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EEG Processing for Neural Interactive Machine Learning
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Overview

Neural interactive machine learning (NIML) is about
developing a more effective interface for human-machine
interaction that leverages the unique pattern-recognition
abilities of the human brain. Directly measured brainwave
data and operator interactions to support both
unsupervised and semi-supervised data analytics to
enhance image and audio data processing.

Motivations
+  Machine learning cannot fully replace human pattern
recognition

+  Data-intensive environments increasingly require
effective human-machine interfaces

+  We believe we can leverage the strengths of human
beings and modern computational power

Benefits
+  Balancing work-load between human and machine
+  Improving throughput on large datasets

+  Create framework for training ML with human expertise

+  Identification of poorly-understood targets
+  Supporting trust in ML classification oute

Tableof Aptitudes

Present WOI"(SCOPE

+  Develop intuitive user interface

+  Evaluating existing ML pipelines

+  Comparing home-grown data with publically available
archives.

+  Characterization of noise sources and smoothing/pre-
filtering requirements

High-level NIML concept

Full archive

Subsample

Label
application

liser Inpwt

EEG Classifier
2. EEG dlassification Output

Equipment

Example high-
density system

Emotiv Epoc test system is being used to validate
data processing with consumer-grade equipment
Low-density systems (only 14 electrodes) are
mare practical and portable than high density (up
to 256 electrades)

Consumer-grade system is easy to wear and offers
Bluetooth connectivity

158N 978 953 307-680.5]

(from “Management of Eplepsy—
Research, Reslts and Treatment

EEG Classification: Deep Learning on Dense-Caps

Data using high-density EEG cap* was used to test neural network
classification algorithms. The goal of this analysis was to obtain a
classification model with minimal pre-processing and signal processing
applied on the raw EEG data. The pre-processing used in classification
algorithms included:

Removal of linear trends in the time series of each channel
Detection of bad channels in each session using an Entropy metric.
Interpolation of bad channels in each session.

Re-reference channels by subtracting the average of all channels.
Apply a 20 Hz 4" order Butterworth low pass filter

PCA spatial classification ‘

Previously published data Alpha .« Composite
used for reconstruction ‘J‘ s . _

Alpha, beta, and theta
frequency bins spatially
resampled

RGB composite fed into
classifier

Beta

Theta

AUC evaluation metric

We are currently studying accuracy results

using the area under curve (AUC) metric 1-D convent

obtained using the minimal data 1-D resnet

preprocessing pipelines listed here. The 3-D convent

results will be used to downselect for

integration into NIML. Siblresnet
LST™M

*We would like to acknewledge Nima Bigdely-shamlo for providing us with this data

PNNL-31540
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Experiments using Emotiv Epoc

Test sequence:

1. Noise characterization (eyeblinks, facial expressions, etc.)
2. Mixed language character recognition

3. Where's Waldo

4. Application-specific datasets

NIMLApp User interface

Time trace (seconds)
A Target stimulus A Distractor stimulus

3 e Characterization of noise sources
2y, | Evebin N
@ I":ﬁ i * Muscle-related signals come from
‘E o close to the scalp
é * Signals manifest very differently at
aoomow different electrode locations
Time trace (msec)
Next Steps

Fully characterize low-density headset strengths/weaknesses
*  Continue to evaluate EEG signal processing techniques
* Investigate electrode scalp positioning
* Investigate optimal experimental conditions for low-density EEG
+  Expand beyond binary (interesting/not interesting) classification

RGY

www.pnnl.gov
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“The singularity js near” — Ray Kurtzweil

Big Picture
Thoughts
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COMPUTING@PNNL D()1Q 2019 DARPA ASIST* BAA
Need: Human 2o Evtuation
= = Represent
Machine Teaming Operational || | P> :ESE"L“J:;'J;’:)
beyond Alexa e
2 P Bl 1nfer
_ Prer.!l‘ct
Fut\.rl!nmnsand
TAZ: Cogniti

*ASIST = Artificial Social Intelligence for Successful Teams
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Why NIML?

« EEG gets at the
fundamentals of human
interest and intent.

« EEG yields extremely rich
data sets.

s 55fﬁcaliun and q'-'ituing

Neurological Feedbacs

High density — 256 electrodes ow density — 14 electrodes

VS,

Emotw Epoc
consumer grade BCI

PNNL-31540
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Approach

A reasonable subset?

1. Study effectiveness of
EEG as a sensor stream to
train ML.

Big data

2. Use ML output to provide
useful feedback to users.

PNNL-31540

Samples the sibsst for

[

Rapid Serial Visual Presentation

What's the best we can do with
a computer screen and some

off the shelf sensors?

bi1d -

Enhanced classifisr Prediction



PNNL-31540

TeCHreST
COMPUTING@PNNL 2()19 Labﬂl’atory for
Analytic Sciences

Benefits " J—

Use cases:

1. Tool/workflow
recommendations.

2. Facilitate information flow in
dynamic teams.

3. Easier target searching in big ||
data. A C
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TECHFEST Scope:

COMPUTINGE@PNMNL 2019 . .
1. Select publicly available data, test ML

pipelines.
Implementation 2.

Collect in-house data and compare.
3. Test some very specific questions.
Build feedback GUI and vet.

5 I_ T Ta—— zl_ i T
Time trace (seconcds)

= O ’
e 1lus
1. Load stimulus 2. Human subjects 3. Collect and
data testing analyze data
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Our CNN classifier can
generalize ERP

Key Discoveries signatures across
subjects

1. Cross-subject trainability

seems feasible ROC Curves

04

Generalized Model
Specialized Model
= Mean ROC Generalized Model
—— Mean ROC Specialized Model

True Positive Rate

02

00

(L] ﬂll 014 ﬂIE DIB 10
False Positive Rate




PNNL-31540

TECHFEST #Ekctodes | AUC

COMPUTING@PNNL 2()1Q 256 0.910
128 0.909
Key Discoveries 64 0.910
32 0.902
2. Feasibility of using “low- 16 0.822
density” EEG systems
8 0.806
16 64 256

Electrodes Electrodes Electrodes

cHsT

o
a
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Key Discoveries

3. Being signature agnostic may provide best outcomes.

0453 s 0641 s 0.797 s
= 06
- 0.4
0.2
0.0
-0.2
~0.4
= -0.6
Nawe=19060
06 g
a4
0z = N i
SEr— I & R g
3 i el ;_,_,‘( T, v Y iy P, R s
00 st m\—f ,WK _.-"’?f R = g
bt e = ' L5 -‘-.‘. = }J; -H\\_ ~ _,-v—w-'_: St
-0.2 N
-0.4
00 02 w4 06 oe 10

Time (5]
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Key Discoveries

4. Sub-conscious recognition hypothesis is not supported

351 ms 414 ms

460 ms
‘.:Il ... e

-
bbh2ERE

o 200 400 600 800 1000
Time (ms)

PNNL-31540
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Key Discoveries

5. Near real-time EEG-based classification is not quite there.

o Po02
1 f e /! l, "% :‘IH-\.?*_’_ 1
Averaged responses = <0, PO0Z, T /L. -
5 = A R I !
approximately 800 i '
& Pood |
=J.|},;m.,.ﬁ_..~__\. S e
© _Po05 | =
et T, ! f(_.- ’\.i_

PNNL-31540
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Question: If this is so great, why is no one
Competition else doing it?

1 Umited States Patent 1 Pabm e l.s:l.ﬂ! ?i FI
st

Answer: they are

7 | Mission Impact through e
Why us: M;uro-lnsplrad Desiugn
Labarc DHD..IIMOI’_SI.DCM-HIOII % Faca Recogriton Using
* Weareamatrixed = @l - - = -7 “’”"’“f"""“““'““‘
organization.

 Strategic interest in HMT is
increasing here.

[ 4%

PNNL-31540



Conclusions

» This is still a huge challenge and will not be solved soon

* There are opportunities to use EEG beyond current state-of-the-art
* ML on EEG signals is very difficult
» Future advancements will need to employ multiple types of sensor streams

Continuing challenge:
Building user feedback GUI.

Tmage St dmsbyria Viwer

L

PNNL-31540
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Thank you
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Neural Interactive
ramess  Machine Learning

Driving question: how can we T
use biometric data to build RIS
better human-machine

interfaces?

Why NIML?
« EEG gets at the fundamentals
of human interest and intent.

» EEG yields extremely rich data
sets.

Neurological Feedbadk
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e QUiCk Note on EEG
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EEG = electroencephalography
Frequency bands: 0.5-40 Hz

Strengths:

* Real-time data stream

» Accesses sensory responses and emotion
» Extensive literature background

Weaknesses:

» Skull gets in the way

» Donning equipment takes time
» Signals lack specificity

UIUC EEG
checkers demo
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e Idealized NIML framework

Samples the subset for : i
Rapid Serial Visual Presentation
‘ i
In short, it's complicated.

° @ oisplays stimulus data
4 Do

Shows svents to

Generates brain signals
——> _01
N

Human

" b
m- |
Label Non-events

EEG headset

Interprets EEG data by doing binary classification

Capturcs brain signals
Computer
N . 21

© uiosetsningdststocmae

Events
Bigdata

Feed the data to train the classifier

bi14 +
Far real world use

1|
Enhanced classifier Prediction

PNNL-31540
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e BUIlAING @ Team

Pl: Jonathan Suter — sensors and
data analytics

Key staff:

Leslie Blaha — Human factors

Kayla Duskin — ML/DL

Johnathan Cree — Sensors,
hardware/software

Brett Jefferson — data analysis,
human factors

Gerges Dib — GUI, software, ML

Leif Carlsen — GUI, demo

Role players and advisors:

Katie Porterfield — ML

Bharat Medasani — lit review
Jesse Johns — ML/GUI

Gianluca Longoni - ML

Lyndsey Franklin — testing support
Yi Huang - testing support, data vis
Jonah Cullen — data analysis

Collaborators:

LAS — Brian Kritzstein and Ken Thompson
Naval Research Lab — Leslie Blaha
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e OCOpE
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1. Select publicly available data, test ML
pipelines.

2. Collect in-house data and compare.
3. Test some very specific questions.
4. Build feedback GUI and vet.

BE A= O

1. Load stimulus
data

2. Human subjects 3. Collect and
testing analyze data
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NIML - things we hope to learn

How effective are ML pipelines on EEG data?

Practical constraints of using EEG for human-machine teaming?

Can we use the features we’ve observed to flag targets without
pre-training?

How fast can we perform classification?

How different are EEG signatures from one user to another?

Can we see subconscious recognition?
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mawe:  NOte on Competition
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us Unlted States Patent o Pail Na: LS EAU8.THT 181
Bohesdin et al. s e afl Patess Apro L5 BI0E

Question: If this is so great, why is no one
else doing it? §

Answer: they are

Why us?

« We are a matrixed

Lab
Mission Impact through s
Neuro-Inspired Design
Labore

L]E"t’fl'lf‘ ol Subconscies Face Bazognion Liamg
D) ~Glads Eraln-Computar Intartaces

| . o - - - )
organization. Qauumbia XX .E :
» Strategic interest in HMT is e N e o
: ! " ‘q. i, 5 T e P 1L kTt KM X

increasing here. 0000606

PNNL-31540
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e WWho Cares About This?

* NIML's first incarnation was an NA-22 proposal
“‘Alternative data analysis.”

« Other sponsors

- DARPA

Proposals submitted based on this
« CTTSO project so far ~ & and counting
« DHS

* Intelligence community — LAS tie-in
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e POtential Impact

Broadly: lessening the burden of data-intensive tasks on human beings

Path to overcoming some of ML'’s limitations

Table of Aptitudes

Cognitively-informed data facilitation

Great attention span

Intuitive pattern recognition

Small training data set

Workflow recommenders

Can handle ambiguity

xxxx««g&
AR

Broad human-machine teaming interest areas
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wames:  Progress: Technical Output

NATIONAL LABORATCRY

» Poster at Cog-Sci 2018:

Generalizability of temporal convolutional neural networks

for inter-subject EEG classification

» Poster at NIPS 2019 sub-conference:

“Generalizability of temporal convolutional neural
networks for inter-subject EEG classification”

+ Joint publication in preparation with LAS: =

“Analyst workflows of the future

 Joint publication in preparation with NRL:

“Temporal Convolutional Neural Networks for
Generalizing EEG Classification”
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e Progress: Innovation

NATIONAL LABORATCRY

* Generalizable user-based training looks feasible

Train Test ROC Curves
e e | o =
" 1 ;
(v}
| o
Q
.
—
(Our CNN classifier can S .. I |
. a Generalized Model
generalize ERP g Specialized Model
signatures across }: 021 ~—— Mean ROC Gengra!ized Model
SUbjeCtS —— Mean ROC Specialized Model
\S J v 00 0 02 04 06 08 10

False Positive Rate
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vamver  Progress: Innovation (cont.)

NATIONAL LABORATCRY

+ “Comfortable” EEG headsets could actually be a viable tool of the trade

High density — 256 electrodes

Emotiv Epoc —

consumer grade BCI # Electrodes AUC

16 64 256 256 0910
Electrodes Electrodes Electrodes 128 0909
64 0.910
32 0.902
16 0.822

8 0.806
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Progress: Innovation (cont.)

We can provide value-added by advising on sensor inputs

TA3: Environment
and Evaluation

Operational
Environment

TA1: Al Agent Architectures

Observe Represent
Environment —~  Structure of the
and humans problem space(s)

Individuals

Infer
Human's goals
and beliefs

l

Plan Predict
*+— Potential interventions *— Future actions and
and priorities needs

Environment

Execute
Interventions

*

TA2: Cognitive Modeling of Individuals and Teams

PNNL-31540
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NATIONAL LABORATCRY

General statement: EEG data is more complicated than expected.

+ EEG cannot be used to identify specific stimulus images
Response: binary interesting/not-interesting may be enough

» Signature identification based on known EEG waveforms is not as useful as expected
Response: there are signatures, just not the ones we expected

» Real-time EEG response classification is still out of reach
Response: technical maturity of EEG + orthogonal sensing modalities

» Subconscious image recognition is very faint
Response: you can’t win them all
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eamve  Progress: Pivots

NATIONAL LABORATCRY

Original objective: This project is about using EEG to find signatures in data.

Pivot #1: This project is about training ML faster using human input.

Pivot #2: This project is about short-cutting ML training using human input.

Pivot #3: This project is about human-machine teaming platforms of the future.

PNNL-31540
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amwest 1lakeaways so far

* NIML has evolved a great deal
» EEG data is challenging but fascinating

* Primary goal seems doable, but....

0.453s 0.641s 0.797 s

A 06

) < " 04

/ 0.2

{ ) { | ( ] a9
-0.2
-04
- -0.6

Noye=19066
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e Organizational benefits

 Introducing a highly multidisciplinary team

» Additional visibility with LAS

» Building a custom interface tool (NIMLApp)

» Collecting a carefully curated high-quality EEG dataset

» Developing Dr. Suter as a Pl

» Providing exposure for multiple staff to ML

» Development of junior staff (Gerges, Brett, Katie, Kayla, Jonah, Yi)
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NATIONAL LABORATCRY

1. Continued analysis of our data

2. Assemble publications — dependent on outcomes
of point 1

Tmage Set Anabysis Viewer LIEix]

3. Further develop and mature NIML demo

4. Business development, strategic
teaming, offsite assignments, etc.

Confidence distribution |
1 1
1

Classifier Threshold Settings

5""“’5""1!0
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e GONclusions

* This is still a huge challenge and will not be solved soon

» There are opportunities to use EEG beyond current state-of-the-art
* ML on EEG signals is very difficult

* Future advancements will need to employ multiple types of sensor
streams

 Human-machine teaming will require very multi-disciplinary teams
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