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Executive Summary 
Introduction  

The emergence of artificial intelligence (AI) and machine learning (ML) in the modern world has 
impacted nearly every application imaginable. This includes nuclear proliferation detection, 
which offers the potential to improve existing capabilities as well as create new ones. 
Proliferation detection seeks to detect and characterize attempts by state and non-state actors 
to acquire nuclear weapons or associated technology, materials, or knowledge. Such a mission 
is vitally important for global stability and security but is notoriously difficult. By leveraging 
advances in AI, exciting opportunities exist to enhance the proliferation detection regime.  

The Data Science and AI portfolio within the National Nuclear Security Administration’s Office of 
Defense Nuclear Nonproliferation Research and Development (DNN R&D) seeks to leverage 
the capabilities of the Department of Energy’s (DOE’s) national laboratories and other partners 
to develop AI systems that can accomplish otherwise impossible tasks in support of proliferation 
detection. As part of its efforts, the portfolio has created a series of workshops on Next-Gen AI 
for Proliferation Detection to help define the requirements for suitable AI systems, share 
successful research and best practices, and foster connection and understanding between the 
relevant parties including researchers and end-users. Each workshop in the series focuses on a 
specific and critical aspect of AI to enable it to accomplish proliferation detection objectives. The 
first workshop focused on explainability techniques; the second workshop and the topic of this 
report, covers methods for incorporating domain awareness into AI. The Next-Gen AI for 
Proliferation Detection Workshop: Domain-Aware Methods took place virtually over two days in 
February 2021 and included four keynote presentations, 22 technical presentations, and a 
concluding panel. The presentations, discussions, and workshop findings are summarized in 
this report. 

Requirements and Opportunities for Next-Gen AI for Nuclear Proliferation Detection 

While existing AI has demonstrated impressive performance in many industry and academic 
scenarios, such systems do not necessarily translate to successful systems in proliferation 
detection. The environment in which proliferation detection algorithms operate is substantially 
different than those in which many AI systems are created, and many challenges exist. 
Challenges include:  

• Complex and noisy environments: signals of interest are typically faint and hidden among 
challenging backgrounds.  

• Sparse data and rare events: limited training data exist, and events of interest occur 
infrequently.  

• Robust deployment and decision support: accounting for all possible scenarios is 
impossible, and the environments in which algorithms are deployed differ from those in 
which they are trained. 

• Early proliferation detection and signature discovery: novel signatures are desired to 
advance proliferation detection to early stages.  

These themes define the sessions covered in this workshop, the structure of which was chosen 
to emphasize the importance of considering these problems and the development of AI 
technologies in the context of mission applications. Domain-aware methods offer one 
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opportunity to address these challenges. Such methods can combine the well-established 
expertise in proliferation detection that has been developed over decades with the power of AI 
in a synergistic manner that avoids ignoring hard-earned knowledge and understanding.  

Keynote Presentations on Actors in Proliferation Detection 

Two keynote presentations described in more detail the proliferation detection mission space 
and the roles of various actors in it. Within the United States, the DOE, the Department of 
Defense (DoD), the Department of Homeland Security (DHS), the intelligence community, and 
other Executive Branch entities work together to contribute to the vital mission. Each of these 
organizations apply the tools of proliferation detection and demonstrate the scope of end-users 
for which new AI technologies can benefit. The second keynote presentation dove further into 
the intelligence community and its requirements. It was shared that the intelligence community 
is actively seeking to incorporate AI into its work and is ready to do so. Nonetheless, a key 
message was that intelligence analysis is inherently a human activity, and all approaches must 
remain human-centric, even as the purview of AI expands. All other methods are doomed to 
failure.  

Methods and Applications for Implementing Domain-Aware Techniques 

Despite the importance of domain-aware techniques and the extended length of time they have 
been applied, there remains no accepted taxonomy. Two introductory and keynote 
presentations delved into this absence in more detail and attempted to provide some structure 
to domain-aware techniques. Five categories were highlighted: 

• Expert knowledge 

• Synthetic data generation  

• Inclusion of non-traditional AI/ML methods into traditional AI/ML models  

• Semantic or constraint-based methods  

• Soft labels  

Examples of each were provided, particularly in a nuclear applications context, and it was also 
found that many of these techniques are typically used together rather than in isolation from 
other methods of domain awareness. Challenges associated with a lack of data and 
opportunities to leverage domain awareness were also introduced and motivated the 
forthcoming “Sparse Data and Rare Events” session.  

Complex and Noisy Environments 

This technical session focused on how to extract valid and useful information from complex and 
noisy data sets. Three themes emerged. First, it was clearly shown that the incorporation of 
domain knowledge greatly improves model performance. Second, combined approaches led to 
better results than those of single analysis methods. Third, even if the volume of available data 
is large, events of interest are rare and consequently the data is still “sparse.” These discoveries 
were found in various applications of nuclear proliferation detection from the analysis of 
radiation detection data to the analysis of nuclear material transfers.  
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Early Proliferation Detection and Signature Discovery 

Ultimately, the goal of proliferation detection and a major opportunity for AI is to detect 
proliferation at the earliest stage possible. With the increase in volume and variety of publicly 
available data, discovery of early-stage proliferation activities is being realized. It is likely this will 
require the development of novel signatures enabled by AI and these additional data. 
Presentations in this session focused on non-traditional data sources, open-source data 
sources, and combining these with traditional detection approaches to lead to new insights 
about proliferation activities. A key finding was that incorporating domain-aware methods with 
data-driven approaches yields contextual information for ongoing analysis. Incorporating social 
sciences and psychology was identified as a future opportunity.  

Sparse Data and Rare Events 

This session focused heavily on the problem of having insufficient data and the associated 
shortcomings of purely data-driven methods. This frequently manifests as the “small n, large p” 
problem, whereas there are few events of interest usable for training but a multitude of data and 
variables to process. Domain-aware methods have been critical to addressing this problem, for 
example by reducing the scale of measurements and enabling the creation of new data. 
Nonetheless, these activities require careful consideration in their successful use. Techniques 
are thoughtfully selected to mathematically represent all information in the data sets and 
preventing overfitting is a key focus. In this session, nearly all presenters performed some type 
of feature engineering. Regardless of the method chosen, the application of domain awareness 
turned an otherwise intractable problem into a solvable one. Ultimately, it was stated that 
reliance on data-driven models without domain knowledge will lead to spectacular failures in the 
wild. 

Robust Deployment and Decision Support 

A key theme that emerged in this session was the necessity of integrating guidance, feedback, 
or knowledge representations from end-users as a requirement for building robust models. This 
echoes similar emphases throughout the workshop to incorporate domain experts early and 
often in the lifecycle to develop and deploy AI-based solutions. Human-in-the-loop feedback 
was a key component of the systems presented. Additionally, several presentations illustrated 
how domain-aware methods can help validate AI models. Finally, other presentations 
highlighted how domain awareness can improve the quality of data used, for example by 
reducing noise and removing inconsequential features.  

Panel Discussion on Domain-Aware Methods 

Following the many technical presentations to share research and specific approaches to 
domain-aware AI, a panel concluded the workshop by focusing on overarching considerations 
and to refocus on the mission itself. In the panel, the importance of creating collaborations 
between data science and domain experts was highlighted. This follows from the realization that 
purely data-driven techniques fail in proliferation detection, even despite the success of such 
techniques in other areas. Fortunately, domain-aware methods are rapidly being developed and 
incorporated into operational AI. Specific opportunities for AI were discussed, such as in 
enabling decision-making superiority, and again, the intelligence community is actively 
preparing to increase the presence of AI in its operations.  
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Conclusion 

While there remain challenges in developing deployable AI for national security applications, 
there are tremendous possibilities moving forward. Analytics methods that are solely data-driven 
are insufficient in national security because data is sparse, incomplete, and noisy. Data-driven 
approaches forego inclusion of key mission-relevant information found in subject matter 
expertise, computational simulations, mission requirements, and other traditional domain-aware 
methods and data sources. This workshop demonstrated a variety of ways in which domain-
aware methods can be used to overcome these shortcomings. Further, domain-aware 
approaches are key to improving generalizability and transferability and to ensure the creation 
of useful and robust models suitable for high-consequence missions. The time is ripe to expand 
the role of AI in nuclear proliferation detection. Not only is progress being made on the 
technology, but end-users recognize the potential of AI to create new capabilities. AI systems do 
not necessarily need to be perfect to be helpful, and through interactions with end-users, 
researchers can identify opportunities to make substantial impacts, including in the near-term.  
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1.0 Introduction 
Nuclear proliferation detection faces a constantly changing landscape including both geopolitical 
developments and technological advances. Perhaps the most significant technological 
development, in this context and beyond, is the emergence of artificial intelligence (AI) and 
machine learning (ML), which is already pervasive throughout everyday life. AI, enabled by 
continuously increasing computing power, offers the ability to analyze data in new ways and to 
revolutionize approaches to tackling a myriad of problems. For proliferation detection, examples 
of unique opportunities arising from the use of AI include the discovery of new signatures, 
leveraging of underused data modalities, and the ability to analyze far more information than 
possible by a human. Of particular interest is the potential to detect nuclear proliferation at early 
stages. For example, the acquisition of certain types of expertise or technology discovered via 
text-based data sources using AI, may indicate a would-be proliferator’s intent to pursue nuclear 
weapons and be detected earlier than is possible via traditional methods.  

While commercially and academically developed AI is achieving transformative performance for 
many applications, these commercial-off-the-shelf (COTS) solutions are typically inadequate for 
the proliferation detection mission. While a more in-depth description of proliferation detection 
can be found in Alexander et al. 2020, the mission centers on the ability to detect and monitor 
emerging and ongoing nonproliferation challenges around the world. Therefore, nonproliferation 
is an high-consequence domain, where the impact of a single incorrect conclusion can have a 
devastating impact, a key difference from many other applications that use AI.  

Many of the most successful AI applications have benefited from the availability of enormous 
volumes of training data. As limited nuclear proliferation exists worldwide and events of interest 
are rare, this makes AI use much more challenging. Similarly, efforts to characterize 
proliferation activity within controlled situations may uncover patterns that do not translate easily 
across the variety of scenarios that could lead to a nuclear weapon. Finally, the nature of 
nuclear activities creates information in physical modalities such as radiation and acoustics, 
where the signatures of interest may be complex, faint, and/or hidden amidst noisy data streams 
that have time dependencies, which are best correlated with similarly hidden signatures found in 
different modalities. These features of proliferation detection create the challenging environment 
in which AI systems must operate and will be discussed more in Section 2.0.  

The Data Science and AI portfolio in the National Nuclear Security Administration’s (NNSA) 
Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) is driving 
the development of next-generation AI systems to detect and characterize foreign nuclear 
proliferation activities. By leveraging the expertise of the national laboratories and academic 
partners, new technologies are being developed to enhance the U.S. government’s 
nonproliferation and nuclear security capabilities. To meet proliferation detection requirements, 
the Data Science and AI portfolio has identified the following research focus areas: 

• Interpretability and explainability techniques 

• Domain-aware methods 

• Robust AI models 

• Highly specialized AI systems 

• Curating and generating relevant data sets. 
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As part of its efforts to develop next-generation AI for proliferation detection, the portfolio has 
created a series of workshops devoted to these specific research topics with the following goals: 

• share successful research in these challenging focus areas 

• promote best practices for AI and analytics in national security 

• create connections and collaborations 

• define what next-generation AI entails 

• bring together researchers, end-users, and stakeholders to foster understanding of how best 
to operationalize AI systems for proliferation detection.  

The first workshop in this series was attended virtually via WebEx by over 170 participants in 
September 2020 and focused on explainability techniques. It included an introduction to 
explainability, three keynote presentations, eight technical presentations, and two context-
focused panels (Alexander et al. 2020). The second workshop, Next-Gen AI for Proliferation 
Detection: Domain-Aware Methods, was held virtually via Webex on February 23 and 24, 2021 
and expanded on the first workshop’s structure to include two concurrent tracks of 22 technical 
presentations, which were competitively selected following a call for papers. Four keynote 
presentations discussed next-generation AI for proliferation detection, perspectives on AI from 
the intelligence community, a survey of domain-aware approaches, and a discussion of the 
growth of domain-aware AI as well as current work. A panel concluded the workshop and 
generated insights into the potential of domain-aware AI to enhance proliferation detection 
capabilities. Over 250 participants attended the workshop, with attendees coming from the 
national laboratories, academia, and partner U.S. government agencies. As with the first 
workshop in the series, inclusivity and diversity were ensured in recruiting participants that 
resulted in improved breadth of perspectives and more comprehensive coverage of technical 
expertise. Student presentations were also included in the second workshop, which were absent 
in the first. 

The workshop was structured by AI challenge rather than technique, in part, to promote best 
practices and share effective approaches for the specific need but also to reinforce that next-
generation AI for nuclear proliferation detection requires alignment to a mission problem 
throughout the entire research lifecycle. Each session encompassed a variety of domain-aware 
approaches/techniques to address a particular challenge theme. The track themes were as 
follows: 

• Noisy and Complex Data 

• Early Proliferation Detection and Signature Discovery 

• Sparse Data and Rare Events 

• Robust Deployment and Decision Support. 

When faced with these complexities, domain awareness becomes a critical aspect for AI 
systems. Many COTS AI systems are data-driven, meaning that they seek to draw conclusions 
based purely on leveraging large amounts of data to define the relationships used to arrive at 
the systems’ outputs. Such approaches are severely limited in proliferation detection and 
shifting toward more model-driven AI can help address the difficulties associated with realizing 
successful AI systems. More importantly, enormous amounts of expertise have been developed 
in proliferation detection, and domain-aware AI offers an ideal opportunity to combine the power 
of AI with the substantial domain knowledge and tools developed for proliferation detection over 
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decades. Advancing domain-aware methods for AI is therefore critical to enabling AI to fulfill its 
potential and find success in proliferation detection. This report is intended to summarize the 
Next-Gen AI for Proliferation Detection Workshop: Domain-Aware Methods, describing the 
content of each keynote or session in turn.  
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2.0 Requirements and Opportunities for Next-Gen AI in 
Nuclear Proliferation Detection 

Angie Sheffield, Senior Program Manager, Data Science, DNN R&D 

The opening keynote address described challenges and requirements for modeling and 
analytics technologies for nuclear proliferation detection. Nuclear proliferation detection, which 
focuses on the use of technologies and scientific capabilities to detect and characterize 
observable activities and resources related to nuclear weapons development, is a notoriously 
difficult task. While AI presents new opportunities to transform nuclear proliferation detection 
and reduce the threat of nuclear weapons, commercial and strictly data-driven AI are insufficient 
for its highly specialized and high-consequence missions. Informed by requirements for nuclear 
proliferation detection and the science of AI, DNN R&D seeks to advance the state of the art in 
AI to develop AI systems suitable for the unique challenges and requirements of national 
security missions.  

In particular, there are several challenges and opportunities for domain-aware AI in nuclear 
proliferation detection. For example, adversaries may intentionally disguise their activities such 
that indicators that reveal proliferation pursuits are hard to detect, and their signatures are faint 
against a complex and noisy background. Further, many of the signals of interest in proliferation 
detection include complex physical and time dependencies and are produced by systems that 
do not behave like typical AI features such as pixels in vast, static datasets of generic images. 
Domain-aware AI techniques offer the potential to combine heterogenous data sources, 
modeled predictions, and ML to increase sensitivity to these faint and obscured signals.  

Another characteristic difficulty for nuclear proliferation detection and national security 
applications more broadly, is data sparsity. Targets of interest are rare, and extensive examples 
of proliferation attempts to provide large volumes of training data do not exist. In contrast, the 
available data that may include information relevant to proliferation detection is enormous. 
However, much of this information may not be machine readable and may span a variety of 
modalities across space and time with sparse signals of interest among the vast information to 
process. 

To generate data, system developers can apply domain knowledge to create training data using 
simulations or fabricated experimental surrogates for activities of interest. However, such 
sources of training data cannot include all possible proliferation routes. Further, training data will 
invariably have different characteristics based on its source than the environments in which the 
system will be applied, and so the assumption of independent and identically distributed random 
variables used as the basis for strictly data-driven techniques does not hold. AI for proliferation 
detection must therefore detect new indicators that are not present in training data and do so in 
different environments than are used to create training data “in the wild.” 

Data available for proliferation detection are imperfect. Nonetheless, models must be made to 
work with what is available. Domain-aware methods are key to developing innovative 
techniques and custom pipelines that combine expert knowledge, models of nuclear weapons 
development, and ML to augment sparse samples or provide underlying structure that cannot 
be obtained by data alone. Similarly, domain-aware methods can ensure robust deployments of 
the systems by characterizing model stability, validating and explaining signatures used, and to 
predict performance in new and uncharacterized settings.  
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Deployment of AI technologies for nuclear proliferation detection will support decision making 
including diplomacy, military operations, or economic measures of national and strategic 
importance. Such high-consequence decisions have no room for error and little tolerance for 
false positives. Assessments of the performance of AI systems must be informed by the domain 
to understand opportunity and limitations to support decision making. Still, the benefits of AI, 
including the discovery and application of novel signatures, can provide new capabilities in 
proliferation detection that can support decision making, particularly in detecting early weapons 
development activities. Domain awareness maximizes the performance of AI for proliferation 
detection and provides a basis for its application to decision making.  

Domain-aware methods are key to the development of next-generation AI technologies suitable 
for the unique challenges of nuclear proliferation detection and national security. These 
techniques combine the knowledge and longstanding capability resident within the nuclear 
security enterprise and the transformative power of AI to build AI systems that leverage domain 
information, overcome issues of data sparsity, discover new features indicative of nuclear 
proliferation, and predict performance in new and uncharacterized environments. 

Summarizing the discussion above, the challenges focused on in this workshop for which 
domain-aware methods offer solutions include:  

• Complex and Noisy Environments: Domain-aware AI techniques to combine heterogeneous 
data sources, modeled predictions, and ML may increase sensitivity to faint signals of 
interest. Domain-informed techniques that train ML to model source and propagation 
characteristics may produce an entirely new class of detection methods that no longer rely 
on minimizing signal-to-noise.  

• Sparse Data and Rare Events: Events of interest are rare, and assumptions of independent 
and uniformly distributed samples do not hold. Methods to combine expert knowledge, 
models of the nuclear weapons development process, and ML may be used to augment 
sparse samples or provide underlying structure that cannot be learned directly from the 
data. 

• Robust Deployment and Decision Support: Domain-aware methods may be used to validate 
that an AI model accurately predicts system behavior, not just fits the data. Model 
performance must be domain-informed to assess the limits of an AI system to support 
decision making and build AI systems that perform predictably in new and uncharacterized 
settings. 

• Early Proliferation Detection and Signature Discovery: Advances in ML and the availability of 
new data sources present new opportunities to detect early indicators of nuclear proliferation 
from large and unstructured data. Domain-aware techniques may help to direct exploitation 
of these new data sources or interpret the signatures identified by ML models. 

The first Next-Gen AI for Proliferation Detection workshop was held in September 2020 and 
focused on the use of explainability methods. Explainability techniques are another critical 
enabling feature to develop AI systems for proliferation detection, including domain-aware 
models; more information can be found in Alexander et al. 2020. A particular takeaway from the 
workshop was that approaches used should be driven by the end use and researchers must 
work closely with mission partners to understand requirements for AI systems that can be used. 
This is relevant in developing domain-aware systems and for this domain-aware-focused 
workshop.  
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The development of domain-aware AI systems is possible. Indeed, ongoing research in the 
national laboratories and academia applies domain knowledge to improve AI systems, and 
some successes are already being achieved. One example is in fusing heterogenous data sets 
together. Research funded by DNN R&D has found that it is most promising to combine different 
data sources within a unifying model structure, such as a Bayesian net or an activity-based 
model, instead of simply combining the data sources without consideration for their context and 
hoping to discover a novel purely data-driven signature among the numerous unprocessed input 
features. This is one generalizable domain-aware approach that can be used across research 
pursuits and mission applications. This workshop aims to identify further repeatable approaches 
that are well-matched to nuclear proliferation detection. 
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3.0 Keynote Presentations on Actors in Proliferation 
Detection 

3.1 U.S. Government Missions and Agencies that Use Nuclear 
Proliferation Detection Capabilities 

Angie Sheffield, Senior Program Manager, Data Science, DNN R&D 

Nuclear proliferation detection capabilities support and enable an incredibly diverse set of 
missions executed by a broad set of partners across the U.S. government. Leveraging the 
capabilities of the DOE national laboratories and working with partners in the nuclear security 
enterprise, DNN R&D leads U.S. government efforts in AI research for national security 
(Subcommittee on Nuclear Defense Research and Development 2019). This keynote described 
the interconnected roles of various agencies to carry out the essential mission of proliferation 
detection.  

NNSA’s Office of Defense Nuclear Nonproliferation (DNN) applies proliferation detection 
capabilities and technologies to reduce nuclear threats, ensure peaceful nuclear uses, and to 
enable verifiable nuclear reductions. More concretely, DNN actively applies proliferation 
detection technologies to support the International Atomic Energy Agency (IAEA) to apply 
safeguards that detect and deter illicit diversion of nuclear material, to build domestic and global 
capacity to combat illicit trafficking of nuclear material and technology, to monitor and verify 
compliance with and within export control programs, and to develop technologies that can 
facilitate verifiable arms control treaties.  

The intelligence community (IC) also employs proliferation detection capabilities to detect, 
characterize, and disrupt activities of state and non-state actors engaged in the proliferation of 
weapons of mass destruction (National Intelligence Strategy, 2019). Intelligence tradecraft uses 
a characteristic six-step cycle of defining requirements, planning and direction, collection, 
processing and exploitation, analysis and production, and dissemination. Dr. Emma Hague’s 
presentation during the workshop described key requirements for AI-enabled technologies used 
in all-source analysis, and she provided the lingering message that in this stage, “high-impact 
models are human-centered… and all the rest die.” However, next-gen AI can contribute to 
other stages in the cycle including processing, planning, and requirement definition. In the latter 
two stages, use of next-generation AI can reduce downstream demands on exploitation and 
analysis. A key motivator for domain-aware AI is the nature of the data available. The IC is 
faced with an abundance of data produced during collection, but these data are sparse with 
respect to examples of activities and targets of interest, and the National Intelligence Strategy 
has identified this particular challenge as an opportunity for AI (NIS, 2019). 

The DoD also has responsibility to disrupt weapons of mass destruction (WMD) threats and to 
inform operations to address aggression from adversary states (Summary of the 2018 National 
Defense Strategy of the United States of America, 2018). These tasks leverage proliferation 
detection capabilities to achieve success. Most prominently for the DoD, it relies on NNSA and 
the national laboratories for deterrence through the U.S. nuclear weapons stockpile. U.S. 
military strategy faces a new paradigm and recognizes the role for AI and analytics to support 
adaptation to changing environments. Next-generation AI can improve situational awareness 
and decision-making for counter-WMD missions and improve predictive modeling and analytics 
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of countering WMDs (CWMD) threats while reducing the time that operators and analysts spend 
evaluating data.  

DNN R&D works with DHS, who leverages proliferation detection capabilities in their mission to 
prevent nuclear and radiological threats against the U.S. This includes the mission of nuclear 
forensics, which provides attribution in the case of a wide variety of misuses of nuclear material, 
incentivizing responsible behavior and deterring nuclear-based destruction. Additionally, DHS 
supports the emergency response mission to prevent and respond to nuclear accidents and 
disasters.  

DNN R&D also collaborates with the White House Office of Science and Technology Policy and 
the National Security Council to support and accelerate the use of AI technologies across the 
national security enterprise. Finally, within the DOE, DNN R&D works with the Office of Science 
and Defense Programs to meet requirements and opportunities for high-performance computing 
and hybrid infrastructure for data intensive computing across the national laboratory complex and 
develop next-generation AI foundational capabilities.  

While the variety of missions and tasks may seem intimidating, DOE’s 17 national laboratories 
make them possible. The national laboratories have the responsibility to address large scale, 
complex research and development challenges to support national security, and their 
multidisciplinary and innovative capabilities make them well-matched for the demanding 
requirements of the various proliferation detection missions. DNN R&D draws on the national 
laboratories to address the diverse proliferation detection challenges and has the unique 
perspective within the U.S. government science and technology community to identify 
challenges, gaps, and opportunities where advances in the math and science of AI can 
transform our capability to detect proliferation and to set the research direction for AI and 
analytics in the U.S. government. By working together, the complex will be able to transform 
nuclear proliferation detection through advancements the field of AI. 

3.2 A Perspective from the Analytic Intelligence Community 

Emma Hague, Chief Data Scientist, Foreign Nuclear Programs Division, DOE Office of 
Intelligence 

This keynote presentation shared perspectives from the multiple vantages that Dr. Hague has 
been privy to throughout her career, particularly from her current position in the intelligence 
community, and aimed to provide insights on how to ensure success in developing new AI 
technologies. Characteristics of intelligence work and the environment were described to help 
researchers better understand the context in which their systems may be applied. The 
importance of connecting human and machine domains, as well as researchers and analysts, 
was emphasized.  

Before joining the intelligence community, Dr. Hague worked in nuclear emergency response 
where she focused primarily on medium- and high-threat radiological searches, including both 
tactical and maritime missions. The radiological search mission is well-suited to ML as in-situ 
radiation detection in the highly variable backgrounds that are commonly encountered is a 
challenging task. To address difficult applications such as with radiological search, an integrated 
team of diverse specialists is required, which is a recurring theme in the presentation. This work 
led her toward the application of adaptive techniques and then to her current role in the DOE’s 
Office of Intelligence and Counterintelligence (DOE-IN).  
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DOE-IN has two primary missions:  

1. Provide policy makers with the best possible information 

2. Foster collaboration between laboratories and the intelligence community. 

Consequently, in partnership with national laboratory partners (the Field Intelligence Elements), 
analysts produce all-source intelligence. Such assessments are created by deeply skeptical and 
devoted truth-seekers using a rigorous tradecraft. In turn, absolute conclusions are avoided and 
communication takes place in the language of likelihoods. Ultimately, while the description of 
prior events can be nice, predictive capability is the required objective, and intelligence uses 
data, training, and knowledge to predict the likelihood of future events. This naturally calls to 
mind ML and provides fertile ground for the productive application of AI technologies. 
Nonetheless, intelligence analysis is the product of a sequence of events including collection, 
processing and exploitation, and analysis and production that are inherently carried about by 
humans. Indeed, intelligence is by definition what people think and so the creation of 
intelligence must always be human-centric.  

The central theme of the keynote then is that high-impact models are human-centered, and all 
other models die. To turn this insight into a guiding principle, analytic-centric development is 
proposed, and the advantages of creating a shared mental model between all necessary parties 
are discussed. A shared mental model facilitates understanding of how a model might be used, 
and familiarity with the competing tradeoffs of different methods is important in design. For 
example, there are non-trivial compromises between precision and recall, and the relative 
weighting of false negatives and false positives in evaluating systems requires consideration 
that should be carried out using the shared mental model. Analysts will typically prioritize high 
recall in a model, but this may not always be the case and mutual discussion should take place 
to find the right balance of model characteristics. The systems will evolve over time as priorities 
or the data available change, and this further motivates the creation of a shared mental model 
so that models can be dynamically adapted together for the greatest impact. Models must work 
with people to be useful and to generate the desired insight. To support this researcher-analyst 
and human-machine connection, the user interface and experience must be designed into the 
research at an early stage and be an inherent consideration.  

Fortunately, the IC has prioritized the incorporation of AI into its capabilities and to have a 
baseline understanding of AI by 2025 (NSCAI 2021). Doing so is urgent as decision makers are 
already “data smart,” with an understanding of confidence intervals and the difference between 
statistics and real-world factors. Further, the U.S. is now operating in a near-peer global 
environment with AI. Guidance on the leveraging of AI can be found in the National Security 
Commission on Artificial Intelligence’s Final Report, particularly Chapter 5, which urges analysts 
to change risk management and jump start technology adaptations (NSCAI 2021). A noted 
challenge in the report was that of recruiting and retaining technology experts, with the main 
deterrent being challenges and waiting times associated with clearance awards.  

Overall, the time is ripe to grow the role of AI in national security and intelligence, but it is critical 
to remember that intelligence will always be a human endeavor. As such continual consideration 
of human-machine teaming and how models will be used is imperative, and domain-aware 
methods can help bridge the human-machine gap. Worth considering is that, in the IC, humans 
are the domain to be aware of. Data scientists and analysts should strive to create a shared 
mental model and reach out to each other early and often to understand capabilities and needs. 
Finally, systems do not need to achieve perfection to be helpful, and unrealistic objectives 
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should not be allowed to impede research. By working with diverse teams of experts, 
researchers can make a difference now in improving intelligence and national security 
capabilities. 
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4.0 Methods and Applications for Implementing Domain-
Aware Techniques 

4.1 Survey of Domain-Aware Methods 

Ashley Shields, Cloud Software Engineer and Digital Twin Data Scientist, Idaho National 
Laboratory 

Put simply, domain-aware methods find ways to incorporate world knowledge into models to 
enhance performance; however, no concrete definition or structured methodology exists to do 
so. An objective of the Next-Gen AI for Proliferation Detection Workshop: Domain-Aware 
Methods was to provide more structure to this topic specifically in the proliferation detection 
mission space. One source of guidance comes from a recent report on basic research needs for 
scientific ML (Baker et al. 2019). Broadly considered, domain-aware methods are methods that 
enhance the accuracy or interpretability of models by applying physical principles, constraints, 
conservation laws, or other knowledge representations.  

Five different categories of domain-aware methods were identified as examples:  
1. Expert knowledge  
2. Synthetic data generation  
3. Inclusion of non-traditional AI/ML methods into traditional AI/ML models  
4. Semantic or constraint-based methods 
5. Soft labels.  

Several interesting and recent examples of each of these categories exist in the literature, and it 
was found that these categories are frequently used in parallel, as shown in Figure 4.1. 
Examples of each category are described in more detail here, particularly with an emphasis on 
applications related to proliferation detection.  

 
Figure 4.1. Mapping of the connections in the literature between different categories of domain-

aware methods. The number of chords between different categories is proportional to 
the number of publications returned on Google Scholar with keywords associated with 
the domain-aware approaches connected by those chords. Taken with permission 
from the presentation being summarized (4.1. “Survey of Domain-Aware Methods”).  
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One example of incorporating expert knowledge was found in nuclear power plant monitoring, in 
which an interactive, human-in-the-loop method was developed to reduce costs while 
addressing trust, security, and explainability (Rashdan et al. 2019, Versino and Lombardi 2011, 
Gastelum et al. 2019). A camera was set up in a nuclear power plant, and a decision tree model 
was developed in which training examples were provided and the model identified relevant 
features in the imagery. The visual feedback was presented to an expert reviewer who 
confirmed or rejected the results, sending the information back into the algorithm as additional 
training data. This led to accuracy improvements by generating additional training data and led 
to improved explainability and accessibility of the AI system.  

Synthetic data generation is often required for situations where data scarcity is a problem. 
Synthetic data generation improves the data quality by increasing the size and diversity of the 
dataset. Modern methods can generate data that is indistinguishable from real-world data. 
Typically, this is done using a simulator to generate a synthetic image, and real-world data is 
then used to refine the quality of the data synthesizer’s fabricated images (Shrivastava et al. 
2017, Yu et al. 2019). Approaches typically use generative adversarial network (GAN) 
structures, which consist of a generator to create synthesized data, and a discriminator to 
distinguish synthesized data from real-world data. If the discriminator concludes that the 
synthetic data is real data, then that data can be incorporated into the data set. Otherwise, the 
image is returned to the refiner and placed back into the cycle. When the discriminator can no 
longer tell the difference between the synthetic and real data, the synthetic data is of high 
enough quality to train other ML models. The discriminator and generator are typically trained 
together resulting in a push and pull, or adversarial, approach to modify input data generation in 
such a way to become highly realistic.  

An example of augmenting traditional AI/ML models with domain knowledge is demonstrated in 
a recent study using geospatial analysis to determine which buildings belong to the same 
facility. This approach used a convolutional neural network to flag the buildings in a petroleum 
facility (Brost et al. 2014). The model was constrained using geospatial information on building 
size and shape parameters and triangulation to map out the facility footprint. The resulting 
model could perform well on multiple size scales and correctly detect both large and small 
facilities. In addition to the multi-scale analysis capability, advantages include semantic 
consolidation in which discontinuous features can be interpreted as being part of a continuous 
object based on conditional requirements.  

Constraint-based approaches can be used to help control the movements of unmanned aerial 
vehicle (UAV) swarms (Wang et al. 2018). In UAV swarms, it is critical to coordinate the 
movements between individual units so that there are no accidents. Typically, a set of rules are 
implemented to automate search and tracking behavior. A minimum distance constraint ensures 
that individual UAVs do not collide, while a fuel constraint ensures that UAVs are able to return 
to a fueling station before they run out of power. Further constraints ensure that units work 
together for a common goal. For example, if a UAV detects a nearby UAV that is in tracking 
mode, it will join in and coordinate on a search. This approach resulted in the automation of 
dynamic search and tracking based on situational information.  

Finally, soft labels assign not only a label to a datum, but a probability or confidence interval to 
the assignment. A recent example of the use of soft labels is a recurrent neural network system 
that takes in a sequence of video frames as its input and assigns probabilities of a given action 
taking place as an output (Hu et al. 2019). The soft labels allow for detection of actions mid-
execution, which facilitates an early response. Predictions can take place in nearly real-time. 
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In summary, domain-aware methods are diverse, and there is no concrete definition or 
methodology for domain-aware approaches. However, domain-aware methods have proven to 
be useful in a variety of contexts. These methods should be employed to develop new nuclear 
proliferation indicators and to enable earlier detection of emerging threats. 

4.2 Domain-Aware AI: There and Back Again 

Kary Myers, Statistical Sciences Group, Los Alamos National Laboratory 

This keynote presented by Dr. Kary Myers, provided an overview of current opportunities and 
challenges for domain-aware AI in nonproliferation, highlighting domain-aware AI use and 
limitations when used by the Multi-Informatics for Nuclear Operations Scenarios (MINOS) 
project led by Oak Ridge National Laboratory (ORNL). 

It was proposed that methodologies often encounter resurgences in popularity that far out-scale 
their initial popularity, frequently due to improvements in underlying technologies supporting the 
given method. For example, neural networks resurged in popularity recently due to the increase 
in data availability and computation technologies needed to train and deploy increasingly 
effective models that would not have been possible when neural networks were first introduced. 
However, there is a danger for domain-aware techniques wherein if ML models make a 
sufficiently bad mistake or exhibit biased or low performance, domain experts can lose trust in 
ML completely, which would be difficult to regain even if the method gains popularity or 
improves efficacy later. 

Unfortunately, when relying on data-driven AI methods that use large-scale collections of 
available data, unintended biases are often found for several reasons. One such bias is due to 
convenience sampling, which describes the case when one trains on data from or about a 
subset of the population and applies the model to the entire population. In this case, there are 
significant biases and errors that are likely to occur. A possible solution is to incorporate domain 
knowledge to identify biases that are present and mitigate those biases. Dr. Myers posits that “if 
we rely on data-driven AI methods without domain knowledge, we risk creating tools that will fail 
spectacularly in the wild.” 

To highlight the effectiveness of incorporating domain knowledge to bolster AI in the context of 
nuclear nonproliferation, the MINOS project was used as a successful example that dealt with 
key challenges and opportunities. MINOS leverages domain-aware AI, focusing on learning as 
much as possible with both calibrated measurements and rich ground-truth knowledge to 
incorporate domain knowledge to better understand and improve methodology, and evaluate 
both what is and is not suitable to be transferred to other facilities. Key research questions for 
MINOS focused on (1) identifying signals of interest, (2) combining data sets, and 
(3) generalizing approaches to proliferations scenarios. However, as with many applications, a 
significant challenge was that there are often few data points for events of interest and large 
amounts of data features from measurements to consider – described as “small n, large p.” 

Domain-aware methodology can be used to alleviate this challenge of “small n, large p” through 
a variety of ways: (1) using domain-aware AI to reduce the scale of measurements under 
consideration (e.g., feature selection) and using domain knowledge to constrain AI predictions 
to those which are physically plausible, (2) increase the number of events of interest observed 
using simulations or by defining defensible subproblems that have more events of interest. An 
important caveat to simulations, however, is that simulations cannot be treated as equivalent to 
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raw data but can be leveraged alongside domain knowledge to increase the sample size of 
events. 

One challenge that was specifically noted was the application of domain-aware techniques 
when ground truth is not available, a challenging but realistic scenario. One possible solution is 
to examine a particular scenario that does have ground truth, as was done with MINOS. Another 
recommendation is to build a community of people who are conversant in the necessary areas – 
understanding the data science (the ML or AI methodology under consideration) and the 
application space (e.g., reactor operations) in order to leverage domain knowledge and experts 
in way to best mitigate the negative impacts of not having access to ground truth. 
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5.0 Complex and Noisy Environments 
The first technical session focused on how domain-aware ML methods can extract valid and 
useful information from complex and noisy datasets, whereas often in this context a data-driven 
approach would fall short.  

Three themes emerged among the six presentations during this session. First, incorporating 
domain knowledge into the model can greatly improve results. This was well-illustrated in the 
second talk on harmonic structure, in which incorporating a specific harmonic layer greatly 
improved network classification accuracy, depicted in Figure 5.1. The third talk also showed that 
a new network architecture can be developed to specifically cancel the effect of the background. 
The fourth talk showed how realistic source trajectories could only be calculated from radiation 
detector data when using a model that included information on the roadways and speed limits. 

A second theme was that a combined approach worked better than a single analysis method. 
The third presentation showed how an ensemble of eight distinct classifiers performed better in 
terms of error minimization than using any single analysis method. Another presentation 
demonstrated how a complex network architecture with six distinct subcomponents performed 
more reliably than a single neural network. 

Finally, often the data are “sparse” in the sense that events of interest are rare, even if the 
volume of data is large. The final presentation touched upon how the nuclear material transfers 
of interest happen infrequently, and the fourth talk showed a situation where even with an array 
of detectors, often zero or one of those detectors are collecting significant signal at any given 
moment. The sparsity of the data drives the need to generate synthetic datasets. Data synthesis 
is also useful for situations where it is difficult to establish clean ground-truth data—the synthetic 
pileup pulses from the fifth talk illustrate this. How representative these synthetic datasets are of 
real-world data and how well methods trained on synthetic datasets will transfer to a real-world 
scenario remain open questions. 

 
Figure 5.1. Example of incorporating domain knowledge directly into network structure whereby 

fully connected layers (left) are replaced by those in which connections are made 
based on connecting base frequencies to associated harmonics (right). Taken with 
permission from 5.1, “Imposing Harmonic Structure in Neural Networks.” 

5.1 Imposing Harmonic Structure in Neural Networks 

Mark Adams, Oak Ridge National Laboratory 

Harmonics are alternating current (AC) voltages or currents present in an electrical system at a 
frequency other than the fundamental. Harmonics have a variety of causes and usually indicate 
a power quality problem. It is important to be able to detect these harmonics because they can 
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cause heating and damage to electrical components. This presentation covered the 
development of neural networks that can identify harmonics in non-intrusive load monitoring 
(NILM) data of a building’s electrical system. 

Standard fully connected neural networks connect every input data point to every neuron in the 
first hidden layer, and the output of every hidden layer neuron to the input of every neuron in the 
next hidden layer. This structure provides a lot of flexibility that can be helpful in discovering 
potentially important features that the researcher might not have thought of. However, it also 
requires many parameters, since each connection has an associated weight that needs to be 
trained. This greatly increases the training time. 

Instead, Adams et al. take an approach inspired by acoustic signal processing and introduce 
harmonic connections between layers (Zhang et al. 2020). In this approach, the input is the 
Fourier transform of the collected raw time series data. Not every point in the input data is 
connected to the input of every neuron in the first hidden layer; rather, each neuron in the first 
hidden layer is connected to a base frequency and multiple harmonics. In this way, the 
harmonic structure of the data is preserved, which makes it easier to detect the harmonic 
signals of interest against a noisy background. Furthermore, this significantly reduces the 
number of trainable parameters—in this case, a reduction of 1 billion parameters to 3 million.  

To test this approach, different waveforms with well-defined harmonic structure (e.g., square 
wave, triangle wave, etc.) were injected into the building power system at a facility at ORNL. 
NILM was used to measure the AC signal at various points in the building. Three different neural 
network architectures (dense, ResNet, and U-Net), either with or without a harmonic layer, were 
trained to identify the type of injected signal. 

Without the harmonic layer, both the dense network and the ResNet network show poor 
classification accuracy—17% and 20% accuracy, respectively. The deeper U-Net network 
shows better performance at 60% classification accuracy. However, all three network 
architectures showed dramatic improvements when a harmonic layer was used. The dense 
network classification accuracy improved to 70%, the ResNet network improved to 81% 
accuracy, and the U-Net network achieved 82% classification accuracy with a harmonic layer. 
Furthermore, when these networks did misclassify waveforms, the assigned labels at least 
belonged to the right type (e.g., a square waveform at a given base frequency would tend to be 
assigned to a square waveform with a different base frequency). This demonstrates how 
including a harmonic layer can improve classification accuracy against a noisy environment. 

5.2 Domain Adversarial Networks and Explainability Assessment 

Thomas Grimes, Pacific Northwest National Laboratory 

Neural network classifiers can solve problems in ways that the data scientist might not expect. 
Networks take shortcuts in making their assignments. If there is any component of the 
background that correlates with the data, the network will try to take advantage of it, even if that 
background is irrelevant or not easily interpretable from a human perspective. Examples include 
making assignments based on correlated noise-like features, learning the background of an 
image rather than the image subject, or making assignments based on fiducial markers or 
metadata.  

A taxonomy of these shortcut learning methods has been identified in the literature. A “ρ-useful” 
feature is noisy and present in every dataset, but fragile with respect to making assignments 
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(Ilyas et al. 2019). On the other hand, “γ-useful” features are robust and human-interpretable, 
but not what a human would deem relevant when it comes to making assignments (Xiao et al. 
2020). For example, the background of an image can serve as a γ-useful feature if the image 
subject is often photographed against a similar background.  

During training, the effect of ρ-useful features can be minimized by adding random noise to 
each image at the start of each epoch (Madry et al. 2017). This effectively converts each data 
point into a “ball” of data, which makes for much more robust decision boundaries. 

Eliminating γ-useful features is more involved but can be done with a domain adversarial neural 
network (DANN) (Grimes et al. 2020). Regular neural networks can be considered as having 
two sections: a feature extractor and a class predictor. A DANN adds another fork to the end of 
the feature extractor to try to predict a background label. During training, the gradient of this 
branch is reversed to effectively cancel the effect of the background on the extracted features. 
This produces features that are background-orthogonal that can be used to predict the image 
subject alone. The relative magnitudes of the updates to both branches of this fork are 
controlled by a new hyperparameter, λ, which must be tuned to optimize performance. 

In addition to producing background-orthogonal features, if λ is set to 0 the DANN branch can 
be used to assess the impact that background information has on network class assignments. 
In one trial, with the gradient reversal turned off, the background labels could predict the proper 
class with ~80% accuracy. With gradient reversal turned on, the background labels alone 
performed no better than random guessing. 

This approach was tested in a scenario where building electrical system data was used to train 
a neural network to determine the on/off state of a turbo pump powered by that system. These 
measurements are complicated by the fact that different buildings host different electronics, 
which make different demands on the electrical system. However, these demands on the 
electrical system form a background that can be taken advantage of using a domain adversarial 
approach. Twenty networks, either with or without a DANN branch canceling the effects of 
background introduced by different buildings, were trained on this data. The networks that 
included the DANN branch were found to have a 25% lower misclassification rate. 

5.3 Dissolution Event Classification Using Isotope Decay Chains and 
Half-Life Estimates 

Nageswara Rao, Oak Ridge National Laboratory 

The goal of this work was to develop a machine learning model that would detect whether a 
particular dissolution event took place at a nuclear processing facility (Nageswara et al. 2020). 
Specifically, this work attempted to identify when the production of plutonium-238 (Pu-238) from 
a neptunium-237 (Np-237) target is taking place. This is a complex problem that requires 
knowledge of the physics and chemistry of dissolution.  

Production of specific isotopes has two parts: First, a target is inserted into a fuel rod and 
neutron-irradiated at a nuclear reactor. Next, targets are moved to another facility for extraction 
and shipment. In principle, the off-gas from the extraction process can be analyzed to decide 
whether a dissolution event of interest took place. 

Production was monitored by collecting the gamma spectrum near an effluent conduit. Ground 
truth was established from the facility production logs. Collections took place at 1-hour intervals 
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over the duration of the study. Spectra showed distinct peaks but were quite noisy. Peak fitting 
was used to get counts for 15 different isotopes, including isotopes of iodine, xenon, krypton, 
cesium, and barium. Knowledge of the proper isotopes to monitor was informed by knowledge 
of the fission decay chain. Furthermore, the proper sampling time intervals were informed by the 
knowledge of the isotope half-lives. 

The classification strategy used eight different classifiers of various types (e.g., support vector 
machines, decision trees, naïve Bayes, etc.) to predict when a dissolution event took place. The 
errors of each classifier were determined, then the best three were fused together to produce a 
final prediction. No universal best classifier exists, even in theory. Therefore, the fused classifier 
achieved a lower error rate than any single classifier. 

Different time windows between 1 hour and 1 month were tested and receiver operating 
characteristic (ROC) curves (a plot of the false positive rate vs. true positive rate) were 
generated. Increasing the time window produced a better ROC curve up until 24 to 48 hours. 
Beyond around 24 hours, signatures became more unstable because many different processes 
aside from the process of interest occur at these facilities and the signatures of these irrelevant 
background events mix with the signatures of the event of interest.  

Performance was tested by including only certain subsets of the monitored isotopes (e.g., using 
only the iodine isotopes, or only the krypton isotopes). Some isotope groups performed better 
than others; however, using all the isotopes together gave the lowest classification error rate. 

5.4 Inferring the Dynamic Location of an Environmentally- 
Constrained Radiative Source with a Network of Detectors 

Dave Osthus, Los Alamos National Laboratory 

This presentation described an effort that took place under the MINOS project, where 
instrumentation and detectors were set up throughout a nuclear processing facility at ORNL to 
determine how to combine multiple data streams. The facility itself was not part of the project, in 
the sense that it carried on operations as normal throughout the duration of the study. This 
allowed for researchers to study the feasibility of various methods for detecting events of 
interest against a noisy background of irrelevant events. 

This work attempted to identify and localize a source moving in a constrained environment. 
Specifically, this work focused on using six different gamma radiation detectors located 
throughout the ORNL nuclear processing facility. This data is sparse and noisy, and it has many 
unknowns. However, certain constraints can be applied. For example, radiation sources are 
often transported by vehicle, so the constraint that the moving source must be located on a road 
can be applied. 

While, the radiation source was moving, the gamma detectors were fixed. Each detector 
generated a time series of counts that was integrated over all energy channels, and the raw 
data can be broken into signal and noise components. Because the signal follows an inverse 
square distance model, in principle, three detectors can triangulate the location of the source. 
However, due to the noise levels the detectors have an effective limited range, so in most cases 
fewer than three detectors are picking up a reliable signal at any given time. In the real-world 
sample transfer data, there was no point where more than one gamma detector (out of six) was 
able to collect a significant signal at any one time, and there are many time points when none of 
the detectors were able to pick up a usable signal at all. 
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As an illustration, a moving radiation source taking a left turn on a road was simulated by 
computer so that the ground truth would be well known. During this simulation, there are time 
periods where none of the simulated detectors are receiving a signal above noise level. 

The talk demonstrated that it is relatively easy to generate a source trajectory that “agrees” with 
the detector data, in the sense that this trajectory generates a best fit. However, it is more 
difficult to generate a trajectory that both fits the data and is physically plausible. Adding 
constraints to the model increases plausibility of the generated trajectories. When a simple 
Bayesian model was used to fit the detector data, the generated source trajectory skipped 
around the simulated field erratically, even though the model fit the detector data well. 
Localization of the source was good at the beginning and ends of the simulated trajectory, 
where the signal was strong. However, at intermediate time points the model showed high 
uncertainty. Therefore, it was necessary to add a constraint that correlates source positions in 
time. 

When the simple model was replaced with a Markov model, where each time point in the 
trajectory needed to be located close to previous time point (essentially encoding a speed limit), 
the result showed both good agreement with the gamma detector data as well as an improved 
trajectory prediction. However, this trajectory still meandered and was not realistic for how 
vehicles actually move. Adding another constraint to the model that encodes the road locations 
produced a much better path prediction.  

All three models (simple, simple + speed limit, simple + speed limit + road) fit the gamma 
detector data well, but only the highly constrained model both fits the ground truth and was easy 
to interpret. The simulations were followed up with a real-world measurement of a radiation 
source traveling around a building on the ORNL campus. The constrained model was able to 
produce an accurate reconstruction of the real-world source path. 

5.5 An Artificial Neural Network System for Special Nuclear Material 
Detection in Photon Based Active Interrogation Scenarios 

Abbas Jinia, University of Michigan 

In nuclear nonproliferation, analysts need to be able to detect radioactive sources. Passive 
interrogation techniques are frequently not robust enough to detect small quantities. Active 
interrogation is better for detecting small-quantity or shielded materials. The work presented in 
this talk used a linear accelerator (LINAC) along with a spontaneous fission source to test a 
stilbene-based neutron detector. 

Stilbene is known and was shown to possess excellent pulse shape discrimination capability to 
discriminate between photon and neutron detection events. However, during active 
interrogation, there is an intense photon environment that makes it more difficult to measure the 
neutron rate due to photon pileup and noise (Fu et al. 2018). The presenter’s work constructed 
an artificial neural network (ANN) to recover these neutron detection events from the photon 
noise. 

An ANN system was developed that used six neural networks that work in conjunction to 
improve accuracy. Each network had a specific purpose—one performs sorting of pulses into 
single pulses or pileup pulses, one classifies single pulses as photon or neutron, one classifies 
pileup pulses according to how close the pulses are, etc. All classifiers had a classification 
accuracy that was greater than or equal to 99%.  
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In addition, the ANN included two cleansers to flag misclassified data. The cleansers were 
based on an autoencoder and decoder pair. The cleansers effectively denoised the data and 
then detected whether a pulse was a true single pulse or a misclassified pileup pulse (or vice 
versa). 

A californium-252 (Cf-252) source was used to get clean single pulse training data. Pileup 
pulses were synthesized from the single pulse data to establish reliable ground-truth training 
data and represents one example of synthetic data generation.  

Performance was evaluated in the presence of intense photon flux by taking measurements on 
a Cf-252 source while the LINAC was turned on or off. The Cf-252 source has a known, 
established particle emission rate. When the LINAC is turned on, the photon pulses from the 
LINAC account for most of the detection events in the detector. The researchers found that their 
ANN was able to recover some information that would have normally been lost, since typically 
all pileup pulses would be eliminated from the dataset. The ANN could recover 19% of the 
neutron pulses that would normally be lost within the photon pileup noise. Follow-up studies on 
a depleted uranium target also found that 19% of the pileup pulses could also be recovered and 
correctly classified. 

5.6 Spectral Signatures for Shielded Sources 

Jaston Hite, Oak Ridge National Laboratory 

This presentation covered work that was carried out under the MINOS project, a multi-lab 
venture to conduct multi-modal, multisensor measurements of a nuclear facility at Oak Ridge 
National Laboratory. Specifically, this work tracked the movement of special nuclear material 
(SNM) at this site. Irradiation targets are made at the Radiochemical Engineering Development 
Center (REDC), loaded into a container (called the “Q-Ball”), transported to the High Flux 
Isotope Reactor (HFIR) for irradiation, loaded back into the Q-Ball, and transported back to the 
REDC. The goal was to detect when these transfers happen and by what route. 

This work was complicated by the fact that there is a lot of activity going on at this facility, with 
many different vehicles. Other vehicles (e.g., the laundry truck) showed detectable radiation 
levels, but were not of interest. A metric more targeted to the specific Q-Ball movements needed 
to be developed. The work was also complicated by the fact that the frequency of Q-Ball 
movements was rare enough where the data could be considered “sparse”, even though a large 
stream of data is generated by all of the detectors operating continuously. 

The researchers were primarily interested in Np/Pu and Cm/Cf transfers. The Q-Ball is 
composed of water, concrete, and steel layers and is effective at shielding, so that the gamma 
spectrum typically does not show distinct peaks. However, there is a shift in the gamma 
spectrum toward high energy due to neutrons interacting with the shielding and producing 
secondary gamma rays. The researchers proposed using this shift in spectral density as a 
signal of interest. 

A signature was developed to detect this shift in the gamma spectrum. A baseline estimation 
and denoising (BEADS) algorithm was used to smooth out noise in spectrum (Ning et al. 2014). 
The smoothed spectra were integrated to get a cumulative density function (CDF), which 
accentuates the shift in the spectrum toward higher photon energy. The head-to-tail ratio of the 
CDF served as the signature of interest and appears as a sharp spike in the presence of the Q-
Ball. Other factors such as weather conditions (e.g., rain) have a detectable effect on this 
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metric; however, these effects were easily distinguished from the event of interest. The time 
series of spikes of this metric could be used to determine vehicle routes, or at least to identify 
routes that were not taken.  

The presenter finished by describing an effort that is underway to generate synthetic data using 
a long-short term memory neural network architecture that the researchers expect will generate 
realistic-enough data to train a method to identify material transport paths in the real world. 
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6.0 Early Proliferation Detection and Signature Discovery 
This session focused on detecting proliferation attempts as early as possible and the signatures 
that can help facilitate that detection. It remains critical to move detection capabilities earlier in 
the timeline. Specifically, in this session, it was discussed how advanced scientific methods in 
concert with the specific domain expertise can be used to maximize the limited data that are 
available.  

A key focus of these approaches was to exploit non-traditional data sources. One approach 
searched public records for activities that might impact local sensor networks. Another studied 
not just the content of individually published papers but included the metadata and relationships 
of authors of published literature to glean insight, as illustrated in Figure 6.1. Another approach 
attempted to detect user intent from a sequence of internet search queries.  

A talk on Plutonium Attribution Methodology focused on improving an approach which had 
previously been successful but was vulnerable to spoofed samples. Domain knowledge was 
required to identify the existence of this problem and was further required to identify the 
solution. This domain-aware-motivated improvement to the methodology serves as a reminder 
to question traditional models in the context of the applied domain and to continually improve 
them.  

In “Applying Domain-Aware Artificial Intelligence on the CBRN [Chemical, Biological, 
Radiological, and Nuclear] Battlefield,” a reminder was provided that applying these techniques 
across the entire proliferation monitoring process is also useful. Opportunities for which AI 
solutions would be welcome were presented and included network strength monitoring, image 
characterization, and route planning. Finally, it was noted by the session chair that incorporating 
search behavior and author network groups begins a welcome integration of the social 
sciences. 

 
Figure 6.1. Illustration of the use of multilingual keywords along with metadata and other 

relationships to characterize nuclear expertise as a potential proliferation indicator. 
Taken with permission from 6.3, “Extracting Dynamic Proliferation Expertise and 
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Capability Representations from Heterogenous Multilingual Open-Source Data 
Streams.” 

6.1 Open-Source Data Analytics Value Quantification to Inform and 
Explain Radiological Source Detection Localization and Tracking 

Sannisth Soni, Pacific Northwest National Laboratory; Svitlana Volkova, Pacific 
Northwest National Laboratory; and Ellyn Ayton, Pacific Northwest National Laboratory 

This work focused on open-source data analytics to augment radiation detection sensors. The 
combination of both descriptive and predictive types of analytics gives the approach its leverage 
and is exercised on both dynamic sensors and static sensors. Logistic regression and random 
forest models that used characteristics of construction permits as dynamic sensors found that 
those which contained excavation and indoor complaints were the most predictive. Though the 
results that were presented show a high F1 score for some alerts, it is unclear what those alerts 
actually predict, and chance correlation cannot be disregarded at this point as the causal link 
between excavation and alerts remains unclear.  

The described natural language processing work showed the ability to predict detections of 
cesium-137 (Cs-137) based on the type of construction work being performed and based on the 
work permits submitted and their associated location. In this case, the application of natural 
language processing aims for predictive analytics. Specifically, given a particular alert, 
identifying the source which could have generated this alert is of interest.  

Pattern of life analysis was also applied to three medical isotopes: positron emitters, iodine-131 
(I-131) and metastable technetium-99 (Tc-99m), for which signals from each are distinct. 27 
sensor specific models were compared with nine ensemble models. The ensemble approach 
gave the best performance for source prediction but did not work well for sensor prediction. To 
establish normal background noise or baseline patterns, a pattern of life analysis was performed 
first to discover specific sensor and isotope signatures across locations. For example, it was 
found, as expected, that there are less alerts on the weekends when construction activities are 
limited. 

6.2 Applying Domain-Aware Artificial Intelligence on the CBRN 
Battlefield 

Adam Seybert, U.S. Army Nuclear and CWMD Agency 

In many ways, the pursuit of early proliferation detection mirrors the hunt for rapid post-
detonation characterization methods. While early proliferation detection results in a reduced 
threat of strategic surprise, early fallout characterization reduces risk to first responders during 
consequence management operations and allows greater operational freedom of movement for 
forces on a nuclear battlefield. However, extracting the useful information continues to challenge 
even the most knowledgeable person when presented with the sheer volume of available data, 
sources, and formats.  

This presentation highlighted how solutions in the nonproliferation domain can be applied to 
CBRN response. Both domains encounter the same data sparsity and similar source and 
sensor variability. In turn, domain awareness is critical, although these domains face different 
domain challenges such as time scales, data volume, data types, and quality.  
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During the WMD defeat stage of CBRN response, there is more time for data quality control 
(Joint Publications 2019). In CBRN response, information about the data quality or where it 
came from does not always exist. Another key difference is the type of decisions being made. 
Data volume dramatically increases in a response situation. Though nonproliferation work 
traditionally focuses on the WMD defeat stage, there are many related AI opportunities in the 
CBRN response stage. Key opportunities focus on awareness and execution.  

The same domain-aware and traceable AI technologies that enable early detection of nuclear 
weapons development should be applied to post-detonation nuclear modeling to bridge the gap 
in data discrimination. Three awareness-focused opportunities were presented. First, network 
strength monitoring was discussed. Assessing types of network disruption in multi-domain 
operations could help determine whether the disruption is normal or an attack. Second, image 
characterization and recognition though traceability was described as key. It is important for 
analysts to understand why an image processing algorithm classifies a result as a particular 
solution compared to another. The third awareness opportunity concerned CBRN route 
planning, which considers specific domain constraints that optimize for safety or mission 
success.  

Execution opportunities were presented as well. Redefining combat power in CBRN response is 
really about the effectiveness of solving problems. Combat power in this sense is increased 
when the experts can increase the speed of decision-making. Domain-aware AI allows us to 
place the tools that these experts need in their hands so that they can be effective and frees up 
other experts to do other things that AI cannot. These methods may also provide refined 
analysis enabling more informed and rapid operations in a contaminated battlespace. Applying 
these methods will reduce decision support timelines for critical consequence management and 
contamination avoidance missions. 

6.3 Extracting Dynamic Proliferation Expertise and Capability 
Representations from Heterogenous Multilingual Open-Source 
Data Streams 

Maria Glenski, Pacific Northwest National Laboratory; Svitlana Volkova, Pacific 
Northwest National Laboratory; and Emily Saldanha, Pacific Northwest National 
Laboratory 

Detecting and anticipating proliferation signatures such as expertise and capabilities from 
unstructured and dynamically evolving real-world data is a challenging but highly desired task 
that supports the nuclear nonproliferation mission. Existing efforts primarily focus on the 
detection of proliferation expertise in English bibliometric data via co-citation network analysis, 
which completely ignores content. In this presentation, a novel AI-driven mixed-method 
approach was presented that carries out two tasks. First, it fuses a variety of multilingual, 
heterogenous open-source data streams and converts unstructured data into knowledge. 
Second, it uses these dynamically evolving proliferation expertise and capability representations 
to enable predictive modeling and counterfactual reasoning.  

Understanding and reasoning in real-time was the objective and was accomplished by 
summarizing gigabytes of publicly available data with ML, natural language processing, and 
insights to make the data useful to end-users. These experimental results were demonstrated 
on in-domain and out-of-domain evaluation, respectively the nuclear and AI domains. Paper 
content and metadata were both evaluated for various keywords and topics. The relationships 
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between the content and context were fused to generate concept vectors to quantify the 
similarity between the various concepts and showed relationships between the different ideas.  

This research supplements traditional nonproliferation efforts by detecting, forecasting, and 
reasoning about illicit proliferation though adding strong multilingual, knowledge representation 
and summarization, and inference components. These results show representation from many 
languages and country participation. The topic of papers, specifically nuclear or non-nuclear, 
can be identified. Taking authorship and other metadata into account, this approach can show 
insight about the expertise of teams. 

6.4 Plutonium Attribution Methodology Development Using Machine 
Learning Techniques 

Patrick O’Neal, Texas A&M University 

A nuclear forensics methodology capable of identifying the source of an undeclared plutonium 
sample would act as a deterrent to potential nuclear proliferation. Previous work at Texas A&M 
University, developed a methodology able to determine a plutonium sample’s reactor of origin, 
burnup, and the time since irradiation by comparing a set of intra-element isotopic ratios against 
a database of isotopic ratios using a straightforward maximum-likelihood calculation.  

The maximum-likelihood surface generated is different for each reactor. The most likely burnup 
scenario can be modeled, but a spoofed sample would not fit these typical model profiles. 
Spoofed samples could come from two different scenarios, but a maximum-likelihood approach 
will assign a much higher probability for one than the other, and this work therefore focused on 
a different approach. 

To improve the robustness of the methodology, the attribution step used models trained using 
ML techniques in lieu of the maximum-likelihood calculation. The presented ML approach 
consisted of a support vector classifier to resolve the reactor of origin and a set of gaussian 
process regression models to quantify the sample’s burnup while the time since irradiation was 
quantified analytically. This change allowed the methodology to better leverage knowledge 
about how each isotopic ratio is related to the three parameters of interest as well as to scale 
the methodology to handle plutonium samples with more complex characteristics.  

The previous library relied on the varied isotopic ratios caused by different separation 
efficiencies in various scenarios. Specifics about the separation physics were required to 
extrapolate. This work removed the need for that insider knowledge. Using ML instead of 
maximum likelihood allowed only the ratios that contribute to the determination to be used, 
resulting in a much leaner approach to solve the attribution. The performance of the ML method 
was similar to the previous maximum-likelihood method which demonstrated that the method 
maintains the success of the overall approach while removing a vulnerability. 

6.5 Toward Early Intent Detection of Search Queries with 
Transformers and Experts in the Loop 

Adithya V. Ganesan, Stony Brook University  

Most technical report search engines retrieve information for a single given search query, but 
one might be able to infer the end goal or general intent by considering the sequence of multiple 
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queries. In fact, such intent may often be inferred early in a sequence, before a search is 
complete, enabling, for example, detection of intent to perform illicit activities (Chen et al. 2019, 
Hashemi et al. 2016). The goal of this work was to produce a toolkit that can detect user intent 
based on sequential searches where various AI techniques can be swapped in and out. The 
approach used both supervised and self-supervised approaches, making it more generalized.  

An early event detection algorithm and pipeline to classify sequences were proposed, using only 
an early subsequence as well as deriving the sequence length necessary to confidently make 
such classifications. A self-supervised approach was described to classify these sequences of 
queries by attempting to classify the eventual cluster a sequence will belong to before the 
sequence is complete. This aids an “expert-in-the-loop” process whereby topical expertise can 
inform the cluster objectives of the model. In turn, the predictive models seek to be able to learn 
the patterns in the sequences associated with such expert information to induce the final intent 
at an early stage. 

Specific approaches and their benefits were presented. Transformers that are pre-trained on 
scientific documents can incorporate domain awareness by using annotations from the experts 
and include more domain-specific knowledge. Short-text clustering could be useful because it is 
not a supervised task and can learn attributes. Clustering of a sequence of queries can identify 
a higher-level representation of queries to be graphed. Clustering can be replaced with other 
things like topic modeling approaches or linguistic modeling. An expert can be added where 
class models are assigned to a cluster label, which can then get fed into the next step.  

6.6 Proliferation Monitoring with Hidden Markov Models 

Andrew Hollis, North Carolina State University 

A longstanding goal in nonproliferation research has been the monitoring of development, 
manufacturing, or testing processes that might present a proliferation risk. For a particular 
process, it is desired to determine what activity is underway by using a combination of observed 
data and subject matter expertise about the process. In many cases, the data gathered from 
standard monitoring and surveillance systems do not yield direct knowledge of the activities 
underway.  

This presentation described a model that allows for the inference of the process activity based 
on what is observed. Using hidden Markov models (HMM) (Rabiner and Juang 1986), a 
probabilistic model was developed that encodes subject matter knowledge about the process 
and can be used to infer and characterize processes.  

This model described the unobserved process of interest, the observed process data, and the 
relationship between the process and the data. Given specific observations, the model could 
infer the most likely activity at a given time. Like any statistical model, the parameters must be 
fully specified for the initial state, observation, and transition.  

The case study presented looked at the Dry Alluvium Geology (DAG) experiment. Observation 
data included equipment in use at certain time intervals. Domain awareness was incorporated 
using a discrete event simulator which incorporated a process model built by experts specifically 
for the DAG experiment. This allowed estimation probabilities to be determined for activity 
completion times. This resulted in a determination of the most likely scenario and 
characterization of other possible scenarios with uncertainty. Additionally, this model can 
produce a likely sequence of activities, including predictions of the process start and end. 
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7.0 Sparse Data and Rare Events 
This session focused heavily on the problem of having insufficient data to constrain the solution 
via purely data-driven methods. This problem often does not stem from a lack of data. In fact, 
many of the projects described large datasets consisting of extended periods of monitoring 
using large numbers of sensors and multiple modalities of sensors. Instead, this problem stems 
from a severe class imbalance in the dataset. While a large amount of data is collected, only an 
small percentage actually describes the phenomenon of interest that researchers are attempting 
to identify or characterize.  

This problem imposes restrictions on the methods that can be used to model the data. First, the 
method chosen must be able to deal with having a smaller than ideal quantity of data related to 
the phenomenon of interest. This means choosing techniques that preserve information and/or 
bring in information known from outside the data. Second, the method chosen must deal with 
the severe balance issues. This means choosing techniques that prevent overoptimizing on the 
null data without also introducing an unacceptable level of false positives. 

The problem of extreme amounts of data, but scant amounts of data related to phenomena of 
interest is an common one in the DNN space and is often a driver of incorporating domain-
aware methods into neural analysis. The problem was elegantly described in Dr. Myers’ keynote 
as the “small n, large p” problem. While this problem is felt across many if not most 
presentations in the workshop as a whole, perhaps it is felt most acutely by some of the 
presentations in this session. 

To combat this problem, presenters turned to a wide variety of methods to make their problem 
tractable. Some presentations hugged very close to data-driven methods with only small tweaks 
to provide domain awareness such as domain-aware data segmentation. Some of the tweaks 
were larger such as domain-aware data augmentation strategies, an example of which is shown 
in Figure 7.1. Almost all presenters turned to (at least minimally) domain-aware feature 
engineering in order to reduce the dimensionality of their data stream – although the methods 
by which this was done varied. Finally, some of the work begins to hint at moving toward neural 
symbolic equation discovery and equation driven state estimation – a rapidly evolving domain-
aware literature. Regardless of the method chosen, all of these domain-aware methods were 
invaluable in making otherwise unsolvable problems tractable. 
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Figure 7.1. Example of cyclically combining multiple types of domain knowledge to inform the 

collection of new information, followed by the use of AI for analysis. Taken with 
permission from 7.3, “Persistent DyNAMICS: Remote Sensing Based on Domain-
Informed Analytics.” 

7.1 Constraining Data-Driven Models for Detection of Sparse 
Temporally Correlated Events 

Garrison Flynn, Los Alamos National Laboratory 

The MINOS dataset includes data from a very large number of sensors spanning several 
modalities including radiation, effluent, electromagnetic, thermal imagery, biota, and seismo-
acoustic. The sensors considered include one current monitor for EM data, one high-purity 
germanium detector for radiation data (placed near the stack), three infrasound sensors for 
acoustic data (placed near the cooling towers), one tri-axial geophone for seismic data (placed 
near the cooling towers), and one FLIR camera for infrared imaging (placed near the cooling 
towers). From these raw data streams, features were engineered to provide on the order of tens 
of features per modality across time. In her work, Dr. Flynn seeks to use a subset of these 
sensors to estimate the power level of HFIR around which the MINOS sensors are placed.  

The method chosen to model the data was a Naïve Bayes classifier (Rish 2005). This model 
gives the probability of the reactor being in a given power state given the observations from the 
sensing modalities by directly applying Bayes theorem. The classifier was broken into two 
stages where the first stage assessed if the reactor was at 0%, 100%, or in between and the 
second stage predicted the specific power level between 0 and 100%. The data available was 
limited with only five events where power levels were between 0 and 100% being available. 
Because there are strong correlations in intra-event data, in a domain-aware fashion four events 
were used for training and the fifth was held out for testing. It was also important to include the 
correct combination of modalities. It was found that some modalities provide very useful 
information and adding other modalities with different information was generally beneficial while 
adding highly correlated modalities was generally detrimental. The most successful model used 
thermal, electromagnetic, and effluent data. 
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Beyond making single predictions about the narrow 30 second windows, the group had the 
insight that events sequential in time are highly correlated. Therefore, a model that made use of 
nearby information would likely outperform the single timestep classifier. To this end, the group 
employed Hidden Markov Models and Naïve Bayes Sequential models. These model forms 
outperformed Naïve Bayes for the vast majority of combinations of held-out cycles and held-out 
modalities. Future work looks to change the structure of the hierarchical model to make even 
better use of known characteristics of reactor behavior and find ways to place additional weight 
on events that are the most similar to the event in the test set in order to eliminate errors due to 
event mismatch. 

7.2 Domain-Informed Assessment of Nuclear Reactor Operations 

Tom Reichardt, Sandia National Laboratories 

Dr. Reichardt and his team are also part of the MINOS venture and worked on a very similar 
problem to that of Dr. Flynn’s team, but the methods chosen were significantly different. His 
team relied on the same infrasound, but rather than staying with a primarily data-driven model, 
the team-built physics models attempting to connect the signatures collected to what was known 
about the system that they were investigating. 

The infrasound data was converted into a spectrogram via Fourier transforms and then 
decomposed into spectral and temporal factors via non-negative matrix factorization. Already in 
these spectral components it is possible to see the effects of some of the changes in fan and 
pump activity. To attain more specific information about the intensity of the activity, it was 
necessary to use physics interpretations of the changes in observed frequency. Because the 
acoustic emanations are highly nonlinear with speed, it was necessary to train a decision tree 
that related blade passing frequency and intensity to the fan speed and number of fans at that 
speed. This model was >96% successful. Future models look to model fan speed via equation 
discovery rather than decision trees with the hopes of being even more accurate and being able 
to characterize states in addition to 0%, 50%, and 100% (Udrescu and Tegmark 2020, Brunton 
et al. 2016). 

Despite being able to diagnose changes in pump and fan behavior, these activities did not 
directly correlate with reactor activity. To bridge from cooling behavior to reactor power, it was 
necessary to model the flows of heat in the system. Heat generated by the reactor needs to be 
rejected into the environment by the cooling tower. However, the efficiency at which it does so is 
highly impacted by surrounding conditions. Successful modeling of power behavior required 
having a model of the heat exchanges of the system as well as knowing the local meteorological 
conditions to set the magnitude of the loss terms and efficiency of heat exchange in the cooling 
tower. After applying this heat exchange model, the predictions of the system on reactor power 
become well-calibrated. Future work looks to continue to refine this model in order to improve 
the accuracy with which the heat flows are modeled. 
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7.3 Persistent DyNAMICS: Remote Sensing Based on Domain-
Informed Analytics 

Thomas Kulp, Sandia National Laboratories; and Sidharth Manay, Lawrence Livermore 
National Laboratory 

The Persistent DyNAMICS Venture is developing a multi-modal activity detection system also 
using HFIR as a testbed. Sensed quantities include the state, motor state, controller state and 
movement of key hardware, the pipe state, pump state, water state, flow rate, valve movement, 
valve state of the water flow, tower state, fan state, plume presence, plume size, and 
temperature of the heat disposal, occupancy, door movement, and door state of the entrance, 
presence, movement, and state of targets, and the presence and movement of vehicles and 
containers. The sensors are cued to make observations ‘at the right place and time’ based on a 
‘dynamic persistence’ model and processing occurs at the edge such that the transmitted 
information is reduced to compact textual sensed information. These compact transmissions 
avoid site-specific info and instead focus on transmitting science-constrained activities in a 
domain agnostic Lexicon. All of these observations are orchestrated and synthesized by 
PD-LIVE, a system that infers site operational state and processes from the data. 

Subject matter expertise regarding site industrial process is encoded into the KMS [knowledge 
management system]. This process allows the system to take that information and make 
decisions in a maximally domain-aware fashion. This formatted knowledge is used to support 
testing of hypotheses about the facility and the activities that are occurring using AI-based 
inferencing tools. The KMS interfaces between the hypothesis and the autonomous system to 
make observations, employ inferential tools, and update site knowledge based on the 
inferences in a process termed the ‘knowledge update cycle.’ 

A sample use case for this system might include using the sensed data to tell if a target facility 
is consistent with production of a short-lived medical isotope or with the production of a 
plutonium isotope for a radioisotope thermoelectric generator. Current focus on characterization 
of industrial activities focuses on determining what activity they are doing and where they are in 
the process.  

Functional tools used to make these decisions include a sequence model which informs 
dynamic Bayesian networks and case-based reasoning and a high-level process model which is 
a generative simulator of state vectors for ML. Finally, the data provided is used to train data-
driven random forest models which implicitly embed the foundational knowledge extracted by 
the components earlier in the system. 

7.4 Node and Region Importance for Classifying Nuclear Operations 
using Multisensor Arrays 

Jake Tibbetts, University of California Berkeley 

Like the presentations for Dr. Flynn and Dr. Reichardt, this presentation focused on data taken 
in the vicinity of HFIR with the goal of classifying the reactor power level (this time looking at 
on/off instead of transient power level). However, the data that was used was different than that 
collected by the MINOS team. Instead, this data was collected by the SNITCHES team via 
12 Merlyn multisensory platforms. These platforms collect data describing magnetic field, 
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acceleration, pressure, temperature, and ambient light at 16 Hz and report the mean and 
variance at 10-minute intervals. These sensors were deployed in April 2019. 

The nodes were deployed in a spatially distributed manner and the project sought to identify the 
nodes most useful to prediction accuracy. In order to perform this assessment, the project 
looked to wrapper methods including Leave One Covariant Out (LOCO) (Lei et al. 2016) and 
Forward Feature Selection (FFS) (Guyon and Elisseeff 2003). LOCO involves iteratively training 
a network and removing one input stream at a time to determine the effect on network accuracy. 
FFS involves iteratively training a network and greedily selecting one input at a time to maximize 
network accuracy. These wrapper methods were performed both for single nodes and for 
regional groups of nodes. This regional grouping allowed the wrapper methods to identify the 
importance of a geographic area in a domain-aware fashion. 

Results suggest that nodes near the cooling tower were the most influential to increasing 
performance followed by nodes near the processing facility. Nodes between HFIR and REDC, 
near the target processing facility, and near the main complex entrance were detrimental to 
model performance. Because the wrapper method provided explanations about node 
importance to an otherwise uninterpretable model, it is now possible for subject matter experts 
(SMEs) to view the wrapper methods in a domain-aware fashion to make hypotheses about why 
the various regions had the predictive power indicated by the results. 

7.5 One-shot Target Detection via Physics-Informed Training 

Natalie Klein, Los Alamos National Laboratory 

Longwave infrared (LWIR) hyperspectral data detected by an airborne sensor yields signals that 
are starkly different than the emissivity signals that leave the ground. Blackbody radiance, 
downwelling radiance, atmospheric transmission, upwelling radiance, etc. all work to modify the 
signal such that the detected spectrum differs from the spectrum at the origination. It is desired 
to be able to determine the source of the signal corresponding to any detected spectrum and to 
be able to match that source spectrum to a library of materials. 

Using purely data-driven methods would require a prohibitive number of labeled 
emissivity/detection pairs. However, the physics of the relationship is known such that for a 
given emissivity it is possible to use a physics model to construct many physically realizable 
detection spectra that span the space of expected detections for that emission source. Thus, it 
was possible to generate physically informed, domain-aware input-output pairs for a network to 
learn. 

The actual architecture instantiated to do the learning was a Paired (see also Matching, 
Siamese) Network. Paired networks present the network with two inputs identified as either 
belonging to the same class or as belonging to a different class. Those inputs are put through 
identical encoders to form latent vectors. The loss function incentivizes like inputs to be put 
close together in latent space and unlike inputs to be put far apart in latent space. These 
networks are popular elsewhere for allowing semi-supervised training – with the challenge that 
finding optimal negative examples is an open science question (LeCun and Misra 2021). For 
this problem, Paired networks were chosen because they excel at one-shot learning. This has 
been shown previously on image, language, and even hyperspectral data (Anderson et al. 2019, 
Koch et al. 2015, Vinyals et al. 2016). 
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Once the network was trained on the synthetic signal pairs, it was possible to apply the network 
to new materials under novel conditions. The test data obtained ROC scores very similar to that 
of the training data – showing excellent separation between pairs of the same material and pairs 
of different material. By applying principal component analysis to the latent vectors, Dr. Klein’s 
team was able to show tight clustering in the latent space for groups of the same material – 
including groups formed from materials not seen during testing. Future work looks to apply 
explainability tools (e.g., LIME), extend to applying the method to gases, and extending the 
physics model generating the input-output pairs to accommodate the new inputs. 
 



 

Robust Deployment and Decision Support  33 
 

8.0 Robust Deployment and Decision Support 
A key theme that emerged in this session is the necessity of integrating guidance, feedback, or 
knowledge representations from SMEs as a requirement for building robust and effective 
models to deal with applications in the nuclear, and related, domains. This echoes similar 
emphases from keynote presenters and panel discussions on the benefit and need for 
incorporating domain experts early and often in the lifecycle of development and deployment of 
AI-based solutions.  

Presentations in this session introduced approaches for the development or evaluation of 
domain-aware AI methodology that incorporated human-in-the-loop feedback from domain 
experts or included domain knowledge in the foundation of the ML models and algorithms used 
as a means to bolster model performance in the face of limited training data, biased datasets, 
and new environments encountered in testing or deployment. It is well known that AI models are 
often brittle and fail when expected to perform on out-of-domain inputs or in new environments, 
examples of which are shown in Figure 8.1, and current approaches to increase the robustness 
of these models rely on increasing the diversity or generalizability of training data. One method 
to do so is to increase the scale of data, and attempt to sample from all environments that may 
be encountered. However, this is difficult or infeasible for many domains and in particular the 
nuclear domain where representative or large-scale ground-truth datasets simply do not exist. 

Several presentations illustrated how domain-aware methods can be used to validate AI models 
or AI components of systems that predict behavior and to determine whether the AI predictions 
are robust or whether the accuracy in test beds is more reflective of overfitting to the training or 
testing data. For example, the third presentation highlighted the benefit of incorporating domain 
knowledge to evaluate model performance across the wide range of variations that would be 
encountered in the wild. The final talk presented a corruption recovery approach to transform 
new, unexpected inputs to variations of inputs that a model was trained on, using a 
transformation that can be adapted on demand to increase robustness in unseen environments. 

Others highlighted the ways in which domain expertise can be leveraged to enhance the data 
provided to models, by reducing noise and removing inconsequential data features. For 
example, the first talk presented an approach that uses tensor decomposition and subject 
matter expertise guidance to reduce large-scale measurement signals from seismic and power 
sensors to meaningful representations needed to identify when industrial activities such as 
firesets, emplacement, and stemming occur. This approach leverages the inclusion of SMEs 
during development (a workflow style that Dr. Hague advocated for during her keynote “A 
Perspective from the Analytic Intelligence Community”) to reduce or remove the noise in 
measurement datasets, which is an approach to mitigate the “small n, large p” issue discussed 
by Dr. Myers in her keynote “Domain-Aware AI: There and Back Again.” 
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Figure 8.1. Examples of variations in an image context that are found in the wild that may not be 

present in the training data, leading to unpredictable behavior of AI systems. Taken 
with permission from 8.3, “Robustness in the Wild using Domain-Aware Surrogate 
Functions.” Originally adapted from Geirhos et al. 2020. 

8.1 Annotation Transfer for Prediction of Industrial Operations 

Erik Skau, Los Alamos National Laboratory 

This presentation highlighted the physical explainability of latent features and their application in 
guiding feature selection in downstream predictive tasks, aided by SME feedback, or as a 
preprocessing methodology for large-scale datasets to support transferability of annotations to 
new target datasets. Using matrix tensor decompositions to approximate data inputs (structured 
as tensors) as summations of tensor products of triplets, enables a reduction in dimensionality 
and can be used to denoise the data. However, the number of fundamental components to 
reduce to is a key parameter to be tuned – overestimating leads to fitting noise in the data while 
underestimating the number results in loss of fundamental information. Communication with 
SMEs or the use of supervised techniques to understand the decomposition of features is key to 
avoid either extreme and can be used to improve predictive models or interpretability of models 
that are fed the decomposition of features as input. This technique of incorporating tensor 
decomposition and SME feedback on what the decomposition represents was applied to data 
from the DAG test bed, using data made available by the Advanced Data Analytics for 
Proliferation Detection (ADAPD) project. 

In this application, there is seismic data from geophones and data collected from electric power 
meters, and the downstream predictive models seek to predict industrial activities of interest 
(firesets, emplacement, and stemming) for which there is an annotated calendar of known 
industrial events. Examining the latent tensor features for the seismic data, SMEs were able to 
identify the decomposition was a combination of the spectral pattern, temporal pattern, and 
angular pattern; effectively the decomposition represented what was happening, where, and 
when in a very manageable and interpretable representation for SMEs. Further, after 
interpreting this decomposition, SMEs were able to provide further guidance to clean the 
decomposition and remove irrelevant signals. Support Vector Machine models for stemming 
and emplacement using the seismic data decompositions were found to outperform similar 
models that did not leverage the technique, as illustrated by higher performance according to 

Domain Shift Pose Change Distortion Textures Adversarial Background Change
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ROC curves. After identifying that seismic information was able to transfer from one experiment 
(DAG 2) to another (DAG 3), a combination of latent feature fusion and graph interval 
techniques was used to transfer information between seismic and power. Using resulting 
models that use both seismic and power signals was found to outperform the models that rely 
on seismic inputs alone (Prasad et al. 2020) illustrating how combining unsupervised tensor 
decompositions with supervised approaches can reduce complexity, improve performance, and 
increase the interpretability of the supervised algorithm. Physically interpretable decompositions 
such as those described in this talk can be related to SMEs to provide meaningful guidance or 
feedback on what to discover or investigate to understand large datasets and guide the 
development of interpretable predictive models. 

8.2 Automated Synthesis of Soft Labels using Neural Stochastic 
Differential Equations and Attribution-Based Confidence 

Sumit Kumar Jha, University of Texas at San Antonio 

Widely used benchmark image datasets often have hard labels―i.e., singular labels that should 
clearly annotate each example―for each image but the reality is often that these datasets have 
examples where hard labels that are difficult to justify or where the image does not have a clear, 
single label. In contrast, they may have soft labels where there are multiple labels or a level of 
uncertainty in labels where it may be hard to distinguish between more than one label, which 
can cause confusion. When dealing with this issue, there are two key questions that were 
covered in this presentation:  
1. How can we algorithmically detect images in large data sets that clearly require soft labels? 

(e.g., in ImageNet where the scale of the dataset makes it hard to identify which need 
multiple soft labels, creating challenges for a manual approach) 

2. How can we algorithmically identify candidate soft labels for images that require them, in a 
way that SMEs can tweak?  

Dr. Jha addressed how to detect images that require soft labels using ensembles of neural 
stochastic differential equations and a novel attribution-based confidence (ABC) metric (Jha 
et al. 2019) that is used to compute the probabilities of soft labels. The ABC metric calculates 
the probabilities for each of the soft labels by focusing not just on the input image but also on 
the explanations for each class, i.e., why an input should belong to a certain class. These 
explanations can include succinct explanations of class compatibility from existing explainability 
tools for machine learning predictions, such as LIME (Ribeiro et al. 2016). Finally, several 
avenues of future work in the proposed approach were introduced including improving the soft 
labels that are identified using neural networks trained on the initial soft labels, controlling the 
training process to remove errors such as those caused by adversarial examples, and 
incorporating domain knowledge into the process as a means to improve performance.  

8.3 Robustness in the Wild using Domain-Aware Surrogate 
Functions 

Jay Thiagarajan, Lawrence Livermore National Laboratory 

When developing ML models, it is difficult to impossible to consider every variation in order to 
handle data not only in the real-world usage but also new environments. It was noted that 
“machine learning models behave unpredictably when they are not exposed to the variations 
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expected in the wild” during their training process. This presentation focused around how to use 
domain knowledge to identify the problems that would not be expected in development, with the 
emphasis that achieving robustness in the wild requires systematic integration of domain 
knowledge in the training process. He illustrated that the issue of model robustness goes 
beyond answering the question of whether the model behaves similarly to how humans have 
labeled the known data (e.g., the annotations on which the model was trained, and would be 
expected to mimic) but also whether the model behaves as you would it expect it to in new 
applications. For some conditions, such as scrambling image pixels, where models generalize 
more effectively than humans. However, for other conditions such as domain shift, distortion, 
adversarial attacks, or background changes in image inputs, models fail whereas humans are 
naturally able to adapt. 

Although many existing techniques on model robustness focus on methods such as adversarial 
training which is popular in the general computer vision community, used to increase model 
generalizability by introducing more and more variations of the data inputs. However, these 
approaches are often limited to simple pixel variations, which are insufficient to model the wide 
range of variations encountered in the wild. Attribute-Guided Adversarial Training (AGAT) 
(Gokhale et al. 2020) is the proposed solution for robust model development and design.  

AGAT focuses on emulating the data variations in a natural manner, parameterizing the input 
space with relevant attributes, and going beyond the training examples to maximize exposure to 
combinations of attributes without having access to the test domain. As a result, AGAT can 
support a broad range of specifications for domain-specific applications and use domain 
expertise via human-in-the-loop approaches where experts can specify the surrogate functions 
used to transform images to reflect required changes to the example – integrating domain 
knowledge in the training process. It was illustrated that AGAT can effectively outperform other 
approaches when applied for object-specific attribute changes, geometric transformations, and 
natural image distortions (noise, blur, weather, pixelation). When queried, he identified that the 
most challenging aspect of this approach is creating the connections between domain 
knowledge and that this solution is domain independent – it will be effective for any domain for 
which one can create a domain knowledge representation of the space, although data or 
problems with better understandings of what variations can be expected that can be converted 
to clear mathematical formalisms have an advantage over others. 

8.4 A Computational Framework for Deterrence Assessment 
Analyses 

Michelle Quirk, NNSA Office of Advanced Simulation and Computing (NA-114) 

Deterrence operations “convince adversaries not to take actions that threaten U.S. vital interests 
by means of decision influence over their decision-making,” essentially acting to prevent bad 
actors from doing bad things. This presentation introduced a computational framework that 
leverages intelligent cognitive assistants (ICA), domain knowledge, and cognitive sciences for 
the application of deterrence assessment and analysis. The presentation highlighted that 
successful policies are considered in regard to both the military domain and political, or socio-
economic impacts. The most common deterrent persuades an adversary not to carry out 
intended actions because of costly consequences. Deterrence analyses consider adversary 
calculations consisting of (1) benefits of the given course of actions, (2) the costs of the course 
of action, and (3) the consequences of restraint, i.e., the costs and benefits of not taking the 
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course of action sought to deter. These key features of adversary calculations are the core of 
the framework presented. 

With the aid of protoforms, the framework is able to formalize deterrence analyses that 
transform generalized queries in the form of “Does adversary A consider the use of weapon W 
against U.S. interest/target T in the context C?,” where the context can be geopolitical, 
economic, or social and reflect the complexity of the problem, to simplified structures “If (A and 
W and T and C) then D?” (where D represents deterrence options) for which an automated 
ranking of deterrence options can be computed. Often these analyses are static and do not 
support significant reuse of results, with one method being the manual creation of colored tables 
of scores and risks using the typical high (red), medium (yellow), low (green) color mapping. In 
comparison, the framework presented uses protoforms and computational “perception of the 
value of the threat” functions, represented as theta functions where theta is bounded by 0 and 1 
to provide a more continuous representation of the high/medium/low categorization of threats to 
automate adversary calculations in a manner that is generalizable and reusable. This framework 
can incorporate not only analyst perceptions of adversaries, but also adversary’s perceptions of 
analyst perceptions and analyst’s perceptions of adversary’s perceptions of analyst perceptions 
– what adversaries think analysts know about them and what analysts think adversaries think 
they know about analysts. 

The iterative approach for perceptions and adversary calculations enables this framework to 
fully embed strategic and cultural aspects. However, there is a tradeoff between losing 
information (e.g., narratives or details that are found in longer reports of 500 pages and more) 
and the speed and structural gains when automated. The need of continuous evaluation with 
input from deterrence experts, decision makers, and the knowledge engineers throughout the 
deterrence analysis lifecycle was emphasized. Doing so allows the framework to leverage 
automation gains as well as domain knowledge of deterrence experts and cognitive sciences. 
When queried about the use of probability distributions for ranking deterrence, it was noted that 
the proposed framework does not just use probabilities but supports the inclusion of analyst’s 
domain knowledge or intuition; One cannot just assign a number to a deterrent easily because 
the context matters. Another benefit to the framework is that it is dynamic, where knowledge of 
adversaries can be updated as dynamics change or more is learned about the adversary 
evolving over time. 

8.5 On-the-Fly Robustness in the Wild via Data-Driven Generative 
Priors 

Rushil Anirudh, Lawrence Livermore National Laboratory 

AI models are typically designed under controlled training settings before being deployed in the 
wild, where, in contrast, there is little to no control over how inputs may change or become 
distorted. It is well known that ML models fail when they are deployed outside the training data, 
as they were not tested against the kinds of variations of inputs that they will encounter in the 
wild when tested in such a controlled setting. Some of the uncontrollable distortions that sensor-
based systems can encounter include environmental distortions caused by weather or changes 
in lights or sensor distortions caused by missing or broken sensors. Pre-trained models are 
often trained using cleaned datasets that were collected under ideal controlled conditions. It is 
not always possible to make changes to the classifier to make it more robust, e.g., because data 
is changing over time, which would require constant retraining and redeployment or because the 
classifier is proprietary, or the result of several workflows combined. In this presentation, a 



 

Robust Deployment and Decision Support  38 
 

model independent approach to robustness, MimicGAN, is described that leverages signal 
recovery on inputs in deployment to enable classifiers to remain robust even when the inputs 
shift (Anirudh et al. 2020; Anirudh et al. 2021).  

In a motivating example, it was illustrated how a corruption agnostic data recovery process was 
able to significantly improve model performance for a deep neural network image classifier: 
7.2% accuracy increasing to 46.4% for negative blur distortions and a 25.5% accuracy 
increasing to 45.5% for dropped pixel distortions. For these corruption models, every sample in 
the wild is assumed to be a corrupted version of the clean dataset. MimicGAN performs data 
cleaning using a manifold projection, which is able to clean noisy data encountered in 
deployment by solving a noise model formula and projecting it onto an approximated space of 
the clean data. One approach to solving the noise model formula is to use projected gradient 
descent (PGD), however this optimization is not robust when the corruption function is unknown. 
This causes PGD to fail when the test distribution differs from the training distribution. 

In comparison, the MimicGAN approach is able to adapt “on the fly” to new distortions and 
leverages an iterative approach to estimate the clean solution and corruption until the 
estimations converge. More robust performance was shown using input images with varying 
degrees of rotation, where MimicGAN consistently reconstructed the image without rotation and 
other existing approaches (PGD, ResNet+PGD, iGAN) were not as successful. In discussion 
after the presentation, Dr. Anirudh highlighted that there is an assumption that every layer in the 
MimicGAN network is some corruption of interest, and that there is a guarantee that the 
approach is robust to all combinations of those functions. However, there has not been a clear 
study comparing leveraging domain knowledge versus noise distributions, so the inclusion of 
domain knowledge is still dependent on the application. 
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9.0 Panel Discussion: Requirements and Opportunities for 
Domain-Aware Methods in Proliferation Detection 

A guiding principle of the DNN R&D portfolio and a key takeaway from the first Next-Generation 
AI for Proliferation Detection Workshop is the importance of tying the research as directly to the 
mission as possible. To reinforce this idea, a panel was held at the end of the workshop to 
refocus the discussion from specific technical approaches to mission considerations. Panelists 
were chosen from the keynote speakers and session chairs to provide representation from end-
user, researcher, and research sponsor communities. 

Panelists:  

• Emma Hague, Chief Data Scientist, DOE Office of Intelligence Foreign Nuclear Programs 
Division 

• Kary Myers, Statistical Sciences Group, Los Alamos National Laboratory 

• Becky Olinger, Portfolio Manager for Nuclear Threats Detection, Nuclear Detection Division, 
Defense Threat Reduction Agency 

• Angie Sheffield, Senior Program Manager for AI and Data Science, Nonproliferation 
Research and Development, National Nuclear Security Administration  

Moderated by Tammie Borders, Technical Advisor for AI and Data Science, 
Nonproliferation Research and Development, National Nuclear Security Administration 

Each panelist was given time for a brief opening statement and then a series of questions to 
prompt discussion were proposed. Questions are shown below.  

Moderator questions:  
1. If you ask five people about the definition of domain-aware techniques for AI, you are likely 

to get five definitions. What do you think of when you hear domain-aware techniques? 
2. For our mission partners, what are the most pressing needs that you believe can be 

addressed by incorporating domain-aware techniques into AI systems or analytics 
methodologies? 

3. Working to bring the mission and research closer together, what are barriers to using AI 
models to support the intelligence community?  

Audience questions:  
1. What are your thoughts on role of AI/ML to achieve levels of shared autonomy between 

machines and human experts in national security? For example, from level 0 (no 
automation) to level 5 (full automation).  

2. The fast pace of innovation and development in AI can be partially attributed to the 
combination of open-source software, collaborative software tools, and a strong emphasis 
on open and reproducible work. This environment enables comparison and development 
even in niche fields. For our niche field, security and classification boundaries complicate 
things. Do you have thoughts about how the national labs could think about adapting to take 
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advantage of these concepts (i.e., better share, review, and develop as a community) rather 
than in a siloed fashion?  

3. Have you found any resistance to presenting results to stakeholders with uncertainty? Do 
they understand how to interpret it or does it diminish the results if they are presented as 
“uncertain”?  

In the opening remarks, it was discussed that domain-aware AI presents opportunities to create 
collaboration between data science and domain experts. This is important as while it was 
initially thought that data-driven methods could provide special insights, particularly given the 
success of data-driven AI in the business world, this has been found to not translate to 
nonproliferation. Fortunately, the workflow to operationalize domain-aware approaches are 
close to being “solved” and teams can focus on more time-consuming or difficult tasks, such as 
new observation or data acquisition opportunities for a challenge such as treaty verification. 
Next, opportunities to apply these techniques must be further identified. On the DoD side, AI 
warfare won’t center on one technology, but rather integration of multiple technologies. An open 
question is how to understand what is “steady state” and what rises above a threshold to need 
an expert opinion. Common myths and misconceptions about AI/ML were also shared as 
reflected in the previous workshop report (Alexander et al. 2020).  

It was suggested that mere “pattern-matching” does not work for proliferation detection and that 
domain-aware AI requires collaboration and time investment to ensure that the data meets the 
assumptions of the method being used and the mathematics are applied in an informed way. It 
is important that the training data span the space of interest. Pressing problems in proliferation 
detection as directed by DoD that were noted include the need to acquire decision-making 
superiority or information superiority. In other words, there is a desire to make faster, more 
reliable decisions and to share information more effectively between agencies. These are 
challenges that domain-aware AI can help address, and while a new defense strategy may be 
developed, the priorities will remain the same.  

Turning to the intelligence community, “augmentation” and “automation” are stressed. To help 
facilitate the adoption of AI, tools need to be demystified, and relationships between researchers 
and analysists need to be built and strengthened. Keeping an open mind and ensuring a two-
way communication flow will dramatically help. Automation is on the way, and all levels of 
automation will eventually be implemented depending on the application, ranging from minimal 
to full. There is reason for optimism about capabilities that stop short of full automation, for 
example looking at a computational feedback loop. It was noted that AI can accomplish a lot, 
but that it will not solve everything.  

Another key aspect of operationalizing AI is to intentionally develop it to be shareable. This 
means planning open-source projects with best practices and working with technology transition 
offices and partners. Good documentation is important, and code should be shared as much as 
reasonably allowed. Standards for open-source software are also worthwhile to consider. 
Ending on an especially promising note, the panel reported that very little resistance is 
encountered when presenting results from algorithms with uncertainty. Decision makers 
understand that the rigor required is never going to provide a completely certain answer. 
Decisions will never be made solely on an algorithms output, and so answers with uncertainties 
are helpful to contribute to an improved decision-making process and outcome. 
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10.0 Conclusions 
Over the course of the two-day workshop, many presentations and panel discussions 
demonstrated applications of domain-aware AI technologies to proliferation detection challenges 
and identified potential opportunities for future research. While there remain challenges in 
developing deployable AI for national security applications, there are tremendous possibilities 
moving forward.  

Further, domain-aware approaches are key to improving generalizability and transferability and 
to ensure the creation of useful and robust models suitable for high-consequence missions. The 
time is ripe to expand the role of AI in nuclear proliferation detection. Not only is progress being 
made on the technology, but end-users recognize the potential of AI to create new capabilities. 
AI systems do not necessarily need to be perfect to be helpful, and through interactions with 
end-users, researchers can identify opportunities to make substantial impacts, including in the 
near-term.  

Key Finding: AI Techniques for National Security Must Adhere to High-Consequence Mission 
Requirements  

National security missions must employ AI methods across multiple data types including 
sensor, technical, scientific, signals and others. Standard machine learning models largely 
focus on image and text data sets. An emerging challenge is the advancement in data 
fusion algorithms for all-domain operations and AI-enabled, accelerated discovery and 
decision intelligence. Many operational environments will have degraded or uncharacterized 
conditions and developing robust models that perform predictably will require new 
mathematical approaches, including domain-aware methods. AI methods for proliferation 
detection must support high-consequence mission requirements and perform well in 
complex and noisy environments, excel at rare event discovery particularly in sparse data, 
be robust and predictable when deployed for decision support, and discover signatures for 
early proliferation detection beyond what is possible today.  

Key Finding: Domain-Aware Methods Combined with Machine Learning Have Great Promise 

Analytics methods that are solely data-driven are insufficient in national security because 
data is sparse, incomplete, and noisy. Data-driven approaches forego inclusion of key 
mission-relevant information found in subject matter expertise, computational simulations, 
mission requirements, and other traditional domain-aware methods and data sources. This 
workshop demonstrated a variety of ways in which domain-aware methods can be used to 
overcome these shortcomings. 

Despite the importance of domain-aware techniques and their history of use, there remains 
no accepted taxonomy. Five categories were discussed: expert knowledge, synthetic data 
generation, inclusion of non-traditional AI/ML methods into traditional AI/ML models, 
semantic or constraint-based methods, and soft labels. Further, it was observed these 
techniques are more often used in combination rather than in isolation.  
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Key Finding: Operational AI for Decision Intelligence Requires a System of Systems Solution  

The workshop reinforced a few considerations that are essential in developing AI systems. 
In particular, understanding the context for their application is key, and the formation of 
shared mental models between system developers and end-users ensures the usefulness of 
models developed. A key input to the mental model is the understanding that AI systems will 
continue to be used by humans and so must be human-centric or else inevitably have a high 
probability of failing. Components of the system of systems solution include the human in or 
on the loop, AI-based, and traditional approaches integrated into a decision intelligence 
framework.  

As researchers and system developers create game-changing AI technologies, this workshop 
makes it evident that one of the first considerations in developing AI systems should be how to 
leverage and incorporate domain knowledge. Such domain knowledge can come in many forms 
such as outputs from computational models and simulations; scientific, engineering, and 
operational requirements and constraints; subject matter expertise; and other data sources. 
While the sources of domain awareness may vary, a constant fact is that ignoring these 
additional sources of information sells short the impact that AI can have on proliferation 
detection.  
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