistically but would require extensive modeling of imports and exports further complicated by 
the Energy Imbalance Market in the case of CAISO. 

Further, most of Texas is served by the ERCOT ISO, with the exception of some municipal 
utilities in medium-sized cities (e.g., Austin, San Antonio) and generation and transmission 
cooperatives that serve the loads of a number of cooperative rural electric associations. Most of 
the municipals and generation and transmission cooperatives actively participate in the ERCOT 
market for at least a portion of their power supply, with 99% of the ERCOT load settled in the 
15-minute market. 

ERCOT has a wholesale generation mix that is fairly representative of the United States, 
compared to other ISO regions that are candidates for the study. As shown in Table 1, 
California (CAISO), New England (ISONE), and New York (NYISO) all have far less coal 
resources than the United States, and New England and New York ISOs also have significantly 
more nuclear power. 

Table 1. Regional and U.S. generation for 2016 (fraction of wholesale energy produced). 
Type of Generation ERCOT CAISO ISONE NYISO United States 

Natural gas 44% 50% 49% 44% 34% 
Coal 29% 0% 2% 1% 30% 
Wind 15% 7% 2% 3% 6% 
Nuclear 12% 10% 31% 30% 20% 
Other* 0% 34% 15% 22% 10% 

Solar 0% 10% 1% 0% 1% 
Nonsolar <1% 24% 14% 22% 9% 

TOTAL 100% 100% 100% 100% 100% 
*Includes solar, hydro, geothermal, petroleum coke, biomass, and landfill gas. 

Table 2 examines one important implication of the generation mix more closely, the degree of 
inherent flexibility in the existing generation fleet, which the transactive DERs will supplement. 
Examining only the nonintermittent generation (i.e., other than wind and solar), the dispatchable 
generation fleet is categorized in each region into its flexible (natural gas and hydropower 
plants) and minimally flexible (coal, nuclear, and other steam-based plants) components. This 
shows ERCOT as more representative of the U.S. fleet. 



PNNL- 32170-2 

Introduction 5 
 

Table 2. Regional and U.S. nonintermittent generation for 2016 (fraction of wholesale energy 
produced). 

Type of Generation ERCOT CAISO ISONE NYISO United States 
Natural and other gas, 
hydro 

51% 75% 59% 65% 43% 

Coal, nuclear, other** 49% 25% 41% 35% 57% 
TOTAL 100% 100% 100% 100% 100% 

**Includes geothermal, petroleum, and biomass. 

Only ERCOT and CAISO have wholesale wind and solar renewable resource penetrations (15% 
and 17%, respectively) that approach the 20% target for the MR scenario. California has an 
additional 4% supplied by distributed solar photovoltaic (PV), as shown in Table 3, and 
additionally has renewable geothermal generation of over 4%. 

Table 3. Nonutility solar generation for 2016 (fraction of wholesale energy). 
Sector ERCOT CAISO ISONE NYISO United States 

Commercial 0.0% 0.9% 0.9% 0.2% 0.2% 
Industrial 0.0% 0.7% 0.1% 0.0% 0.1% 
Residential 0.1% 2.6% 0.7% 0.4% 0.3% 
TOTAL 0.1% 4.2% 1.7% 0.6% 0.5% 

It is important to emphasize that while ERCOT was selected to define the system model, the 
goal of the study is to develop a nationally representative model. This report will compare the 
results of the simulation (such as loads and market prices) to ERCOT to provide insight into the 
representativeness of this model. Comparisons will be made where possible to other regions as 
well. It is also important to remember that the performance of electricity systems change over 
time. While we have chosen 2016 as the year of comparison, the performance of ERCOT in 
other years can vary due to changes in fuel prices, load growth, climate conditions, and 
transmission and distribution upgrades. The aim of this simulation is to capture the essence of a 
fully integrated electricity delivery system. ERCOT data are used to gauge how well we have 
done, but the ultimate goal is to capture nationally representative behavior, not accurately model 
2016 ERCOT behavior. 

1.3 Co-simulation and Software Stack 

Successfully simulating this fully integrated system requires use of a co-simulation platform to 
integrate and coordinate domain-appropriate tools. To achieve this we leveraged the 
Transactive Energy Simulation Platform (TESP) that enables the co-simulation of the bulk grid 
(generation and transmission) systems, distribution system, and end loads (TESP n.d.). More 
details about the TESP and its usage can be found in prior trial valuation analysis and 
simulation efforts conducted by Pacific Northwest National Laboratory (PNNL) (Widergren et al. 
2017; Huang et al. 2019). 

The bulk system is modeled using a combination of Agent-Based Modeling of Electricity 
Systems (AMES) and PYPOWER. AMES is an open-source tool, developed by Iowa State 
University (AMES n.d.), that was used to determine the day-ahead scheduling of generators and 
their real-time dispatch by solving the security-constrained unit commitment (SCUC) and 
security-constrained economic dispatch (SCED) optimization problems. PYPOWER 
(PYPOWER 2020) was used to solve the direct current optimal power flow equation for the 
transmission system. 
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The electrical distribution system, buildings, and all end loads were modeled using GridLAB-D. 
The distribution feeders were based on the taxonomy distribution feeders defined by PNNL 
(Schneider et al. 2008). GridLAB-D has a single-zone house model for simulating building 
envelope and internal gain loads as well as HVAC performance (GridLAB-D 2017). This house 
model has been validated and shown to adequately capture overall load shape (Fuller et al. 
n.d.) and dynamic power consumption at grid-relevant time scales (Gotseff and Lundstrom 
2017; Schneider et al. 2016). 

This overall co-simulation was run for 12 individual months, with the first three days of each 
month-long run used to initialize the simulation, and hence not included in the post-processed 
results. The transmission system (PYPOWER) and distribution system (GridLAB-D) were solved 
every 15 seconds. Real-time price information was passed between these two systems every 5 
minutes. Hourly day-ahead and 5-minute real-time data were recorded for post-processing 
analysis. 

1.4 Relevant Prior Work 

This section highlights relevant prior work both in terms of large-scale grid system modeling as 
well as distribution system and end-load modeling. To the best of our knowledge no one has 
conducted a fully coupled and integrated co-simulation of price-responsive end loads supporting 
the operation of the bulk system through real-time and future (day-ahead) markets. 

1.4.1 Large-Scale System Analysis 

Prior work on large-scale modeling of the electrical delivery system, including simulating the 
impact of DER flexibility, has typically fallen into two camps. The first has focused on 
investigating regional impacts (such as system cost) through generation and transmission 
system modeling. End loads are typically not modeled in detail and are addressed using 
historical load profiles that have been parametrically adapted to reflect load growth and flexibility 
response. The second set of work focuses on higher fidelity modeling of end loads and DERs, 
including control and coordination mechanisms to achieve flexibility while respecting operational 
constraints. These efforts typically do not include simulation of the bulk system and wholesale 
considerations, including market prices, are considered boundary conditions that are not altered 
by changes in distribution system operation. 

Examples of bulk system modeling includes work by Graham et al. (2013), who sought to do full 
electricity delivery system modeling to understand the costs of future scenarios for the 
Australian electric grid. This work did not address retail costs. In addition, it used a parametric 
load demand model that assumed load reductions (by device types) to existing and projected 
load profiles. No market coordination between DERs, the distribution system, and the wholesale 
market was demonstrated. Work by Vibrant Clean Energy (2019) sought to understand system 
and customer costs associated with the future decarbonization of generation and electrification 
of end loads in Colorado. Each scenario considered was evaluated through “generator siting, 
transmission expansion, storage capacity additions, demand side resource deployment, 
transmission power flow, [and] economic dispatch” across the entire Western Electricity 
Coordinating Council (WECC). While this work is informative in assumptions made about the 
adoption of renewables and EVs in the DSO+T study’s HR scenario, demand-side resources 
were considered as an alternative resource that could be dispatched as needed at $60/MWh. 
Work by the Rocky Mountain Institute (Goldenberg et al. 2018) sought to evaluate the benefits 
of DER flexibility for enabling the adoption of high amounts of renewables on the ERCOT 
system in a 2050 scenario. This work applied constant assumptions about the amount of 
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flexibility per device as well as potential operation strategies. DER flexibility was not modeled in 
the context of varying adoption and participation rates or operational constraints (for example, 
comfort limitations on HVAC flexibility or driving patterns prohibiting EV flexibility). 

An example of higher fidelity DER models in the context of the distribution system include work 
by Fuller et al. (2012), who assessed the performance and benefits of demand response of 
various end loads using GridLAB-D. This work did not include integration into the transmission 
system and wholesale market (the DERs were price takers, not price makers). 

More recently work by Mukherjee et al. (2020) has sought to bridge this transmission/distribution 
system divide by demonstrating the integrated simulation of DERs responding to and affecting 
wholesale prices. This work used MATPOWER to model the generation production costs and 
market of the WECC and was combined with GridLAB-D to model multiple distribution feeders 
and associated DERs operating under transactive coordination. This work served as a proof 
point for the co-simulation of the DSO+T study but only simulated one day (not a whole year) 
and did not investigate the representativeness of the end-load profiles and market prices. 

1.4.2 Building Population and Load Modeling 

Most relevant prior work on modeling of building performance and electrical end loads has 
focused on forecasting future load growth for grid resource planning and to estimate the impact 
of efficiency measures at local or regional scales. For example, Hale et al. (2018) developed a 
comprehensive bottoms-up model of residential, commercial, industrial, and transportation end 
loads. Building parameter definitions were based on ResStock and ComStock databases and 
modeled in EnergyPlus. The results were compared to actual 2012 grid loads to assess the 
accuracy of such models at the state, regional, and national levels. 

The results showed average errors ranging from 20% at the hourly state resolution to 4% at the 
annual continental United States level. While this work is informative for understanding 
achievable accuracy, the computational intensity and time resolution of the modeling approach 
is not as well suited for real-time operational grid modeling. Research by Taylor et al. (2019) 
also used a vast number of EnergyPlus models to simulate regional grid loads and developed a 
calibration approach for these system models, then analyzed the regional load over the WECC 
interconnection in comparison to actual hourly load at 19 balancing authorities. This calibration 
approach resulted in reduced bias in annual energy consumption (1.8%) and peak loads (6.1%). 
New et al. (2019) used 15-minute utility data from over 170,000 buildings to develop calibrated 
EnergyPlus models for 17 classes of residential and commercial buildings. The goal of this work 
was to estimate the contributions of various building classes to the utility’s peak load and 
identify customers most suitable for demand response. No direct comparison to system load 
results was presented. Other researchers have also advanced urban-scale building energy 
modeling capability but do not present direct comparisons to grid loads (el Kontar et al. 2020; 
Ang et al. 2020; Lei et al. 2021). 

Prior work has also assessed the performance of grid distribution modeling tools such as 
GridLAB-D to model building loads. For example, GridLAB-D can capture grid load profiles with 
14.2% average error at the distribution circuit level when calibrated to utility customer data 
(Fuller et al. n.d.). In addition, it can accurately estimate the increased loads occurring when 
power is restored after a blackout as many devices (like HVAC units) come on at once 
(Schneider et al. 2016). Finally, work by Gotseff and Lundstrom (2017) has validated the 
dynamics of GridLAB-D house models. We are not aware of any assessment of GridLAB-D’s 
ability to estimate region-wide loads over a full annual cycle. 
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The DSO+T study has developed a method to estimate regional grid loads, based on building 
models derived from public datasets that are computationally efficient and require no dedicated 
calibration. The remainder of this paper presents the methodology used to define building 
parameters, the simulation approach, a comparison of simulation results with actual grid loads, 
and concludes with a discussion of lessons learned and future work. 

1.5 Report Structure 

The remainder of the report is split into two parts: the bulk power system and the distribution 
system (including end loads). The first part details the definition of the generators (Section 2.0) 
and transmission system (Section 2.4.4). It is concluded in Section 4.0 with presentation of 
illustrative results of the bulk system compared to actual historical system data. This includes 
examples of generation dispatch, market prices, and transmission network operation. The 
second part of the report details the definition of the DSOs and distribution system (Section 5.0) 
and the approach used to define residential and commercial buildings and their end loads 
(Sections 6.0 and 7.0). Illustrative results of building system end loads are presented in Section 
8.0 and compared to system-level ERCOT data. Finally, Sections 9.0 and 10.0 detail the EV 
model (only used in the HR scenario) and battery model. 
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2.0 Generation 

2.1 Summary of Generation Fleet and Dispatch Strategy 

The number, location, and capacity of the bulk system generators for the MR scenario are 
based on the ERCOT Test System (Battula et al. 2020), which is available on GitHub (TESP 
n.d. b). A summary of the generator types, number of sites, and capacities used for the MR 
case is provided in Table 4. 

The HR scenario (also shown in Table 4) maintains the same thermal generation fleet but 
doubled the wind capacity and added 14.8 GW of utility-scale solar capacity on the transmission 
system and 21.3 GW of rooftop solar on the distribution system. Thermal plants were not retired 
a priori in the HR order to allow any economically competitive plant to be scheduled and 
dispatched. This does not impact the dispatch of renewables but allows the simulation to 
economically utilize plants as needed for reliable operation. The study results can be used to 
assess the savings from candidate plants for retirement in future work. 

Table 4. Summary of generator types, number of locations (200-bus case), and capacity for the 
MR and HR scenarios. 

 MRs HRs 
Generation Type Number Capacity 

(MW) 
Capacity 

(%) 
Number Capacity 

(MW) 
Capacity 

(%) 
Coal 14  21,900  22% 14  21,900  15% 
Natural gas combined cycle 33  40,100  41% 33  40,100  27% 
Natural gas internal 
combustion engine 

9  1,800  2% 9  1,800  1% 

Natural gas steam turbine 18  13,000  13% 18  13,000  9% 
Nuclear 2  5,100  5% 2  5,100  3% 
Wind 34  16,300  17% 34  32,600  22% 
Solar (utility scale) - - - 200  14,800  10% 
Solar (distributed) - - - 

 
 21,300  14% 

TOTAL 110  98,300  100% 310  150,600  100% 

The HR generation fleet was informed, in part, through the use of the Transactive Future Grid 
State Tool (Bender et al. 2019). This simple capacity expansion tool was configured to target a 
50% renewable energy production with at least 20% being produced by wind and 20% by solar 
(both utility scale and distributed). 

The use of thermal generators is based on implementing SCUC and SCED processes for 
determining day-ahead and real-time market operations. In both cases forecast and actual 
values for renewable generation were created and used. These processes are executed using 
AMES V5.0. Unless curtailment (discussed in Section 2.6) is required, all renewable generation 
is considered to be committed and dispatched and is subtracted from the demand at each bus 
to create a net load at each bus. Day-ahead and real-time load forecasts are provided by the 
DSO agent and are discussed in more detail in (Widergren et al. 2022). 

The SCUC and SCED processes as modeled in AMES will not capture some real market 
phenomena. This includes any out-of-market dispatch (either due to self-scheduling or bilateral 
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contracts). In addition, any scarcity rent (not already inherently captured in the inferred 
production costs discussed in the next section) is not modeled. Finally, locational marginal 
prices (LMPs) do not capture uplift costs (startup) or make whole costs that may change (per 
generator) under HR scenarios and may be impacted by transactive energy approaches. The 
analysis does track the number of starts per generator as well as startup cost. 

2.2 Dispatchable Thermal Generation 

This section details the assumptions used for the thermal generator fleet. While the generator 
capacities and bus locations are identical to the values defined by TESP for the 8- and 200- bus 
ERCOT test case, the generation production costs, ramp rate limits, and minimum compliant 
load values were revised to ensure that the resulting LMPs were representative of ERCOT and 
other markets of interest (as shown in Section 4.2). 

2.2.1 Thermal Generation Variable Production and Startup Costs 

A number of sources were investigated to determine representative generator heat rates, fuel 
costs, and resulting variable production costs. For example, heat rate data were used from a 
recent Californian Energy Commission report on generator energy efficiency measures and 
production costs (Deaver 2019). As can be seen in Figure 3 these data alone do not capture the 
resulting change in ERCOT LMP as a function of net system load. Potomac Economics (2017) 
studied the state of the 2016 ERCOT market and inferred generator heat rates as a function of 
system load from the observed market prices. This showed a five-times change in heat rate as 
the system net load changed throughout the year. This suggests other variable system costs 
(e.g., variable operations and maintenance) or factors beyond heat rate need to be captured. 

 
Figure 3. Comparison of LMPs when using Californian Energy Commission heat rates (left) and 

production costs based on inferred ERCOT heat rates (right). 

In an effort to reproduce this effect, a range of generator variable production costs (C1) were 
assumed by generator type (Table 5). A production cost was determined for each generator by 
randomly selecting a value between the linear coefficient limits of C1min and C1max using a 
uniform distribution. This approach seeks to have nominal values that are informed by typical 
heat rates, while ensuring a diverse range of values resulting in representative generation costs. 
Aggressive natural gas combined cycle prices were assumed to reflect the low cost of natural 
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gas in 2016 and represent the resulting generation mix. The quadratic coefficient C2 was 
assumed to be zero for all thermal generators. 

Table 5. Range of variable production costs ($/MWh) by generator type. 

Generator Type C1 (min) C1 (max) 
Conventional steam coal 12.675 29.25 
Natural gas combined cycle 13.13 46.46 
Natural gas internal combustion turbine 46.32 86.85 
Natural gas steam turbine 34.06 78.6 
Nuclear 8 8 

Estimates of the cost to start each generator were based on Kumar et al. (2012), which was 
used by the National Renewable Energy Laboratory (NREL) in their Phase 2 Western Wind and 
Solar Integration Study (Lew et al. 2013). This work estimated the fuel, capital, and 
maintenance, and other startup costs associated with various generator types and severity of 
start (hot, warm, or cold). The values used for this study are highlighted in Table 6. Since AMES 
only does a single day-ahead dispatch there is no way to know if coal and combined cycle and 
steam gas plants will incur a warm or cold start. Warm start values were assumed as it would 
cover daily operation. For combustion turbine gas units, cold start values were assumed as any 
shutdown longer than 1–3 hours is considered a cold start. Note that some generators have 
large aggregate capacities (e.g., 3 GW) and will have a correspondingly large startup cost 
based on full-load capacity not minimum compliant load. The potential impact of this warrants 
further investigation but is outside the scope of this study. 

Table 6. Summary of generator startup costs developed by Kumar et al. (2012). Values used in 
this study are highlighted in bold. 

 
Plant Type 

Coal - 
Small Sub 

Critical 

 Coal - 
Large Sub 

Critical 

 Coal - 
Super 
Critical 

 Gas - 
Combined 

Cycle 

Gas - 
Large 

Frame CT 

Gas - Aero 
Derivative 

CT 
Gas - 
Steam 

Capacity (MW) 35-299 300-900 500-1300 - - - 50-700 
Warm Start Hours 4 to 24 12 to 40 12 to 72 5 to 40 2 to 3 0 to 1 4 to 48 
Capital and 
Maintenance 
Cost ($/MW) 

Hot  58 39 38 31 22 12 26 
Warm  95 61 56 44 28 12 46 
Cold 94 89 99 60 38 12 58 

Start Up Fuel 
Costs 
(MMBTU/MW) 

Hot 5 7.5 10.1 0.19 0.18 1.53 3.67 
Warm  6.67 10 17.1 0.2 0.19 1.53 6.99 
Cold 9.33 14 20.1 0.24 0.22 1.53 8.92 

Start Up Fuel 
Costs ($/MW) 

Hot 9.0 13.5 18.2 0.5 0.5 4.0 9.5 
Warm 12.0 18.0 30.8 0.5 0.5 4.0 18.0 
Cold 16.8 25.2 36.3 0.6 0.6 4.0 23.0 

Other Startup 
Costs ($/MW) 

Hot 4.58 5.61 5.81   0.95 1.9 3.99 
Warm 6.14 7.98 8.62   0.95 1.9 6.86 
Cold 7.95 10.15 11.58   0.95 1.9 11.44 

Total ($/MW) Hot 71.60 58.14 62.03 31.49 23.41 17.85 39.47 
Warm 113.17 87.02 95.46 44.52 29.44 17.85 70.91 
Cold 118.78 124.40 146.83 60.62 39.52 17.85 92.47 
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2.2.2 Thermal Generation Minimum Compliant Loads and Ramp Rates 

Representative values for generator operating characteristics such as typical full load (FL), 
minimum compliant load (MCL) and ramp rate were taken from Gonzalez-Salazar et al. (2018), 
Tables 7, 9, and 12. The representative values used in the study are given in Table 7 below. 

Table 7. Assumed thermal generator values (Gonzalez-Salazar et al. 2018). 

 Coal Gas Combined Cycle Gas Simple Cycle Gas Aero 
Max FL (MW) 500 475 400 60 

MCL/FL (%) 40% 45% 37.5% 50 

Ramp rate/min (%FL) 3.0% 5.4% 9.6% 100% 

All generators of the same type that are located on the same bus are treated as an aggregated 
generator by AMES. For example, the maximum coal generator in the model exceeds 3 GW. 
This requires special consideration of how to determine the MCL and ramp rate for generators 
that have power ratings much higher than typical FL. For this study we assume the following: 

MCL = min(PCap, FL) * FMCL ( 1 ) 

Where MCL is the minimum compliant load (MW), Pcap is the generator capacity, and FL is 
typical of a generator and FMCL is the MCL as fraction of FL, both given in Table 7. 

Ramp Rate = min(PCap, FL) * Framp rate ( 2 ) 

The ramp rate (MW/min) is based on the minimum of either the total generator capacity or 
typical generator FL and typical ramp rate as a fraction of FL given in Table 7. 

These assumptions are made to ensure that large aggregated generators do not have very 
large MCL values (e.g., 1.2 GW) resulting in their scheduling and dispatch being limited due to 
the large disruption they may bring when first brought online. In addition, we did not want to over 
represent the flexibility of thermal generators by estimating ramp rates that may also not 
correctly reflect their flexibility. How best to determine the characteristics of large aggregate 
generators warrants further investigation. 

For reference, the aggregate fleet ramping statistics were determined for 2016 ERCOT system 
data and summarized in Table 8. These values represent the actual observed ramp rates of the 
combined fleet by fuel type, not of individual generators. Even so they provide a sanity check for 
expected behavior. Based on this information nuclear plants were given a ramp rate limit of 
0.2% MWFL/min. 

Table 8. Fleet ramp rate statistics calculated from 2016 ERCOT data. 

 Coal 
Gas Combustion 

Turbine 
Gas Combined 

Cycle All Gas Nuclear 
Max up (MW/Min) 77.7 79.5 122.5 127.8 5.7 
Max down (MW/min) -1145.7 -84.1 -301.2 358.7 -340 
Max up (%) 0.9% 1.9% 1.3% 1.1% 0.20% 
Max down (%) -1.2% -1.9% -1.3% -1.0% -2.0% 
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2.3 Wind Generators 

The wind power generation used a stochastic model based on an autoregressive integrated 
moving average process (Chen et al. 2010). This model was trained on 2005 data from a 
Danish offshore wind farm that consisted of 72 fixed-speed 2.3 MW wind turbines. Given that 
the variation and capacity factor of wind generation is sufficiently different between the training 
data and ERCOT, the parameters in the model were adjusted to better match 2016 ERCOT 
wind performance metrics. Table 9 and Figure 4 show that the resulting model matches key 
ERCOT wind generation metrics (such as average power generation and load change) within 
~6%. The average and maximum hourly change in wind power output is a key feature to match 
as it drives the required flexibility required from grid operation. The model captures this well and 
slightly overestimates the wind variation. 

Table 9. Comparison of ERCOT wind generator characteristics versus simulation. 

 ERCOT DSO+T % diff. 
Capacity (GW) 17.08 16.30 -4.6% 
Peak load (GW) 15.72 16.30 +3.7% 
Average generation (GW) 6.048 6.065 +0.2% 
Average hourly load change (%) 3.04% 3.2% +3.1% 
Max hourly increase (GW) 3.62 3.78 +4.4 
Max hourly decrease (GW) -3.08 -3.27 +6.2% 

 

 
Figure 4. Comparison of ERCOT 2016 wind generation versus duration compared to simulation 

results. 

This level of agreement was achieved by creating five wind power profiles (associated with the 5 
buses that have wind generation in the 8-bus model). These profiles were then prorated to the 
34 buses that have wind generation in the 200-bus model. This seeks to mimic the regional 
covariance in wind power output from sites that are closely located. In comparison, creating 
individual stochastic load profiles for each of the 34 wind generators resulted in much of the 
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stochastic load variation canceling out at the system level and made it impossible to match the 
observed ERCOT behavior. 

We chose not to use the 2016 ERCOT wind profiles directly as we wanted a general 
methodology that could be applied to other regions of the country as needed and scaled up to 
the HR case. If 2016 wind tapes had been used, there was the risk that operational effects 
(outages, curtailment) in the 2016 ERCOT wind profiles would be scaled without the user’s 
knowledge. This approach also eliminates seasonal variation that is likely to be region specific. 

For the HR scenario, the wind generation power production is assumed to be 166% that of the 
MR scenario. No changes were made to assume higher capacity factors that may be possible 
from future advanced turbines. 

Forecast uncertainty error was applied to the day-ahead hourly wind load profile assuming a 
Gaussian distribution of error (Figure 5). The uncertainty parameters were based on Hodge et 
al. (2012), Figure 1, which analyzed 2010 ERCOT data and determined a mean error of 1.117% 
and an error standard deviation of 11.87% of predicted load. 

 
Figure 5. Day-ahead wind forecast uncertainty distribution. 

2.4 Solar Photovoltaic Generators 

For the HR case, solar PV power generation profiles were developed for both utility and 
distributed rooftop-scale PV generation. This resulted in four solar generation profiles: 

1. 5-minute utility-scale solar PV generation profile for 2016 
2. 5-minute distributed solar PV profiles to model rooftop solar installations for 2016 
3. Hourly utility-scale solar PV forecasts for 2016 
4. Hourly distributed solar PV forecasts for 2016 
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2.4.1 DSO Solar Capacity Definition 

In modeling the HR generation mix, solar generation (both utility and distributed rooftop) was 
assumed to be present at all transmission buses within the system. The Transactive Future Grid 
State tool provides an ERCOT-wide estimate of the solar PV installation capacity (Bender et al. 
2019); this value came out to be 36.1 GW as shown in Table 4. The total system solar PV 
generation is assumed to be distributed proportionally to the average load of each DSO. This 
defines a per-DSO total installed solar PV capacity. 

Based on information from the Energy Information Administration (EIA), utility-scale solar PV is 
assumed to be approximately 40% of the solar PV install base with the remaining 60% being 
distributed rooftop solar PV installations (DOE-EIA 2017). 

2.4.2 Utility-Scale Solar PV 

For modeling simplicity, we assumed all utility-scale solar is located at the exact latitude and 
longitude of the DSO (TESP n.d.). Using the previously defined 40–60% split, we assume this 
ratio is constant across all of ERCOT and define target nameplate ratings for the utility-scale 
installation on a per-DSO basis. Using NREL’s System Advisory Model (SAM) (Blair et al. 2017) 
and National Solar Radiation Database (NSRDB) (Sengupta et al. 2018), an hourly profile for 
2016 (using actual solar data provided by the NSRDB) was generated and scaled up to satisfy 
the nameplate requirement. The tilt of the installation was assumed to be 30 degrees for all 
installations and the azimuth was southerly. Note that no geographic diversity is modeled. 
These profiles were generated for each of the 200 buses in the production model and summed 
to form aggregated profiles when working with the 8-bus transmission and generation model. 

2.4.3 Distributed Solar PV 

For the purposes of this study, the primary difference between utility-scale and distributed solar 
is geographic diversity. To represent the differences in solar PV production that would occur 
throughout the geographic footprint of a given DSO, it was necessary to construct a collection of 
production profiles with varying parameters and then aggregate them to produce a single, 
average, representative profile to be used in GridLAB-D for all rooftop solar generation. 

Diversity in solar PV is captured primarily through three factors appropriate for modeling rooftop 
installations: 
1. Diversity in azimuth angle: No data was readily found that defines common rooftop 

installation azimuth angle. It is safe to assume that southerly is generally preferred 
(maximum energy generation) but is far from the only option. Arbitrarily it was assumed that 
75% of distributed solar PV was installed facing south and 25% was installed facing west. 
Though the western-facing installations will produce less annual energy, it is assumed there 
are customers who would like to meet more of their load with local generation and recognize 
the need for energy during the afternoon peak. 

2. Diversity in tilt angle (corresponding to roof pitch): Based on a review of common home 
design practices, the roof pitch (and thus tilt angle of the rooftop PV installation sites) for 
houses was assumed to be uniformly distributed between 18 and 37 degrees. 

3. Diversity in geographic location: For each DSO, a distribution of random sites with 
geographic coordinates +/- 25 km from the DSO location were randomly selected. The 
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distance of 25 km was based on an examination of the distance between DSO sites in an 
attempt to avoid overlap in distributed locations among DSOs. 

A single profile for the distributed solar PV was created by generating individual profiles for 50 
instances within each DSO with random parameters selection (azimuth, tilt, and location) and 
then averaging the profiles. As in the utility-scale generation calculation, NREL’s SAM and 
NSRDB were used to generate the hourly power profile for all 50 locations. Using the DSO 
scaling parameter, the penetration rate for distributed solar PV, and the total number of 
customers represented, the power profile was scaled appropriately and interpolated into 5-
minute values before being saved in an appropriate format for use in GridLAB-D. 

As a modeling simplification, for each DSO all structures designated to have rooftop solar PV by 
the physical model instantiation used the same profile. Note that this was a power profile (rather 
than solar parameters) and was played directly into the physics model of the power system 
(GridLAB-D) at the point of interconnection of the structure and the rest of the power system. 
This reduced the number of input files needed while still preserving the greater diversity 
expected from distributed solar PV generation. 

2.4.4 Solar PV Forecast (with Errors) 

Using metrics from day-ahead forecasts made in the CAISO system (Zhang et al. 2015), error 
was introduced to the previously generated hourly values to create a per-DSO solar forecast 
signal. This forecast signal was evaluated by the metric definitions and values as defined in 
Zhang et al. (2015). 

To create an imperfect solar forecast for use when running the day-ahead energy market, hourly 
forecast files were generated by adding error to hourly production profiles for both the utility-
scale and distributed solar PV generation profiles. (In the case of the latter, the original 
noninterpolated power profile was used.) The error added to the solar profiles was a random 
sample from a normal distribution with a mean of zero and a standard deviation (normalized to 
the solar PV installed capacity) of 0.07. The forecast profile was then run through a cleanup 
function that performed two roles. The first was to change the forecast value to zero in all 
periods where the actual solar production was zero. This was based on the assumption that 
zero solar production hours would occur from sunset to sunrise and the forecast would be able 
to accurately predict these hours as having no production. The second was to coerce all 
forecast negative production values to zero. 

These cleanup processes affect the statistics of the forecast profile and cause them to deviate 
from the pure random variation from which they were generated. Thus, the use of a normalized 
standard deviation of 0.07 when creating the forecast with error was necessary to achieve a 
normalized standard deviation of 0.04 as derived from Zhang et al. (2015) after the forecast was 
cleaned up. 

Table 10 shows the forecast metrics derived from Zhang et al. (2015) and the min, average, and 
max values of those metrics over the 416 (208 utility scale, 208 distributed) solar PV forecast 
files necessary for the analysis. 
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Table 10. Comparison of solar PV forecast metrics. 

 Derived from 
Zhang et al. 

2015 

All Generated Solar PV Production Forecasts 
 Minimum Average Maximum 

Capacity normalized root-mean-
square error  (MW) 

0.04 0.0455 0.0469 0.0491 

Capacity normalized standard 
deviation (MW) 

0.04 0.0455 0.0469 0.0496 

Correlation coefficient 0.98 0.9802 0.9839 0.9865 

2.5 Generation Outages 

To simulate the impact of generation outage on bulk system LMP (and potential congestion), we 
considered two types of outages: planned and unplanned. Planned outages follow the 
maintenance schedule. Unplanned outages are introduced due to unforeseen failure. Therefore, 
the day-ahead unit commitment would dispatch those units as usual. However, they might be 
taken out of service during the day at the top of the hour based on a predefined outage 
schedule (though the unit commitment has no knowledge of it). The data used were for the 
WECC system (WECC 2020). Forced outage rate data, which are used for unplanned outages, 
are generic and based on the plant fuel type. 

2.5.1 Using ERCOT Outage Data to Create Events 

2.5.1.1 Planned Outages 

We used maintenance schedule data to create an outage probability for each month and an 
average duration by month. Looking at the generator maintenance data by type was 
inconclusive; generator type and outage duration per type and per month varied across all 
months. Therefore, the type of generator was not included in the process of creating the events. 

In Table 11, frequency refers to the number of generators that had planned outages for that 
month, average duration is for outages during that month, days out is the total number of day 
outages for that month (frequency multiplied by average duration), and probability is the number 
of days of outage for that month divided by the total number of outage days (12,082 days). The 
values of average outage duration and probability were used in creating the events in this study. 

Table 11. Planned outage data (WECC 2020). 

 
Frequency 

(Number of outages) 
Average duration 

(Days) Days out Probability 
January 146.00 8.70 1270.20 0.105128 
February 144.00 9.30 1339.20 0.110839 
March 214.00 7.75 1658.50 0.137266 
April 187.00 10.00 1870.00 0.15477 
May 102.00 9.66 985.32 0.08155 
June 94.00 7.90 742.60 0.061461 
July 38.00 7.60 288.80 0.023902 
August 44.00 7.20 316.80 0.02622 
September 125.00 4.92 615.00 0.0509 
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Frequency 

(Number of outages) 
Average duration 

(Days) Days out Probability 
October 104.00 9.40 977.60 0.080911 
November 124.00 8.40 1041.60 0.086208 
December 120.00 8.14 976.80 0.080845 

Using a binomial random number generator, an array was created for every month based on the 
probability and number of days in that month. After the binomial array was created, we randomly 
selected a unit from our 120 total units. Once the unit and the day of outage were identified, the 
outage was given a duration based on the average quantities. Every unit can be used only 
once, assuming one planned outage for each generator per year. In case it got drawn again, 
another attempt was made to choose another unit. Based on this procedure, the events in Table 
12 were created. 

Table 12. Planned outage events. 

Day of year Generator ID Duration Type 
16 75 8 Conventional steam coal 
21 114 8 Natural gas combined cycle 
28 55 8 Natural gas combined cycle 
35 28 9 Wind turbine 
45 13 9 Natural gas combined cycle 
59 117 9 Wind turbine 
74 32 7 Wind turbine 
76 54 7 Natural gas combined cycle 
93 0 10 Natural gas internal combustion engine 

112 100 10 Wind turbine 
114 70 10 Natural gas internal combustion engine 
117 85 10 Wind turbine 
124 31 9 Wind turbine 
148 9 9 Natural gas combined cycle 
150 73 9 Conventional steam coal 
162 93 7 Solar photovoltaic 
199 72 7 Natural gas steam turbine 
252 27 4 Natural gas combined cycle 
264 29 4 Wind turbine 
267 33 4 Wind turbine 
269 115 4 Wind turbine 
283 99 9 Wind turbine 
295 69 9 Natural gas steam turbine 
296 6 9 Natural gas steam turbine 
337 26 8 Wind turbine 
353 30 8 Conventional steam coal 
371 15 8 Conventional steam coal 
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For the implementation in DSO+T, the above data were populated in a CSV file for each unit for 
each day of the year, 1 indicating an outage and 0 indicating the unit was available (the day-
ahead could still not commit it). 

2.5.1.2 Unplanned Outages 

From the data provided, we used a forced outage rate and duration to create the unplanned 
outage events. The data was mapped based on generator types as shown in Table 13. 

Table 13. Forced outage rate data used to create unplanned outage events. 

Type Forced Outage Rate Duration (hours) 
Natural gas – combined cycle 0.0306 26 
Natural gas – combustion turbine 0.035 51 
Natural gas – steam turbine 0.023 30 
Natural gas – internal combustion engine 0.0345 37 
Coal – steam turbine 0.0418 48 
Nuclear – steam turbine 0.0309 190 
Photovoltaic 0.001 1 
Wind turbine 0.0012 1 
 
For every unit, a binomial random number generator was used to create an array of 8,760 
hourly elements based on the forced outage rate divided by the outage duration for that 
generator type. If an event was present, it was given the duration of hours based on the type. 
Following the above procedure, the events in Table 14 were created. 
 
For the implementation in DSO+T, these events were populated in a CSV file for every unit for 
every hour of the year, 1 indicating an outage and 0 indicating the unit is available. In case an 
event was tripping on a unit that was already out of service, nothing would be done and the 
event was skipped. Some units had more than one unplanned outage event, but no more than 
two incidents were present. Indices 1 and 2 following Hour and Duration indicate the event 
number. 

Table 14. Unplanned outage events. 

Generator Type Generator ID Hour1 Duration1 Hour2 Duration2 
Natural gas – combined cycle 5 346 26   
Natural gas – combined cycle 8 175 26   
Natural gas – combined cycle 13 383 26 1257 26 
Natural gas – combined cycle 20 4518 26   
Natural gas – combined cycle 38 4474 26   
Natural gas – combined cycle 49 2061 26   
Natural gas – combined cycle 51 2016 26   
Natural gas – combined cycle 60 5372 26   
Natural gas – combined cycle 81 5763 26   
Natural gas – combined cycle 98 4370 26   
Natural gas – combined cycle 106 184 26 848 26 
Natural gas – combustion turbine 4 7247 51   
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Generator Type Generator ID Hour1 Duration1 Hour2 Duration2 
Natural gas – steam turbine 10 8170 30   
Natural gas – steam turbine 11 2213 30   
Natural gas – steam turbine 66 1879 30   
Natural gas – steam turbine 69 661 30 6471 30 
Natural gas – internal combustion engine 7 8536 37   
Coal – steam turbine 14 7765 48   
Coal – steam turbine 15 5529 48   
Coal – steam turbine 19 2853 48   
Coal – steam turbine 56 210 48   
Photovoltaic 1 311 1   
Photovoltaic 37 714 1   
Photovoltaic 68 868 1 2005 1 
Photovoltaic 89 5551 1   
Photovoltaic 91 7874 1   
Photovoltaic 93 212 1   
Photovoltaic 101 127 1 5232 1 
Photovoltaic 118 949 1   
Photovoltaic 35 70 1 4373 1 
Photovoltaic 44 4250 1 7216 1 
Photovoltaic 45 5335 1   
Photovoltaic 48 3731 1 3921 1 
Photovoltaic 78 1544 1   
Photovoltaic 84 4935 1 8663 1 
Photovoltaic 85 2704 1 7692 1 
Photovoltaic 96 1828 1 4866 1 

2.5.2 Outage Implementation 

For planned outages, the generator was removed from the generator list so AMES would not 
dispatch it. This also included unplanned outages that were continuing from the previous day; if 
the generator was not available at the time of bidding (when the day-ahead unit commitment 
was created) it would not be considered for that day and would be treated as a planned outage 
until it came back into service. We considered the day-ahead unit commitment problem to have 
full knowledge about them and those generators were removed out of service at midnight and 
came back in service at midnight. A schedule with one-day resolution was used to represent the 
outage events. 

For unplanned outages, right before the dispatch was implemented, the unplanned generator 
outage would be implemented by setting that unit to out of service for that hour. This was seen 
as it not being committed by the day ahead. A one-hour resolution schedule was created to 
represent those outage events. 

2.6 Reserve Margins and Generation Curtailment 

The analysis assumed (up and down) reserve margins of 15%. For the HR scenario the large 
amount of variable renewable generation could result in AMES being unable to maintain reserve 
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margin resulting in a lack of convergence and a solution. While these instances were rare (~5% 
of simulated points) a renewable curtailment strategy was implemented to curtail both wind and 
utility-scale solar in equal proportions to ensure solution convergence. The need for curtailment 
was most prevalent when the total amount of dispatchable thermal generation became small 
relative to the overall system load. For this reason, renewables were curtailed to ensure there 
was always more than 8 GW of dispatchable thermal generation. 
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3.0 Transmission System Definition 
This section describes the methodology used to define the transmission system model. The 
study leveraged transmission networks models available in the TESP platform (TESP n.d. b) 
and described in Battula et al. (2020). Two different transmission networks were leveraged in 
this study (as shown in Figure 6): a leaner 8-bus test-bench model and a 200-bus production 
model. The 8-bus model was used to debug the simulation and perform trial analysis, while the 
200-bus model was used to generate the primary study results. These synthetic networks were 
developed by determining 8 or 200 buses using a clustering algorithm that aggregated existing 
generation and estimated load centers based on latitude and longitude. This previous work then 
applied the Delaunay Triangulation method to build the line topology, which was then manually 
adjusted to improve realism. For example, for the 8-bus grid, three lines along the southern and 
western borders were trimmed for greater realism. For the 200-bus system, Battula et al. (2019) 
pruned lines, added parallel lines, incremented transformer sizes, and added shunt 
compensation to eliminate overloads and voltage violations at peak load. (More details are 
provided by Battula et al. (2019), Section 5.) As a result, the 200-bus ERCOT transmission 
model includes 47 extra-high-voltage buses at 345 kV and 200 high-voltage buses at 138 kV. 

For the study these transmission system definitions were used as-is except for specific line 
resizing required to ensure feasible solutions with MR and HR generation performance and load 
profiles that differed from that used by Battula et al. (2019). Finally, the characteristics of the bus 
loads (distribution system definition, population, load mix, etc.) are discussed in more detail in 
Section 5.0. 

 
Figure 6. Example of 8-bus (left) and 200-bus (right) transmission networks. 345 kV lines are 

shown in brown and 138 kV lines in orange. The line thickness is proportional to its 
MVA rating. 
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4.0 Bulk System Results 
This section presents select results of the bulk system illustrating the representativeness of the 
generation dispatch, market price, and transmission system models. The results focus on three 
key areas: 
1. The daily dispatch of the generation fleet and the resulting annual generation mix. 
2. The resulting LMPs determined for the day-ahead and real-time markets. 
3. Performance of the transmission system, any occurrence of congestion, and resulting 

geographic variation in LMPs. 

4.1 Summary of Generation Dispatch and Mix 

Comparisons of the DSO+T real-time generator dispatch with actual ERCOT values are shown 
in Figure 7 for the MR BAU case. The load profiles and the overall generation dispatch trends 
and resulting fuel mix suggests that the simulation is representative. A detailed analysis of the 
load profiles is presented in Section 8.0; however, it can be seen here that the overall load 
shape and weather-dependent changes throughout the month are well captured. In addition, the 
dispatch of nuclear, coal, and gas generators is trend-wise accurate. The simulation appears to 
enact more aggressive ramping of the coal fleet than was observed in the ERCOT case. This 
may be due to larger diurnal load changes in the simulation or the lack of a soft constraint in 
AMES to minimize ramping on these generators. It should be noted that since the wind 
generation profiles are stochastically generated and not based on 2016 data a direct daily 
comparison of the wind profiles is not appropriate. The annual generation capacity and 
production values are summarized in Table 15. This indicates that the simulation dispatches 
more coal generation (at the expense of gas) than would be expected based on the 2016 
ERCOT system data. The overall level of natural gas generation is representative of the nation 
as whole. 

Table 15. Summary of system capacity and production by generator type for the MR and HR 
scenarios versus ERCOT and the nation. 

  Capacity Generation 
Fuel ERCOT U.S. MR HR ERCOT U.S. MR HR 

Nuclear 5% 9% 5% 3% 12% 20% 13% 11% 
Coal 20% 25% 22% 15% 29% 30% 38% 26% 
Natural gas 58% 41% 56% 37% 44% 34% 35% 23% 
Wind 15% 7% 17% 22% 15% 6% 14% 26% 
Solar (utility scale) 1.0% 2% - 10% 0.2% 1.0% - 6% 
Solar (distributed) - 1% - 13% - - - 8% 
Other 5% 15% 5% 3% 12% 20% 13% 11% 
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Figure 7. Comparison of AMES real-time generation dispatch for the MR scenario (top) versus 

actual ERCOT dispatch (bottom) for August 2016. 

As example of the generation dispatch during the peak summer load for the HR scenario is 
shown in Figure 8. The net peak loads are reduced by the contributions of rooftop solar located 
on the distribution system (the difference between the MR BAU dashed gray reference line and 
the black total load line in Figure 8). In addition, utility-scale solar and wind generation reduce 
the total required dispatchable generation requirement further. The result is significantly higher 
ramping of natural gas and coal generation (particularly in the late afternoon and evening). In 
some cases abundant renewable generation can reduce the need for dispatchable generation to 
8 GW (as shown on August 13 in Figure 8) at which point utility solar and wind generation is 
curtailed. 
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Figure 8. Example AMES real-time generation dispatch for the HR scenario. (The MR total load 
is shown as the gray ‘reference load’.) 

4.2 Summary of Locational Marginal Prices 

This section discusses the representativeness of the resulting day-ahead and real-time 
wholesale market prices. Figure 9 shows a time history of real-time prices during the summer 
peak. In addition, Figure 10 shows a comparison between DSO+T and ERCOT of real-time and 
day-ahead prices as a function of net load (total load minus renewable generation). This 
illustrates that the simulation captures the overall daily trends and variation with system load. As 
will be seen later, however, the simulation does not do as well at capturing isolated price spikes 
beyond typical ranges (and often going off the vertical axis scales shown on the figures). 

To ensure that the market prices generated by the simulation were not over-fitted on one region 
of the country, the annual data was also compared to data from the PJM and CAISO markets. 
2016 data was used for ERCOT and PJM and, due to availability, 2017 data was used for 
CAISO. In addition, since these prices vary by location, zones had to be selected in each region 
to compare data. For ERCOT, the Houston zone data is presented, for PJM the PJM node is 
presented, and for CAISO the SNTHLNE_6_N001 node is shown. For results from DSO 3 are 
shown for the 8-bus case. 

Figure 11 through Figure 14 show detailed comparisons of day-ahead and real-time prices 
throughout the year. They also show summaries of the daily range in price experienced 
throughout the year. (The daily range in price is the maximum price for the day minus the 
minimum price.) The box and whisker plots show that the simulation accurately captures 
average LMPs that are representative of typical wholesale markets. The quantity versus 
duration curve for the day-ahead price (Figure 13, left) emphasizes this, showing that the study 
prices are similar in magnitude to PJM and are bounded by CAISO (which experienced high 
prices at the zone in question) and ERCOT (which had cheaper prices). The graphs do show, 
however, that the simulation does not capture the average and extreme daily ranges in price, 
particularly in the shoulder seasons. As can be seen in Figure 11 (bottom) and Figure 13 (left) 
the DSO+T market model consistently underpredicts the daily range in day-ahead prices and 
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overall price volatility seen in national electricity markets. Similar trends are seen for real-time 
prices as well. 

 
Figure 9. Comparison of DSO+T and ERCOT real-time prices in August. 

 
Figure 10. Comparison of DSO+T and ERCOT real-time and day-ahead prices in August as a 

function of net system load. 
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There are potentially two main causes for the DSO+T market model not capturing this price 
volatility: first, the model may not be calibrated and configured correctly; and second, the price 
behavior may be due to market behavior that is outside the capabilities of the model. Further 
effort to calibrate and tune the generator performance and production cost parameters (detailed 
in Section 2.2) combined with investigation of the effect of system parameters (such as reserve 
margins) could improve the representativeness of the market model. For example, requiring the 
system to dispatch more expensive peaker plants to address reserve shortfalls (due to outages 
or stricter fleet ramping constraints) could increase price variation. However, given the complex 
integrated nature of the SCUC and SCED optimization processes successfully identifying key 
parameters and tuning them may be challenging. Alternatively, the price features seen in real 
markets may be due to behavior by market actors that is outside the capabilities of SCUC and 
SCED modeling approaches and assumptions. For example, out-of-market operation and self-
scheduling by generators may alter prices in a way that diminishes market efficiency. In 
addition, the ability to exercise scarcity pricing (Meyn et al. 2018, page 89) could explain market 
volatility in the ERCOT market (but may not explain the results in PJM and CAISO). 

Better understanding the practical and theoretical limits on capturing real market behavior 
warrants further investigation given the important role that market prices (value signals) play in 
transactive energy systems. In addition, understanding the acceptability (and impact) of these 
limits on valuing transactive approaches needs to be kept in mind. 

 
Figure 11. Comparison of day-ahead market prices (top) and daily range in day-ahead market 

price (bottom) for various regions and the simulation. 
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Figure 12. Comparison of real-time market prices (top) and daily range in real-time market price 

(bottom) for various regions and the simulation. 

 
Figure 13. Duration vs. quantity curves for day-ahead market prices (left) and daily range in day-

ahead market price (right) for various regions and the simulation. 
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Figure 14. Duration vs. quantity curves for real-time market prices (left) and daily range in real-

time market price (right) for various regions and the simulation. 

4.3 Summary of Transmission System Results 

This section provides illustrative results of the geographic distribution of the system loads, 
generation dispatch, resulting transmission system utilization and, ultimately, resulting market 
prices. Results are shown for the system peak generation (73.4 GW) that occurs at ~4 p.m. on 
August 12. Figure 15 shows the geographic distribution of the peak load and the resulting 
transmission system loading. The contour plot shows the load for each bus and highlights that 
(as will be discussed in Section 5.6) over 50% of the system load occurs on just 5 buses, 
representing population centers in the north and east of Texas. In comparison, the more rural 
western Texas region has much lower loads. The fractional utilization of the transmission lines 
is also illustrated using a color gradient, with fully utilized lines (that is, a line capacity of 1.0) 
shown as red. This shows that there is higher transmission line utilization and congestion in 
lines serving and adjacent to the major load centers. 

Figure 16 and Figure 17 show similar plots for the geographic distribution of thermal generation 
capacity and resulting dispatch. There is significant generation capacity adjacent to the major 
load centers and during the system peak load these generations see a high level of dispatch. 
(Note that not all system nodes have dispatchable generation and therefore may not be able to 
have generation dispatch fractions greater than zero). Finally, Figure 18 shows the resulting 
variation in real-time prices during the system peak. The LMP distribution is dominated by a 
single node (DSO 127) whose real-time LMP has reached the market cap of $2000/MW-hr for 
several hours during the afternoon. Figure 19 shows example real-time LMPs in the 
transmission system later in the day (5 p.m.) when lower loads result in fewer transmission 
constraints and a return to typical price ranges ($30-50/MW-hr). 
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Figure 15. Geographic distribution of real-time load in the DSO+T system model during the 

system peak load. 

 
Figure 16. Geographic distribution of generation capacity in the DSO+T system model during 

the system peak load. 
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Figure 17. Geographic distribution of dispatchable generation utilization in the DSO+T system 

model during the system peak load. 

 
Figure 18. Geographic distribution of the resulting real-time LMPs in the DSO+T system model 

during the system peak load. 
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Figure 19. Geographic distribution of real-time LMPs in the DSO+T system model at 5 p.m. on 

August 12, 2016. 
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5.0 Distribution System Definition 
This section details the data and processes used to define the characteristics of the 
transmission buses and attributes of the associated DSOs and their distribution system. 

5.1 Bus Definitions 

The key bus characteristics that determine distribution loads and performance include: 

• Utility type (urban, suburban, and rural) which affects the type of distribution feeders and 
proportion of various building classes 

• Latitude and longitude, which dictates the bus’s climate zone and resulting 2016 weather 
profile 

• Number and mix of residential, commercial, and industrial customers and loads 

• Distribution system capacity constraints, for example substation capacity limits. 

Utility types, bus loading, and load mix were designed using data reported to EIA (DOE-EIA 
n.d.), historical loading data reported by ERCOT (ERCOT, n.d.), and the existing TESP model 
of the ERCOT transmission system (TESP n.d. b) as described in Table 16. 

Table 16. Data sources for bus definitions. 
Source Data 

EIA 2016 Utility Data (DOE-EIA 
n.d.) 

For each ERCOT utility: 
1. Energy consumption in MWh broken into customer type 
2. Customer count broken into customer type 
3. Load/customer averages  

ERCOT 2016 Historical Loading 
Data (ERCOT, n.d.) 

1. Hourly load data for eight weather zones within ERCOT 
2. Boundaries of the eight weather zones 

TESP 200-Bus Data (TESP n.d. b) For each bus: 
1. Latitude and longitude coordinates 
2. Solved load flow data in MW  

5.2 Utility Types in ERCOT 

Electric utilities in Texas consist of cooperatives, municipals, investor-owned utilities, and retail 
marketers. Each utility reported the energy delivered in 2016 to the EIA (DOE-EIA n.d.), with the 
values broken into three customer types: residential, commercial, and industrial. For the 200-
bus case, each bus was assigned a utility type by mapping the latitude and longitude 
coordinates to the utility that services that location. The utility data were used to define the mix 
of residential, commercial, and industrial customers and loads. 

5.2.1 Cooperatives 

Cooperatives in West Texas are primarily rural, with many of the main offices in towns with 
populations less than 10,000 and service areas that span up to 10 counties. Outside of a few 
outliers, it is appropriate to categorize West Texas cooperatives as rural, with occasional 
suburban feeders for larger towns served by the region. The population density is higher in East 
Texas than in West Texas. As such, it is appropriate to include a higher number of suburban 
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feeders to represent these cooperatives. Figure 20 shows the service area boundaries of each 
of the cooperatives in Texas. 

 
Figure 20. ERCOT cooperative service boundaries. 

5.2.2 Municipals 

Municipals are considered suburban for medium-sized cities or urban for larger cities. Municipal 
service areas are tied to city limits, so feeders would be shorter in distance than those in rural 
areas. In addition to shorter feeder lengths, customer density is higher than cooperatives and 
feeders would have the ability to switch load from one adjacent feeder to another. 

5.2.3 Investor-Owned Utilities 

Investor-owned utilities are shareholder-owned and operated for profit. Most investor-owned 
utilities within ERCOT do not cover contiguous areas, but rather provide service for areas 
outside the boundaries of the cooperative and municipal utilities. Figure 21 shows the service 
areas of the investor-owned utilities within ERCOT. 
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Figure 21. Service areas of investor-owned utilities in ERCOT. 

5.2.4 Retail Marketers 

Retail marketers deliver power to the end user, but most marketers do not own or maintain any 
actual infrastructure. Marketers are scattered throughout Texas, making it difficult to associate 
customers with a specific region, city, or county. Marketers that service specific cities or regions, 
such as Centerpoint in Houston, can be incorporated into existing suburban or urban DSO 
models. For the sake of the DSO+T study, retail marketers are considered to be investor-owned 
utilities. 

5.3 Climate Zones and Weather Profiles 

Each bus was assigned a climate zone and 2016 weather profile based on its latitude and 
longitude coordinates. The American Society of Heating, Refrigerating, and Air Conditioning 
Engineers (ASHRAE) divides the nation into seven zones based on temperature. These are 
further subdivided into humid (A), dry (B), and marine (C) environments. Texas experiences five 
zones: Zones 2 and 3 are defined based on the annual cooling degree days, while Zone 4 is 
defined by both annual cooling degree days and heating degree days as shown in Figure 22. 
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Table 17 lists the ranges for each climate zone. Most of the territory in Zone 4B is outside the 
ERCOT service area, which excludes that climate zone from the study; the small area for 4B is 
incorporated into Zone 3. 

 
Figure 22. Map of ASHRAE-defined climate zones in Texas. 

Table 17. Climate data in Texas. 
Climate Zone Moisture Cooling/Heating Degree Day Ranges 

2A Humid 6300 < CDD50ºF ≤ 9000 
2B Dry 6300 < CDD50ºF ≤ 9000 
3A Humid 4500 < CDD50ºF ≤ 6300 
3B Dry 4500 < CDD50ºF ≤ 6300 
4B Dry CDD50ºF ≤ 4500 and 3600 < HDD65ºF ≤ 5400 

5.4 Customer and Building Population Mix 

5.4.1 Residential and Commercial Customer and Building Populations 

Each simulated utility has a mix of residential, commercial, and industrial customers based on 
EIA utility data (DOE-EIA n.d.). The data were used to determine the total number of residential 
and commercial buildings that make up the load at a bus. We assume a one-to-one relationship 
between a residential customer and a residential unit. That is, each residential customer is 
assumed to occupy a single-family home, apartment unit, or manufactured home. The 
proportions and definitions of the residential buildings are defined in more detail in Section 6.0. 

This study found that a one-to-one relationship between commercial customers and commercial 
buildings is not valid. Investigation of EIA utility data (DOE-EIA n.d.) and commercial building 
energy survey data (DOE-EIA 2012) identified many more commercial customers in ERCOT 
than commercial buildings. For example, utility data indicate approximately 1.3 million 
commercial customers in ERCOT; however, there are only an estimated 620,000 commercial 
buildings. Therefore, this study assumed one commercial building for every 2.09 commercial 
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customers. The classes, proportions, and definitions of commercial buildings are defined in 
more detail in Section 7.0. 

5.4.1 Industrial Load Profile and Magnitude 

Individual industrial customers were not modeled in this study. Each DSO assumed an average 
industrial load based on the load mix reported to the EIA. Initially, the industrial load profile was 
determined by subtracting the residential and commercial building load profiles (calculated in 
the BAU case) from the hourly ERCOT load data (discussed in Section 5.8). This profile would 
then be the basis of the industrial load profile for all scenarios and cases. This approach was 
chosen in part because we could not find a satisfactory open, parametric industrial load profile 
model in the literature. Unfortunately, this approach resulted in unrealistic load profiles and 
values (including periods of negative industrial load on individual buses). This is due to the 
industrial load accounting for less than 5% of load on some buses. Therefore, if the predicted 
residential and commercial building load profiles over-estimate ERCOT loads by more than 5%, 
the industrial load profile would need to be negative to sum to the required system load. 
Achieving better than 5% accuracy is beyond the current capability of building modeling. The 
average modeled building loads matched ERCOT data within ~12% with daily load variation off 
by an average of 40% as discussed in Section 8.3. 

As an alternative, this study used a constant (flat) industrial load profile shape. This was based 
on the low variation seen in (Hale et al. 2018) and feedback from industry experts who cite large 
industrial loads as typically being flat. The development of a representative and open parametric 
industrial load profile model warrants further investigation and development. 

5.5 Definition of Distribution Feeder Models 

To simulate distribution losses, feeders were included in the distribution system model. Table 18 
summarizes the taxonomy feeders (Schneider et al. 2008) that were used, as a function of DSO 
type and taxonomy feeder climate zone (which is different from the ASHRAE climate zone 
definition) as shown in Figure 23. The feeder definition was selected to capture the range of 
feeder types that may be present (for example, dense, short urban feeders versus longer, more 
sparsely populated rural feeders) while maintaining a reasonable number of building models 
and therefore a balance between computational effort and accuracy. The selected feeders result 
in between ~900 and ~1,500 residential customers being modeled per DSO. 

Table 18. Summary of taxonomy feeders implemented by DSO type. 

Region Type Zone 3 Zone 4 Zone 5 
Urban R4-12.47-1 

R5-12.47-1 
R4-12.47-1 
R4-12.47-2 

R5-12.47-1 
R5-12.47-2 

Suburban R5-12.47-5 R5-12.47-5 R5-12.47-5 
Rural R5-12.47-5 R5-12.47-5 R5-12.47-5 



PNNL- 32170-2 

Distribution System Definition 38 
 

 
Figure 23. Region definitions used for taxonomy feeders. 

The required number of residential and commercial building populations are randomly 
generated (as described in Sections 6.0 and 7.0) based on the expected feeder population and 
designated ratio of residential to commercial customers for that utility. Residential and 
commercial buildings are then assigned to nodes on the feeder based on matching building size 
(sq. ft.), as a proxy for expected electrical rating, to the capacity of the feeder node in question. 
This process typically results in a surplus of commercial buildings as the taxonomy feeders 
often have insufficient commercial nodes with the required ratings. When this happens a 
‘copper-plate’ feeder is instantiated and used to feed the remaining commercial buildings, 
ensuring the correct population mix is achieved. All feeders representing a DSO are then 
merged into a combined GridLAB-D model that is used to simulate the distribution system and 
building loads. 

The selected taxonomy feeders only simulate a small fraction of the total customers on any 
given DSO. To account for this, a weighting factor is utilized on the resulting distribution load 
when applied to the bus in the bulk system transmission model. The weighting factor is the ratio 
of the number of actual DSO residential customers divided by the number of simulated 
residential customers as shown below: 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡𝑤𝑤 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓 =  
𝑅𝑅𝑤𝑤𝑅𝑅𝑤𝑤𝑅𝑅𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤𝑓𝑓𝑅𝑅 𝐶𝐶𝐶𝐶𝑅𝑅𝑡𝑡𝑓𝑓𝐶𝐶𝑤𝑤𝑓𝑓𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅𝑤𝑤𝑅𝑅𝑤𝑤𝑅𝑅𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤𝑓𝑓𝑅𝑅 𝐶𝐶𝐶𝐶𝑅𝑅𝑡𝑡𝑓𝑓𝐶𝐶𝑤𝑤𝑓𝑓𝑅𝑅𝐷𝐷𝑆𝑆𝑆𝑆

 ( 3 ) 

As expected, large urban DSOs with many customers have large weighting factors, while 
smaller rural cooperatives can have small weighting factors. Ultimately the simulations resulted 
in 11,929 and 63,729 individual customer buildings being simulated for the 8- and 200-bus 
models. For the 8-bus model the DSO weighting factors range from 23.5 to 3,816 with a system-
wide weighting factor of 952. For the 200-bus model, where only 40 DSOs are simulated (see 
Section 5.6) the DSO weighting factors range from 13.5 to 2,008 with a system-wide weighting 
factor of 172. 



PNNL- 32170-2 

Distribution System Definition 39 
 

5.6 DSO Selection and Demographics 

This section describes how the simulated DSOs were selected and the resulting demographics 
captured in the study. For the 200-bus model the vast majority of buses and associated DSOs 
have few customers and small loads. Figure 24 shows the proportion of total system load 
represented by the largest buses. This shows that the largest 5 buses have over 50% of the 
system load, while the largest 40 and 66 buses represent 89.8% and 94.9% of the system load. 
Simulating the loads on all 200 buses represents diminishing improvements in accuracy at 
considerable computational expense. Furthermore, some rural buses have so few customers 
that more customers would be simulated than actually exist (that is, a weighting factor of less 
than one). For this reason, it was decided to simulate 40 DSOs. This results in approximately 
90% of the system load being simulated but reduces the computational size of the model by a 
fifth. The 160 buses that are not simulated were modeled using unresponsive load profiles (as 
described in Section 5.8). 

 
Figure 24. Cumulative system load vs. bus count. 

The selection of the 40 buses was not based solely on size. Selecting the largest 40 DSOs 
resulted in a selection that slightly overrepresented urban regions, investor-owned utilities, and 
summer peaking DSOs while underrepresenting cooperatives. Some adjustments in the DSO 
selections were made in an attempt to counteract this. Six cooperative DSOs were added, five 
of which were rural. The resulting DSO selection still captured >87% of the system load. 

Table 19, Table 20, and Table 21 show the resulting demographic mix and representativeness 
of the selections. Rural cooperatives are still underrepresented but less so than with a selection 
based solely on load. More importantly, this selection substantially increases the number of 
samples for both cooperatives and rural utilities, increasing the statistical significance of the 
study results for future analysis. Key attributes of all 40 simulated DSOs are provided in Table 
22. 
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Table 19. Comparison of simulated buses by region type. 

 Total Buses Simulated Buses Total Load Sim Load Difference 
Urban 15 9 65% 71% -5.9% 
Suburban 79 22 29% 26% 3.1% 
Rural 100 9 6% 3% 2.7% 

Table 20. Comparison of simulated buses by DSO ownership type. 

 Total Buses Simulated Buses Total Load Sim Load Difference 
Investor-owned 43 15 66% 71% -4.1% 
Cooperative 142 17 17% 11% 5.4% 
Municipal 15 8 17% 18% -1.3% 

Table 21. Comparison of simulated buses by peaking season. 

 Total Buses Simulated Buses Total Load Sim Load Difference 
Summer 129 27 89% 92% -2.9% 
Winter 35 9 6% 5% 1.0% 
Dual 36 4 5% 3% 1.9% 
 

Table 22. Details of key attributes for all 40 simulated DSOs. 

Bus Utility Type Ownership Type 
Peak 

Season 
ASHRAE 

Zone BLM Zone 
Average Load 

(MW) 
Congestion 
Factor (-) 

1 Urban Investor-owned Summer 2A 3 4720 0.939 
2 Suburban Cooperative Winter 2A 7 260 0.93 
3 Suburban Municipal Summer 2A 6 1664 0.938 
4 Urban Investor-owned Summer 2A 4 5135 0.939 
5 Rural Cooperative Dual 2A 6 294 0.949 
7 Rural Cooperative Winter 3B 2 127 0.93 
8 Suburban Municipal Summer 2A 5 107 0.938 

15 Suburban Cooperative Winter 3B 1 333 0.938 
16 Rural Cooperative Dual 3A 3 89 0.93 
23 Suburban Cooperative Summer 3B 3 133 0.938 
26 Suburban Investor-owned Summer 2A 6 497 0.93 
43 Rural Cooperative Winter 3B 5 261 0.949 
48 Suburban Investor-owned Dual 2A 4 383 0.93 
51 Suburban Investor-owned Dual 2A 4 643 0.938 
52 Suburban Municipal Summer 2A 6 150 0.938 
54 Suburban Cooperative Winter 2A 8 723 0.938 
55 Rural Cooperative Winter 2A 4 135 0.948 
59 Suburban Cooperative Winter 3A 3 142 0.938 
69 Suburban Investor-owned Summer 2B 2 196 0.938 
76 Urban Investor-owned Summer 2A 5 5260 0.939 
77 Urban Investor-owned Summer 3A 5 968 0.93 
78 Urban Investor-owned Summer 3A 7 924 0.939 
79 Suburban Investor-owned Summer 3A 6 670 0.938 
80 Suburban Investor-owned Summer 3A 5 310 0.938 
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Bus Utility Type Ownership Type 
Peak 

Season 
ASHRAE 

Zone BLM Zone 
Average Load 

(MW) 
Congestion 
Factor (-) 

83 Rural Cooperative Summer 2A 7 138 0.93 
86 Suburban Municipal Summer 2A 5 263 0.938 
89 Suburban Cooperative Summer 2A 2 224 0.938 
98 Rural Cooperative Winter 3A 5 130 0.949 

100 Suburban Municipal Summer 3A 5 117 0.938 
104 Urban Municipal Summer 2A 5 2673 0.939 
110 Suburban Investor-owned Winter 3B 3 479 0.938 
115 Suburban Municipal Summer 2A 5 292 0.938 
117 Urban Investor-owned Summer 3A 6 489 0.939 
123 Suburban Cooperative Summer 2B 4 1807 0.938 
125 Suburban Cooperative Summer 2A 4 258 0.938 
127 Urban Investor-owned Summer 3B 3 3331 0.939 
140 Rural Cooperative Summer 3B 3 166 0.949 
161 Rural Cooperative Summer 2A 5 512 0.949 
166 Urban Investor-owned Summer 2A 6 423 0.939 
197 Suburban Municipal Summer 2A 6 565 0.937 

5.7 Definition and Determination of Substation Limits 

This study simulates one substation per DSO. It is assumed that this substation has a capacity 
constraint, the value of which is used by the transactive retail market to determine if congestion 
pricing should be applied. As a result of this limitation, the DSO capacity constraint assigned to 
any simulated substation represents the more severe of two constraints reflecting the DSO’s 
objectives in reducing both of these capital expenses: 

1. Every substation is assigned a capacity limit that, at least, reflects its share of limiting the 
DSO’s and region’s peak demand (and resulting transmission fees and generation 
capacity payments). 

2. When a substation’s peak demand is limited by its own capacity, an additional reduction 
in the capacity limit is assigned to give customers on congested substations an incentive 
to increase their response when necessary to limit peak demand, reflecting the fact that 
more value is at stake, i.e., the value of avoided generation plus the value of additional 
avoided substation capacity. 

The process to determine the fraction of substation capacity for the DSO type that is congested 
in any given year, was based on the methodology documented in Appendix B of (Pratt et al. 
2022). The substation capacity constraint factors for all 40 simulated DSOs are provided in 
Table 22. These are shown as a fraction of annual peak load determined in the BAU case. For 
example, if the congestion factor is 0.93, congestion pricing will be applied to any day-ahead or 
real-time load that exceeds 93% of the peak load from the BAU case. 

5.8 Generating Hourly Load Profiles from ERCOT Data 

Load profiles for buses that were not simulated were based on ERCOT historical hourly load 
data (ERCOT n.d.) that is disaggregated into the 8 weather zones for which ERCOT data is 
reported (Figure 25). These hourly datasets are used to define load curves for each of the 200 
buses through the following steps. First, the ERCOT 2016 hourly data is normalized for each of 
the 8 zones. Next, each bus is assigned one of the weather zones based on its latitude and 
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longitude coordinates. Then the average bus loading results from TESP (TESP n.d. b) are 
scaled such that the summation of all bus loads equals the average hourly load from the 
historical ERCOT data. The normalized vector for each bus is then multiplied by the scaled load 
flow solution in the TESP bus case, resulting in hourly load profile tapes for each bus. 

 

 

Figure 25. ERCOT load data is divided into eight weather zones. 
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6.0 Residential Buildings 
This section describes how a residential building population, representative of the ERCOT 
market, is instantiated for each DSO region. Distributions of key characteristics of homes, such 
as building type, vintage, day/night and winter/summer thermostat settings, heating fuel source, 
number of stories and floor areas for building types were drawn from the EIA’s Residential 
Energy Consumption Survey or RECS (DOE-EIA 2015) for the South Census Division. Thermal 
integrity (e.g., window and wall R-values) and air conditioner and heat pump efficiency are 
suggested by vintage, building codes, and historical construction practices. Reasonable 
distributions of other key home characteristics that were not available from the survey had to be 
assumed, such as the amount of thermal mass, level of internal heat gains, window-to-wall 
ratios, footprint aspect ratios, and outside air infiltration rates. Using detailed distributions of key 
building design and operation characteristics is important to ensure that both the resulting 
system load profile as well as the distribution of customer energy usage and retail electricity 
costs are representative. The residential building distributions used in this study are described in 
the following sections. 

6.1 Determining Building Type and Vintage 

Statistical distributions of residential building type and vintage for each DSO type (urban, 
suburban, and rural) building population was based on the 2015 RECS dataset from the South 
Region, which is inclusive of the following states: TX, OK, AR, LA, MS, AL, GA, FL, TN, NC, SC, 
KY, VA, WV, DC, MD, DE. 

RECS data include U.S. Census Bureau classification for Urban Areas and Urban Clusters and 
data that do not fit either of these criteria are classified as Rural. An Urban Area is defined as a 
densely settled group of blocks or tracts with a population of 50,000 or more. Urban Clusters are 
defined as areas with a population between 2,500 and 50,000. Buildings in areas with 
populations under 2,500 are considered to be in a Rural setting. This classification is used to 
define three DSO types, i.e., Urban (Urban Areas), Suburban (Urban Clusters), and Rural. Of 
the RECS microdata used for this study, 64 percent of the observations were in Urban settings, 
11 percent in Suburban, and 25 percent in Rural settings. 

RECS data are classified as belonging to one of five building types: manufactured home, single 
family detached, single family attached, apartment 2-4 units, and apartment >5 units. This study 
combined data from single family attached and detached homes and combined both apartment 
categories to form three building types, i.e., single family, apartment, and manufactured home. 
Based on these data, a likelihood was determined for each building type to fall in one of eight 
vintage bins. These likelihoods for each DSO type are shown in Figure 26, with apartments 
being less prevalent in rural DSOs which would be expected based on the definition of a rural 
building being in a less densely populated area. 
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Figure 26. Probability distribution of building types for eight vintage bins within DSO type. 

6.2 Determining Building Form Factor 

GridLAB-D uses the following key variables to define the building form: gross floor area, ceiling 
height, number of stories, aspect ratio, window-to-wall ratio, exterior wall fraction, exterior ceiling 
fraction, and exterior floor fraction. A constant ceiling height of 8 feet is used for manufactured 
homes and apartments, whereas for single family it is uniformly distributed between 8 and 9 
feet. A constant 15% window-to-wall ratio is assumed for all building types. The single family 
homes are considered either single or double story based on the RECS data as shown in Table 
23, whereas all apartment and manufactured home buildings are considered single story. 

The footprint aspect ratio (width-to-depth ratio) of single family and apartment buildings are 
randomly chosen from a truncated normal distribution with a mean of 1.5. Manufactured homes 
are considered either single-wide (67%) or double-wide (33%) with mean aspect ratios of 5.5 
and 2.2 respectively (see Table 24). Since double-wide manufactured homes usually are bigger 
in floor area than single-wide, the separation single- and double-wide is performed based on a 
floorspace threshold (1,080 sq. ft.) that is determined based on industry average sizes for 
manufactured homes. 
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Table 23. Probability of single and double story level for single family homes for each region 
type as per RECS 2015 dataset. 

Story level Urban Suburban Rural 
Single Story 0.62 0.80 0.75 
Double Story 0.38 0.20 0.25 

Table 24. Statistical parameters used to construct a truncated normal distribution of aspect ratio 
for each building type. 

Aspect Ratio min max mean std 
Single family 1 2 1.5 0.5 
Apartments 1.2 1.8 1.5 0.1 
Manufactured homes single wide 4.5 5 5.5 0.1 
Manufactured homes double wide 1.8 2.5 2.2 0.2 

To account for common walls, ceilings, and floors between dwelling units, we used GridLAB-D’s 
exterior wall, ceiling, and floor fractions—the fraction of the gross exterior surface area that is 
not in common with another unit. These fractions are considered 100% for all single family and 
manufactured home buildings as they do not share any walls, ceilings, or floors with other 
buildings. However, for apartments we consider that each unit is part of either an eight-unit or a 
16-unit apartment complex as shown in Figure 27. 

(a) (b) 
Figure 27. Schematics of apartment complexes with (a) 8-units and, (b) 16-units, in order to 

estimate exterior wall fraction, exterior ceiling fraction, and exterior floor fraction. 

In an eight-unit complex, the upper units (3, 4, 7, 8) have exterior ceiling but not floor (exterior 
ceiling fraction = 1, exterior floor fraction = 0) and the lower units (1, 2, 5, 6) have exterior floor 
but not ceiling (exterior ceiling fraction = 0, exterior floor fraction = 1). All eight units have 50% of 
their walls as exterior (exterior wall fraction = 0.5). Similarly, in a 16-unit complex, the upper 
units (5-8,13-16) have exterior ceiling fraction = 1 and exterior floor fraction = 0; whereas the 
lower units (1-4, 9-12) have exterior ceiling fraction = 0 and exterior floor fraction = 1. In this 
case, all eight corner units have 50% exterior walls (exterior wall fraction = 0.5). Whereas, all 
middle units have only one wall along the length as exterior, therefore exterior wall fraction 
(EWF) can be given as function of aspect ratio (AR): 

𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐴𝐴𝑅𝑅

2(1 + 𝐴𝐴𝑅𝑅) ( 4 ) 

Floor area for a given building type within a certain vintage bin is randomly picked from a 
specific truncated normal distribution based on the statistical parameters (mean, minimum, 
maximum, and standard deviation) shown in Figure 28. These parameters are estimated from 
the RECS dataset. Note that there are not enough samples to get these parameters for 
manufactured home buildings for first three vintage bins. 
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Figure 28. Floor area truncated normal distribution parameters: mean, minimum, maximum and 

standard deviation per vintage bin for each building type based on RECS data. 

6.3 Determining Building Thermal Properties 

6.3.1 Envelope 

The thermal integrity parameters of the building envelope for all three building types are shown 
in Table 25, Table 26, and Table 27. These tables show the equivalent parallel-path heat flow 
R-value for the ceilings, walls, and slab floor, and the window characteristics for each integrity 
level. 

Table 25. Thermal integrity levels for single family homes. 

 

Table 26. Thermal integrity levels for manufactured homes. 

 

Ceiling
R-value

Wall
R-value

Floor
R-value

Door
R-value

Infiltration 
air 

exchange 
(hr-oF-ft2/Btu) (hr-oF-ft2/Btu) (hr-oF-ft2/Btu) Layers Glazing Treatment Frame (hr-oF-ft2/Btu)  (1/hr)

0 5% old, uninsulated 11 4 4 1 Glass Clear aluminum 3 1.5
1 20% old, insulated 19 11 4 2 Glass Clear aluminum 3 1.5
2 20% old, weatherized 19 11 15 2 Glass Clear aluminum 3 1.0
3 40% old, retrofit upgraded 30 11 15 2 Glass Clear thermal break 3 1.0
4 10% 2003 IECC code 38 16 22 2 Low-e glass Clear thermal break 5 0.5
5 5% 2009 IECC code 48 22 30 3 Low-e glass Heat-absorbing insulated 11 0.5

Integrity 
Level

Frac. of 
Popula-

tion
Description

Window Characteristics

Ceiling
R-value

Wall
R-value

Floor
R-value

Door
R-value

Infiltration 
air 

 (hr-oF-ft2/Btu) (hr-oF-ft2/Btu) (hr-oF-ft2/Btu) Layers Glazing Treatment Frame (hr-oF-ft2/Btu)  (1/hr)
0 49% old (1976-1994) 13.4 9.2 11.7 1 Glass Clear aluminum 2.2 1.5
1 51% new (1994-present) 24.1 11.7 18.1 2 Low-e glass Clear thermal break 2.2 0.4

Integrity 
Level

Frac. of 
Popula-

tion
Description

Window Characteristics
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Table 27. Thermal integrity levels for apartments. 

 

The U-values for single family homes in Table 24 are based on ceiling construction consisting of 
2x10 joists 24 in. on center, with a 2% miscellaneous framing fraction. Cavity insulation levels 
are R-11, R-19, or R-30 depending on the integrity level. Integrity Level 4 meets the 2003 
International Energy Conservation Code (IECC). Integrity Level 5 (based on the 2009 IECC) is 
used for all buildings in the 2009-2015 vintage bin. Level 5 has an additional R-8 covering for 
the entire assembly. The wall construction is 2x4 studs 16 in. on center, except for Integrity 
Level 6 which has 2x6 studs 24 in. on center. A 5% miscellaneous framing fraction is used in 
every case. Cavity insulation levels are none (R-1), R-11, R-13, or R-19 depending on the 
integrity level. The U-values for the floor above the crawlspace are based on 2x10 joists 24 in. 
on center, with a 5% miscellaneous framing fraction. Cavity insulation levels are none (R-4), R-
11, R-19, or R-30 depending on the integrity level. Single family homes are assumed to have 
four solid doors, each with an area of 19.5 ft2. 

For manufactured homes, the component integrity levels do not vary independently because 
they are associated with the U.S. Housing and Urban Development (HUD) building code (HUD, 
2009). The overall heat loss levels required by the code changed in 1994. The resulting change 
in component insulation levels for HUD Zone 1 are shown in Table 27. These characteristics 
were verified to meet the HUD code for Zone 1 at 15% window area (an overall heat loss 
coefficient of 0.116 Btu/ft2-oF). There were 37% assumed built to the 1976 standards and 63% 
to the improved 1994 standards. The U-values for manufactured homes in Table 25 are based 
on truss ceiling construction, which is assumed to be the thermal equivalent of 2x10 joists 24 in. 
on center, with a 2% miscellaneous framing fraction. Insulation levels are R-11 or R-14 with an 
R-8 cover, depending on the integrity level. The floor assembly is also assumed to be the 
thermal equivalent of 2x10 joists 24 in. on center, with a 2% miscellaneous framing fraction. 
Floor insulation levels are R-7 or R-11. The wall construction is 2x4 studs 16 in. on center. A 5% 
miscellaneous framing fraction was used. Cavity insulation levels are R-7 or R-11. 
Manufactured homes are assumed to have four solid doors, each with an area of 19.5 ft2. 

The thermal integrity of the building envelope is shown in Table 26, paralleling that of single 
family homes, except no multifamily homes are at the highest integrity level. The U-values for 
multifamily homes in Table 26 are based on ceiling construction consisting of 2x10 joists 24 in. 
on center, with a 2% miscellaneous framing fraction. Cavity insulation levels are R-11, R-19, or 
R-30 depending on the integrity level. The wall construction is 2x4 studs 16 in. on center, except 
for Integrity Level 3 which has 2x6 studs 24 in. on center. A 5% miscellaneous framing fraction 
is used in every case. Wall cavity insulation levels are R-11 or R-13 depending on the integrity 
level. Multifamily homes are assumed to have one solid door with an area of 19.5 ft2, with a 
sliding glass door (counted as a window) as the other egress point. 

The number of layers of glazing, type of glazing, and any tinting or reflective treatments for each 
integrity are shown in Table 24. The glazing properties are translated into U-values and solar 
heat gain coefficients (SHGCs) as described in GridLAB-D (2017), Tables 1 and 2. The nominal 
rate of infiltration of outside air is also provided for each integrity level, ranging from 1.5 times 

Ceiling
R-value

Wall
R-value

Floor
R-value

Door
R-value

Infiltration 
air 

exchange 
(hr-oF-ft2/Btu) (hr-oF-ft2/Btu) (hr-oF-ft2/Btu) Layers Glazing Treatment Frame (hr-oF-ft2/Btu)  (1/hr)

0 5% old, uninsulated 11 4 4 1 Glass Clear aluminum 3 1.5
1 20% old, insulated 19 11 4 2 Glass Clear aluminum 3 1.5
2 25% old, weatherized 19 11 15 2 Glass Clear aluminum 3 1.0
3 40% old, retrofit upgraded 30 11 15 2 Glass Clear thermal break 3 1.0
4 10% 2003 IECC code 38 16 22 2 Low-e glass Clear thermal break 5 0.5

Description
Window CharacteristicsFrac. of 

Popula-
tion

Integrity 
Level
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the volume of the house each hour for old, leaky homes, to 0.5 air changes per hour for modern 
homes and 0.25 air changes per hour for extremely tight homes. Effective seasonal infiltration 
rates were assumed to be 50% of the nominal infiltration. A window exterior transmission 
coefficient is selected from a truncated normal distribution (50% mean with 10% standard 
deviation) to simulate the effect of window shading due to screen or trees. 

Table 28. HUD code insulation levels for manufactured homes (Zone 1). 

 

6.3.2 Thermal Mass and Heat Transfer 

There are four primary properties of the thermal mass in a building that must be specified for the 
GridLAB-D simulations of each building type: 

• Total thermal mass of the home, mostly consisting of interior partitions and furnishings 

• Total surface area of the thermal mass in the home 

• Heat transfer coefficient for the surface of the thermal mass 

• Mass of the air in the home, plus a small portion of the furnishings and interior surface mass, 
that is affected by short-term temperature fluctuations within the thermostat’s deadband 
during on/off cycles of the space conditioning equipment. 

For residences, the thermal mass was estimated based on the surface areas of the ceilings, 
interior surface of exterior walls and partition walls, less the area of windows, exterior doors, and 
interior doors or openings in the partition walls. The area of the partition walls was estimated 
based on the number of rooms. The number of rooms was estimated as a function of the floor 
area on each story of the home. From the number of rooms, the interior partition wall area was 
computed as the gross area, less 20% for interior doors or openings. The results of these 
calculations are that single family homes have 0.7 ft2 of interior wall surface area per unit of 
gross exterior wall area. For single-wide and double-wide manufactured homes, this ratio was 
0.7 and 0.8, respectively. For apartments, the ratio was 0.7. 

The primary component of the thermal mass of these surfaces is the gypsum board on the 
surface. A small amount of mass is added by the framing of the partition walls. In addition, the 
thermal mass of home furnishings was estimated based on data from household moving 
companies, which indicated 12,000 lbs. for a 3,500 ft2 home, i.e., 3.4 lbs/ft2. Five major 
appliances were also assumed at an average of 200 lbs. each. Assuming the thermal properties 
of the furnishings are equivalent to soft wood, these assumptions produced a total thermal mass 
per unit floor area of 3.4 Btu/oF-ft2 for single family homes, and estimates of 3.7 Btu/oF-ft2, 3.4 
Btu/oF-ft2, and 3.4 Btu/oF-ft2 for single-wide and double-wide manufactured homes and 
multifamily homes, respectively. Based on these values, thermal mass per unit floor area is 
uniformly distributed between a range from 2.5 to 4 Btu/oF-ft2. 

The average heat transfer coefficient for the surface of the thermal mass was estimated as the 
weighted average for horizontal and vertical surfaces and surface areas of the ceilings and 

Single-
Wide

Double-
Wide

Single-
Wide

Double-
Wide

Ceiling R-11 R-11 R-14 R-14
Walls R-7 R-7 R-11 R-11
Floor R-7 R-7 R-11 R-14

1976 Standards 1994 Standards
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interior surfaces. For vertical surfaces, the heat transfer coefficient was assumed to be 0.59 
Btu/hr-oF-ft2; for horizontal surfaces, we assumed 0.49 Btu/hr-oF-ft2. The furnishings were 
assumed to reduce the interior surface area by cover up some of it up. With these assumptions, 
the effective interior mass surface conductance per unit interior surface area for single-family 
homes was estimated to be 0.38 Btu/hr-oF-ft2. For single-wide and double-wide manufactured 
homes and multifamily homes, it was estimated to be 0.39 Btu/hr-oF-ft2, 0.37 Btu/hr-oF-ft2, and 
0.37, Btu/hr-oF-ft2, respectively. 

6.3.3 Plug Loads and Internal Gains Schedules 

Homes vary significantly in their use of appliances, which are a considerable source of heat gain 
inside a residence. To model this source of diversity in heating and cooling loads, we first 
developed a simple regression model that accounts for the average level of internal heat gains 
in homes of various floor areas using data from the End-Use Load and Conservation 
Assessment Program (ELCAP), the largest end-use metering project in the United States (Pratt 
et al. 1989). The “Other” end use is defined as the total consumption, less space conditioning 
and water heating. 

The internal gains as a function of floor area are approximated as a regression against mean 
annual consumption data for the “Other” end use by floor area categories. A model was 
developed of the average annual energy consumption as a function of floor area of the form: 

Other = a xb ( 5 ) 

This can be converted to a linear regression by an axis transformation into the form: 

loge(kWh/yr) = loge(a) + b loge(floor area, ft2) ( 6 ) 

The mean ELCAP consumption for four categories of floor area and the resulting fit to these 
data points is shown in Table 29. Converting the units from kWh/yr to average power in watts, 
the internal gains as a function of floor area for the average home is estimated as 

Other = 324.9 * (floor_area)0.442 * 1000 / 8760 ( 7 ) 

Table 29. Regression of ELCAP “Other” Annual End-Use Load vs. Floor Area 

 

The mean load shape for the internal heat gains was also taken from this metering project 
based on the “Other” end-use load shape (Figure 29). The magnitude and pattern of the “Other” 
loads change seasonally as shown. In the GridLAB-D simulations, the season was assumed to 
correspond to the calendar quarters. 

850 1350 2100 2475 Parameter Value Std. Error
Other 6730 7298 9066 11079 ln(a) 5.7834 0.8017

b 0.4420 0.1088
6.745 7.208 7.650 7.814 r2 0.8918

ln(Other) 8.814 8.895 9.112 9.313 a 324.9 45.0
EU = a xb

850 1350 2100 2475 ln(EU) = ln(a) + ln(xb)
Other 6403 7856 9550 10269 ln(EU) = ln(a) + b ln(x)

ln( End Use ) ln( Size of Home (ft2)  )

Regression:  ln(Other) = ln(a) + b ln(x)

Predicted End Use Size of Home (ft2)

Size of Home (ft2)End Use
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Figure 29. Average load shape for internal heat gains in residences. 

The average internal gains load shape for any given residence is then defined as the product of 
two dimensionless scalar multipliers and the average load shape 

Internal_gains(hr) = Srandom Sfloor area Load_shape(hr) ( 8 ) 

Then, the scaling factor for the floor area is 

Sfloor area  = Other / Mean(Load_shape) 

= 324.9 (floor_area)0.442 1000 / 8760 / Mean(Load_shape) 

( 9 ) 

The random scaling factor (Srandom) was then varied from a value of 1.0 by +20% to create 
further randomized diversity in the internal heat gains. 

In the GridLAB-D simulations, 50% of the heat gains from the appliances were delivered directly 
to the air inside the home and 50% emanated from the mass. (100% of the heating or cooling 
supplied by the HVAC system was delivered to the air.) 

6.4 Set Points for HVAC Units 

A combination of RECS data and assumptions were used to determine heating and cooling set 
points for HVAC units. Each house was assumed to have a maximum of four set-point 
preferences in one day for the following periods: 
1. Morning time occupied represents the time of the day prior to occupants leaving for work or 

school 
2. Day time unoccupied represents the daytime hours when nobody is consistently in the 

residence. 
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3. Evening time occupied represents when a typical work or school day is over and the 
residence is occupied again, it is considered to be the same as the morning set point 

4. Nighttime occupied represents when people are in the home, different from the morning and 
evening occupied set points. 

The RECS data directly report the winter and summer indoor temperatures for the daytime 
when someone is home, daytime when no one is home, and nighttime. No specific times are 
provided along with these data. The original survey data for each of the RECS set-point 
categories for the winter space heating portion of the year were recorded in bins with 
unbounded extremities: 

• 63 degrees or less 

• 64 to 66 degrees 

• 67 to 69 degrees 

• 70 degrees 

• 71 to 73 degrees 

• 74 degrees or more 

• Does not use heating equipment. 

For the purpose of determining winter set points, the responses were evenly distributed to whole 
degrees within the RECS bins and the unbound extremities were bounded to be the same size 
as most of the other temperature bins. Table 30 and Figure 30 show the distribution of setpoints 
for the three times outlined by RECS. The data supports a reasonable assumption that during 
winter the set point is lower while the home is unoccupied and relatively higher while people are 
home. 

Table 30. RECS survey data on residential occupant winter thermostat set points. 
Indoor Temp Daytime Occupied Daytime Unoccupied Nightime 

61 1.0% 4.8% 2.4% 
62 1.0% 4.8% 2.4% 
63 1.0% 4.8% 2.4% 
64 1.4% 5.8% 4.1% 
65 1.4% 5.8% 4.1% 
66 1.4% 5.8% 4.1% 
67 6.8% 7.0% 7.2% 
68 6.8% 7.0% 7.2% 
69 6.8% 7.0% 7.2% 
70 18.8% 15.9% 18.1% 
71 6.8% 4.1% 5.1% 
72 6.8% 4.1% 5.1% 
73 6.8% 4.1% 5.1% 
74 9.7% 5.1% 7.0% 
75 9.7% 5.1% 7.0% 
76 9.7% 5.1% 7.0% 

Did not use 3.6% 3.6% 3.6% 
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Figure 30. Distribution of residential occupant winter thermostat set points. 

The same process was done to interpret the summer set-point data from RECS. It should be 
noted that the set-point values differ between the space heating and cooling data. The original 
survey data for each of the RECS set-point categories for the summer space cooling portion of 
the year were recorded in bins with unbounded extremities: 

• 69 degrees or less 

• 70 degrees 

• 71 to 73 degrees 

• 74 to 76 degrees 

• 77 to 79 degrees 

• 80 degrees or more 

• Does not use air conditioning equipment. 

For the purpose of determining summer set points, the responses were evenly distributed to 
whole degrees within the RECS bins and the unbound extremities were bounded to be the 
same size as most of the other temperature bins. Table 31 and Figure 31 show the distribution 
of set points for the three times outlined by RECS. Again the data support the expectation that 
the summer set points for unoccupied times would be relatively higher than the occupied set 
points. 
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Table 31. RECS data on residential occupant summer thermostat set points. 
Indoor Temp Daytime Occupied Daytime Unoccupied Nightime 

67 3.6% 2.2% 6% 
68 3.6% 2.2% 6% 
69 3.6% 2.2% 6% 
70 14.5% 13.0% 17% 
71 6.8% 3.4% 6.5% 
72 6.8% 3.4% 6.5% 
73 6.8% 3.4% 6.5% 
74 9.2% 8.9% 8.5% 
75 9.2% 8.9% 8.5% 
76 9.2% 8.9% 8.5% 
77 5.6% 6.5% 3.9% 
78 5.6% 6.5% 3.9% 
79 5.6% 6.5% 3.9% 
80 1.7% 6.5% 1.2% 
81 1.7% 6.5% 1.2% 
82 1.7% 6.5% 1.2% 

Did not use 4.3% 4.3% 4.3% 
 

 
Figure 31. Distribution of residential occupant summer thermostat set points. 

Using the percentages outlined above to instantiate residential set points would result in an 
accurate modeling of the residential population as an aggregate but may not necessarily be a 
reasonable instantiation of any individual residence. For example, it likely would not be realistic 
to model a residence with a summer set point of 74 degrees while occupied and 70 degrees 
while unoccupied. In order to avoid this a procedure was put in place for distributing the set 
points for individual houses in all the time categories. The format of the data for space heating 
and cooling is identical, so the procedure is identical for both datasets. 

First a random draw is taken from the distribution of temperature values for when someone is 
home during the day. This value is taken to be the ideal temperature. Then a random draw is 



PNNL- 32170-2 

Residential Buildings 54 
 

taken from the daytime when no one is home temperatures, which has been partitioned into 
subset distributions. The subsets were created to track behaviors of individual respondents. For 
each temperature reported in the daytime when someone is home category, there is a 
corresponding distribution for the daytime when no one is home data. For example, if there were 
23 temperatures reported in the daytime when someone is home microdata for space heating, 
23 distributions were generated for the daytime when no one is home category. 

Then a random draw is taken from the nighttime temperatures, which has been partitioned into 
subset distributions. The subsets were created to track behaviors of individual respondents. For 
each temperature combination possible for the daytime when someone is home and daytime 
when no one is home, there is a corresponding distribution for the nighttime data. For example, 
if there were 55 unique combinations of daytime when someone is home and daytime when no 
one is home temperatures, there would be 55 nighttime distributions. 

Furthermore, the following checks and adjustments are also being applied to each house set 
points scheduling: 

• Ensure that daytime cooling set point when no one is home is never lower than when 
someone is home. 

• Ensure that daytime heating set point when no one is home is never more than when 
someone is home. 

• Ensure that the highest heating set point throughout the day is always lower than the lowest 
cooling set point by margin of 3°F, performed to avoid simultaneous heating and cooling in 
the same day. 

A summary of the average weekaday cooling and heating setpoints for a population of 100 
residential buildings is shown in Figure 32. 

 
Figure 32. Example average heating and cooling set-point schedules for a population of 

residential buildings. 
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6.5 Determining HVAC Equipment Parameters 

6.5.1 Residential HVAC Unit Performance 

The efficiency of an air conditioner is rated by its energy efficiency ratio (EER), the ratio of its 
cooling output to its power input. Furthermore, efficiency standards for air conditioners are 
based on a seasonal average EER rather than a single condition. Air conditioner efficiencies 
have steadily increased during the past 30 years due to improved appliance standards (Figure 
33). Therefore, the HVAC unit efficiency is based on the age of the unit and associated energy 
efficiency standards at the year of purchase. The seasonal EER performance rating was based 
on shipment and efficiency data provided in Navigant (2015). Air conditioning and heat pump 
units are assumed to be upgraded on an 18-year lifecycle. Therefore, for houses built in the last 
18 years, the efficiency is based on performance standards in effect at the year of construction. 
For older houses it is assumed that the HVAC unit would have gone through one or more 
replacement cycles. For example, a house constructed in 2000 would have an air condition with 
2018 performance, and a 1980 house would have an air conditioner with 2016 performance. 
Finally, a Gaussian random distribution of with a standard deviation of ±10% was applied to all 
resulting coefficient of performance values. 

 
Figure 33. Shipment-weighted assumed residential air conditioning performance (Navigant 

2015). 

The GridLAB-D simulation uses the dimensionless coefficient of performance (COP) instead of 
EER to indicate air conditioner efficiency. This distribution of seasonal EERs was converted to 
COPs and used in the simulations. To estimate distribution, we assumed that a heat pump’s 
heating and cooling EERs are approximately equal. 

The oversizing of air conditioning units is an important feature that impacts the cycling and 
pulldown capability of the unit. Oversizing is based on the work of James et al. (1997), who 
investigated 368 recently built Florida homes and found over 50% of the homes had installed 
systems with a cooling capacity greater than 120% of their maximum cooling load. Based on 
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this, a Gaussian distribution was used with an average oversizing factor of 1.23 (with a standard 
deviation of 0.108) bounded at values of 1 and 1.6. 

6.5.2 Prevalence of Electric Heating 

2015 RECS data were used to determine the prevalence of homes that used electricity to 
provide space heating. In this study, electric heating is considered a function of DSO region type 
(urban, suburban, and rural) rather than the building type. For this particular use of RECS data 
only the West South Census Division was included rather than the entire South Region. The 
West South Census Division only includes the states of TX, OK, AR, and LA. This building 
characteristic was believed to differ significantly enough between this division and the other 
divisions within the South Region to justify using a smaller sample of data for this instantiation 
assumption with the outcome being a more realistic assumption for the ERCOT system. The 
data show that 48%, 38%, and 36% of urban, suburban, and rural homes, respectively, use 
electricity as their main space heating fuel. RECS data also conclude that 19%, 24%, and 31% 
of urban, suburban and, rural homes use heat pumps for heating. The remaining electric heating 
homes are considered as resistance heating in GridLAB-D. 

6.6 Determining Water Heater Parameters 

Although the 2015 RECS data did not include specifics on the water heater tank, sizing based 
on number of occupants is used as shown in Table 32. The number of occupants for each home 
are decided based on the floor area of the house. For each family size category, the tank size is 
randomly selected from five uniformly distributed discrete size bins within the corresponding 
range. The tank overall heat transfer rate is uniformly distributed in a range from 2–4 Btu and 
the heating element rating is distributed between 3–6 kW. The tank set point is distributed 
between 110–126°F. There are 12 water demand schedules prepared, six each for small and 
large water demand. Based on the home size (Table 31), a randomly selected schedule from 
small and large schedules is attached to the water heater. 

Table 32. Residential water heater sizing guide based on floor area and number of occupants. 
Family Size Floor Area Range (sq.ft.) Gallon Capacity Range Water Demand Type 
1-2 people 0-1000 30-50 Small 
2-3 people 1000-2000 40-50 Small 
3-4 people 2000-4000 40-75 Large 
5+ people 4000-10000 50-75 Large 

6.6.1 Prevalence of Gas Water Heating 

In this study, the same fuel source is assumed for both HVAC and water heater. Every home 
has either gas or electric; therefore, the gas water heater prevalence is considered same as 
HVAC gas prevalence. 
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7.0 Commercial Buildings 
This section describes how a random population of commercial buildings is instantiated for each 
DSO’s region. The primary independent parameters defining the building population 
composition and characteristics of each individual building are the region of the country (in this 
case the West South Central Census division), the DSO type (urban, suburban, or rural), and 
the ASHRAE climate zone of the DSO. The following subsections describe how the overall 
building population was determined and how the form factor, thermal properties, internal gains 
schedule, and HVAC properties of each building were defined. The vast majority of commercial 
buildings were less than 10,000 sq. ft. and were instantiated using the single-zone GridLAB-D 
house object. Buildings over 10,000 sq. ft. were represented using multizone models comprised 
of multiple GridLAB-D house objects. The final subsection provides more details on this 
approach. 

7.1 Determining Building Type and Vintage 

The overall prevalence of various commercial building types was determined by using the 2012 
Commercial Building Energy Consumption Survey (CBECS) dataset (DOE-EIA 2012). The more 
than 50 principal building activity subcategories reported by CBECS were consolidated into the 
11 building types presented in Table 33. Where possible the raw CBECS survey data and 
weightings were used to generate the parameter data in this study. This process used the most 
granular CBECS data available, provided the associated survey micro data included sample 
sizes of at least 20 buildings for summation characteristics and 100 buildings for characteristic 
splits. For example, if the West South Central Census division provided sufficient samples it was 
used, if not the South Census region or complete U.S. dataset were used. 

Table 33 shows the resulting prevalence of building type. The split by DSO type (urban, 
suburban, and rural) was based on the total commercial customer counts of these DSOs from 
ERCOT data. The distribution of building types within each DSO is assumed to be identical 
except that large offices and inpatient healthcare (hospitals) are only present in urban regions. 

Finally, CBECS data were used to determine the likelihood that a building fell within a certain 
vintage (Table 33). When instantiating the population, a vintage bin was randomly selected 
based on its probability and a year of construction was then randomly selected from within that 
range using a uniform distribution. Figure 34 show an example building age distribution. 
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Table 33. Summary of commercial building attributes by building type. 

 
 

 

Vintage Total Area
Ceiling Height 

(Floor-to-floor)
No. Stories

Aspect 
Ratio

Window-
Wall Ratio

Wall Construction
Roof 

Construction

Interior/exterior 
Shading 

Coefficient

Total Urban Sub. Rural (ft)
[% 1 2 3 4 … 14 

15-25 >25]
- % CFM/ft2

Air Changes / 
hour

% Awnings

98.90% 71.2% 15.6% 13.2%
Office, Large (> 50,000 sq. 
ft.) 0.7% 0.70% 0% 0%

Custom Custom
13 Custom 1.5 40% [42% 17% 24% 17%] [28% 72%] 0.1 0.46 31%

Office, Medimum/Small 
(<50,000 sq ft) 20.2% 14.4% 3.2% 2.7%

[21% 17% 36% 22% 
3%]

[65% 18% 10% 7% 
0%] 13 [79% 18%] 1.5 33% [32% 29% 20% 20%] [16% 84%] 0.1 0.46 34%

Warehouse and Storage 16.1% 11.5% 2.5% 2.1%
[8% 15% 45% 31% 
0%

[67% 12% 10% 
3% 8%] 28 [95% 4%] 2.2 0.7% [14% 78% 4% 4%] [11% 89%] 0.052 0.11 17%

Big box 23.6% 16.8% 3.7% 3.1%
[20% 25% 33% 20% 

2%]
[52% 25% 17% 
4% 3%] 20 [85% 13%] 1.28 7% [37% 39% 12% 12%] [19% 81%] 0.28 0.84 51%

Strip 1.8% 1.28% 0.28% 0.24%
[0% 53% 21% 26% 

0%]
[9% 45% 1% 
16% 29%] 17 [83% 17%] 4 11% [62% 13% 13% 13%] [43% 57%] 0.3 1.06 100%

Education 7.4% 5.3% 1.15% 0.98%
[16% 21% 49% 
12% 2%]

[36% 14% 18% 
14% 18%] 13 [75% 17%] 1.4 33% [34% 28% 19% 19%] [11% 89%] 0.53 2.45 24%

Food Service 6.1% 4.3% 0.95% 0.81%
[17% 23% 46% 
15% 0%]

[71% 20% 8% 
0% 0%] 10 [83% 17%] 1 17% [27% 23% 25% 25%] [13% 87%] 1.04 6.24 57%

Food Sales 3.6% 2.56% 0.56% 0.48%
[0% 25% 56% 11% 
7%]

[78% 14% 4% 
4% 0%] 20 [86% 14%] 1.28 7% [48% 18% 17% 17%] [22% 78%] 0.28 0.84 47%

Lodging 3.1% 2.21% 0.48% 0.41%
[10% 25% 49% 
13% 4%]

[23% 22% 23% 
18% 14% ] 11 [62% 10%] 3 11%

[42% 13% 18% 18% 
18%] [7% 93%] 0.13 0.71 14%

Heathcare Inpatient 0.2% 0.20% 0.00% 0.00%
[14% 41% 23% 9% 
12%]

[0% 0% 4% 15% 
81%] 14 Custom 1.31 16% [42% 15% 25% 15%] [49% 51%] 0.18 0.77 43%

Low Occupancy 16.1% 11.46% 2.51% 2.13%
[35% 23% 32% 9% 
2%]

[48% 26% 13% 
7% 5%] 14 [82% 15%] 1.5 33% [44% 20% 18% 18%] [5% 95%] 0.052 0.22 25%

[Mass Wall, Metal 
Building, Steel-frame, 

Wood-frame]

[Insulation above 
deck, Attic & 

other]

1000 sq. ft. 
[1-5 5-10 10-25 

25-50 >50]

Ventilation req.
Building Type

[<1960, 1960-1979, 
1980-1999, 2000-
2009, 2010-2015]

Building Prevalence
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Figure 34. Example distributions of building age, floor area, window-wall ratio, and aspect ratio 

for a population of 1,000 commercial buildings on a suburban DSO. 

7.2 Determining Building Form Factor 

The building form is defined by five key variables: gross floor area, floor height, number of 
stories, aspect ratio, and window-to-wall ratio. These values were informed by the 2012 CBECS 
as well as the DOE reference building definitions (Deru et al. 2011). Summary values are 
provided in Table 32. The floor height was kept constant for each respective building type based 
on the reference building definitions, while the aspect ratio and window-to-wall ratio were 
randomly varied around mean values from the reference model buildings with a Gaussian 
distribution and standard distributions of 10% and 20% respectively. Since the majority of 
buildings surveyed only had one or two floors, the model performs a discrete random choice of 
one or two floors based on the likelihood by building type. Finally, the total floor area is 
determined by randomly selecting an area bin and then randomly selecting a floor area within 
that bin assuming a uniform distribution. Example distributions of 1,000 commercial buildings on 
a suburban DSO are shown in Figure 33. Note that the instantiation strategy for larger buildings 
(>10,000 sq. ft.) did alter some parameters. More details are provided in Section 7.6. 
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7.3 Determining Building Thermal Properties 

7.3.1 Envelope 

The modeled thermal envelope performance of the commercial buildings is a function of 
vintage, construction type, and ASHRAE climate zone. Summary values are provided in Table 
34, Table 35, Table 36, and Table 37. For buildings constructed after 1999, Texas building 
energy codes were used to estimate the nominal envelope performance (Texas Comptroller, 
n.d.). The 2000 International Energy Conservation Code (IECC) was adopted in 2001, the 2009 
IECC was adopted in 2011 and the 2015 IECC was adopted in 2016. The 2009 IECC values for 
wall, roof, and window performance are assumed for buildings constructed between 2010-2015. 
While not present in the CBECS 2012 dataset, the 2015 IECC can be used for buildings 
constructed after 2015. For simplicity 2000 IECC compliance is modeled by using the post-1980 
values provided in Deru et al. (2011) as they follow ASHRAE Standard 90.1-1989, an approved 
method to meet the 2000 IECC. Note that 90.1-1989 only had one prescribed U-value for “light-
weight” walls so all wall types except mass walls have identical values. 

Prior to 2000, Texas did not have mandatory statewide energy codes and instead the 
parametric models developed by Briggs et al. (1987, Appendix C) were used. This work 
assumed that building walls “built prior to 1960 were built based on uninsulated, structural 
masonry wall assemblies.” Buildings built after 1980 were assumed to meet ASHRAE 90.1P (a 
simplification for the more cumbersome 90A-1980). Interpolation was used for dates between 
1960 and 1980. Briggs et al. calibrated these models to billing data, which indicated the original 
assumptions overstated the difference between vintages and were corrected. A similar 
approach was used for roof U-values interpolating between values for 1946, 1975, and 1988. 

For this work we assume that values prior to 1960 are an average or 1946 and 1975, the values 
for 1960-1979 use the 1975 equation (based on ASHRAE 90-75), and the 1980-1999 values 
use the 1988 value (ASHRAE 90.1P). Similar assumptions were made for window U-values. 
Finally, the SHGC parametric model was developed by Briggs et al. (1987, Appendix C) as a 
function of building age and size. The relationship of SHCG as a function of building size was 
implemented by Briggs et al. to reflect that “the use of tinted and reflected glass was assumed 
to be more extensive in… large buildings than in small buildings.” This relationship was not 
directly implemented as it gives nonphysical values for larger buildings (i.e.,100,000 sq. ft.) 
Therefore, an average size of 20,000 sq. ft. was assumed for the values used. 

The values from these various sources are generally self-consistent and monotonically 
improving over time; however, for some reference city and climate zone combinations the U-
values can have local minima. This is due to some sources being parametrically based on 
heating and cooling degree days for reference cities rather than averaged for a climate zone. 
Also, the construction types used in the standards above do not always have a one-to-one 
mapping with the construction types reported by the CBECS. To address this the mappings 
provided in Deru et al. (2011, Tables 15 and 16) were used. It was assumed that an equal 
weighting was applied when a CBECS construction type mapped to multiple building code 
construction types. The construction method distribution by building type is provided in Table 
32. Gaussian distributions with a standard deviation of 10% where applied to R-wall and R-roof 
values. A 5% standard deviation was applied to SHGC and R-window values. 
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Table 34. Roof U-values as a function of climate zone, vintage, and construction type. 

 

Table 35. Wall U-values as a function of climate zone, vintage, and construction type. 

 

Pre 1960 1960-1979 1980-1999 2000-2009

90.1-2004
Climate 

Zone

Insulation 
entirely 

above deck

Attic and 
Other

Insulation 
entirely 

above deck

Attic and 
Other

Miami FL 1A 0.20 0.100 0.072 0.074 0.063 0.034 0.048 0.027
Houston TX 2A 0.20 0.100 0.067 0.066
Phoenix AZ 2B 0.20 0.100 0.041 0.046
Atlanta GA 3A 0.20 0.100 0.068 0.072
Los Angles CA 3B-CA 0.20 0.100 0.100
Las Vegas NV 3B-other 0.20 0.100 0.054 0.048
San Francisco CA 3C 0.19 0.100 0.088
Baltimore MD 4A 0.17 0.086 0.061 0.058
Albuquerque NM 4B 0.16 0.089 0.066 0.059
Seattle WA 4C 0.16 0.085 0.072 0.064
Chicago IL 5A 0.13 0.072 0.056 0.053
Denver CO 5B 0.12 0.076 0.057 0.051
Minneapolis MN 6A 0.08 0.060 0.047 0.045
Helena MT 6B 0.08 0.060 0.049 0.049
Duluth MN 7 0.08 0.060 0.045 0.040 0.039 0.027 0.028 0.021
Fairbanks AK 8 0.08 0.060 0.033 0.031 0.039 0.027 0.028 0.021

RO
O

F 
U-

Va
lu

e 
(B

TU
/h

r-s
qf

t-F
)

Location

0.048 0.027 0.039 0.027

0.048 0.027 0.039 0.027

0.0210.032

0.048 0.027 0.032 0.027

0.048 0.027 0.032 0.027

All Types

2010-2015 After 2015

0.0270.048

Pre 1960 1960-1979 1980-1999
90.1-2004
Climate 

Zone
Mass Wall

Metal 
Building

Steel 
Framed

Wood 
Framed

Mass Wall
Metal 

Building
Steel 

Framed
Wood 

Framed
Mass Wall

Metal 
Building

Steel 
Framed

Wood 
Framed

Miami FL 1A 0.230 0.230 0.230 1 1.000 1 1 0.58 0.093 0.124 0.089 0.151 0.079 0.077 0.064
Houston TX 2A 0.230 0.230 0.230 0.34 0.150 0.15 0.15
Phoenix AZ 2B 0.230 0.230 0.230 0.41 0.240 0.24 0.24
Atlanta GA 3A 0.227 0.225 0.223 0.29 0.130 0.13 0.13
Los Angles CA 3B-CA 0.230 0.230 0.230 1 0.220 0.22 0.22
Las Vegas NV 3B-other 0.230 0.230 0.230 0.29 0.160 0.16 0.16
San Francisco CA 3C 0.226 0.224 0.223 0.49 0.130 0.13 0.13
Baltimore MD 4A 0.204 0.191 0.178 0.12 0.089 0.089 0.089
Albuquerque NM 4B 0.197 0.181 0.165 0.19 0.100 0.1 0.1
Seattle WA 4C 0.197 0.180 0.163 0.1 0.092 0.092 0.092
Chicago IL 5A 0.186 0.164 0.141 0.1 0.082 0.082 0.082
Denver CO 5B 0.184 0.161 0.138 0.14 0.082 0.082 0.082
Minneapolis MN 6A 0.173 0.145 0.117 0.071 0.065 0.065 0.065
Helena MT 6B 0.173 0.145 0.116 0.079 0.072 0.072 0.072
Duluth MN 7 0.169 0.139 0.108 0.061 0.058 0.058 0.058 0.071 0.057 0.064 0.051 0.071 0.52 0.064 0.051
Fairbanks AK 8 0.160 0.125 0.090 0.047 0.045 0.045 0.045 0.071 0.057 0.064 0.036 0.061 0.52 0.045 0.036

W
AL

LS
 - 

Ab
ov

e 
Gr

ad
e 

U-
Va

lu
e 

(B
TU

/h
r-

sq
ft-

F) Location

0.123 0.079 0.064

0.104

0.089

0.104 0.084 0.64 0.089

After 2015

0.151 0.079 0.077 0.064

0.064

0.064

0.064

0.0510.08 0.52 0.0640.08 0.069 0.064 0.051

2010-2015

0.151 0.093 0.124 0.089

0.123

0.052 0.064

0.09 0.052 0.0640.069 0.064 0.064

0.084 0.084

2000-2009

All Types

0.09
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Table 36. Window U-values as a function of climate zone and vintage. 

 

Table 37. Window SHGC as a function of climate zone and vintage. 

 

90.1-2004
Climate 

Zone
Pre 1960 1960-1979 1980-1999 2000-2009 2010-2015 After 2015

Miami FL 1A 1.13 1.22 1.22 1.22 1.2 0.5
Houston TX 2A 1.13 1.22 1.22 1.22
Phoenix AZ 2B 1.13 1.22 1.22 1.22
Atlanta GA 3A 1.13 1.22 1.22 0.72
Los Angles CA 3B-CA 1.13 1.22 1.22 1.22
Las Vegas NV 3B-other 1.13 1.22 1.22 1.22
San Francisco CA 3C 1.13 1.22 0.62 0.72
Baltimore MD 4A 1.13 1.22 0.62 0.59
Albuquerque NM 4B 1.13 1.22 0.62 0.72
Seattle WA 4C 1.13 1.22 0.62 0.72
Chicago IL 5A 0.83 0.62 0.52 0.59
Denver CO 5B 0.83 0.62 0.52 0.59
Minneapolis MN 6A 0.83 0.62 0.52 0.52
Helena MT 6B 0.78 0.52 0.32 0.52
Duluth MN 7 0.78 0.52 0.32 0.52 0.45 0.29
Fairbanks AK 8 0.78 0.52 0.32 0.52 0.45 0.29

W
IN

DO
W

 U
-V

al
ue

 (B
TU

/h
r-s

qf
t-F

) Location

0.75

0.65

0.5

0.46

0.38

0.38

0.36

0.55

0.55

0.55

90.1-2004
Climate 
Zone Pre 1960 1960-1979 1980-1999 2000-2009 2010-2015 After 2015

Miami FL 1A 0.495 0.310 0.218 0.25 0.25 0.25
Houston TX 2A 0.495 0.345 0.269 0.25
Phoenix AZ 2B 0.495 0.310 0.218 0.25
Atlanta GA 3A 0.495 0.385 0.330 0.25
Los Angles CA 3B-CA 0.44
Las Vegas NV 3B-other 0.495 0.354 0.284 0.25
San Francisco CA 3C 0.39
Baltimore MD 4A 0.495 0.387 0.333 0.36
Albuquerque NM 4B 0.495 0.407 0.363 0.36
Seattle WA 4C 0.495 0.430 0.397 0.39
Chicago IL 5A 0.495 0.407 0.363 0.39
Denver CO 5B 0.495 0.415 0.374 0.39
Minneapolis MN 6A 0.495 0.415 0.374 0.39
Helena MT 6B 0.495 0.423 0.388 0.39
Duluth MN 7 0.495 0.428 0.395 0.49 0.45 0.45
Fairbanks AK 8 0.495 0.434 0.403  NR 0.45 0.45

0.25

0.25

0.4

0.4

0.4

Location

W
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W

 - 
SH

GC
 (-

) 0.25

0.25

0.4

0.4

0.4
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While the above sources address window SHGC factors, they do not account for the additional 
contribution of internal or external shading. For this we assume that the percentage of buildings 
with shading is equal to the percentage of buildings that report having awnings in the CBECS 
micro data (Table 32). Based on a review of modeling of awnings and window treatments 
performed by Lawrence Berkeley National Laboratory (Kohler et al. 2017; Curcija et al. 2013), 
buildings with shading are then considered to have a median 50% reduction in SHGC values 
with a random Gaussian distribution with standard deviation of 10 percentage points. Finally, 
building ventilation rates are based on the average values for the DOE reference buildings 
(Table 32). No additional infiltration is assumed and GridLAB-D default values are assumed for 
door and floor U-values. Example distributions are shown in Figure 35. 

 
Figure 35. Example distributions of window SHGCs (-) and thermal resistance (R-values; h·ft2 

ºF/Btu) for windows, walls, and roofs for a population of 1,000 commercial buildings 
on a suburban DSO in ASHRAE Climate Zone 2A. 

7.3.2 Thermal Mass and Heat Transfer 

The internal thermal mass of a building and its associated heat transfer coefficient are critical 
parameters influencing the building’s ability to provide flexibility in load demand via the HVAC 
system. Unfortunately the range of values typical in commercial buildings has not been well 
studied with much of the work to date focused on parametric modeling investigations (Johra and 
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Heiselberg 2017a). To verify commonly used assumptions, Johra et al. (2017b) surveyed the 
contents of 12 residential and office rooms in Denmark. This determined values in the range of 
10–100 kgs/m2 of net floor area and did not include the thermal mass of internal structural 
elements such as walls. They then calculated an effective thermal capacity of approximately 
13–45 kJ/K.m2 (0.73, 1.5, 2.2 BTU/F-ft2). This work also used the following parametric estimates 
for light, medium, and heavy wall construction: 30, 55, 100 Wh/K.m2 (5.3, 9.7, and 17.6 BTU/F-
ft2). These were slightly higher than the values calculated by Briggs et al. (1987) based on wall 
material properties by year of construction (13.6 BTU/F-ft2 prior to 1947, 8.9 BTU/F-ft2 in 1970, 
and 4.6 BTU/F-ft2 for 1985 and after) and the code cutoff for mass walls (>5-7 BTU/F-ft2). 

Based on the values above it was assumed that the internal thermal mass (MInt) had a mean 
value of 1.5 BTU/F-ft2 and standard deviation of 0.2 BTU/F-ft2. To this was added the wall 
thermal mass (MExt) as a function of perimeter and window-to-wall ratio. The wall thermal mass 
was assumed to be a linear interpolation of the values provided in Briggs et al. (1987) for values 
between 1947 and 1985 and held constant outside those years. Because only a portion of the 
exterior wall’s thermal mass is thermally coupled to the interior zone temperature only a fraction 
(F=0.5) is applied. Therefore, the total thermal mass of the building is calculated as: 

𝑀𝑀𝑇𝑇 = 0.9 𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼 +  𝑅𝑅.𝐸𝐸.𝑀𝑀𝐸𝐸𝐸𝐸𝐼𝐼 ( 10 ) 

Where F is the assumed fraction of the wall thermal mass that is coupled to the interior zone 
temperature. A factor of 0.9 is applied to correct for the difference in interior and gross floor 
area. R is the ratio of exterior wall area (excluding windows) to floor area as defined by: 

𝑅𝑅 =
𝐴𝐴𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(1 −𝐸𝐸𝐸𝐸𝑅𝑅)

𝐴𝐴𝐹𝐹𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹
 

( 11 ) 

Where AWall is the area of the wall envelope, WWR is the window-to-wall ratio, and AFloor is the 
gross floor area of the building. The wall area can be calculated from building form factors as 
follows: 

𝐴𝐴𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 2.ℎ𝑓𝑓𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹�
𝐴𝐴𝐹𝐹𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹
𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼

. �𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼 − 1� 
( 12 ) 

Where hfloor is the floor-to-floor height of the building and RAspect is the building’s floorplan aspect 
ratio. The resulting distribution of the total thermal mass per floor area is shown in Figure 36. 
The values are generally consistent with prior unpublished PNNL studies that used a nominal 
value of 3.9 Btu/oF-ft2 which was varied randomly over a range of +50% as well as the default 
GridLAB-D value of 3.5 Btu/oF-ft2 (GridLAB-D 2017). 



PNNL- 32170-2 

Commercial Buildings 65 
 

 

Figure 36. Example distribution of total thermal mass per floor area (BTU/F-ft2) for a population 
of 1,000 commercial buildings. 

7.4 Determining Building Schedules and Internal Gains 

The building occupancy schedules were informed by the distribution of hours buildings were 
open per week as reported in CBECS 2012 data. The average operating hours per week as well 
as the average schedule for each building type are shown in Table 38. 

Table 38. Summary of percent of time buildings are occupied and internal gains loads. 

 

Summary data of the weekly occupancy level and internal gains are also shown in Table 37. 
CBECS reports the number of buildings that are open 24/7. This percentage was assigned an 
‘always occupied’ schedule with no setbacks. All lodging and healthcare inpatient buildings were 
assumed to be always occupied. Then for each building type the mean percent of time that the 
buildings were in use per week was calculated excluding always occupied buildings. Based on 
these results the building types were split into three occupancy schedules: ‘office’ for building 
types that had occupancy rates less than 30% and were assumed to have lower use on the 
weekend (this included office, warehouse, and education building types); retail, for buildings 

Open Mean Modeled Plug Load Lighting Load Lighting
Large 

Refrigeration
Plug/MEL 

Loads
Occupancy

24/7 Occupancy Occupancy Ratio Ratio W/ft2  W/ft2 W/ft2 Occ / ft2
Office, Large (> 50,000 sq. ft.) 8% 28% 30% 56% 31% 1.01 0.00 1.44 0.00
Office, Medimum/Small (<50,000 sq ft) 8% 28% 30% 56% 31% 1.01 0.00 1.44 0.01
Warehouse and Storage 19% 24% 30% 56% 31% 0.78 0.00 0.81 0.00
Big box 5% 30% 50% 65% 38% 1.16 0.00 1.29 0.02
Strip 15% 31% 50% 65% 38% 1.01 0.00 2.00 0.01
Education 4% 27% 30% 56% 31% 0.57 0.00 1.09 0.03
Food Service 4% 42% 50% 65% 38% 0.90 2.09 3.96 0.05
Food Sales 21% 52% 50% 65% 38% 1.07 3.94 1.43 0.02
Lodging 89% - 100% 100% 100% 0.23 0.00 1.14 0.01
Heathcare Inpatient 100% - 100% 100% 100% 0.56 0.00 1.61 0.00
Low Occupancy 2% 13% 17% 52% 27% 0.18 0.00 0.44 0.03

1) Mean and modeled occupancy levels exclude buildings that are open 24/7
2) Load ratio is the ratio of occupied load levels to annual average levels
3) All internal gains values are for occupied periods except large refrigeration which is 24/7

Internal Gains

Building Type
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with occupancy greater than 30% and assumed to have identical use on the weekends as 
during the week (this included big box, strip mall, food service, and food sales);and a ‘low 
occupancy’ schedule specifically for the low occupancy building type. The normalized load 
profile shapes used for the lighting and plug loads profile are shown in Figure 37. Only office 
schedules had a different operation on the weekends. The ratios of occupied and unoccupied 
loads are based on the field measurements of Taylor and Pratt (1989). Finally, to ensure a 
distribution of schedules the start time of each building was varied to start up to 1.5 hours before 
the base schedule. 

 
Figure 37. Example normalized internal load schedules. 

These normalized load shapes are multiplied by the building type relevant internal gains loads 
shown in Table 37. The lighting, miscellaneous electric loads, and refrigeration loads are all 
based on estimates provided by the CBECS for annual average energy usage intensity. These 
values are scaled from an annual average value to the peak occupied value using the following 
equation: 

𝐿𝐿𝑓𝑓𝑓𝑓𝑅𝑅𝐹𝐹𝐴𝐴𝐴𝐴 =
𝐿𝐿𝑓𝑓𝑓𝑓𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴

�𝑓𝑓𝐹𝐹𝐴𝐴𝐴𝐴 + 𝑅𝑅𝐹𝐹𝐴𝐴𝐴𝐴
𝑢𝑢𝐼𝐼

− 𝑓𝑓𝐹𝐹𝐴𝐴𝐴𝐴𝑅𝑅𝐹𝐹𝐴𝐴𝐴𝐴
𝑢𝑢𝐼𝐼
�
 ( 13 ) 

Where focc is the fraction of the time where the building is occupied and Rocc/un is the ratio of load 
values between occupied and unoccupied periods. 

The thermostat set points were considered the same for all buildings with heating set points of 
70°F occupied and 60°F unoccupied and summer setpoints of 75°F occupied and 80°F 
unoccupied. The occupied period for the HVAC system was identical to the load shape shown in 
Figure 36 for the loads. 

Food sale and food service buildings reported in the CBECS contain a nontrivial number of 
major refrigeration systems and walk-in coolers. Since these consume electrical base load but 
have heat rejected directly to the ambient (and not contribute to internal gains) these major 
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refrigeration loads were accounted for separately in the analysis and considered to be 
independent of occupancy. The minor refrigeration loads of the other building types were 
lumped into the plug load and miscellaneous electric load category and varied in value with 
occupancy status. 

The occupancy density is based on the DOE reference building definitions and the heat gains 
from the occupants were assumed to be 250 Btu/hr (73 W) each. All internal loads (occupancy, 
lighting, miscellaneous electric load, and refrigeration) are randomly varied with a Gaussian 
distribution and standard deviation of 10%. 

7.5 Determining HVAC Equipment Parameters 

7.5.1 Packaged HVAC Unit Parameters 

The majority of building types are assumed to have their cooling loads served by packaged 
rooftop HVAC units. Efficiency is based on the age of the unit. Prior to 2010 the seasonal EER 
performance was assumed to be an extrapolation of Air Conditioning, Heating, and 
Refrigeration Institute (AHRI) data (Hart et al. 2008). More recent AHRI statistics that provided 
seasonal EER values could not be found, so it was assumed that units shipped since then meet 
the minimum EER requirement for their respective size weighted by shipping volumes. The 
efficiency of heat pump operation was assumed to be the same as that of cooling operation 
based on the similarity of values reported by DOE-EIA (2018, Appendix A). A random Gaussian 
distribution with a standard deviation of 5% was applied to all COP values. As shown in Figure 
38, COP was calculated from seasonal EER using the following equation: 

COP = 0.3796*SEER-0.0076*SEER2 ( 14 ) 

It should be noted that GridLAB-D automatically adjusts unit efficiency and capacity as a 
function of ambient air temperature. 

 
Figure 38. Assumed seasonal EER value as a function of rooftop terminal unit (RTU) age. 

The efficiency of the RTU fleet will be affected by the unit age distribution. There are a number 
of published estimates of average RTU lifetime. Northeast Energy Efficiency Partnerships 
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(NEEP 2014) established a weighted-average lifetime of 20.6 years, whereas EIA (Navigant 
2018) assumes a lifetime of 21 years and DOE has used 18.4 years in proposed rulemaking 
(DOE-EERE 2014). We have assumed an average RTU life of 20 years. As such buildings 
constructed since 1999 have RTUs with performance consistent with the year of construction. 
Buildings older than that are assumed to have upgraded units on a 20-year refresh cycle. 

The oversizing of RTUs is an important feature that impacts the cycling and pulldown capability 
of the unit. Felts and Bailey (2000) found in a field survey of 250 RTUs that slightly less than 
40% where correctly sized for peak load conditions, 20% where no more than 25% oversized, 
and 10% being more than 50% oversized. Based on this description, the median oversizing is 
assumed to be 20% with a standard deviation of 20% and limits on the distribution of 0% and 
60% oversizing. Examples of RTU COP and oversizing distributions are shown in Figure 39. 

 
Figure 39. Example distributions of rooftop unit COP and oversizing factor for a distribution of 

buildings. 

7.5.2 Prevalence of Electric Heating 

The number of buildings that primarily used electricity for heating was based on 2012 CBECS 
data by building type. Furthermore, it was assumed that commercial buildings in rural locations 
(which is assumed to be 13% of the population) have half the rate of non-electric primary 
heating sources than urban and suburban locations. This assumption is based on the reported 
gas heating rates for residential buildings in urban, suburban, and rural locations. The 
prevalence of heat pumps (versus resistive electric heating) was also based on CBECS 
reported data. This information is summarized in Table 39. 

Table 39. Summary of electric heating prevalence and types. 

Building Type 

Primary Electric Heating 
Electric Heating 

System Type 

Total Urban Suburban Rural 
[Heat Pump 
Resistance] 

Office, Large (>50,000 ft2) 46% 46% – – [20% 80%] 
Office, Medium/Small 46% 42% 42% 71% [20% 80%] 
Warehouse and Storage 18% 12% 12% 56% [22% 78%] 
Big Box 32% 27% 27% 64% [22% 78%] 
Strip 39% 35% 35% 67% [0% 100%] 
Education 51% 48% 48% 74% [8% 92%] 
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Building Type 

Primary Electric Heating 
Electric Heating 

System Type 

Total Urban Suburban Rural 
[Heat Pump 
Resistance] 

Food Service 50% 46% 46% 73% [6% 94%] 
Food Sales 67% 65% 65% 82% [0% 100%] 
Lodging 63% 60% 60% 80% [40% 60%] 
Healthcare Inpatient 29% 29% – – [31% 69%] 
Low Occupancy 35% 30% 30% 65% [20% 80%] 
Weighted Average 38% 33% 33% 65% - 

 

7.6 Definition of Larger Multizone Commercial Buildings 

7.6.1 GridLAB-D Treatment of Larger Commercial Buildings 

Commercial buildings larger than 10,000 sq. ft. are subdivided into multiple zones, each of 
which is treated as a GridLAB-D house object with appropriately adjusted interior to exterior wall 
ratios for each zone. The approaches used below are based on the treatment of office buildings 
and big box stores used in prior studies (Fuller et al. 2012, Appendix B.2.2). 

For commercial buildings between 10,000 and 30,000 sq. ft. of gross floor area, a prototypical 
six-zone building with an aspect ratio of 1.28 was simulated. The floor plan of the building is 
illustrated in Figure 40. The loads for all six zones were combined as one customer meter and 
account. Each zone was thermally independent, corresponding to an assumption that single-
zone packaged HVAC units supply conditioned air for each zone, with no mixing of return air. All 
other building parameters were calculated as described in the above sections and are identical 
for all zones in the building.  

 

Figure 40. Floor plan of commercial buildings between 10,000 and 30,000 sq. ft. 

For commercial buildings larger than 30,000 sq. ft. (but excluding large offices and hospitals), a 
three-story, fifteen-zone office building with an aspect ratio of 1.5 was simulated. The floor plan 
of the prototypical building is shown in Figure 41. The loads for all fifteen zones were combined 
as one customer meter and account. Each zone was thermally independent, corresponding to 
an assumption that single-zone packaged HVAC units supply conditioned air for each zone, with 
no mixing of return air. 
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Figure 41. Floor plan of commercial buildings over 30,000 sq. ft. 
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8.0 Summary of Building Load Results 
This section presents total system and building load results for the MR BAU case and compares 
them to actual ERCOT load profiles and expected values. Ultimately the goal of this comparison 
is to illustrate how well the simulation can capture overall system load values, load shapes, and 
contributions by load type and customer class. Annual simulations were run for both 200-bus 
and 8-bus configurations of the model. For the 8-bus model, the simulation contained 11,929 
buildings (11,190 residential and 739 commercial), 13,162 HVAC units, and 7,325 water 
heaters, representing a 1:952 scale (and hence the weighting factor) of the ERCOT system. For 
the 200-bus model, the simulation contained 63,729 buildings (58,453 residential and 5,273 
commercial), 73,704 HVAC units, and 36,624 water heaters, representing a 1:172 scale of the 
ERCOT system. Overall load profiles were similar between both models. The results presented 
here are for the 200 bus model unless otherwise stated. 

8.1 Load Demand by End-Use and Device 

Example load profiles (by end-load type) are shown in Figure 42 for the weeks with maximum 
and minimum actual ERCOT loads.  

 

 

Figure 42. System load contributions by end use for (a) peak load (top) and (b) minimum system 
load (bottom). Total simulation load (solid line) is shown in comparison to the actual 
load experienced in ERCOT (dotted line). (8-bus model.) 
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The overall system load compares well with the actual ERCOT peak load (summer) week but 
overpredicts the reduction in load at night. During the minimum load week (spring), the load 
shape is trend-wise accurate but overpredicted. As discussed in Section 5.4.1, the industrial 
load is assumed to be constant. The plug and miscellaneous electrical loads are based on 
predefined schedules with weekday and weekend dependence. The water heater load shape is 
primarily driven by assumed usage (water draw) profiles. Finally, the HVAC load is driven by 
ambient weather conditions and occupancy schedules. Annual end-load consumption is shown 
in Table 40. HVAC accounted for 24% of total annualized distribution system load (excluding 
losses) versus CBECS/RECS-based estimates of 29.6%, and residential water heating 
contributed 5.7% versus RECS-based estimates of 5.2%. (Note that the CBECS- and RECS-
based values are based on West South Central Census Region data that is then corrected for 
building class contributions. For example, water heating is estimated by RECS to account for 
12% of residential load in the region. Given that residential customers represent 43% of ERCOT 
load we would expect water heaters to present 5.2% of load not including distribution losses.) 

Table 40. Summary of simulated end-use device number and loads (prior to system losses). 

 Simulated Scaled Building Load 
Building Type  Number  % Number % Load (MW-hr) % 
HVAC 73,704 66.8% 11,627,729  66.4% 64,605,889  23.6% 
Water Heaters 36,624 33.2% 5,871,794  33.6% 15,507,344  5.7% 
Plug Loads  -  -  -  - 130,873,225  47.7% 
Industrial Loads  -  -  -  - 63,257,981  23.1% 
Total 110,328 100% 17,499,523  100% 274,244,439  100% 
 

8.2 Load Demand by Customer Class and Building Type 

Figure 43 shows similar system load profile examples but broken out by customer class and 
building type. Table 41 shows that residential and commercial buildings loads compared well to 
ERCOT utility data in terms of both overall contributions and the average value per building. 
While utility data were not available for load factor (the ratio of building average load to peak 
load), the values are comparable (but higher) than those reported by (New et al. 2019) based on 
>170,000 buildings in Tennessee, with load factors of 0.23 versus 0.16 for residential buildings 
and 0.37 versus 0.27 for commercial buildings. 
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Figure 43. System demand by customer class (green for residential, blue for commercial, and 

gray for industrial) and building type for the week of peak load. 

Table 41. Comparison of results by customer class. 

Statistic 
Residential Commercial 

Simulation Actual Diff (%) Simulation Actual Diff (%) 
End load (%) 45.2% 43.3% 4.4% 30.7% 31.2% 1.5% 
Average load per 
Customer (kW) 

1.73 1.59 8.9% 9.30 9.00 3.5% 

Table 42 shows the number, proportion, and load by building type in the simulation before and 
after the weighting factors are applied. Residential buildings account for >90% of the customer 
buildings and >60% of the load (excluding industrial load). This is dominated by single-family 
homes (70% of the buildings and 50% of the load). Significantly more diversity in building type is 
seen in the commercial customers. The most prominent commercial building types are office 
buildings and bog-box retail buildings each representing 8-9% of non-industrial load. 

Table 42. Summary of simulated building number and load by type and customer class. 

  Simulated Scaled Building Load 
Customer 
Class 

Building Type  Number  % Number % Load (MW-
hr) 

% 

Residential Single Family 44,019  69.1% 7,496,214  70.7% 107,514,838  50.0% 
Mobile Home   4,485  7.0% 438,043  4.1% 5,464,985  2.5% 
Multifamily   9,949  15.6% 2,133,030  20.1% 17,992,707  8.4% 
Total 58,453  92% 10,067,287  95% 130,972,530  60.9% 

Commercial Office   1,074  1.7% 117,416  1.1% 16,509,851  7.7% 
Warehouse & 
Storage 

  898  1.4%  93,846  0.9% 8,173,540  3.8% 

Big Box   1,246  2.0% 128,967  1.2% 18,693,237  8.7% 
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  Simulated Scaled Building Load 
Strip Mall   110  0.2%  12,520  0.1% 6,996,139  3.3% 
Education   395  0.6%  46,529  0.4% 11,184,126  5.2% 
Food Service   317  0.5%  28,821  0.3% 8,087,731  3.8% 
Food Sales   193  0.3%  17,770  0.2% 5,149,110  2.4% 
Lodging   152  0.2%  11,568  0.1% 4,241,945  2.0% 
Healthcare 
Inpatient 

  1  0.0%   201  0.0%   228,624  0.1% 

Low Occupancy   887  1.4%  82,450  0.8% 4,994,222  2.3% 
Total   5,273  8% 540,088  5% 84,258,525  39.1% 

Total 63,726  - 10,607,375  - 215,231,055  - 

8.3 Summary of Annual Load Demand 

Summaries of load and daily change in load by month are provided in Figure 44 and an overall 
summary is provided in Table 43. This confirms that while the overall average load is accurately 
captured (within ~5% percent), the daily variation in load is overpredicted (on average by 
~37%), and the minimum total load is overpredicted by ~10%. 

 
Figure 44. Comparison of system total load (top) and daily range in total load (bottom) between 

simulation (DSO+T) and actual (ERCOT). 
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Table 43. Comparison of the simulated grid load. 

System Load (MW)  DSO+T  ERCOT % Diff 
Average 40,998  39,191  4.6% 
Max 73,938  70,359  5.1% 
Min 26,545  24,098  10.2% 
Average daily range 23,049  16,795  37.2% 
Max daily range 39,588  29,146  35.8% 
Min daily range 6,861  5,036  36.2% 

8.4 Discussion and Lessons Learned 

8.4.1 Simulation Accuracy 

The simulation results have two main inaccuracies: the overprediction of the daily load range 
(especially in the summer) and the overprediction of electric loads in the winter heating season. 
Work by NREL (Hale et al. 2018) has also overpredicted the daily swing. This suggests that the 
use of a higher fidelity simulation tool (e.g., EnergyPlus) or more detailed building survey data 
(ComStock and ResStock databases) would be unlikely to resolve this issue. The overprediction 
in the daily change in building load could be due to overly optimistic assumptions about the 
nighttime reduction of miscellaneous electric loads and building thermostat schedules. Lower 
diurnal variation of each of these would improve the agreement with actual loads. In addition, 
increased nighttime HVAC operation could be explained by a desire to address latent cooling 
rather than sensible cooling objectives. In addition, there are a number of building parameters 
that do not have well-characterized probability distributions in the literature that could contribute 
to this issue. These include infiltration and natural ventilation (including behavioral modeling of 
window opening rates), shading and its impact on solar loads, and accurate distributions of 
buildings’ internal thermal mass and heat transfer coefficient. 

The overprediction of winter loads likely arises from inaccuracies in estimating the proportion of 
homes with gas heat. Using calibration methods to fine-tune input parameters could address 
this. For example, changing the proportion of homes with gas heat from ~40% to ~60% reduced 
the average load error to less than 5% and minimum system load error to less than 10%. It also 
improved the average residential load error to 0.3%. However, this resulted in a substantial 
reduction in the load contribution from electric water heaters and HVAC, increasing the risk that 
their contribution to load flexibility would be underrepresented. Auto-calibration techniques could 
result in improved load shape accuracy at the risk of substantial losses in the contribution 
representativeness of end loads and customer classes. Prior work (Fuller et al. n.d.) has shown 
that detailed calibration of GridLAB-D building models with customer data can reduce load 
shape inaccuracies but still reported a >14% mean average percentage error. 

8.4.1 Lessons Learned 

Co-simulating dynamic building models with a full grid operation and market model can present 
unique requirements and challenges. First, care is required that all boundary conditions, 
operating inputs, and initialization values are sufficiently randomized and piecewise continuous 
in time. For example, a population-wide discontinuity in set-point temperature schedule between 
weekend and weekday operation can cause a large portion of the HVAC fleet to turn on at once, 
resulting in a large spike in system load. Such dynamic transients would typically be averaged 
out in energy efficiency modeling but can cause significant problems for grid operation. 
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Care is also needed when reconciling and normalizing data from various sources. For example, 
energy data from EIA are denominated per building, while utility data are denominated per 
customer. While these values are typically consistent for the residential market, they are not 
consistent for the commercial market, where data suggest more than two commercial customers 
per commercial building. If such discrepancies are not identified and harmonized, the overall 
loads and contributions of specific customer classes can be significantly over or 
underrepresented. 

8.4.2 Future Research Needs 

As building modeling continues to transition its focus from quasi-steady modeling of energy 
efficiency benefits to fully dynamic modeling to investigate advanced control solutions for grid 
interaction, further work is needed in three areas. First, an investigation is needed into 
identifying and resolving the overprediction of the daily change in system load. This load 
variation, most prominent in the summer, drives the need for electrical generation flexibility and 
the resulting variation in dynamic wholesale electric prices. Second, the variation of key building 
parameters that directly affect their dynamic response and the flexibility of end loads (such as 
building internal thermal mass) needs to be better characterized for the actual national building 
stock. Finally, an open and simulation tool-agnostic summary of building parameter distributions 
suitable to be adapted to different regions of the country and future scenarios would be of great 
value to the research community. 
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9.0 Battery Characteristics 
This section documents the battery performance characteristics and underlying assumptions 
used for the battery case in the DSO+T study. 

9.1 Battery Modeling 

A battery is defined as a direct current electrochemical storage device. A storage system 
consists of a battery and an inverter. The battery model used here does not explicitly represent 
a specific battery chemistry, but rather is a generic energy storage device. Let the battery be 
rated by its (direct current) energy storage capacity, 𝐸𝐸𝑏𝑏𝑊𝑊𝐼𝐼 (kWh), and maximum charging (𝑅𝑅𝐴𝐴) 
and discharging (𝑅𝑅𝑑𝑑) power in kW. We assume that 𝑅𝑅𝐴𝐴 and 𝑅𝑅𝑑𝑑 are same for the battery. The 
capacity duration of battery at rated output, 𝑇𝑇𝑏𝑏𝑊𝑊𝐼𝐼 (hours) can be given as 

𝑇𝑇𝑏𝑏𝑊𝑊𝐼𝐼 = 𝐸𝐸𝑏𝑏𝑊𝑊𝐼𝐼/𝑅𝑅𝐴𝐴. ( 15 ) 

The inverter’s rated power is assumed to be same as the battery rating. The battery is capable 
of storing energy (𝐶𝐶) within the given maximum (𝐶𝐶𝑆𝑆𝑊𝑊𝐸𝐸) and minimum (𝐶𝐶𝑆𝑆𝑆𝑆𝐼𝐼) allowable amount 
of energy in kWh. The energy stored in the battery can be altered by the inverter, given its 
combined limitations of maximum charging (𝑅𝑅𝐴𝐴) and discharging (𝑅𝑅𝑑𝑑) rate in kW. The energy 
stored in the battery at any time 𝑡𝑡 can be written as 

𝐶𝐶(𝑡𝑡) = 𝐶𝐶(𝑡𝑡 − 1) + 𝐸𝐸𝑆𝑆𝐼𝐼(𝑡𝑡) ×  𝜂𝜂𝑆𝑆𝐼𝐼 − 𝐸𝐸𝐹𝐹𝑢𝑢𝐼𝐼(𝑡𝑡)/ 𝜂𝜂𝐹𝐹𝑢𝑢𝐼𝐼 ( 16 ) 

where 𝐸𝐸𝑆𝑆𝐼𝐼(𝑡𝑡) and 𝐸𝐸𝐹𝐹𝑢𝑢𝐼𝐼(𝑡𝑡) are the kWh energy flowing into (charging) and out (discharging) of 
the storage system at time 𝑡𝑡 and are limited by the rating 𝑅𝑅𝐴𝐴 and 𝑅𝑅𝑑𝑑. The efficiencies of the 
process of charging and discharging the storage system are represented by 𝜂𝜂𝑆𝑆𝐼𝐼 and 𝜂𝜂𝐹𝐹𝑢𝑢𝐼𝐼. These 
efficiencies can be modeled as 

𝜂𝜂𝑤𝑤𝑡𝑡 = (1− 𝐿𝐿𝑤𝑤𝑡𝑡) × 𝜂𝜂𝑤𝑤𝑡𝑡𝑖𝑖 ( 17 ) 

𝜂𝜂𝐹𝐹𝑢𝑢𝐼𝐼 = (1− 𝐿𝐿𝑓𝑓𝐶𝐶𝑡𝑡) × 𝜂𝜂𝑤𝑤𝑡𝑡𝑖𝑖 ( 18 ) 

where the battery losses are split as charging losses (𝐿𝐿𝑆𝑆𝐼𝐼) and discharging losses (𝐿𝐿𝐹𝐹𝑢𝑢𝐼𝐼) in 
percentage. Similarly, the inverter losses are modeled in terms of their efficiency, given as 𝜂𝜂𝑆𝑆𝐼𝐼𝐴𝐴. 
Thus, the overall system roundtrip efficiency can be defined as 

𝜂𝜂 = 𝜂𝜂𝑤𝑤𝑡𝑡 × 𝜂𝜂𝑓𝑓𝐶𝐶𝑡𝑡. ( 19 ) 

9.2 Battery Population Instantiation Strategy 

In this study, a diverse population of battery systems are instantiated throughout the feeders 
with no more than 1 battery system per building. Residential buildings are selected randomly to 
have a battery system installed based on the target storage participation rate. 

The Tesla PowerWall specifications were used as mean values to model the battery system 
(Tesla 2019) as shown in Table 44. Further, a range is assigned to create a uniform distribution 
of battery parameters to be able to instantiate a diverse battery population among the selected 
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buildings. There is no correlation assumed between the residential load and the installed battery 
capacity. All selected residential buildings are randomly assigned a battery system. 

Table 44. Specifications to model and instantiate a population of residential battery systems. 

Characteristics Mean Value Deviation Range 
Capacity (kWh) 13.5 ± 20% 
Battery rated charging power (𝑅𝑅𝐴𝐴, kW) 5 ± 20% 
Battery rated discharging power (𝑅𝑅𝑑𝑑, kW) Same as 𝑅𝑅𝐴𝐴 
Capacity (hours) Calculated as Eq ( 15 ) – (mean: 2.7) 
Inverter Efficiency (%) 98 - 
Battery charging efficiency (1 − 𝐿𝐿𝑆𝑆𝐼𝐼, %) 96 ± 3 

Battery discharging efficiency (1 − 𝐿𝐿𝐹𝐹𝑢𝑢𝐼𝐼, %) Same as 𝐿𝐿𝑆𝑆𝐼𝐼 

System Round Trip Efficiency (%) Calculated as Eq ( 17 )( 18 )( 19 ) – (mean: 
89) 

Battery minimum allowed state of charge (𝐶𝐶𝑆𝑆𝑆𝑆𝐼𝐼, %) 100 - 
Battery maximum allowed state of charge (𝐶𝐶𝑆𝑆𝑊𝑊𝐸𝐸, %) 20 - 

Commercial buildings used the same battery parameter definitions as above but the battery was 
sized to represent multiple batteries for larger buildings. One battery unit was assumed for every 
10,000 sq. ft. (or portion of). For example, a 5,000 sq. ft. commercial building would have one 
battery unit (similar to a residential building), a 16,000 sq. ft. building would have a battery twice 
the size, etc. 
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10.0 Electric Vehicle Charging Characteristics 
10.1 Availability and Usage Patterns 

This study assumes that EVs are only available for charging and discharging when plugged in at 
a residential building. Therefore, EVs are not assumed to charge at commercial buildings or 
charge and discharge at more than one location. Residential car driving schedules are gathered 
from the 2017 National Household Travel Survey. These schedules are assumed to represent 
residential EV behavior. Each schedule consists of the parameters defined in Table 45. 

Table 45. EV usage parameters. 
Plug-in time 𝑡𝑡𝑆𝑆𝐼𝐼 the latest time the EV arrives home 
Plug-out time 𝑡𝑡𝐹𝐹𝑢𝑢𝐼𝐼 the earliest time the EV leaves home 
Plug-in duration 𝑇𝑇𝐴𝐴 time elapsed between 𝑡𝑡𝑆𝑆𝐼𝐼 and 𝑡𝑡𝐹𝐹𝑢𝑢𝐼𝐼 
Miles traveled 𝑅𝑅 daily total miles driven 

Two histograms of 𝑡𝑡𝑆𝑆𝐼𝐼 (arriving home) and 𝑡𝑡𝐹𝐹𝑢𝑢𝐼𝐼 (leaving home) for residential EVs are shown in 
Figure 45. It can be observed that most EVs are available for charging and discharging between 
6 p.m. and 7 a.m. Similarly, histograms of plug-in duration and miles traveled daily are shown in 
Figure 46 and Figure 47. 

 
Figure 45. Histogram of arrival and departure hours of residential EVs from NHTS 2017 survey. 
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Figure 46. Histogram of EV availability duration for charging based on NHTS 2017 survey. 

 
Figure 47. Histogram of miles traveled daily by residential EVs based on NHTS 2017 survey. 

10.2 EV Device Model 

10.2.1 Physical Parameters 

The physical model of an EV can be sufficiently characterized using the parameters shown in 
Table 46. 
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Table 46. EV and charger performance parameters. 
Range (miles) 𝑓𝑓 maximum miles the EV can drive per one full charge 

cycle 
Mileage efficiency (miles/kWh) 𝐶𝐶 discharge rate while driving, given in miles/kWh. 
Charging rating (kW) 𝐸𝐸𝑆𝑆𝑊𝑊𝐸𝐸𝑆𝑆𝐼𝐼  maximum power a charger can transfer from grid to EV 
Discharging rating (kW) 𝐸𝐸𝑆𝑆𝑊𝑊𝐸𝐸𝐹𝐹𝑢𝑢𝐼𝐼  maximum power a charger can transfer from EV to grid 
Charging efficiency 𝜂𝜂𝑆𝑆𝐼𝐼 Conversion ratio of the energy addition in EV to the 

energy input from the grid in V1G mode 
Discharging efficiency 𝜂𝜂𝐹𝐹𝑢𝑢𝐼𝐼 Conversion ratio of energy transferred to the grid to the 

energy depletion in EV in V2G mode 

These physical parameters for various EV models are sourced from DOE's publicly available 
data (Gohlke and Zhou 2020) (www.fueleconomy.gov n.d.) and are tabulated in Table 47. 

Table 47. Sales data and physical parameters for commercially available EVs 2016-2019. 

EV Model 2016-2019 
Sales % 

Range 
(miles) 

Charger Rating 
(kW) 

Mileage Efficiency 
(miles/kWh) 

Tesla Model 3 44.11% 220 11.5 3.846 
Tesla Model S 14.52% 285 11.5 3.333 
Tesla Model X 12.92% 258 11.5 2.857 
Chevy Bolt 8.66% 238 3.3 3.571 
Nissan Leaf 7.79% 151 3.3 3.333 
BMW i3 3.70% 153 7.4 3.846 
VW e-Golf 2.04% 125 7.2 3.571 
Fiat 500E 1.48% 84 6.6 3.333 
Audi e-tron 0.80% 204 11 2.174 
Kia Soul EV 0.76% 111 6.6 3.226 
Ford Focus EV 0.49% 115 6.6 3.226 
Smart ED 0.46% 58 3.3 3.226 
Chevy Spark 0.46% 84 3.3 3.571 
Jaguar I-Pace 0.44% 234 7 2.273 
Honda Clarity BEV 0.42% 89 7.7 3.333 
Hyundai Kona Electric 0.26% 258 6.6 3.571 
Kia Niro EV 0.23% 239 7.4 3.333 
Mercedes B-Class (B250e) 0.23% 87 7 2.5 
Hyundai Ioniq EV 0.23% 124 7 4 
Mitsubishi I EV 0.01% 59 3.3 3.333 

Since a level 1 charger is too slow for the new EV models, we consider a level 2 charger for all 
EVs and their ratings are shown in Table 46. The ratings for charging (V1G) and discharging 
(V2G) is considered the same in this study. The 90% charger efficiency is considered for all EV 
models to account for losses. 

10.2.2 EV Fleet Population and Driving Schedule Mapping 

To create a diverse EV population, a model is picked from a random distribution based on 2019 
EV sales data probability, as shown in Table 46. Then we pick a random driving schedule from 
NHTS 2017 data (distribution shown in Figure 46) and associate it to the selected model. While 
picking a random driving pattern, it is ensured that: 

a) 𝑅𝑅 < 𝑓𝑓:: The daily miles traveled are not more than the range of the EV model. 
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b) 𝑇𝑇𝐴𝐴.𝐸𝐸𝑆𝑆𝑊𝑊𝐸𝐸
𝑆𝑆𝐼𝐼 < 𝐹𝐹

𝑆𝑆
: The plug-in duration is sufficient to charge the EV fully before it leaves 

home every day. 

10.2.3 Assumptions 

In this model, both the weekday and weekend schedules are weighted together to provide a 
combined dataset of driving patterns and EV availability rather than treating them separately. It 
is assumed that all residential EV owners have level 2 charging available as level 1 charging is 
too slow for new EV models with longer range. The EV charging facility is only assumed to be 
available at home, therefore work charging or highway charging is not considered. Further, 
based on the NHTS 2017 vehicle trips data, the charging duration is only considered between 
the latest home arrival time and the earliest home leaving time of a day. The EV is not 
considered available for charging outside this period. The BAU charging strategy starts charging 
to 100% with the maximum charger rating as soon as the EV arrives home. Similarly, the BAU 
boundary condition is that an EV must have 100% state of charge (SOC) every day before 
leaving home. 

10.2.4 Physical Equations and Constraints 

To model EV behavior we defined a set 𝑇𝑇 of all 24 hours and a set 𝑇𝑇𝐼𝐼𝐹𝐹𝑊𝑊𝐼𝐼𝐴𝐴 that contains all 
transactive hours, i.e., when the EV is parked at home and available for charging or discharging, 
excluding the boundary hours 𝑡𝑡𝑆𝑆𝐼𝐼 and 𝑡𝑡𝐹𝐹𝑢𝑢𝐼𝐼. 𝐸𝐸𝑆𝑆𝐼𝐼(𝑡𝑡) and 𝐸𝐸𝐹𝐹𝑢𝑢𝐼𝐼(𝑡𝑡) are the charging and discharging 
energy amount in kWh exchanged by the EV with the grid. During nontransactive hours, the 
energy exchanged between grid and EV is 0, that is 

𝐸𝐸𝑆𝑆𝐼𝐼(𝑡𝑡) = 𝐸𝐸𝐹𝐹𝑢𝑢𝐼𝐼(𝑡𝑡) = 0 ∀𝑡𝑡 ∈ 𝑇𝑇 − 𝑇𝑇𝑇𝑇𝐹𝐹𝑊𝑊𝐼𝐼𝐴𝐴. ( 20 ) 

During transactive hours, the energy exchange can range from zero and the maximum amount 
permissible by the charger rating 

0 ≤ 𝐸𝐸𝑆𝑆𝐼𝐼(𝑡𝑡) ≤ 𝐸𝐸𝑆𝑆𝑊𝑊𝐸𝐸𝑆𝑆𝐼𝐼  ∀𝑡𝑡 ∈ 𝑇𝑇𝐼𝐼𝐹𝐹𝑊𝑊𝐼𝐼𝐴𝐴 ( 21 ) 

0 ≤ 𝐸𝐸𝐹𝐹𝑢𝑢𝐼𝐼(𝑡𝑡) ≤ 𝐸𝐸𝑆𝑆𝑊𝑊𝐸𝐸𝐹𝐹𝑢𝑢𝐼𝐼  ∀𝑡𝑡 ∈ 𝑇𝑇𝐼𝐼𝐹𝐹𝑊𝑊𝐼𝐼𝐴𝐴. ( 22 ) 

Note that 𝐸𝐸𝐹𝐹𝑢𝑢𝐼𝐼 is nonzero only in the V2G case where the EV can discharge to provide energy 
to the grid. The BAU charging strategy considers only the V1G mode with constant charging 
rate (𝐸𝐸𝑆𝑆𝐼𝐼 = 𝐸𝐸𝑆𝑆𝑊𝑊𝐸𝐸𝑆𝑆𝐼𝐼 ) until the EV is fully charged. Note that the energy exchange recorded by the 
net meter is different from what the EV experiences since it also accounts for losses. Metered 
energy is 𝐸𝐸𝑆𝑆𝐼𝐼 ÷ 𝜂𝜂𝑆𝑆𝐼𝐼 and 𝐸𝐸𝐹𝐹𝑢𝑢𝐼𝐼 × 𝜂𝜂𝐹𝐹𝑢𝑢𝐼𝐼 in case of charging and discharging. 

The SOC at any time 𝑡𝑡 is denoted by 𝐶𝐶(𝑡𝑡) and is governed by different equation during different 
time periods as 

𝐶𝐶(𝑡𝑡) = 𝐶𝐶(𝑡𝑡 − 1) + �𝐸𝐸𝑆𝑆𝐼𝐼(𝑡𝑡) − 𝐸𝐸𝐹𝐹𝑢𝑢𝐼𝐼(𝑡𝑡)�  ∀𝑡𝑡 ∈ 𝑇𝑇𝐼𝐼𝐹𝐹𝑊𝑊𝐼𝐼𝐴𝐴 ( 23 ) 

𝐶𝐶(𝑡𝑡) = 𝐶𝐶(𝑡𝑡 − 1) −
𝑄𝑄𝑅𝑅
2

 ∀𝑡𝑡 ∈ {𝑡𝑡𝑤𝑤𝑡𝑡, 𝑡𝑡𝑓𝑓𝐶𝐶𝑡𝑡} 
( 24 ) 

𝐶𝐶(𝑡𝑡) = 𝐶𝐶(𝑡𝑡 − 1) ∀𝑡𝑡 ∈ 𝑇𝑇 − 𝑇𝑇𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑅𝑅 − {𝑡𝑡𝑤𝑤𝑡𝑡, 𝑡𝑡𝑓𝑓𝐶𝐶𝑡𝑡} ( 25 ) 



PNNL- 32170-2 

Electric Vehicle Charging Characteristics 83 
 

Equation ( 25 ) denotes the change in SOC during transactive hours when EV is exchanging 
energy with the grid. We assume the daily driving charge 𝑄𝑄𝑑𝑑 = 𝑅𝑅/𝐶𝐶 is drained equally at the 
departure and arrival hours as modeled in Equation ( 26 ). SOC remains unaffected for the rest 
of the hours as reflected in Equation ( 27 ). For the base case, the boundary condition of SOC is 
defined as the EV should be fully charged before it leaves home and can be written as: 

𝐶𝐶(𝑡𝑡 − 1) = 𝐶𝐶𝐶𝐶𝑓𝑓𝑚𝑚 ∀𝑡𝑡 ∈ {𝑡𝑡𝑓𝑓𝐶𝐶𝑡𝑡} ( 26 ) 

where 𝐶𝐶𝑆𝑆𝑊𝑊𝐸𝐸 is the maximum permissible stored charge in an EV. 

10.2.5 EV Charging Profiles 

Using the above modeling and dataset, 200 EVs were populated in different houses in GridLAB-
D. A resultant average BAU charging profile of all EVs is shown in Figure 48. It can be seen that 
the peak occurs in the evening when most EVs return home from work. 

 
Figure 48. A daily EV charging profile representing an average of a population of 200 residential 

EVs. 

A corresponding mean SOC profile is shown in Figure 49. It is worth noting that, on average, 
only a small portion of EV battery capacity is used during regular daily travel in the BAU case 
charging strategy. It suggests that the transactive bidding strategy can significantly enhance the 
EV utility particularly in V2G operation. Results of transactive control for EV V2G operation are 
provided in (Singhal et al. 2021). 
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Figure 49. An average SOC profile of a population of 200 residential EVs. 
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11.0 Conclusions 
The co-simulation model developed for the DSO+T study demonstrated the ability to model the 
entire electricity delivery system from bulk generation to individual end loads. Comparison to 
real-world performance demonstrated that the resulting models represent average load and 
price values and their daily and seasonal trends well. The large scale of the simulation, in terms 
of number of cases, full annual analysis, and large number of building and flexible asset models, 
combined with the fully integrated nature of the simulation challenged the robustness and 
computational efficiency of both the distribution and bulk system simulation tools. Debugging 
integration and performance issues within such a computationally heavy, integrated, and 
multidisciplinary environment is challenging and would benefit from improved diagnostic tools. 
Simulating the integrated market operation for the HR scenario was particularly challenging and 
we expect that modeling annual performance of more aggressive decarbonization scenarios (at 
relevant grid dynamics and market time scales) will be even more difficult. Despite these 
challenges, the study identified and implemented many robustness, computational efficiency, 
integration, and accuracy improvements through the course of executing the simulation. 

There are key three areas that warrant improvement. First, while the overall simulated load 
shapes captured aggregate daily and seasonal demand trends well, the daily change in load 
was consistently over predicted. Better capturing these daily changes in load is important to 
capture the absolute rate of change of system load and resulting ramping requirements on the 
providers of flexibility, whether they be the generation fleet or distributed assets. Efforts by the 
United States Department of Energy (DOE 2019) on updating and improving the understanding 
of commercial and residential building load profiles could aid in this. Better representations of 
industrial customers and their load profiles are also needed. 

Second, the wholesale market model captured overall price trends but did not capture price 
excursions. This results in a substantial underprediction in the average daily price range, likely 
resulting in conservative estimates of the wholesale energy market benefits of demand 
flexibility. A better understanding of the factors causing wholesale price volatility, and which (if 
any) can be captured in an improved market model, is important to better estimate the overall 
value of transactive energy approaches and to evaluate the performance of distributed assets 
coordinated using signals based on these wholesale market prices. Improved market price 
modeling will become more important as the continued deployment of renewables increases 
periods of negative prices, and more frequent extreme events result in prices hitting market 
caps. Achieving these improvements will likely require improved understanding of representing 
transmission constraints, generation fleet performance, and dispatch and curtailment strategies 
for renewable generation. 

Finally, this study includes flexible assets that currently have lower levels of deployment (such 
as EVs and batteries). As more data is collected on their real-world operation improvements in 
how they are modeled may be required. For example, a limitation of the current modeling 
platform requires that EVs only charge and discharge at a single location (in this study at a 
residence). If data suggests a substantial fraction of EVs charge in multiple locations (fully 
realizing the EV ability to move demand in space and time) updates to the modeling platform will 
be warranted. There are also many other end-use loads (e.g., appliances, commercial 
refrigeration, lighting, pumping and irrigation) that were not included in this study that offer 
flexibility potential. 
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