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  Introduction 
Graphs are powerful mathematical tools for reasoning about the relationships between 
given entities, focusing on the characteristics and structures of the relationships, 
independent of what the entities and the relationships actually are. Consequently, 
results from graph theory can be applied to any actual sets of data elements between 
which relationships can be established. This kind of generality – genericity, if you will – 
is a goal for software libraries as well as mathematical theories; we would like our 
algorithms to compose with any kind of data structure whose use with the algorithm 
makes sense. With the release of the celebrated Standard Template Library (Stepanov 
and Lee 1995), generic programming emerged as a software-development sub-
discipline that focused on creating frameworks of reusable and composable libraries. 

Fundamental to the philosophy of generic programming is that algorithms should be able to be 
composed with arbitrary types, notably types that may have been developed completely 
independently of the library. To achieve this goal, generic algorithms are specified and written in 
terms of abstract properties of types; a generic algorithm can be composed with any type 
meeting the properties that it depends on. Philosophically, generic programming goes hand-in-
glove with the abstraction process inherent in graph theory. Graphs are abstract models of 
entities in relationship – a graph algorithm should be able to operate directly on the entities and 
relationship in a programmer’s data. 

Most graph libraries that one might find today are just that – libraries for graphs, for specific 
library-defined data structures, requiring programmers to convert their data into a specific graph 
datatype in order to use the library. To achieve the success of the STL, which supplanted the 
myriad container and utility algorithm libraries that came before it, a generic graph library will 
need the same level of composability. The Boost Graph Library (BGL) was an early attempt to 
develop a generic library of graph algorithms and data structures (Siek, Lee, and Lumsdaine 
2002). An entire paper could be written just on a retrospective evaluation of the BGL, but the 
primary reason that we undertake here to present the development of yet another 
comprehensive generic library for graphs is that, despite its aspirations for genericity, the BGL 
did not quite escape being a library that was for graphs (and in particular, for BGL graphs), 
rather than being a library for arbitrary types representing entities and relationships. 

In this paper we present NWGraph, a generic library of algorithms for graph computation that 
are independent of any particular data structure (in particular, independent of any particular 
Graph data structure). Following current generic library practice, NWGraph algorithms are 
organized around a minimal set of common requirements for their input types (these 
requirements are formalized in the form of C++20 concepts). 

NWGraph contains the following innovations: 
• A concept taxonomy (using C++20 concepts) for specifying graph algorithm 

requirements 

• A graph is defined generically as a random access range of forward ranges 

• A rich set of range adaptors 



PNNL-32018 

 2 
 

• An efficient and fully parallelized (using C++ execution policies) implementation 

• An API designed to fully support modern idiomatic C++ 

• Maximum compatibility with third-party data structures and algorithms 

In the following sections we first provide some basic background and terminology we 
will be using to discuss graph algorithms, as well as a bit more detail on generic 
programming. Next, we analyze the domain of graph algorithms with respect to common 
requirements and present the fundamental concepts in NWGraph. We then present an 
overview of the primary components of NWGraph in addition to its concepts: Its 
algorithms, containers, and adaptors. We present some examples of its use and 
composability and include the results taken from abstraction penalty experiments. 
Finally, we provide a high-level feature comparison of NWGraph with other extant graph 
libraries and conclude with some observations based on our experiences in developing 
NWGraph. 

The complete source code and documentation for NWGraph are available on github at 
⟨Redacted for double-blind review⟩. 
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1.0 Generic Programming, Concepts, and Ranges 
Generic programming is a software development paradigm inspired by the 
organizational principles of mathematics. That is, a generic library comprises a 
framework of algorithms in a problem domain, based on a systematic organization of 
common type requirements for those algorithms. The type requirements themselves, 
specified as concepts are part of the library as well, and provide the interface that 
enables composition of library components with other, independently-developed, 
components. The iterator concept taxonomy, for example, was the foundation upon 
which the STL was organized (Stepanov and Lee 1995; Musser and Stepanov 1989). 

Generic algorithms (that is, algorithms in a generic library) are designed so that the 
requirements they impose on types are as minimal as possible without compromising efficiency, 
thus enabling the widest scope of potential composition, and therefore, reuse. Generic 
algorithms are derived from concrete ones, which are gradually made more generic by removing 
(“lifting”) unnecessary requirements. This process continues until as long as instantiation of the 
generic algorithm with concrete types remains as efficient as the equivalent concrete algorithm 
would have been. Generic libraries do not tolerate abstraction penalty. 

It cannot be emphasized enough that in a generic library, the requirements on algorithms lead to 
the concepts, which in turn represent the interface to the library. The goal is to create an 
efficient framework of highly-reusable algorithms that can be composed with arbitrary third-party 
components – not to start with a data type intended to meet all needs (even in the guise of a 
concept) and then define conforming algorithms. Again, the library algorithms are primary. 

1.1 C++20 Concepts 
Interfaces to generic algorithms are expressed in terms of the properties of the types, 
instead of the types themselves. In this regard, concepts are the mechanism to define 
such properties or constraints on types. Concepts, one of the most salient features of 
C++20, define a family of allowable types for the generic components with valid 
expressions and associated types. A concept definition in C++20 declares a set of 
requirements on types. As long as these type requirements to an interface is met, 
developers and users can leverage the concept, while keeping the implementation 
details encapsulated. Imposing these requirements allows the compiler to type-check 
during compilation time and improves error detection. In other words, concepts are an 
extension of templates which help clarify which types can be used inside class and 
function template arguments. When used correctly, they also promise to a user that any 
type that meets these requirements can use the concept. 

For example, the following square function requires that the Scalar type be an integer or a 
floating point type (concept Number). Attempting to call the function with a type that does not 
meet this concept requirement, such as a string, will yield a much more useful error message 
than a similar call that attempts to search for a missing multiplication operator. 
template <typename T> 
concept Number = std::integral<T> || std::floating_point<T>; 
template <Number Scalar> 
Scalar square(Scalar s) { 
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  return s*s; 
} 
square(5.2);   
square("5.2"); // error: use of function 'Scalar square(Scalar)  
//[with Scalar = const char*]' with unsatisfied constraints 

Concepts also allows defining requirements on the interface and return types. For 
example, to restrict the square function to only compute the square value of an input 
greater than a certain number (comp), and for which the type T requires to define a 
greater function, concepts BigNumber and isGreater can be defined as follows (to 
replace the Number concept defined above). 

template <typename T> 
concept isGreater = requires (T t, T comp) { 
  {t.greater(comp)} -> std::convertible_to<bool>; 
}; 
template <typename T> 
concept BigNumber = Number<T> && isGreater<T>; 

Syntactically, here, the return type requirement is surrounded by braces ({}), followed by 
an arrow (->) and the constraint on the return type. 

1.2 C++20 Ranges 
The new C++20 Ranges library ((Niebler, Carter, and Di Bella 2018)) adds support for 
operating on ranges of elements. Simplistically ranges can be considered as an 
abstraction to a collection of items that can be iterated over. Ranges consists of a pair 
of begin and end iterators that are not required to be the same type. Ranges provide a 
way to make STL algorithms composable and improve the readability and writability of 
C++ code. An example of using ranges is: 

std::vector<int> v { /* ... */ } 
  
std::min_element(v.begin(), v.end());     // iterator interface 
std::ranges::min_element(v);              // ranges interface 

Range adaptors, alternatively known as Views, can be considered as wrappers around 
another range, without mutating or copying the original range. 

Two range concepts are of particular interest. ranges::forward_range models iterating over a 
collection from the beginning to the end multiple times. 
ranges::random_access_range allows indexing into a collection with [] operator in constant 
time. 
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2.0 Graphs 
In order to describe the NWGraph library and its abstractions and interfaces, it is useful 
to examine in some more detail the particular problem domain of graphs and graph 
algorithms. We begin first with some terminology and then walk through (briefly) the 
abstraction process that we actually apply when thinking about problems in terms of 
graphs. 

2.1 Graph Terminology 
Abstractly, we define a graph 𝐺𝐺 as comprising two finite sets, 𝐺𝐺 = {𝑉𝑉,𝐸𝐸}, where the set 
𝑉𝑉 is a set of entities of interest (“vertices” or “nodes”) and 𝐸𝐸 is a set of pairs of entities 
from 𝑉𝑉 (“edges” or “links”). Without loss of generality we label the entities in 𝑉𝑉 as 𝑣𝑣𝑖𝑖 so 
that 𝑉𝑉 = {𝑣𝑣0, 𝑣𝑣1, … 𝑣𝑣𝑛𝑛−1}. The set of edges (also labeled) can be constructed using the 
labeled entities from 𝑉𝑉 so that 𝐸𝐸 = {𝑒𝑒0, 𝑒𝑒1, … 𝑒𝑒𝑚𝑚−1}. The edges may be ordered pairs, 
denoted as �𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗�, which have equality defined such that �𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗� = (𝑣𝑣𝑚𝑚 ,𝑣𝑣𝑛𝑛) ↔ 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑚𝑚 ∧
𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑛𝑛. Or, the edges may be unordered sets, denoted as {𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗} which have equality 
defined as �𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗� = (𝑣𝑣𝑚𝑚 ,𝑣𝑣𝑛𝑛) ↔ �𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑚𝑚 ∧ 𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑛𝑛� ∨ �𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑛𝑛 ∧ 𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑚𝑚�. If a graph is 
defined with ordered edges we say the graph is directed; if the graph is defined with 
unordered edges say the graph is undirected. 

2.2 Graph Models 
Graphs are powerful abstractions because they allow us to reason about the 
relationships between entities, irrespective of what the entities actually are. But, when 
we use graph algorithms in practice, we are using them to model some specific 
problem. Since one of the motivations behind NW Graph is to support graph computing 
in the context of real programs, we briefly describe the first part of the abstraction 
process when modeling with graphs. 

 

[fig:graph-model-airports] Airport route table modeled as an undirected graph.  

Fig. 1 shows a model of an airport route table as an undirected graph. We begin with a table of 
airports and the distance in kilometers between pairs of them. We model this situation as a 
graph by identifying graph nodes with airports and graph edges with pairs of cities that are given 
as pairs in the distance table. 
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[fig:graph-model-circuit] Electrical circuit modeled as a directed graph.  

Fig. 2 shows a model of an electrical circuit as a directed graph. Two-terminal circuit elements 
connect to each other at given nodes (also the terminology used in circuit modeling). We thus 
model circuit connection points as graph nodes, and the connections between them as edges. 
In the case of circuits, orientation of circuit elements matters and so we may choose (at least at 
this stage of the modeling process) to use directed edges in the graph. 

2.3 Representing Graphs 
To define algorithms on graphs and to be able to reason about those algorithms, we 
need to define some representations for graphs—one can’t really do very much with 
abstract sets of vertices and edges. So first we need to define some terminology 
regarding representations. Various characteristics of these representations are what we 
use to express algorithms (still abstractly) but when those algorithms are implemented 
as generic library functions, those characteristics will in turn become the basis for the 
library’s concepts. 

One of the fundamental operations in graph algorithms is traversal. That is, given a vertex 𝑢𝑢, we 
would like to find the neighbors of 𝑢𝑢, i.e., all vertices 𝑣𝑣 such that the edge (𝑢𝑢, 𝑣𝑣) is in the graph. 
Then, for each of those edges, we would like to find their neighbors, and so on. The 
representation that we can define to make this efficient is an adjacency list. 

There is an important transition in going from a graph (as a collection of vertex objects and pairs 
of vertex objects) to an adjacency list. Implied in using an adjacency list for traversal is that we 
would like to be able “find the neighbors” efficiently, i.e., in constant time, meaning we need to 
be able to take a vertex and do a constant time lookup to get a container of the neighboring 
vertices. Then, with what we get back as the neighbors, we also need to use to look up more 
neighbors. In short, regardless of what we consider to be the vertices or edges in our graph 𝐺𝐺, 
an adjacency list is something that stores indices which can be used to index into itself. 
Consequently, we need for the adjacency list to be something that is indexable. 

Given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), we can define an adjacency-list representation in the following way. 
Assign to each element of 𝑉𝑉 a unique index from the range [0, |𝑉𝑉|) and denote the vertex 
identified with index 𝑖𝑖 as 𝑉𝑉[𝑖𝑖]. We can now define a new graph with the same structure as 𝐺𝐺, but 
in terms of the indices in [0, |𝑉𝑉|), rather than with the elements in 𝑉𝑉. Let the index graph of 𝐺𝐺 be 
the graph 𝐺𝐺′ = (𝑉𝑉′,𝐸𝐸′), where 𝑉𝑉′ = [0, |𝑉𝑉|) and 𝐸𝐸′ consists of |𝐸𝐸| pairs of indices from 𝑉𝑉, such 
that a pair (𝑖𝑖, 𝑗𝑗) is in E’ if and only if (𝑉𝑉[𝑖𝑖],𝑉𝑉[𝑗𝑗]) is in 𝐸𝐸. Which is all to say, the index graph of 𝐺𝐺 is 
the graph we get by replacing all elements of 𝐺𝐺 with their corresponding indices. Figs. 3 and 4 
show the progression from an index graph to an index adjacency list (compare also to Figs. 1 
and 2). 
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[fig:airport_index_to_adj] Index graph and associated index edge list and adjacency list 
corresponding to the airport graph example. Also shown is the translation table from 
vertex to index.  

 

[fig:circuit_index_to_adj] Index graph and associated index edge list and adjacency list 
corresponding to the circuit graph example. Also shown is the translation table from 
vertex to index. 

Of course, we don’t need an underlying graph to define what an index graph itself is. We can 
say that a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is an index graph if its vertex set is a set of contiguous indices, i.e., 
with 𝑉𝑉 = [0, |𝑉𝑉|− 1). Since an index graph is just a graph, in cases where the context is clear, 
we may refer to an index graph simply as a graph. We note that an adjacency list can only be 
defined over an index graph. 

Finally, we can make the following precise definition: An adjacency list of an index graph 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸) is an array 𝐴𝐴𝐴𝐴𝐴𝐴 of size |𝑉𝑉| (the array is indexed from 0 to |𝑉𝑉|− 1). Each entry 𝐴𝐴𝐴𝐴𝐴𝐴[𝑢𝑢] in the 
array is a container of all the vertices 𝑣𝑣 for which (𝑢𝑢, 𝑣𝑣) is contained in 𝐸𝐸. This structure (an 
adjacency list of an index graph, or an index adjacency list) is the fundamental structure used by 
almost all graph algorithms. and show the index graph and the adjacency list representation of 
our airport and circuit examples. 

Remark (1): Although the standard term for this kind of abstraction is “adjacency list”, and 
although it is often drawn pictorially with linked lists as elements, it is not necessary that this 
abstraction be implemented as an actual linked list. What is important is that the items that are 
stored (vertex indices) can be used to index into the adjacency list to obtain other lists of 
neighbors. 

Remark (2): The index adjacency list does not store edges per se and therefore the index 
adjacency list is neither inherently directed nor undirected. That is, for a given vertex 𝑢𝑢, the 
container 𝐴𝐴𝐴𝐴𝐴𝐴[𝑢𝑢] contains the vertex 𝑣𝑣 if the edge (𝑢𝑢, 𝑣𝑣) is contained in 𝐸𝐸. This means that for a 
directed graph with edge (𝑢𝑢, 𝑣𝑣) in , 𝐸𝐸, 𝐴𝐴𝐴𝐴𝐴𝐴[𝑢𝑢] will contain 𝑣𝑣. For an undirected graph with edge 
(𝑢𝑢, 𝑣𝑣) is contained in 𝐸𝐸, 𝐴𝐴𝐴𝐴𝐴𝐴[𝑢𝑢] will contain 𝑣𝑣 and 𝐴𝐴𝐴𝐴𝐴𝐴[𝑣𝑣] will contain 𝑢𝑢. Directedness of the 
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original graph is thus made manifest in the values stored in the index adjacency list. But there is 
nothing about the structure or semantic properties of the adjacency list itself that reflects the 
directedness (or undirectedness) of the original graph. 
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3.0 NWGraph: Core Library 
3.1 Graphs as Ranges 
Based on our observations of graphs and their representations, the foundational design 
decision in NWGraph is that the abstract interface presented by graphs is that of a 
range of ranges. The primary graph abstraction in the preceding discussion is an index 
adjacency list, which has the fundamental property that it stores things that can be used 
to index into itself. Accordingly, the index adjacency structure of a graph is modeled as 
a random access range of forward ranges. As such, the outer range conforms to the 
requirements of the random_access_range concept and the inner range conforms to 
the requirements of the forward_range concept, including all valid expressions and 
associated types (such as begin, end, etc.). The outer range is a range over the 
vertices, and the inner ranges are ranges over each vertex’s neighbor edges. To access 
a vertex or edge property, a unique key or id is assigned to each vertex and edge, 
hereafter referred to as Vertex key and Edge key respectively. The outer range of a 
graph is indexed with a vertex key. Indexing into the outer range with a vertex key 𝑢𝑢 
returns an inner range, corresponding to the set of edges or vertices reachable from 𝑢𝑢, 
i.e., it contains information about all (𝑢𝑢, 𝑣𝑣) in the edge set of the graph. The objects 
stored by the inner range associated with 𝑢𝑢 can be accessed to obtain the source vertex 
key 𝑢𝑢, the target vertex key 𝑣𝑣, and (optionally) an edge key corresponding to the edge 
(𝑢𝑢,𝑣𝑣), or the properties associated with the edge (𝑢𝑢, 𝑣𝑣). 

Note that ranges in this case are not particular types but rather the description of the properties 
of types, i.e., a concept. Many concrete types can meet the conceptual requirements of a range 
of ranges, e.g., a std::vector of std::vectors. But it is important to realize that the 
requirements defined by concepts are on interfaces, types that are not containers of containers 
can still meet the concept requirements of a range of ranges. That is, a random access range is 
defined by the type of iterators it provides. In a range of ranges, those iterators would return a 
range when dereferenced, but that range is again determined by the type of iterators it provides, 
not by what type of storage it represents. These nested iterators can be realized with proxy 
classes rather than with nested containers. 

As a result of the ranges of ranges abstraction, NWGraph is able to decouple graph algorithms 
from the underlying graph data structure implementations (such as tables, edge lists, adjacency 
matrices, etc.). The following code assumes the inner range stores pairs of vertices, 
corresponding to the edges leaving each vertex), and would iterate through all of the edges in 
the graph: 
template <typename GraphT> 
void view_edges(GraphT& G) { 
  for (auto&& inner_range : G) { 
    for (auto&& [u,v] : inner_range) { 
      // do something 
}}} 

Note that a graph composed of standard library containers, e.g., 
std:vector<std::forward_list<std::tuple<int, int>>> or 
std:vector<std::vector<std::tuple<int, int>>> could be used in the example 
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above. This is one of the most fundamental observations when considering graphs as 
range of ranges and consolidates our subsequent discussion about graph concepts, 
which essentially dictates that, as long as any container supplied to a graph algorithm is 
conformant to a desired range (of ranges) concept, it can be treated as a graph to be 
operated on. 

3.2 Graph Concepts 
Graph concepts are an essential tool in a composing third-party containers with 
NWGraph (“bring your own graph”) because they specify an algorithm’s requirements 
(no more, no less) of a custom user data-type. These are supported in NWGraph (as 
range of ranges in idiomatic C++) with control point objects and type functions. This 
allows third party containers to meet the concept requirements. Different graph 
algorithms will have very different requirements on the underlying ranges. Some graphs 
require modification via the adding or removal of vertices or edges. Many (but not all) 
algorithm currently implemented in NWGraph require random access over the outer 
range to have 𝑂𝑂(1) access to a vertex’s neighbor list. Such an algorithm would specify 
this requirement in the following way. 

template <random_access_range GraphT> 
void graph_algorithm(GraphT& G) { 
    // Can access G.begin()[0] 
} 

We summarize the important concepts in NWGraph in . The relationship between the 
Graph concepts are depicted in . 

 

Graph concept hierarchy in NWGraph. 
[table:graph_concepts] Summary of graph concepts in NWGraph. 

Concept Description 
graph Specifies that a type is a graph, i.e., that it provides 

vertex_id_type and the number of vertices can be 
obtained in constant time 

edge_list_graph Specifies that a graph is a forward range of edges 
adjacency_graph Specifies that a graph is a random access range of 

forward ranges 
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Concept Description 
key_adjacency_graph Specifies that a graph is a random access of pairs of 

vertex ids and forward ranges 
edge_enumerable_graph Specifies that the edge count of the graph can be 

returned in constant time 
degree_enumerable_graph Specifies that the degree of a vertex can be returned in 

constant time 

For example, in NWGraph, the graph concept is defined as follows: 
template <typename G> 
concept graph = std::semiregular<G>  && requires(G g) { 
  typename vertex_id_t<G>; 
  { num_vertices(g) } -> std::convertible_to<size_t>; 
}; 

concept graph requires that, for an algorithm to operate on a graph type 𝐺𝐺, two things 
needs to be defined minimally: specialization of an associated type vertex_id_t in 𝐺𝐺 
and a control point object num_vertices to obtain the total number of vertices in graph 
𝑔𝑔. 

One of the most important concepts in NWGraph, concept adjacency_graph, is defined as a 
random access range of forward ranges as follows: 
template <typename G> 
using inner_range = std::ranges::range_value_t<G>; 
template <typename G> 
using inner_value = std::ranges::range_value_t<inner_range<G>>; 
template <typename R> 
concept vertex_list_c = std::ranges::forward_range<R> && 
  requires(std::ranges::range_value_t<R> e) { 
  std::get<0>(e); 
}; 
template <typename G> 
concept adjacency_graph = graph<G>   
  && std::ranges::random_access_range<G>   
  && vertex_list_c<inner_range<G>>  
  && requires(G g, inner_value<G> e, vertex_id_t<G> u) { 
      { g[u] } -> std::same_as<inner_range<G>>; 
      { std::get<0>(e) } ->  std::convertible_to<vertex_id_t<G>>;   
}; 

3.3 Graph Range Adaptors 
A key feature of the new C++ Ranges is the notion of views, which allow for different 
ways to view a range without changing the underlying data. Between a range and a 
range view sits a range adaptor, which takes the original range and presents it to the 
user as a view while hiding the underlying data manipulation details. We leverage range 
adaptors to simplify graph algorithms in NWGraph, by providing reusable data access 
patterns which eliminate the need for visitor objects. 
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For example, consider a breadth-first search traversal (BFS). BFS is considered a core graph 
algorithm kernel for performance benchmarking, but a standalone BFS traversal is rarely useful. 
Typically an algorithm written on top of a BFS search is more interested in doing actual 
computation (calculating distance from the source, finding parent list etc., for example) in the 
order BFS visits edges and vertices. Users are less interested in maintaining internal data 
structures such as queues and colormaps required to perform the traversal. An ideal abstraction 
will make such implementation details oblivious to the user, and instead expose only the visited 
edges and vertices. Range adapters are well-suited to this task, and can provide an algorithm 
implementor with the desired view of a graph. 
template <typename GraphT> 
void bfs_traversal(GraphT& G) { 
  bfs_range bfs(G); 
  for (auto&& u : bfs) { 
    // Visit vertex u 
  } 
     
  bfs_edge_range bfs_edge(G); 
  for (auto&& [u,v] : bfs_edge) { 
    // Visit edge u,v 
  } 
} 

As views are concise and efficient ways of representing the same data in multiple ways, 
graph algorithms can be considered as operating on a range of elements of a graph 
with different requirements on how data is being viewed by the algorithm. Similar to C++ 
range views, we can model a common set of graph range adaptors or views that can be 
utilized by many graph algorithms (). For example, based on the original graph, several 
views of the graph can be constructed. These include: Edge range, Neighbor range, 
Plain range, Random range and Back-edge range. Additionally, alternative view of the 
graph may be warranted by an algorithm. For example, BFS and DFS traversal-based 
algorithms consider vertices in certain order. These alternative views include: BFS edge 
range, Filtered BFS range, DFS edge range, DAG range and Reverse Path. We 
describe the graph range adaptors, their operation and applications in . 
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Range adaptors in NWGraph. 
Range adaptors. 

Range adaptor Definition and Requirements 
edge_range A range adaptor that provides access to the edges in a 

graph. 

• Input: Graph 𝑔𝑔. 

• Return[in each iteration]: One edge (𝑢𝑢,𝑣𝑣) and any 
associated edge property. 

neighbor_range A range adaptor that provides access to the inner range 
(neighborlist of a vertex) in a graph. 

• Input: Graph 𝑔𝑔. 

• Return[in each iteration]: A vertex key and its 
neighborlist range. 

plain_range A range adaptor that provides access to the outer range (list 
of vertices) in a graph. 

• Input: Graph g. 

• Return[in each iteration]: A vertex key. 

random_range A range adaptor for a random walk of the underlying graph. 

• Input: Graph 𝑔𝑔, starting vertex, maximum number of 
steps to be taken from the start, and a seed for 
uniform distribution generator. 
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Range adaptor Definition and Requirements 
• Return[in each iteration]: A vertex key (next neighbor 

to walk to). 

bfs_edge_range A range adaptor that provides access to edges in BFS order. 

• Input: Graph 𝑔𝑔, source vertex 𝑠𝑠. 

• Return[in each iteration]: One Edge (𝑢𝑢, 𝑣𝑣) and any 
associated property (𝑘𝑘) at a time in BFS order. 

dfs_edge_range A range adaptor that provides access to edges in DFS order. 

• Input: Graph 𝑔𝑔, source vertex 𝑠𝑠. 

• Return[in each iteration]: One Edge (𝑢𝑢, 𝑣𝑣) and any 
associated property (𝑘𝑘) at a time in DFS order. 

filtered_bfs_range A range adaptor that provides access to filtered edges in 
breadth-first order. 

• Input: Graph 𝑔𝑔, source 𝑠𝑠, target 𝑡𝑡, a lambda function to 
be used as a filter. 

• Return[in each iteration]: One edge (𝑢𝑢,𝑣𝑣) and the 
associated properties of the edge that satisfies the 
criteria. 

back_edge_range Given an edge (𝑢𝑢,𝑣𝑣) stores fast lookup to edge (𝑣𝑣,𝑢𝑢). If edge 
(𝑣𝑣, 𝑢𝑢) does not exist, store it in a temporary data structure. 

reverse_path A range adaptor that traverses a tree from sink to source. 

• Input: A search tree, sink vertex and source vertex. 

• Return[in each iteration]: Parent vertex key of the 
current vertex in the tree. 

dag_range Directed Acyclic Graph (DAG) range is an important range 
adaptor that builds predecessor-successor relationships 
among vertices in a graph based on a given criteria (for 
example degree count, where max-degree vertices will be the 
roots of the DAG), implicitly creating a DAG view from the 
original graph. A DAG adaptor then traverses the graph, 
dictated by the predecessor-successor relationship. In each 
iteration, it returns an edge (𝑣𝑣, 𝑢𝑢) from the imposed DAG and 
a flag (ready_to_process) to indicate if a successor (𝑢𝑢) is 
ready to process (for example color a successor vertex only 
when all the predecessor vertices have been assigned a 
color). 
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Range adaptor Definition and Requirements 
• Input: Graph 𝑔𝑔, predecessor and successor list for all 

vertices based on a criteria. 

• Return[in each iteration]: One edge (𝑣𝑣,𝑢𝑢) from the 
implicitly constructed DAG and whether the successor 
in the edge (𝑢𝑢) is ready to be processed. 

splittable_range A range adaptor that provides a subview of the outer range of 
the graph. 

• Input: Graph 𝑔𝑔, an optional cutoff bound. 

• Return: a subview (a sub range) of 𝑔𝑔. 

cyclic_range A range adaptor that partitions the outer range of the graph in 
a cyclic manner based on the specified stride. 

• Input: Graph 𝑔𝑔, a stride integer. 

• Return[in each iteration]: A sub range of 𝑔𝑔. 
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4.0 Algorithms and Data Structures 
In this section, we discuss the algorithms implemented in NWGraph in and demonstrate 
the applications of different NWGraph adapators to various well-known graph 
algorithms (Cormen et al. 2009) in . 

Algorithms in NWGraph. 

Algorithm Definition 
Breadth-first 
search 

Traverses a graph in breadth-fist search order from a given source. 
Implementation includes: top-down, bottom-up and direction-
optimized (Beamer, Asanović, and Patterson 2012) algorithms. 

Depth-first 
search 

Traverses a graph in depth-first search order from a given source. 

Single-source 
shortest paths 

Finds the shortest distance paths from a given source to all other 
vertices in a graph. 𝛥𝛥-stepping algorithm (Meyer and Sanders 
2003) is implemented. 

Connected 
component 

Finds connected components in a graph. Implementations include 
Afforest (Sutton, Ben-Nun, and Barak 2018), Shiloach-Vishkin 
(Shiloach and Vishkin 1980), BFS-based (J. Shun, Dhulipala, and 
Blelloch 2014) and minimal label propagation (Orzan 2004; Yan et 
al. 2014) algorithms. 

Page rank Compute the importance of each vertex in a graph. Implements the 
Gauss-Seidel algorithm (Arasu et al. 2002). 

Triangle 
counting 

Counts the number of triangles in a graph. Implements algorithms 
discussed in  (Lumsdaine et al. 2020). 

Betweenness 
centrality 

Measures how many times each vertex lies on the shortest paths to 
other vertices. Brandes Algorithm (Brandes 2001) has been 
implemented. 

Maximum flow Given a source and a sink, find paths with available capacity and to 
push flow through them until no more paths are available. 
Implements Edmonds-Karp algorithm. 

K-core Finds the subgraph induced by removing all vertices with 
degreeless than k. 

Jaccard 
similarity 

Computes the Jaccard similarity coefficient of each pair of vertices 
in a graph. 

Graph coloring Assign a color to each vertex in the graph so that no two 
neighboring vertices have the same color. Implements Jones-
Plassmann algorithm (Jones and Plassmann 1993). 

Maximal 
independent set 

Graph coloring with two colors. 
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Application of Range adaptors in different algorithms. 

Range adaptor Application to algorithm 
edge_range K-core computation, triangle counting, Jaccard similarity, 

finding connected components, page rank, sparse matrix-
vector multiplication (SpMv), graph coloring, DAG-based 
Maximal Independent set. 

neighbor_range Breadth-first search, triangle counting, finding connected 
components, sparse matrix-vector multiplication (SpMv). 

plain_range Finding connected components. 
random_range Random walk. 
bfs_edge_range Any algorithm that leverages Breadth-first search traversal 

(for example, calculating the distance of vertices from the 
source, finding the predecessor list of vertices in BFS order 
etc.) 

dfs_edge_range Similar to the BFS edge range except done in the Depth-first 
search order. 

filtered_bfs_range Maximum flow 
back_edge_range Maximum flow 
reverse_path To find the predecessor list on a traversed path, for example: 

to compute allowed flow in maximum flow, Breadth-first 
search. 

dag_range Graph coloring, maximal independent set. 
splittable_range To provide a subview of the graph, either to access a 

subgraph, or to partition the graph among multiple threads. 
cyclic_range To distribute the graph among multiple threads in a cyclic 

manner to achieve load balancing for certain graph inputs. 

4.1 Data Structures 
While a key goal of the NWGraph library is generic graph algorithms that work with a 
variety of user defined containers, it would be impossible to provide any proof of 
concepts without our own graph types. Furthermore, some users of the library might not 
have their own containers and would make use of a variety of built in container that 
satisfy different concept requirements. Considering these, the following set of data 
structures are available in NWGraph (). 

Data structures in NWGraph. 

Data Structure Description 
struct_of_array struct of arrays (tuple of vectors) 
array_of_struct Array of structs (vector of tuples) 
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Data Structure Description 
indexed_struct_of_array A indexed struct of array, where, with a vertex id, the 

neighborlist of the vertex can be accessed. In other 
words, the outer range can be indexed to retrieve the 
inner range (neighborlist). 

edge_list a vector of edges 
vector_of_vector A vector of vectors, with each vector containing the 

neighborlist. 
vector_of_list A vector of lists, with each list containing the 

neighborlist. 
vector_of_forward_list A vector of forward_lists, with each forward list 

containing the neighborlist. 
adjacency This is an implementation of the Compressed Sparse 

Row (CSR) data structure, where two arrays are 
maintained (assuming contiguous vertex ids): one 
contains the prefix sum of the number of neighbors, 
and the second array maintains the list of neighbors 
compactly. 

array_of_list_of_struct An array of list of structs 
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5.0 Extended Example 
To illustrate the effectiveness of NWGraph’s "there is no graph" design philosophy, this 
section walks through an example that ingests a database table and uses graph 
algorithms for some basic knowledge discovery. The desired goal is to the find the 
popularized Bacon number, which is the degree of separation of various Hollywood 
actors from the actor Kevin Bacon. The starting point of this example is an Oracle web 
crawl of Wikipedia which is then parsed by an open source script to create a Wikipedia 
movie database, with several entries of the following form. 

{ 
  "title": "Movie Title", 
  "cast": "Actor1","Actor2", 
  "directors": "Director", 
  ... 
  "year": year 
} 

This is not a graph; it is a relational database that we wish to query with graph 
algorithms. After reading into a vector of json entries, we will populate an NWGraph 
edge list with directed edges from movie titles to actors. We will also keep a map from 
movie titles to movie ids, and from actor names to actor ids. 

std::vector<json> jsons; 
// Populate jsons vector 
 
std::map<std::string, size_t> titles_map, names_map; 
std::vector<std::string>      titles, names; 
nw::graph::edge_list<nw::graph::directed> edges; 
for (auto& j: jsons) { 
  auto title = j["title"] 
  if (titles_map.find(title) == titles_map.end()) { 
    // Add title to title map if it doesn't exist 
  } 
  // Movie has multiple cast members 
  for (auto& k : j["cast"]) { 
    auto name = delink(k); 
    if (names_map.find(name) == names_map.end()) { 
      // Add actor to actor map if it doesn't exist 
    } 
    // Add title->actor edge to edge list 
    edges.push_back(titles_map[title], names_map[name]); 
}} 

It will be useful to have adjacency access to both the actors involved in a movie 
𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] and the movies and actor is involved in 𝐴𝐴𝐴𝐴𝐴𝐴[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎], so we create adjacency 
structures for both sets. Note that since these sets to not overlap, we really have a 
bipartite graph. 
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// Adj[movie], from title to actor 
auto G = nw::graph::adjacency<0>(edges); 
// Adj[actor], from actor to title 
auto H = nw::graph::adjacency<1>(edges); 

Two actors collaborate a movie if there is a length-two path between them in this 
bipartite graph. To make this a direct relationship, we construct an edge list which 
connects actors if this relationship exists. We will need adjacency lookup into this 
collaboration graph, so we then compress it to the final costar adjacency structure. 

nw::graph::edge_list<nw::graph::undirected, size_t> collaborations; 
for (size_t actor = 0; actor < H.size(); ++actor) {//for each actor 
  for (auto&& [movie] : H[actor]) {//for each movie of actor 
    for (auto&& [another_actor] : G[movie]) {//for another_actor of movie 
      if (actor != another_actor) {//exclude the actor self 
        collaborations.push_back(actor, another_actor, movie); 
}}}} 
auto costar = nw::graph::adjacency<0, size_t>(collaborations); 

Now we can perform a breadth first search from Kevin Bacon to find the Bacon number 
of every actor. This makes use of the bfs_edge_range adaptor to provide a lightweight 
view of the BFS traversal. 

size_t bacon = names_map["Kevin Bacon"]; 
std::vector<size_t> bacon_number(costar.size()); 
std::vector<size_t> parents(costar.size()); 
std::vector<size_t> together_in(costar.size()); 
for (auto&& [u, v, k] :  
  nw::graph::bfs_edge_range(costar, bacon)) { 
  bacon_number[v] = bacon_number[u] + 1; 
  parents[v]      = u; 
  together_in[v]  = k; 
} 

After writing a path_to_bacon helper function to traverse the parent tree, we can query 
the Bacon number of an actor to find their relationship to Kevin Bacon. For example, we 
can check the Bacon numbers of the actors that have played Batman, and find that 
none of them have a Bacon number greater than two. 

path_to_bacon("Adam West"); 
path_to_bacon("Michael Keaton"); 
% path_to_bacon("Val Kilmer"); 
% path_to_bacon("George Clooney"); 
% path_to_bacon("Christian Bale"); 
% path_to_bacon("Ben Affleck"); 
% path_to_bacon("Robert Pattinson"); 
 
/* Output 
Adam West has a Bacon number of 2 
  Adam West with Frank Welker 
  in {Aloha, Scooby-Doo!} 
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  Frank Welker with Kevin Bacon 
  in {Balto (film)} 
Michael Keaton has a Bacon number of 1 
  Michael Keaton with Kevin Bacon 
  in {She's Having a Baby} 
*/ 
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6.0 Evaluation 
In this section, we discuss our experimental results. First we evaluate the abstraction 
penalty for different ways of iterating over a graph as ranges of ranges. Next we 
evaluate the abstraction penalty for representing a graph with different data structures. 
Finally, we compare the performance of our NWGraph library with 3 other well-known 
graph frameworks: GAP graph benchmark suite (Y. Zhang et al. 2018), Galois (Kulkarni 
et al. 2007) graph library and GraphIt  (Y. Zhang et al. 2018) domain-specific language 
for graphs. 

6.1 Experimental Setup 
Abstraction penalty benchmarks were run on 2019 MacBook Pro with 2.4 GHz 8-Core 
Intel® Core i9 processor with 64 GB DDR4 memory running at 2.6GHz. All performance 
measurements were collected on Intel® Xeon® -based servers. Each server contains 
two Intel® Xeon® Platinum 8153 processors, each with 16 physical cores (32 logical 
cores) running at 2.0 GHz. Each processor has 22 MB L3 cache. The total system 
memory of each server is 384 GB DDR4 running at 2.6 GHz. 

6.2 Abstraction Penalty 
While ranges and range based for loops are useful programming abstractions, it is 
important to consider any performance abstraction penalties associated with their use. 
We benchmark these penalties to ensure they will not significantly limit performance 
compared to "raw for loop" implementation. For example let us consider the sparse 
matrix-dense vector multiplication (SpMV) kernel used in page rank, which multiplies the 
adjacency matrix representation of a graph by a dense vector 𝑥𝑥 and stores the result in 
another vector 𝑦𝑦. Using a compressed sparse row (CSR) data structure to store the 
adjacency matrix, a raw for loop implementation would access the indices and weights 
of edges with pointers into the CSR data structure. 

// Raw for loop SpMV 
auto ptr = G.indices_.data(); 
auto idx = std::get<0>(G.to_be_indexed_).data(); 
auto dat = std::get<1>(G.to_be_indexed_).data(); 
 
for(vertex_id_t i = 0; i < N; ++i) { 
 for(auto j = ptr[i]; j < ptr[i + 1]; ++j) { 
  y[i] += x[idx[j]] * dat[j]; 
 } 
} 

However NWGraph does not assume this underlying CSR structure, and would prefer to 
write these algorithms more generically with iterator based or range based for loops 
shown below. Note that the previous raw loop implementation had access to information 
that the SpMV kernel does not actually need, which is random access into a vertex’s 
incidence list. The incidence list only needs to be traversed in some order to produce 
the desired result. 
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// Iterator based for loop SpMV 
vertex_id_t k = 0; 
for(auto i = G.begin(); i != G.end(); ++i) { 
 for(auto j = (*i).begin(); j != (*i).end(); ++j) { 
  y[k] += x[get<0>(*j)] * get<1>(*j); 
 } 
 ++k; 
} 
// Range based for loop SpMV 
vertex_id_t k = 0; 
for(auto&& i : G){ 
 for(auto&& [j, v] : i){ 
  y[k] += x[j] * v; 
 } 
 ++k; 
} 

Iterators can also be used to process the edges with std::for_each. 

// STL for_each SpMV 
std::for_each(G.begin(), G.end(), [&](auto&& e) { 
  y[std::get<0>(e)] += x[std::get<1>(e)] * std::get<2>(e); 
}); 

Finally, with one of our range adaptors, neighbor_range, we can easily access the 
indices and the neighbors of it. 

// Neighbor range based for loop (SpMV) 
for (auto&& [i, neighbors] : neighbor_range(G)) { 
  for (auto&& [j, v] : neighbors) { 
    y[i] += x[j] * v; 
  } 
} 

There are even more combinations of these traversals that are omitted for lack of space 
(combinations of ranges and iterators, with and without compound initializers, auto vs 
auto&& etc.) 
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Different data access abstractions (iterators, ranges, std::for_each and 
neighbor_range adaptor) with their abstraction penalties measured relative to a raw for 
loop implementation. There is no significant performance penalty relative to the raw loop 
implementation. 

 
 

 

Measured abstraction penalty for the SpMV benchmark with graphs represented by 
different containers using iterator based for loop. The execution time has been 
normalized w.r.t to the execution time of SpMV with graphs represented as 
struct_of_array (lower is better). 

To experimentally evaluate the abstraction penalty, we consider SpMV with three graphs with 
different underlying topologies from the SuiteSparse matrix collection: circuit5M, GAP-road, and 
hugebubbles. These were chosen because they have similar numbers of edges (30M to 60M) 
and the benchmarks run in comparable time. Timing results were averaged over 5 runs of each 
benchmark.   shows the results of the different data access abstractions relative to the raw loop 
timing, for each benchmark. Bars significantly higher than the raw for loop bar would indicate a 
significant performance penalty. None of the abstraction methods incurs a significant 
performance penalty relative to the raw loop implementation. 
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We also evaluated the abstraction penalty incurred for storing a graph in different containers. In 
particular, we have selected struct_of_array, vector_of_vector, vector_of_list, 
vector_of_forward_list containers. Note that, all these containers meet the requirement of 
our graph concept. We consider SpMV benchmark implemented with iterator based for loop 
with circuit5M, GAP-road, and hugebubbles datasets.   shows the performance of SpMV with 
different containers. The execution time is normalized relative to the execution time of SpMV 
with struct_of_array container. As can be observed from  , SpMV with struct_of_array 
performs best, followed by vector_of_vector. struct_of_array representation is cache-
friendly and supports random access of the outer and inner range efficiently. 

6.3 Performance 
In this section, we evaluate and compare the performance of NWGraph with three well-
known graph frameworks: GAP, Galois and GraphIt. The evaluation is intended to 
assess the performance of various parallel graph algorithms available in NWGraph in 
the context of other HPC graph frameworks. This paper focuses on the interfaces and 
design decisions around the range abstraction and concepts for graphs. Hence, we do 
not discuss the parallelization aspects of the algorithms in details here. However, 
overall, NWGraph leverages Intel’s Threading Building Block (TBB) (Intel (2020)) 
concurrent data structures for maintaining the internal states of different graph 
algorithms. In addition, for workload distribution among the threads, NWGraph can 
either use block range from TBB, our customized cyclic range adaptor, or C++ 
parallel execution policy (std::execution::par, std::execution::par_unseq) 
whenever appropriate. All experiments are conducted on 32 physical cores (32 
threads). 

For our experiments, we chose five representative datasets according to the GAP benchmark 
suite (Beamer, Asanović, and Patterson (2015)). These datasets () have diverse structural 
properties and have been collected from various application domains. We select six different 
graph algorithms (Betweenness Centrality, Breadth-first Search, Connected Components, Page 
Rank, Single Source Shortest Path, and Triangle Counting) that are common across these 
graph frameworks. 

We report the performance of different graph frameworks in . We summarize our observations 
as follows: 

• With Web and kron datasets, which have skewed degree distribution, our triangle 
counting (TC) and page rank algorithms in NWGraph outperform other frameworks. 
Except for the road network input, for both of these graph problems, NWGraph performs 
comparably with other inputs. 

• NWGraph also runs faster with Web, Twitter and Kron datasets (power-law graphs) for 
Betweenness centrality (BC) algorithms. 

• NWGraph suffers performance with bounded graphs such as road network input for 
SSSP. 

• Overall, NWGraph performs better or comparable to other graph frameworks. 

• For connected component (CC), all frameworks except GraphIt implement Afforest 
algorithm. Hence GraphIt performs worse with all inputs for CC. 
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Dataset for performance evaluation 

Name Description 

# 
Vertices 

(M) 
# Edges 

(M) 
Degree 
Distribution References 

Road USA road 
network 

23.9 57.7 bounded (“9th DIMACS 
Implementation 

Challenge - Shortest 
Paths.” 2006) 

Twitter Twitter 
follower Links 

61.6 1,468.4 power (Kwak et al. 2010) 

Web Web Crawl of 
.sk Domain 

50.6 1,930.3 power (Boldi and Vigna 2004) 

Kron Synthetic 
Graph 

134.2 2,111.6 power (Murphy et al. 2010) 

Urand Uniform 
Random 
Graph 

134.2 2,147.5 normal (Erdős and Rényi 1959) 
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[fig:tc_perf] 
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7.0 Related Graph Libraries and Toolkits 
This section explores the landscape of related graph libraries and frameworks. Each of 
the libraries or tools discussed in this section make different design tradeoffs regarding 
usability, extensibility, and performance. Though few of the tools in this section (with the 
exception of BGL) aimed to fill the role of an STL graph library, they all contribute to a 
greater understanding of graph library design. 

7.1 Generic C++ Graph Libraries 
The Boost Graph Library (BGL) (Siek, Lee, and Lumsdaine 2002) and LEMON graph 
library (Dezső, Jüttner, and Kovács 2011) both contributed to the development of 
generic graph algorithms in C++. BGL proposed algorithm templates that could be used 
on a variety of underlying graph types, e.g. vector of vectors, vector of lists, etc. Vertices 
and edges were allowed to be arbitrary types accessed via property maps which could 
be stored internally or externally to the graph. The default graph algorithms could be 
customized using visitor objects, which allowed users to use existing data access 
patterns to do additional work, for instance recording the timestamp a vertex is touched 
in a BFS search. The LEMON graph library shared many of these features, and also 
proposed the use of graph adaptors which would allow graph algorithms to run on 
temporarily modified versions of a graph. For instance a subgraph adaptor would allow 
an algorithm to operate on a graph with some vertices and edges temporarily filtered 
out, with the original graph storage remaining intact, preventing expensive copies. 
LEMON also introduced some simple graph concepts, which user defined graphs could 
conform to, but which predated the official C++ Concepts. Both libraries advertise 
algorithms that work with user defined graphs, so long as they conform to a certain 
interface. 

Some of these features had shortcomings which limited their use. The visitor objects are difficult 
to use, both from a programming and algorithmic design perspective. Property maps are a 
convenient programming abstraction, but can lead to performance issues. The type of LEMON’s 
graph adaptors are different from the original graph type being adapted, and their use as graphs 
is only supported in limited ways. As mentioned in the previous section, a major shortcoming of 
these designs is the difficulty of using custom data structures. In order to adapt an existing user-
defined data structure, BGL requires overloading several global free functions required by the 
BGL interface. These mostly include accessors, mutators, and iterators for edges and vertices. 
An assumption is placed on the graph container type being adapted that it will have much of the 
same behavior as the built in BGL container types. Furthermore both libraries lack newer 
feature in C++ such as constexpr, variadic templates, automatic type deduction, execution 
policies, etc. 

7.2 Linear Algebra Based Graph Libraries 
Many graph algorithms can be reformulated as a series of operations on sparse 
matrices. Several researchers are working on set of sparse linear algebra kernels for 
implementing graph algorithms, known as the GraphBLAS, inspired by the success of 
the Basic Linear Algebra Subroutine (BLAS) kernels for dense matrix operations,. A C 
reference implementation of GraphBLAS is available in the SuiteSparse software 
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package, with accompanying graph implementations available in the LAGraph library 
(Mattson et al. 2019). A C++ implementation known as the GraphBLAS Tempalte 
Library (GBTL) (P. Zhang et al. 2016) is also under development. 

The goal of GraphBLAS (Kepner et al. 2016) is to standardize the necessary sparse matrix 
kernels for graph algorithms so that hardware and software library vendors can optimize 
performance of these kernels for various architectures. With some upfront cost of translating a 
graph algorithm to linear algebra, GraphBLAS promises scalability from a laptop to a compute 
cluster. It is an open question whether or not all graph algorithms can be written using a linear 
algebraic formulation. Furthermore, it is unclear if there are enough programmers trained to 
write graph algorithms with sparse matrix operations to take advantage of these kernels. 

7.3 NetworKit 
Inspired by the NetworkX package (Hagberg, Schult, and Swart 2008) in Python for 
network graph analytic, NetworKit aims to keep the user-friendly Python interface, while 
improving performance with algorithms written in C++ (Staudt, Sazonovs, and 
Meyerhenke 2016). NetworKit targets the network science domain, and provides 
several centrality and clustering algorithms, along with several graph generators. The 
cited design goals stress the composability of the existing algorithms within the larger 
Python ecosystem, while not much is said about the extensibility of the underlying set of 
algorithms. 

7.4 HPC Graph Frameworks 
There are several graph frameworks designed to maximize performance in distributed 
memory or shared memory, such graph frameworks include Parallel Boost Graph 
Library (PBGL) (Gregor and Lumsdaine 2005), Galois (Kulkarni et al. 2007), 
Ligra (Julian Shun and Blelloch 2013), Giraph (Shaposhnik, Martella, and Logothetis 
2015), Gunrock (Wang et al. 2016), GraphIt (Y. Zhang et al. 2020), etc. The 
contributions of these frameworks are typically a computational model for parallel 
processing of graphs, with less emphasis on the usability or extensibility of graph 
algorithms or containers. A through evaluation of several well-known parallel graph 
frameworks can be found in (Azad et al. 2020). 
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8.0 Conclusion 
In this paper we presented the design and rationale for a modern generic C++ library of 
graph algorithms and data structures, NWGraph. Based on a careful analysis of the 
graph problem domain, the fundamental interface abstraction underlying NWGraph is 
that of a random access range of forward ranges. Intentionally minimal, this interface 
admits composition with any types that meet its requirements. The library 
implementation includes selected concreted containers and a rich selection of common 
graph algorithms. Though the library is implemented with standard library components 
using idiomatic C++, experimental results showed that the interfaces present no 
abstraction penalty and that the NWGraph implementation has performance on par with 
the highest performing state of the art. The NWGraph library is available as open source 
on github. We intend to propose the design to the C++ standardization committee for 
consideration as a standard C++ graph library. 
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