
Choose an item.

PNNL-32018

NWGraph: A Library of
Generic Graph
Algorithms and Data
Structures in C++20
September 2021

Andrew Lumsdaine
Jesun S Firoz
Joseph B Manzano Franco
Andres Marquez
Joshua D Suetterlein
Marcin J Zalewski
Xu Tony Liu

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibi l it y
for the accuracy, completeness, or usefulness of any information, apparat u s,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessar ily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical

Information,
P.O. Box 62, Oak Ridge, TN 37831-0062

www.osti.gov
ph: (865) 576-8401
fox: (865) 576-5728

email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)
 or (703) 605-6000
email: info@ntis.gov

Online ordering: http://www.ntis.gov

http://www.osti.gov/
mailto:info@ntis.gov
http://www.ntls.gov/

PNNL-32018

NWGraph: A Library of Generic Graph
Algorithms and Data Structures in C++20

September 2021

Andrew Lumsdaine
Jesun S Firoz
Joseph B Manzano Franco
Andres Marquez
Joshua D Suetterlein
Marcin J Zalewski
Xu Tony Liu

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

PNNL-32018

 1

 Introduction
Graphs are powerful mathematical tools for reasoning about the relationships between
given entities, focusing on the characteristics and structures of the relationships,
independent of what the entities and the relationships actually are. Consequently,
results from graph theory can be applied to any actual sets of data elements between
which relationships can be established. This kind of generality – genericity, if you will –
is a goal for software libraries as well as mathematical theories; we would like our
algorithms to compose with any kind of data structure whose use with the algorithm
makes sense. With the release of the celebrated Standard Template Library (Stepanov
and Lee 1995), generic programming emerged as a software-development sub-
discipline that focused on creating frameworks of reusable and composable libraries.

Fundamental to the philosophy of generic programming is that algorithms should be able to be
composed with arbitrary types, notably types that may have been developed completely
independently of the library. To achieve this goal, generic algorithms are specified and written in
terms of abstract properties of types; a generic algorithm can be composed with any type
meeting the properties that it depends on. Philosophically, generic programming goes hand-in-
glove with the abstraction process inherent in graph theory. Graphs are abstract models of
entities in relationship – a graph algorithm should be able to operate directly on the entities and
relationship in a programmer’s data.

Most graph libraries that one might find today are just that – libraries for graphs, for specific
library-defined data structures, requiring programmers to convert their data into a specific graph
datatype in order to use the library. To achieve the success of the STL, which supplanted the
myriad container and utility algorithm libraries that came before it, a generic graph library will
need the same level of composability. The Boost Graph Library (BGL) was an early attempt to
develop a generic library of graph algorithms and data structures (Siek, Lee, and Lumsdaine
2002). An entire paper could be written just on a retrospective evaluation of the BGL, but the
primary reason that we undertake here to present the development of yet another
comprehensive generic library for graphs is that, despite its aspirations for genericity, the BGL
did not quite escape being a library that was for graphs (and in particular, for BGL graphs),
rather than being a library for arbitrary types representing entities and relationships.

In this paper we present NWGraph, a generic library of algorithms for graph computation that
are independent of any particular data structure (in particular, independent of any particular
Graph data structure). Following current generic library practice, NWGraph algorithms are
organized around a minimal set of common requirements for their input types (these
requirements are formalized in the form of C++20 concepts).

NWGraph contains the following innovations:
• A concept taxonomy (using C++20 concepts) for specifying graph algorithm

requirements

• A graph is defined generically as a random access range of forward ranges

• A rich set of range adaptors

PNNL-32018

 2

• An efficient and fully parallelized (using C++ execution policies) implementation

• An API designed to fully support modern idiomatic C++

• Maximum compatibility with third-party data structures and algorithms

In the following sections we first provide some basic background and terminology we
will be using to discuss graph algorithms, as well as a bit more detail on generic
programming. Next, we analyze the domain of graph algorithms with respect to common
requirements and present the fundamental concepts in NWGraph. We then present an
overview of the primary components of NWGraph in addition to its concepts: Its
algorithms, containers, and adaptors. We present some examples of its use and
composability and include the results taken from abstraction penalty experiments.
Finally, we provide a high-level feature comparison of NWGraph with other extant graph
libraries and conclude with some observations based on our experiences in developing
NWGraph.

The complete source code and documentation for NWGraph are available on github at
⟨Redacted for double-blind review⟩.

PNNL-32018

 3

1.0 Generic Programming, Concepts, and Ranges
Generic programming is a software development paradigm inspired by the
organizational principles of mathematics. That is, a generic library comprises a
framework of algorithms in a problem domain, based on a systematic organization of
common type requirements for those algorithms. The type requirements themselves,
specified as concepts are part of the library as well, and provide the interface that
enables composition of library components with other, independently-developed,
components. The iterator concept taxonomy, for example, was the foundation upon
which the STL was organized (Stepanov and Lee 1995; Musser and Stepanov 1989).

Generic algorithms (that is, algorithms in a generic library) are designed so that the
requirements they impose on types are as minimal as possible without compromising efficiency,
thus enabling the widest scope of potential composition, and therefore, reuse. Generic
algorithms are derived from concrete ones, which are gradually made more generic by removing
(“lifting”) unnecessary requirements. This process continues until as long as instantiation of the
generic algorithm with concrete types remains as efficient as the equivalent concrete algorithm
would have been. Generic libraries do not tolerate abstraction penalty.

It cannot be emphasized enough that in a generic library, the requirements on algorithms lead to
the concepts, which in turn represent the interface to the library. The goal is to create an
efficient framework of highly-reusable algorithms that can be composed with arbitrary third-party
components – not to start with a data type intended to meet all needs (even in the guise of a
concept) and then define conforming algorithms. Again, the library algorithms are primary.

1.1 C++20 Concepts
Interfaces to generic algorithms are expressed in terms of the properties of the types,
instead of the types themselves. In this regard, concepts are the mechanism to define
such properties or constraints on types. Concepts, one of the most salient features of
C++20, define a family of allowable types for the generic components with valid
expressions and associated types. A concept definition in C++20 declares a set of
requirements on types. As long as these type requirements to an interface is met,
developers and users can leverage the concept, while keeping the implementation
details encapsulated. Imposing these requirements allows the compiler to type-check
during compilation time and improves error detection. In other words, concepts are an
extension of templates which help clarify which types can be used inside class and
function template arguments. When used correctly, they also promise to a user that any
type that meets these requirements can use the concept.

For example, the following square function requires that the Scalar type be an integer or a
floating point type (concept Number). Attempting to call the function with a type that does not
meet this concept requirement, such as a string, will yield a much more useful error message
than a similar call that attempts to search for a missing multiplication operator.
template <typename T>
concept Number = std::integral<T> || std::floating_point<T>;
template <Number Scalar>
Scalar square(Scalar s) {

PNNL-32018

 4

 return s*s;
}
square(5.2);
square("5.2"); // error: use of function 'Scalar square(Scalar)
//[with Scalar = const char*]' with unsatisfied constraints

Concepts also allows defining requirements on the interface and return types. For
example, to restrict the square function to only compute the square value of an input
greater than a certain number (comp), and for which the type T requires to define a
greater function, concepts BigNumber and isGreater can be defined as follows (to
replace the Number concept defined above).

template <typename T>
concept isGreater = requires (T t, T comp) {
 {t.greater(comp)} -> std::convertible_to<bool>;
};
template <typename T>
concept BigNumber = Number<T> && isGreater<T>;

Syntactically, here, the return type requirement is surrounded by braces ({}), followed by
an arrow (->) and the constraint on the return type.

1.2 C++20 Ranges
The new C++20 Ranges library ((Niebler, Carter, and Di Bella 2018)) adds support for
operating on ranges of elements. Simplistically ranges can be considered as an
abstraction to a collection of items that can be iterated over. Ranges consists of a pair
of begin and end iterators that are not required to be the same type. Ranges provide a
way to make STL algorithms composable and improve the readability and writability of
C++ code. An example of using ranges is:

std::vector<int> v { /* ... */ }

std::min_element(v.begin(), v.end()); // iterator interface
std::ranges::min_element(v); // ranges interface

Range adaptors, alternatively known as Views, can be considered as wrappers around
another range, without mutating or copying the original range.

Two range concepts are of particular interest. ranges::forward_range models iterating over a
collection from the beginning to the end multiple times.
ranges::random_access_range allows indexing into a collection with [] operator in constant
time.

PNNL-32018

 5

2.0 Graphs
In order to describe the NWGraph library and its abstractions and interfaces, it is useful
to examine in some more detail the particular problem domain of graphs and graph
algorithms. We begin first with some terminology and then walk through (briefly) the
abstraction process that we actually apply when thinking about problems in terms of
graphs.

2.1 Graph Terminology
Abstractly, we define a graph 𝐺𝐺 as comprising two finite sets, 𝐺𝐺 = {𝑉𝑉,𝐸𝐸}, where the set
𝑉𝑉 is a set of entities of interest (“vertices” or “nodes”) and 𝐸𝐸 is a set of pairs of entities
from 𝑉𝑉 (“edges” or “links”). Without loss of generality we label the entities in 𝑉𝑉 as 𝑣𝑣𝑖𝑖 so
that 𝑉𝑉 = {𝑣𝑣0, 𝑣𝑣1, … 𝑣𝑣𝑛𝑛−1}. The set of edges (also labeled) can be constructed using the
labeled entities from 𝑉𝑉 so that 𝐸𝐸 = {𝑒𝑒0, 𝑒𝑒1, … 𝑒𝑒𝑚𝑚−1}. The edges may be ordered pairs,
denoted as �𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗�, which have equality defined such that �𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗� = (𝑣𝑣𝑚𝑚 ,𝑣𝑣𝑛𝑛) ↔ 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑚𝑚 ∧
𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑛𝑛. Or, the edges may be unordered sets, denoted as {𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗} which have equality
defined as �𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗� = (𝑣𝑣𝑚𝑚 ,𝑣𝑣𝑛𝑛) ↔ �𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑚𝑚 ∧ 𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑛𝑛� ∨ �𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑛𝑛 ∧ 𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑚𝑚�. If a graph is
defined with ordered edges we say the graph is directed; if the graph is defined with
unordered edges say the graph is undirected.

2.2 Graph Models
Graphs are powerful abstractions because they allow us to reason about the
relationships between entities, irrespective of what the entities actually are. But, when
we use graph algorithms in practice, we are using them to model some specific
problem. Since one of the motivations behind NW Graph is to support graph computing
in the context of real programs, we briefly describe the first part of the abstraction
process when modeling with graphs.

[fig:graph-model-airports] Airport route table modeled as an undirected graph.

Fig. 1 shows a model of an airport route table as an undirected graph. We begin with a table of
airports and the distance in kilometers between pairs of them. We model this situation as a
graph by identifying graph nodes with airports and graph edges with pairs of cities that are given
as pairs in the distance table.

PNNL-32018

 6

[fig:graph-model-circuit] Electrical circuit modeled as a directed graph.

Fig. 2 shows a model of an electrical circuit as a directed graph. Two-terminal circuit elements
connect to each other at given nodes (also the terminology used in circuit modeling). We thus
model circuit connection points as graph nodes, and the connections between them as edges.
In the case of circuits, orientation of circuit elements matters and so we may choose (at least at
this stage of the modeling process) to use directed edges in the graph.

2.3 Representing Graphs
To define algorithms on graphs and to be able to reason about those algorithms, we
need to define some representations for graphs—one can’t really do very much with
abstract sets of vertices and edges. So first we need to define some terminology
regarding representations. Various characteristics of these representations are what we
use to express algorithms (still abstractly) but when those algorithms are implemented
as generic library functions, those characteristics will in turn become the basis for the
library’s concepts.

One of the fundamental operations in graph algorithms is traversal. That is, given a vertex 𝑢𝑢, we
would like to find the neighbors of 𝑢𝑢, i.e., all vertices 𝑣𝑣 such that the edge (𝑢𝑢, 𝑣𝑣) is in the graph.
Then, for each of those edges, we would like to find their neighbors, and so on. The
representation that we can define to make this efficient is an adjacency list.

There is an important transition in going from a graph (as a collection of vertex objects and pairs
of vertex objects) to an adjacency list. Implied in using an adjacency list for traversal is that we
would like to be able “find the neighbors” efficiently, i.e., in constant time, meaning we need to
be able to take a vertex and do a constant time lookup to get a container of the neighboring
vertices. Then, with what we get back as the neighbors, we also need to use to look up more
neighbors. In short, regardless of what we consider to be the vertices or edges in our graph 𝐺𝐺,
an adjacency list is something that stores indices which can be used to index into itself.
Consequently, we need for the adjacency list to be something that is indexable.

Given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), we can define an adjacency-list representation in the following way.
Assign to each element of 𝑉𝑉 a unique index from the range [0, |𝑉𝑉|) and denote the vertex
identified with index 𝑖𝑖 as 𝑉𝑉[𝑖𝑖]. We can now define a new graph with the same structure as 𝐺𝐺, but
in terms of the indices in [0, |𝑉𝑉|), rather than with the elements in 𝑉𝑉. Let the index graph of 𝐺𝐺 be
the graph 𝐺𝐺′ = (𝑉𝑉′,𝐸𝐸′), where 𝑉𝑉′ = [0, |𝑉𝑉|) and 𝐸𝐸′ consists of |𝐸𝐸| pairs of indices from 𝑉𝑉, such
that a pair (𝑖𝑖, 𝑗𝑗) is in E’ if and only if (𝑉𝑉[𝑖𝑖],𝑉𝑉[𝑗𝑗]) is in 𝐸𝐸. Which is all to say, the index graph of 𝐺𝐺 is
the graph we get by replacing all elements of 𝐺𝐺 with their corresponding indices. Figs. 3 and 4
show the progression from an index graph to an index adjacency list (compare also to Figs. 1
and 2).

PNNL-32018

 7

[fig:airport_index_to_adj] Index graph and associated index edge list and adjacency list
corresponding to the airport graph example. Also shown is the translation table from
vertex to index.

[fig:circuit_index_to_adj] Index graph and associated index edge list and adjacency list
corresponding to the circuit graph example. Also shown is the translation table from
vertex to index.

Of course, we don’t need an underlying graph to define what an index graph itself is. We can
say that a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is an index graph if its vertex set is a set of contiguous indices, i.e.,
with 𝑉𝑉 = [0, |𝑉𝑉|− 1). Since an index graph is just a graph, in cases where the context is clear,
we may refer to an index graph simply as a graph. We note that an adjacency list can only be
defined over an index graph.

Finally, we can make the following precise definition: An adjacency list of an index graph 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸) is an array 𝐴𝐴𝐴𝐴𝐴𝐴 of size |𝑉𝑉| (the array is indexed from 0 to |𝑉𝑉|− 1). Each entry 𝐴𝐴𝐴𝐴𝐴𝐴[𝑢𝑢] in the
array is a container of all the vertices 𝑣𝑣 for which (𝑢𝑢, 𝑣𝑣) is contained in 𝐸𝐸. This structure (an
adjacency list of an index graph, or an index adjacency list) is the fundamental structure used by
almost all graph algorithms. and show the index graph and the adjacency list representation of
our airport and circuit examples.

Remark (1): Although the standard term for this kind of abstraction is “adjacency list”, and
although it is often drawn pictorially with linked lists as elements, it is not necessary that this
abstraction be implemented as an actual linked list. What is important is that the items that are
stored (vertex indices) can be used to index into the adjacency list to obtain other lists of
neighbors.

Remark (2): The index adjacency list does not store edges per se and therefore the index
adjacency list is neither inherently directed nor undirected. That is, for a given vertex 𝑢𝑢, the
container 𝐴𝐴𝐴𝐴𝐴𝐴[𝑢𝑢] contains the vertex 𝑣𝑣 if the edge (𝑢𝑢, 𝑣𝑣) is contained in 𝐸𝐸. This means that for a
directed graph with edge (𝑢𝑢, 𝑣𝑣) in , 𝐸𝐸, 𝐴𝐴𝐴𝐴𝐴𝐴[𝑢𝑢] will contain 𝑣𝑣. For an undirected graph with edge
(𝑢𝑢, 𝑣𝑣) is contained in 𝐸𝐸, 𝐴𝐴𝐴𝐴𝐴𝐴[𝑢𝑢] will contain 𝑣𝑣 and 𝐴𝐴𝐴𝐴𝐴𝐴[𝑣𝑣] will contain 𝑢𝑢. Directedness of the

PNNL-32018

 8

original graph is thus made manifest in the values stored in the index adjacency list. But there is
nothing about the structure or semantic properties of the adjacency list itself that reflects the
directedness (or undirectedness) of the original graph.

PNNL-32018

 9

3.0 NWGraph: Core Library
3.1 Graphs as Ranges
Based on our observations of graphs and their representations, the foundational design
decision in NWGraph is that the abstract interface presented by graphs is that of a
range of ranges. The primary graph abstraction in the preceding discussion is an index
adjacency list, which has the fundamental property that it stores things that can be used
to index into itself. Accordingly, the index adjacency structure of a graph is modeled as
a random access range of forward ranges. As such, the outer range conforms to the
requirements of the random_access_range concept and the inner range conforms to
the requirements of the forward_range concept, including all valid expressions and
associated types (such as begin, end, etc.). The outer range is a range over the
vertices, and the inner ranges are ranges over each vertex’s neighbor edges. To access
a vertex or edge property, a unique key or id is assigned to each vertex and edge,
hereafter referred to as Vertex key and Edge key respectively. The outer range of a
graph is indexed with a vertex key. Indexing into the outer range with a vertex key 𝑢𝑢
returns an inner range, corresponding to the set of edges or vertices reachable from 𝑢𝑢,
i.e., it contains information about all (𝑢𝑢, 𝑣𝑣) in the edge set of the graph. The objects
stored by the inner range associated with 𝑢𝑢 can be accessed to obtain the source vertex
key 𝑢𝑢, the target vertex key 𝑣𝑣, and (optionally) an edge key corresponding to the edge
(𝑢𝑢,𝑣𝑣), or the properties associated with the edge (𝑢𝑢, 𝑣𝑣).

Note that ranges in this case are not particular types but rather the description of the properties
of types, i.e., a concept. Many concrete types can meet the conceptual requirements of a range
of ranges, e.g., a std::vector of std::vectors. But it is important to realize that the
requirements defined by concepts are on interfaces, types that are not containers of containers
can still meet the concept requirements of a range of ranges. That is, a random access range is
defined by the type of iterators it provides. In a range of ranges, those iterators would return a
range when dereferenced, but that range is again determined by the type of iterators it provides,
not by what type of storage it represents. These nested iterators can be realized with proxy
classes rather than with nested containers.

As a result of the ranges of ranges abstraction, NWGraph is able to decouple graph algorithms
from the underlying graph data structure implementations (such as tables, edge lists, adjacency
matrices, etc.). The following code assumes the inner range stores pairs of vertices,
corresponding to the edges leaving each vertex), and would iterate through all of the edges in
the graph:
template <typename GraphT>
void view_edges(GraphT& G) {
 for (auto&& inner_range : G) {
 for (auto&& [u,v] : inner_range) {
 // do something
}}}

Note that a graph composed of standard library containers, e.g.,
std:vector<std::forward_list<std::tuple<int, int>>> or
std:vector<std::vector<std::tuple<int, int>>> could be used in the example

PNNL-32018

 10

above. This is one of the most fundamental observations when considering graphs as
range of ranges and consolidates our subsequent discussion about graph concepts,
which essentially dictates that, as long as any container supplied to a graph algorithm is
conformant to a desired range (of ranges) concept, it can be treated as a graph to be
operated on.

3.2 Graph Concepts
Graph concepts are an essential tool in a composing third-party containers with
NWGraph (“bring your own graph”) because they specify an algorithm’s requirements
(no more, no less) of a custom user data-type. These are supported in NWGraph (as
range of ranges in idiomatic C++) with control point objects and type functions. This
allows third party containers to meet the concept requirements. Different graph
algorithms will have very different requirements on the underlying ranges. Some graphs
require modification via the adding or removal of vertices or edges. Many (but not all)
algorithm currently implemented in NWGraph require random access over the outer
range to have 𝑂𝑂(1) access to a vertex’s neighbor list. Such an algorithm would specify
this requirement in the following way.

template <random_access_range GraphT>
void graph_algorithm(GraphT& G) {
 // Can access G.begin()[0]
}

We summarize the important concepts in NWGraph in . The relationship between the
Graph concepts are depicted in .

Graph concept hierarchy in NWGraph.
[table:graph_concepts] Summary of graph concepts in NWGraph.

Concept Description
graph Specifies that a type is a graph, i.e., that it provides

vertex_id_type and the number of vertices can be
obtained in constant time

edge_list_graph Specifies that a graph is a forward range of edges
adjacency_graph Specifies that a graph is a random access range of

forward ranges

PNNL-32018

 11

Concept Description
key_adjacency_graph Specifies that a graph is a random access of pairs of

vertex ids and forward ranges
edge_enumerable_graph Specifies that the edge count of the graph can be

returned in constant time
degree_enumerable_graph Specifies that the degree of a vertex can be returned in

constant time

For example, in NWGraph, the graph concept is defined as follows:
template <typename G>
concept graph = std::semiregular<G> && requires(G g) {
 typename vertex_id_t<G>;
 { num_vertices(g) } -> std::convertible_to<size_t>;
};

concept graph requires that, for an algorithm to operate on a graph type 𝐺𝐺, two things
needs to be defined minimally: specialization of an associated type vertex_id_t in 𝐺𝐺
and a control point object num_vertices to obtain the total number of vertices in graph
𝑔𝑔.

One of the most important concepts in NWGraph, concept adjacency_graph, is defined as a
random access range of forward ranges as follows:
template <typename G>
using inner_range = std::ranges::range_value_t<G>;
template <typename G>
using inner_value = std::ranges::range_value_t<inner_range<G>>;
template <typename R>
concept vertex_list_c = std::ranges::forward_range<R> &&
 requires(std::ranges::range_value_t<R> e) {
 std::get<0>(e);
};
template <typename G>
concept adjacency_graph = graph<G>
 && std::ranges::random_access_range<G>
 && vertex_list_c<inner_range<G>>
 && requires(G g, inner_value<G> e, vertex_id_t<G> u) {
 { g[u] } -> std::same_as<inner_range<G>>;
 { std::get<0>(e) } -> std::convertible_to<vertex_id_t<G>>;
};

3.3 Graph Range Adaptors
A key feature of the new C++ Ranges is the notion of views, which allow for different
ways to view a range without changing the underlying data. Between a range and a
range view sits a range adaptor, which takes the original range and presents it to the
user as a view while hiding the underlying data manipulation details. We leverage range
adaptors to simplify graph algorithms in NWGraph, by providing reusable data access
patterns which eliminate the need for visitor objects.

PNNL-32018

 12

For example, consider a breadth-first search traversal (BFS). BFS is considered a core graph
algorithm kernel for performance benchmarking, but a standalone BFS traversal is rarely useful.
Typically an algorithm written on top of a BFS search is more interested in doing actual
computation (calculating distance from the source, finding parent list etc., for example) in the
order BFS visits edges and vertices. Users are less interested in maintaining internal data
structures such as queues and colormaps required to perform the traversal. An ideal abstraction
will make such implementation details oblivious to the user, and instead expose only the visited
edges and vertices. Range adapters are well-suited to this task, and can provide an algorithm
implementor with the desired view of a graph.
template <typename GraphT>
void bfs_traversal(GraphT& G) {
 bfs_range bfs(G);
 for (auto&& u : bfs) {
 // Visit vertex u
 }

 bfs_edge_range bfs_edge(G);
 for (auto&& [u,v] : bfs_edge) {
 // Visit edge u,v
 }
}

As views are concise and efficient ways of representing the same data in multiple ways,
graph algorithms can be considered as operating on a range of elements of a graph
with different requirements on how data is being viewed by the algorithm. Similar to C++
range views, we can model a common set of graph range adaptors or views that can be
utilized by many graph algorithms (). For example, based on the original graph, several
views of the graph can be constructed. These include: Edge range, Neighbor range,
Plain range, Random range and Back-edge range. Additionally, alternative view of the
graph may be warranted by an algorithm. For example, BFS and DFS traversal-based
algorithms consider vertices in certain order. These alternative views include: BFS edge
range, Filtered BFS range, DFS edge range, DAG range and Reverse Path. We
describe the graph range adaptors, their operation and applications in .

PNNL-32018

 13

Range adaptors in NWGraph.
Range adaptors.

Range adaptor Definition and Requirements
edge_range A range adaptor that provides access to the edges in a

graph.

• Input: Graph 𝑔𝑔.

• Return[in each iteration]: One edge (𝑢𝑢,𝑣𝑣) and any
associated edge property.

neighbor_range A range adaptor that provides access to the inner range
(neighborlist of a vertex) in a graph.

• Input: Graph 𝑔𝑔.

• Return[in each iteration]: A vertex key and its
neighborlist range.

plain_range A range adaptor that provides access to the outer range (list
of vertices) in a graph.

• Input: Graph g.

• Return[in each iteration]: A vertex key.

random_range A range adaptor for a random walk of the underlying graph.

• Input: Graph 𝑔𝑔, starting vertex, maximum number of
steps to be taken from the start, and a seed for
uniform distribution generator.

PNNL-32018

 14

Range adaptor Definition and Requirements
• Return[in each iteration]: A vertex key (next neighbor

to walk to).

bfs_edge_range A range adaptor that provides access to edges in BFS order.

• Input: Graph 𝑔𝑔, source vertex 𝑠𝑠.

• Return[in each iteration]: One Edge (𝑢𝑢, 𝑣𝑣) and any
associated property (𝑘𝑘) at a time in BFS order.

dfs_edge_range A range adaptor that provides access to edges in DFS order.

• Input: Graph 𝑔𝑔, source vertex 𝑠𝑠.

• Return[in each iteration]: One Edge (𝑢𝑢, 𝑣𝑣) and any
associated property (𝑘𝑘) at a time in DFS order.

filtered_bfs_range A range adaptor that provides access to filtered edges in
breadth-first order.

• Input: Graph 𝑔𝑔, source 𝑠𝑠, target 𝑡𝑡, a lambda function to
be used as a filter.

• Return[in each iteration]: One edge (𝑢𝑢,𝑣𝑣) and the
associated properties of the edge that satisfies the
criteria.

back_edge_range Given an edge (𝑢𝑢,𝑣𝑣) stores fast lookup to edge (𝑣𝑣,𝑢𝑢). If edge
(𝑣𝑣, 𝑢𝑢) does not exist, store it in a temporary data structure.

reverse_path A range adaptor that traverses a tree from sink to source.

• Input: A search tree, sink vertex and source vertex.

• Return[in each iteration]: Parent vertex key of the
current vertex in the tree.

dag_range Directed Acyclic Graph (DAG) range is an important range
adaptor that builds predecessor-successor relationships
among vertices in a graph based on a given criteria (for
example degree count, where max-degree vertices will be the
roots of the DAG), implicitly creating a DAG view from the
original graph. A DAG adaptor then traverses the graph,
dictated by the predecessor-successor relationship. In each
iteration, it returns an edge (𝑣𝑣, 𝑢𝑢) from the imposed DAG and
a flag (ready_to_process) to indicate if a successor (𝑢𝑢) is
ready to process (for example color a successor vertex only
when all the predecessor vertices have been assigned a
color).

PNNL-32018

 15

Range adaptor Definition and Requirements
• Input: Graph 𝑔𝑔, predecessor and successor list for all

vertices based on a criteria.

• Return[in each iteration]: One edge (𝑣𝑣,𝑢𝑢) from the
implicitly constructed DAG and whether the successor
in the edge (𝑢𝑢) is ready to be processed.

splittable_range A range adaptor that provides a subview of the outer range of
the graph.

• Input: Graph 𝑔𝑔, an optional cutoff bound.

• Return: a subview (a sub range) of 𝑔𝑔.

cyclic_range A range adaptor that partitions the outer range of the graph in
a cyclic manner based on the specified stride.

• Input: Graph 𝑔𝑔, a stride integer.

• Return[in each iteration]: A sub range of 𝑔𝑔.

PNNL-32018

 16

4.0 Algorithms and Data Structures
In this section, we discuss the algorithms implemented in NWGraph in and demonstrate
the applications of different NWGraph adapators to various well-known graph
algorithms (Cormen et al. 2009) in .

Algorithms in NWGraph.

Algorithm Definition
Breadth-first
search

Traverses a graph in breadth-fist search order from a given source.
Implementation includes: top-down, bottom-up and direction-
optimized (Beamer, Asanović, and Patterson 2012) algorithms.

Depth-first
search

Traverses a graph in depth-first search order from a given source.

Single-source
shortest paths

Finds the shortest distance paths from a given source to all other
vertices in a graph. 𝛥𝛥-stepping algorithm (Meyer and Sanders
2003) is implemented.

Connected
component

Finds connected components in a graph. Implementations include
Afforest (Sutton, Ben-Nun, and Barak 2018), Shiloach-Vishkin
(Shiloach and Vishkin 1980), BFS-based (J. Shun, Dhulipala, and
Blelloch 2014) and minimal label propagation (Orzan 2004; Yan et
al. 2014) algorithms.

Page rank Compute the importance of each vertex in a graph. Implements the
Gauss-Seidel algorithm (Arasu et al. 2002).

Triangle
counting

Counts the number of triangles in a graph. Implements algorithms
discussed in (Lumsdaine et al. 2020).

Betweenness
centrality

Measures how many times each vertex lies on the shortest paths to
other vertices. Brandes Algorithm (Brandes 2001) has been
implemented.

Maximum flow Given a source and a sink, find paths with available capacity and to
push flow through them until no more paths are available.
Implements Edmonds-Karp algorithm.

K-core Finds the subgraph induced by removing all vertices with
degreeless than k.

Jaccard
similarity

Computes the Jaccard similarity coefficient of each pair of vertices
in a graph.

Graph coloring Assign a color to each vertex in the graph so that no two
neighboring vertices have the same color. Implements Jones-
Plassmann algorithm (Jones and Plassmann 1993).

Maximal
independent set

Graph coloring with two colors.

PNNL-32018

 17

Application of Range adaptors in different algorithms.

Range adaptor Application to algorithm
edge_range K-core computation, triangle counting, Jaccard similarity,

finding connected components, page rank, sparse matrix-
vector multiplication (SpMv), graph coloring, DAG-based
Maximal Independent set.

neighbor_range Breadth-first search, triangle counting, finding connected
components, sparse matrix-vector multiplication (SpMv).

plain_range Finding connected components.
random_range Random walk.
bfs_edge_range Any algorithm that leverages Breadth-first search traversal

(for example, calculating the distance of vertices from the
source, finding the predecessor list of vertices in BFS order
etc.)

dfs_edge_range Similar to the BFS edge range except done in the Depth-first
search order.

filtered_bfs_range Maximum flow
back_edge_range Maximum flow
reverse_path To find the predecessor list on a traversed path, for example:

to compute allowed flow in maximum flow, Breadth-first
search.

dag_range Graph coloring, maximal independent set.
splittable_range To provide a subview of the graph, either to access a

subgraph, or to partition the graph among multiple threads.
cyclic_range To distribute the graph among multiple threads in a cyclic

manner to achieve load balancing for certain graph inputs.

4.1 Data Structures
While a key goal of the NWGraph library is generic graph algorithms that work with a
variety of user defined containers, it would be impossible to provide any proof of
concepts without our own graph types. Furthermore, some users of the library might not
have their own containers and would make use of a variety of built in container that
satisfy different concept requirements. Considering these, the following set of data
structures are available in NWGraph ().

Data structures in NWGraph.

Data Structure Description
struct_of_array struct of arrays (tuple of vectors)
array_of_struct Array of structs (vector of tuples)

PNNL-32018

 18

Data Structure Description
indexed_struct_of_array A indexed struct of array, where, with a vertex id, the

neighborlist of the vertex can be accessed. In other
words, the outer range can be indexed to retrieve the
inner range (neighborlist).

edge_list a vector of edges
vector_of_vector A vector of vectors, with each vector containing the

neighborlist.
vector_of_list A vector of lists, with each list containing the

neighborlist.
vector_of_forward_list A vector of forward_lists, with each forward list

containing the neighborlist.
adjacency This is an implementation of the Compressed Sparse

Row (CSR) data structure, where two arrays are
maintained (assuming contiguous vertex ids): one
contains the prefix sum of the number of neighbors,
and the second array maintains the list of neighbors
compactly.

array_of_list_of_struct An array of list of structs

PNNL-32018

 19

5.0 Extended Example
To illustrate the effectiveness of NWGraph’s "there is no graph" design philosophy, this
section walks through an example that ingests a database table and uses graph
algorithms for some basic knowledge discovery. The desired goal is to the find the
popularized Bacon number, which is the degree of separation of various Hollywood
actors from the actor Kevin Bacon. The starting point of this example is an Oracle web
crawl of Wikipedia which is then parsed by an open source script to create a Wikipedia
movie database, with several entries of the following form.

{
 "title": "Movie Title",
 "cast": "Actor1","Actor2",
 "directors": "Director",
 ...
 "year": year
}

This is not a graph; it is a relational database that we wish to query with graph
algorithms. After reading into a vector of json entries, we will populate an NWGraph
edge list with directed edges from movie titles to actors. We will also keep a map from
movie titles to movie ids, and from actor names to actor ids.

std::vector<json> jsons;
// Populate jsons vector

std::map<std::string, size_t> titles_map, names_map;
std::vector<std::string> titles, names;
nw::graph::edge_list<nw::graph::directed> edges;
for (auto& j: jsons) {
 auto title = j["title"]
 if (titles_map.find(title) == titles_map.end()) {
 // Add title to title map if it doesn't exist
 }
 // Movie has multiple cast members
 for (auto& k : j["cast"]) {
 auto name = delink(k);
 if (names_map.find(name) == names_map.end()) {
 // Add actor to actor map if it doesn't exist
 }
 // Add title->actor edge to edge list
 edges.push_back(titles_map[title], names_map[name]);
}}

It will be useful to have adjacency access to both the actors involved in a movie
𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] and the movies and actor is involved in 𝐴𝐴𝐴𝐴𝐴𝐴[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎], so we create adjacency
structures for both sets. Note that since these sets to not overlap, we really have a
bipartite graph.

PNNL-32018

 20

// Adj[movie], from title to actor
auto G = nw::graph::adjacency<0>(edges);
// Adj[actor], from actor to title
auto H = nw::graph::adjacency<1>(edges);

Two actors collaborate a movie if there is a length-two path between them in this
bipartite graph. To make this a direct relationship, we construct an edge list which
connects actors if this relationship exists. We will need adjacency lookup into this
collaboration graph, so we then compress it to the final costar adjacency structure.

nw::graph::edge_list<nw::graph::undirected, size_t> collaborations;
for (size_t actor = 0; actor < H.size(); ++actor) {//for each actor
 for (auto&& [movie] : H[actor]) {//for each movie of actor
 for (auto&& [another_actor] : G[movie]) {//for another_actor of movie
 if (actor != another_actor) {//exclude the actor self
 collaborations.push_back(actor, another_actor, movie);
}}}}
auto costar = nw::graph::adjacency<0, size_t>(collaborations);

Now we can perform a breadth first search from Kevin Bacon to find the Bacon number
of every actor. This makes use of the bfs_edge_range adaptor to provide a lightweight
view of the BFS traversal.

size_t bacon = names_map["Kevin Bacon"];
std::vector<size_t> bacon_number(costar.size());
std::vector<size_t> parents(costar.size());
std::vector<size_t> together_in(costar.size());
for (auto&& [u, v, k] :
 nw::graph::bfs_edge_range(costar, bacon)) {
 bacon_number[v] = bacon_number[u] + 1;
 parents[v] = u;
 together_in[v] = k;
}

After writing a path_to_bacon helper function to traverse the parent tree, we can query
the Bacon number of an actor to find their relationship to Kevin Bacon. For example, we
can check the Bacon numbers of the actors that have played Batman, and find that
none of them have a Bacon number greater than two.

path_to_bacon("Adam West");
path_to_bacon("Michael Keaton");
% path_to_bacon("Val Kilmer");
% path_to_bacon("George Clooney");
% path_to_bacon("Christian Bale");
% path_to_bacon("Ben Affleck");
% path_to_bacon("Robert Pattinson");

/* Output
Adam West has a Bacon number of 2
 Adam West with Frank Welker
 in {Aloha, Scooby-Doo!}

PNNL-32018

 21

 Frank Welker with Kevin Bacon
 in {Balto (film)}
Michael Keaton has a Bacon number of 1
 Michael Keaton with Kevin Bacon
 in {She's Having a Baby}
*/

PNNL-32018

 22

6.0 Evaluation
In this section, we discuss our experimental results. First we evaluate the abstraction
penalty for different ways of iterating over a graph as ranges of ranges. Next we
evaluate the abstraction penalty for representing a graph with different data structures.
Finally, we compare the performance of our NWGraph library with 3 other well-known
graph frameworks: GAP graph benchmark suite (Y. Zhang et al. 2018), Galois (Kulkarni
et al. 2007) graph library and GraphIt (Y. Zhang et al. 2018) domain-specific language
for graphs.

6.1 Experimental Setup
Abstraction penalty benchmarks were run on 2019 MacBook Pro with 2.4 GHz 8-Core
Intel® Core i9 processor with 64 GB DDR4 memory running at 2.6GHz. All performance
measurements were collected on Intel® Xeon® -based servers. Each server contains
two Intel® Xeon® Platinum 8153 processors, each with 16 physical cores (32 logical
cores) running at 2.0 GHz. Each processor has 22 MB L3 cache. The total system
memory of each server is 384 GB DDR4 running at 2.6 GHz.

6.2 Abstraction Penalty
While ranges and range based for loops are useful programming abstractions, it is
important to consider any performance abstraction penalties associated with their use.
We benchmark these penalties to ensure they will not significantly limit performance
compared to "raw for loop" implementation. For example let us consider the sparse
matrix-dense vector multiplication (SpMV) kernel used in page rank, which multiplies the
adjacency matrix representation of a graph by a dense vector 𝑥𝑥 and stores the result in
another vector 𝑦𝑦. Using a compressed sparse row (CSR) data structure to store the
adjacency matrix, a raw for loop implementation would access the indices and weights
of edges with pointers into the CSR data structure.

// Raw for loop SpMV
auto ptr = G.indices_.data();
auto idx = std::get<0>(G.to_be_indexed_).data();
auto dat = std::get<1>(G.to_be_indexed_).data();

for(vertex_id_t i = 0; i < N; ++i) {
 for(auto j = ptr[i]; j < ptr[i + 1]; ++j) {
 y[i] += x[idx[j]] * dat[j];
 }
}

However NWGraph does not assume this underlying CSR structure, and would prefer to
write these algorithms more generically with iterator based or range based for loops
shown below. Note that the previous raw loop implementation had access to information
that the SpMV kernel does not actually need, which is random access into a vertex’s
incidence list. The incidence list only needs to be traversed in some order to produce
the desired result.

PNNL-32018

 23

// Iterator based for loop SpMV
vertex_id_t k = 0;
for(auto i = G.begin(); i != G.end(); ++i) {
 for(auto j = (*i).begin(); j != (*i).end(); ++j) {
 y[k] += x[get<0>(*j)] * get<1>(*j);
 }
 ++k;
}
// Range based for loop SpMV
vertex_id_t k = 0;
for(auto&& i : G){
 for(auto&& [j, v] : i){
 y[k] += x[j] * v;
 }
 ++k;
}

Iterators can also be used to process the edges with std::for_each.

// STL for_each SpMV
std::for_each(G.begin(), G.end(), [&](auto&& e) {
 y[std::get<0>(e)] += x[std::get<1>(e)] * std::get<2>(e);
});

Finally, with one of our range adaptors, neighbor_range, we can easily access the
indices and the neighbors of it.

// Neighbor range based for loop (SpMV)
for (auto&& [i, neighbors] : neighbor_range(G)) {
 for (auto&& [j, v] : neighbors) {
 y[i] += x[j] * v;
 }
}

There are even more combinations of these traversals that are omitted for lack of space
(combinations of ranges and iterators, with and without compound initializers, auto vs
auto&& etc.)

PNNL-32018

 24

Different data access abstractions (iterators, ranges, std::for_each and
neighbor_range adaptor) with their abstraction penalties measured relative to a raw for
loop implementation. There is no significant performance penalty relative to the raw loop
implementation.

Measured abstraction penalty for the SpMV benchmark with graphs represented by
different containers using iterator based for loop. The execution time has been
normalized w.r.t to the execution time of SpMV with graphs represented as
struct_of_array (lower is better).

To experimentally evaluate the abstraction penalty, we consider SpMV with three graphs with
different underlying topologies from the SuiteSparse matrix collection: circuit5M, GAP-road, and
hugebubbles. These were chosen because they have similar numbers of edges (30M to 60M)
and the benchmarks run in comparable time. Timing results were averaged over 5 runs of each
benchmark. shows the results of the different data access abstractions relative to the raw loop
timing, for each benchmark. Bars significantly higher than the raw for loop bar would indicate a
significant performance penalty. None of the abstraction methods incurs a significant
performance penalty relative to the raw loop implementation.

PNNL-32018

 25

We also evaluated the abstraction penalty incurred for storing a graph in different containers. In
particular, we have selected struct_of_array, vector_of_vector, vector_of_list,
vector_of_forward_list containers. Note that, all these containers meet the requirement of
our graph concept. We consider SpMV benchmark implemented with iterator based for loop
with circuit5M, GAP-road, and hugebubbles datasets. shows the performance of SpMV with
different containers. The execution time is normalized relative to the execution time of SpMV
with struct_of_array container. As can be observed from , SpMV with struct_of_array
performs best, followed by vector_of_vector. struct_of_array representation is cache-
friendly and supports random access of the outer and inner range efficiently.

6.3 Performance
In this section, we evaluate and compare the performance of NWGraph with three well-
known graph frameworks: GAP, Galois and GraphIt. The evaluation is intended to
assess the performance of various parallel graph algorithms available in NWGraph in
the context of other HPC graph frameworks. This paper focuses on the interfaces and
design decisions around the range abstraction and concepts for graphs. Hence, we do
not discuss the parallelization aspects of the algorithms in details here. However,
overall, NWGraph leverages Intel’s Threading Building Block (TBB) (Intel (2020))
concurrent data structures for maintaining the internal states of different graph
algorithms. In addition, for workload distribution among the threads, NWGraph can
either use block range from TBB, our customized cyclic range adaptor, or C++
parallel execution policy (std::execution::par, std::execution::par_unseq)
whenever appropriate. All experiments are conducted on 32 physical cores (32
threads).

For our experiments, we chose five representative datasets according to the GAP benchmark
suite (Beamer, Asanović, and Patterson (2015)). These datasets () have diverse structural
properties and have been collected from various application domains. We select six different
graph algorithms (Betweenness Centrality, Breadth-first Search, Connected Components, Page
Rank, Single Source Shortest Path, and Triangle Counting) that are common across these
graph frameworks.

We report the performance of different graph frameworks in . We summarize our observations
as follows:

• With Web and kron datasets, which have skewed degree distribution, our triangle
counting (TC) and page rank algorithms in NWGraph outperform other frameworks.
Except for the road network input, for both of these graph problems, NWGraph performs
comparably with other inputs.

• NWGraph also runs faster with Web, Twitter and Kron datasets (power-law graphs) for
Betweenness centrality (BC) algorithms.

• NWGraph suffers performance with bounded graphs such as road network input for
SSSP.

• Overall, NWGraph performs better or comparable to other graph frameworks.

• For connected component (CC), all frameworks except GraphIt implement Afforest
algorithm. Hence GraphIt performs worse with all inputs for CC.

PNNL-32018

 26

Dataset for performance evaluation

Name Description

Vertices

(M)
Edges

(M)
Degree
Distribution References

Road USA road
network

23.9 57.7 bounded (“9th DIMACS
Implementation

Challenge - Shortest
Paths.” 2006)

Twitter Twitter
follower Links

61.6 1,468.4 power (Kwak et al. 2010)

Web Web Crawl of
.sk Domain

50.6 1,930.3 power (Boldi and Vigna 2004)

Kron Synthetic
Graph

134.2 2,111.6 power (Murphy et al. 2010)

Urand Uniform
Random
Graph

134.2 2,147.5 normal (Erdős and Rényi 1959)

[fig:bc_perf]

[fig:bfs_perf]

PNNL-32018

 27

[fig:cc_perf]

[fig:pr_perf]

[fig:sssp_perf]

PNNL-32018

 28

[fig:tc_perf]

PNNL-32018

 29

7.0 Related Graph Libraries and Toolkits
This section explores the landscape of related graph libraries and frameworks. Each of
the libraries or tools discussed in this section make different design tradeoffs regarding
usability, extensibility, and performance. Though few of the tools in this section (with the
exception of BGL) aimed to fill the role of an STL graph library, they all contribute to a
greater understanding of graph library design.

7.1 Generic C++ Graph Libraries
The Boost Graph Library (BGL) (Siek, Lee, and Lumsdaine 2002) and LEMON graph
library (Dezső, Jüttner, and Kovács 2011) both contributed to the development of
generic graph algorithms in C++. BGL proposed algorithm templates that could be used
on a variety of underlying graph types, e.g. vector of vectors, vector of lists, etc. Vertices
and edges were allowed to be arbitrary types accessed via property maps which could
be stored internally or externally to the graph. The default graph algorithms could be
customized using visitor objects, which allowed users to use existing data access
patterns to do additional work, for instance recording the timestamp a vertex is touched
in a BFS search. The LEMON graph library shared many of these features, and also
proposed the use of graph adaptors which would allow graph algorithms to run on
temporarily modified versions of a graph. For instance a subgraph adaptor would allow
an algorithm to operate on a graph with some vertices and edges temporarily filtered
out, with the original graph storage remaining intact, preventing expensive copies.
LEMON also introduced some simple graph concepts, which user defined graphs could
conform to, but which predated the official C++ Concepts. Both libraries advertise
algorithms that work with user defined graphs, so long as they conform to a certain
interface.

Some of these features had shortcomings which limited their use. The visitor objects are difficult
to use, both from a programming and algorithmic design perspective. Property maps are a
convenient programming abstraction, but can lead to performance issues. The type of LEMON’s
graph adaptors are different from the original graph type being adapted, and their use as graphs
is only supported in limited ways. As mentioned in the previous section, a major shortcoming of
these designs is the difficulty of using custom data structures. In order to adapt an existing user-
defined data structure, BGL requires overloading several global free functions required by the
BGL interface. These mostly include accessors, mutators, and iterators for edges and vertices.
An assumption is placed on the graph container type being adapted that it will have much of the
same behavior as the built in BGL container types. Furthermore both libraries lack newer
feature in C++ such as constexpr, variadic templates, automatic type deduction, execution
policies, etc.

7.2 Linear Algebra Based Graph Libraries
Many graph algorithms can be reformulated as a series of operations on sparse
matrices. Several researchers are working on set of sparse linear algebra kernels for
implementing graph algorithms, known as the GraphBLAS, inspired by the success of
the Basic Linear Algebra Subroutine (BLAS) kernels for dense matrix operations,. A C
reference implementation of GraphBLAS is available in the SuiteSparse software

PNNL-32018

 30

package, with accompanying graph implementations available in the LAGraph library
(Mattson et al. 2019). A C++ implementation known as the GraphBLAS Tempalte
Library (GBTL) (P. Zhang et al. 2016) is also under development.

The goal of GraphBLAS (Kepner et al. 2016) is to standardize the necessary sparse matrix
kernels for graph algorithms so that hardware and software library vendors can optimize
performance of these kernels for various architectures. With some upfront cost of translating a
graph algorithm to linear algebra, GraphBLAS promises scalability from a laptop to a compute
cluster. It is an open question whether or not all graph algorithms can be written using a linear
algebraic formulation. Furthermore, it is unclear if there are enough programmers trained to
write graph algorithms with sparse matrix operations to take advantage of these kernels.

7.3 NetworKit
Inspired by the NetworkX package (Hagberg, Schult, and Swart 2008) in Python for
network graph analytic, NetworKit aims to keep the user-friendly Python interface, while
improving performance with algorithms written in C++ (Staudt, Sazonovs, and
Meyerhenke 2016). NetworKit targets the network science domain, and provides
several centrality and clustering algorithms, along with several graph generators. The
cited design goals stress the composability of the existing algorithms within the larger
Python ecosystem, while not much is said about the extensibility of the underlying set of
algorithms.

7.4 HPC Graph Frameworks
There are several graph frameworks designed to maximize performance in distributed
memory or shared memory, such graph frameworks include Parallel Boost Graph
Library (PBGL) (Gregor and Lumsdaine 2005), Galois (Kulkarni et al. 2007),
Ligra (Julian Shun and Blelloch 2013), Giraph (Shaposhnik, Martella, and Logothetis
2015), Gunrock (Wang et al. 2016), GraphIt (Y. Zhang et al. 2020), etc. The
contributions of these frameworks are typically a computational model for parallel
processing of graphs, with less emphasis on the usability or extensibility of graph
algorithms or containers. A through evaluation of several well-known parallel graph
frameworks can be found in (Azad et al. 2020).

PNNL-32018

 31

8.0 Conclusion
In this paper we presented the design and rationale for a modern generic C++ library of
graph algorithms and data structures, NWGraph. Based on a careful analysis of the
graph problem domain, the fundamental interface abstraction underlying NWGraph is
that of a random access range of forward ranges. Intentionally minimal, this interface
admits composition with any types that meet its requirements. The library
implementation includes selected concreted containers and a rich selection of common
graph algorithms. Though the library is implemented with standard library components
using idiomatic C++, experimental results showed that the interfaces present no
abstraction penalty and that the NWGraph implementation has performance on par with
the highest performing state of the art. The NWGraph library is available as open source
on github. We intend to propose the design to the C++ standardization committee for
consideration as a standard C++ graph library.

PNNL-32018

 32

9.0 References
“9th DIMACS Implementation Challenge - Shortest Paths.” 2006.
http://www.dis.uniroma1.it/challenge9/.

Arasu, Arvind, Jasmine Novak, Andrew Tomkins, and John Tomlin. 2002. “PageRank
Computation and the Structure of the Web: Experiments and Algorithms.” In WWW,
107–17.

Azad, Ariful, Mohsen Mahmoudi Aznaveh, Scott Beamer, Mark Blanco, Jinhao Chen,
Luke D’Alessandro, Roshan Dathathri, et al. 2020. “Evaluation of Graph Analytics
Frameworks Using the GAP Benchmark Suite.” In 2020 IEEE International Symposium
on Workload Characterization (IISWC), 216–27. IEEE.

Beamer, Scott, Krste Asanović, and David Patterson. 2015. “The GAP Benchmark
Suite.” arXiv Preprint arXiv:1508.03919.

Beamer, Scott, Krste Asanović, and David A. Patterson. 2012. “Direction-Optimizing
Breadth-First Search.” Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC).

Boldi, Paolo, and Sebastiano Vigna. 2004. “The WebGraph Framework I: Compression
Techniques.” WWW, 595–601.

Brandes, Ulrik. 2001. “A Faster Algorithm for Betweenness Centrality.” The Journal of
Mathematical Sociology 25 (2): 163–77.
https://doi.org/10.1080/0022250X.2001.9990249.

Cormen, Thomas H, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.
Introduction to Algorithms. MIT press.

Dezső, Balázs, Alpár Jüttner, and Péter Kovács. 2011. “LEMON–an Open Source c++
Graph Template Library.” Electronic Notes in Theoretical Computer Science 264 (5):
23–45.

Erdős, Paul, and Alfréd Rényi. 1959. “On Random Graphs. I.” Publicationes
Mathematicae 6: 290–97.

Gregor, Douglas, and Andrew Lumsdaine. 2005. “Lifting Sequential Graph Algorithms
for Distributed-Memory Parallel Computation.” In Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 423–37. OOPSLA ’05. New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/1094811.1094844.

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart. 2008. “Exploring Network
Structure, Dynamics, and Function Using NetworkX.” In Proceedings of the 7th Python
in Science Conference, edited by Gaël Varoquaux, Travis Vaught, and Jarrod Millman,
11–15. Pasadena, CA USA.

https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1145/1094811.1094844

PNNL-32018

 33

Intel. 2020. “Intel Threading Building Blocks (TBB).” 2020. https://github.com/oneapi-
src/oneTBB.

Jones, Mark T, and Paul E Plassmann. 1993. “A Parallel Graph Coloring Heuristic.”
SIAM Journal on Scientific Computing 14 (3): 654–69.

Kepner, Jeremy, Peter Aaltonen, David Bader, Aydın Buluç, Franz Franchetti, John
Gilbert, Dylan Hutchison, et al. 2016. “Mathematical Foundations of the GraphBLAS.” In
HPEC. IEEE.

Kulkarni, Milind, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala,
and L. Paul Chew. 2007. “Optimistic Parallelism Requires Abstractions.” In PLDI, 211–
22. ACM. https://doi.org/10.1145/1250734.1250759.

Kwak, Haewoon, Changhyun Lee, Hosung Park, and Sue Moon. 2010. “What Is Twitter,
a Social Network or a News Media?” WWW.

Lumsdaine, Andrew, Luke Dalessandro, Kevin Deweese, Jesun Firoz, and Scott
McMillan. 2020. “Triangle Counting with Cyclic Distributions.” In 2020 IEEE High
Performance Extreme Computing Conference (HPEC), 1–8.
https://doi.org/10.1109/HPEC43674.2020.9286220.

Mattson, Tim, Timothy A. Davis, Manoj Kumar, Aydin Buluc, Scott McMillan, José
Moreira, and Carl Yang. 2019. “LAGraph: A Community Effort to Collect Graph
Algorithms Built on Top of the GraphBLAS.” In GrAPL at IPDPS, 276–84. IEEE.

Meyer, Ulrich, and Peter Sanders. 2003. “𝛥𝛥-Stepping: A Parallelizable Shortest Path
Algorithm.” Journal of Algorithms 49 (1): 114–52.
https://doi.org/https://doi.org/10.1016/S0196-6774(03)00076-2.

Murphy, Richard C., Kyle B. Wheeler, Brian W Barrett, and James A. Ang. 2010.
“Introducing the Graph 500.” In Cray User’s Group. CUG.

Musser, David R., and Alexander A. Stepanov. 1989. “Generic Programming.” In
International Symposium ISSAC 1988, edited by P Gianni, 38:13–25. Lecture Notes in
Computer Science. Springer-Verlag.

Niebler, Eric, Casey Carter, and Christopher Di Bella. 2018. “The One Ranges
Proposal.” Tech. rep. P0896r4. Nov. 2018. url: http://www. open-
std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4. pdf.

Orzan, S. M. 2004. “On Distributed Verification and Verified Distribution.” Ph.D. thesis,
VRIJE UNIVERSITEIT. http://dare.ubvu.vu.nl/handle/1871/10338.

Shaposhnik, Roman, Claudio Martella, and Dionysios Logothetis. 2015. Practical Graph
Analytics with Apache Giraph. 1st ed. edition. New York: Apress.

Shiloach, Yossi, and Uzi Vishkin. 1980. “An O(log n) Parallel Connectivity Algorithm.”
Computer Science Department, Technion.

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB
https://doi.org/10.1145/1250734.1250759
https://doi.org/10.1109/HPEC43674.2020.9286220
https://doi.org/10.1016/S0196-6774(03)00076-2
http://dare.ubvu.vu.nl/handle/1871/10338

PNNL-32018

 34

Shun, J., L. Dhulipala, and G. Blelloch. 2014. “A Simple and Practical Linear-Work
Parallel Algorithm for Connectivity.” In Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures, 143–53. SPAA ’14. New York, NY, USA:
ACM. https://doi.org/10.1145/2612669.2612692.

Shun, Julian, and Guy E. Blelloch. 2013. “Ligra: A Lightweight Graph Processing
Framework for Shared Memory.” In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 135–46. PPoPP ’13.
New York, NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/2442516.2442530.

Siek, Jeremy G., Lie-Quan Lee, and Andrew Lumsdaine. 2002. The Boost Graph
Library: User Guide and Reference Manual. Addison-Wesley.

Staudt, Christian L., Aleksejs Sazonovs, and Henning Meyerhenke. 2016. “NetworKit: A
Tool Suite for Large-Scale Complex Network Analysis.” Network Science 4 (4): 508–30.
https://doi.org/10.1017/nws.2016.20.

Stepanov, Alexander, and Meng Lee. 1995. “The Standard Template Library.” HPL-95-
11. HP Laboratories.

Sutton, Michael, Tal Ben-Nun, and Amnon Barak. 2018. “Optimizing Parallel Graph
Connectivity Computation via Subgraph Sampling.” In IPDPS, 12–21. IEEE.

Wang, Yangzihao, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John
D. Owens. 2016. “Gunrock: A High-Performance Graph Processing Library on the
GPU.” In PPoPP.

Yan, Da, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. 2014. “Pregel
Algorithms for Graph Connectivity Problems with Performance Guarantees.” Proc.
VLDB Endow. 7 (14): 1821–32. https://doi.org/10.14778/2733085.2733089.

Zhang, Peter, Marcin Zalewski, Andrew Lumsdaine, Samantha Misurda, and Scott
McMillan. 2016. “GBTL-CUDA: Graph Algorithms and Primitives for GPUs.” In GABB at
IPDPS, 912–20. IEEE.

Zhang, Yunming, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib Kamil,
Saman Amarasinghe, and Julian Shun. 2020. “Optimizing Ordered Graph Algorithms
with GraphIt.” In CGO, 158–70. ACM. https://doi.org/10.1145/3368826.3377909.

Zhang, Yunming, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and
Saman Amarasinghe. 2018. “GraphIt: A High-Performance Graph DSL.”
PACMPL/OOPSLA 2 (October): 121:1–30.

https://doi.org/10.1145/2612669.2612692
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.14778/2733085.2733089
https://doi.org/10.1145/3368826.3377909

PNNL-32018

Pacific Northwest
National Laboratory
902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354
1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

	1.0 Generic Programming, Concepts, and Ranges
	1.1 C++20 Concepts
	1.2 C++20 Ranges

	2.0 Graphs
	2.1 Graph Terminology
	2.2 Graph Models
	2.3 Representing Graphs

	3.0 NWGraph: Core Library
	3.1 Graphs as Ranges
	3.2 Graph Concepts
	3.3 Graph Range Adaptors

	4.0 Algorithms and Data Structures
	4.1 Data Structures

	5.0 Extended Example
	6.0 Evaluation
	6.1 Experimental Setup
	6.2 Abstraction Penalty
	6.3 Performance

	7.0 Related Graph Libraries and Toolkits
	7.1 Generic C++ Graph Libraries
	7.2 Linear Algebra Based Graph Libraries
	7.3 NetworKit
	7.4 HPC Graph Frameworks

	8.0 Conclusion
	9.0 References
	Standard Disclaimer no limitations (no adonis).pdf
	PACIFIC NORTHWEST NATIONAL LABORATORY
	email: reports@osti.gov

