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Overview 
In this project we aimed to extend methods for protein function prediction to include structural 
prediction data, and benchmark methods against existing tools. We proposed to apply the 
method to large metagenome datasets, and develop approaches to examine activity-based 
protein profiling results for protein function-structure patterns. 
 
Nitrogen cycle protein families were previously identified and are used here to provide a proof-
of-principle for use of structure prediction in protein function classification. The protein families 
are depicted in Figure 1. 
 

 
Figure 1. Nitrogen Cycle Families 

 
Implementation 
To accomplish these aims we have implemented the following: 

1. We have applied secondary structure prediction and post-translational modification 
prediction algorithms to our existing nitrogen cycling gene family set. This set includes 
28 families and over 4300 protein sequences. 

2. We have benchmarked the performance of our Snekmer algorithm to develop 
classification models for all the protein families using native protein sequence 
(benchmarking against existing tools). 

3. We have applied the Snekmer pipeline to the secondary structure prediction results and 
to the post-translational modification prediction results. 

4. We have begun the process of installing the AlphaFold prediction software on PNNL 
computers. This will allow us to accurately predict 3-D structures of proteins from 
sequence and compare structural similarity with kmer-based sequence similarity for 
ability to discriminate between protein families. 
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5. We have assembled resources on translating protein tertiary structure to features for 
machine learning. Coupled with AlphaFold this will provide a generalizable approach to 
use of protein structure in function prediction from sequence. 

 
Results 
We first applied the Porter 4.0 secondary structure prediction program and the MuSite-DEEP 
post-translational modification prediction program to the nitrogen cycling family protein 
sequences. The MuSite-DEEP analysis is ongoing and is not discussed here.  
 
Secondary structure prediction results in two levels of predictions: a three state prediction (SS3) 
that designates each amino acid as part of an unstructured coil (C), helix (H), or sheet (S); and 
an eight state prediction (SS8) which expands on the SS3 to include 310 helix (G), alpha helix 
(H), π-helix (I), β-strand (E), bridge (B), turn (T), bend (S), and other unstructured coil (C). 
 
We treated each state as an individual character (i.e. no further encoding or grouping of states 
was performed) in our kmer approach. Snekmer, our pipeline for automatic generation of protein 
function models, was applied to the ‘native’ protein sequence, the SS3, and the SS8 predictions 
using a kmer size of 14. For each of the native, SS3, and SS8 “encodings” probability scores 
were calculated for each kmer in each family model. Models were then built using logistic 
regression and 10-fold cross-validation used to assess performance. Performance was 
assessed using the standard receiver-operator characteristic curve (ROC) area under the curve 
(AUC). AUCROC will be 1.0 for perfect classification (all positive examples and negative 
examples correctly classified) and 0.5 for random classification. 
 
Results from the models are shown in Table 1. Missing values indicate models for which the 
process failed. This failure is currently being debugged but we assume that the remainder of the 
model values are correct. 
 
Importantly, the overall average of the AUC values across all protein family models shows that 
the secondary structure predictions perform as well or better than the native protein sequence. 
For a number of protein families (e.g. NirK1, NirK2, NrfA) the native protein sequence models 
failed to classify the protein families above random chance, but the SS3 and SS8 models 
performed quite well. This demonstrates that, for this set of parameters at least, predicted 
secondary structure can provide valuable information in terms of protein function classification. 
 
Conclusions and Future Directions 
Though our approach produced very promising results we acknowledge a number of limitations 
of our current work. First, the nitrogen cycling families are heterogenous: some are very limited 
in their intra-family sequence diversity, which makes them much easier to predict. However, we 
also observe that some families are more diverse in sequence and more difficult to predict 
overall. We will also choose several difficult protein families to assess for future work, including 
our previously characterized ubiquitin ligase mimic family. A second, related issue, is that we 
know from other work that using different lengths of kmer can change the results. In the future 
we will further parameterize this approach to better understand the limitations of the models.  
We believe that the results presented here make a strong case for the importance of 
considering protein structure in protein function prediction, and plan to examine the utility of 
three-dimensional protein structure (predicted by AlphaFold or experimentally determined, as 
available) in protein function prediction for future work.



 

 
Table 1. Results of Protein Family Models Using Predicted Secondary Structure by 
Snekmer 

    ROC AUC 
Predicted Secondary 

Structure 

Family Number Sequence SS3 SS8 C H S 

AmoA 23 0.98 0.99 1.00 0.3 0.7 0.0 

NapB 306 0.96 1.00 1.00 0.7 0.2 0.0 
NapC-
NirT 111 1.00   0.95 0.4 0.6 0.0 

NapE 45 0.81 0.93 0.99 0.3 0.7 0.0 

NapF 117 0.84 0.43   0.6 0.3 0.1 

NapG 117 1.00 0.99 1.00 0.6 0.3 0.1 

NapH 143 0.99 1.00 1.00 0.4 0.6 0.0 

NarH 390 1.00   0.99 0.6 0.3 0.1 

NarJ 380 0.97 1.00 1.00 0.4 0.6 0.0 

NarK 268 1.00 0.72 1.00 0.2 0.8 0.0 
NasB-
NirB 650 1.00 0.41 0.91 0.5 0.3 0.2 

NifD 197 1.00 0.96 0.99 0.4 0.5 0.1 

NirC 280 1.00 1.00 1.00 0.2 0.7 0.0 

NirK1 49 0.50 1.00 1.00 0.6 0.1 0.3 

NirK2 52 0.49 1.00 1.00 0.5 0.2 0.3 

NirS 49 1.00 0.90 1.00 0.5 0.1 0.3 

NorB 134 0.74 0.99 1.00 0.6 0.1 0.3 

NosZI 91 1.00     0.5 0.1 0.4 

NosZII 71 1.00   0.99 0.5 0.1 0.4 

NrfA 55 0.50 1.00   0.4 0.5 0.0 

NrfB 44 0.99   1.00 0.6 0.4 0.0 

NrfC 39 1.00     0.6 0.3 0.2 

NrfE 13 1.00 1.00 1.00 0.3 0.6 0.1 

NrfF 46 0.99 0.98 1.00 0.3 0.7 0.0 

NrfH 101 0.94   1.00 0.5 0.5 0.0 
NtrB-
NasE 215 1.00     0.3 0.7 0.0 
NtrC-
NasD 324 1.00 1.00 0.98 0.4 0.4 0.2 

NxrA 13 1.00 0.96 1.00 0.6 0.3 0.1 

Average  0.917 0.912 0.991    
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