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Abstract 
Geological carbon sequestration (GCS) is a key technology for reducing global carbon dioxide 
(CO2) emissions. Over the last decade, the U.S. Department of Energy has invested in 
understanding the science base, developing practical implementation methods, and 
demonstrating secure GCS technologies to mitigate the environmental impacts associated with 
the atmospheric release of CO2. As part of the National Risk Assessment Partnership, a 
systems-level risk assessment tool, called the NRAP-Open-IAM, has been developed to 
conduct risk assessment and enable safe operations at a GCS site. The current NRAP-Open-
IAM contains a simple reservoir model component that calculates the evolution of CO2 
saturation and fluid pressure in a storage reservoir during CO2 injection operations.  

This report presents the development and testing of a new analytical reservoir reduced-order 
model (ROM), which is extended from an existing semi-analytical model for estimation of CO2 
and brine leakage along legacy wells and enhances the capability of the NRAP-Open-IAM to 
simulate more types of reservoir conditions. The developed model is validated against three 
reference studies, and the results indicate that the new ROM predicts the behavior of the two-
phase fluids (brine and injected CO2) well and is applicable to different reservoir simulation 
boundary conditions (i.e., constant pressure boundary and infinite-acting boundary) without a 
priori user specification of the boundary type. Sensitivity analysis for a set of model parameters 
is performed using 4,000 synthetic cases prepared via a fully automated process and using 
machine-learning-based feature selection.  

The stochastic analysis identifies gravitational number (i.e., ratio of gravitational forces to 
viscous force) and distance between the injection well and observation location as the most 
impactful parameters for matching the pressure and CO2 saturation, respectively, between the 
numerical simulations and the ROM. This report details the possible ROM uncertainties and 
serves as a guide for users to understand the use and limitations of this ROM. The code 
implementation of the model will be released as a module within the NRAP-Open-IAM. 
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1.0 Introduction 
Carbon capture, utilization, and storage technologies are being developed, both domestically 
and internationally, for their potential to mitigate environmental impacts associated with the 
atmospheric release of carbon dioxide (CO2) from anthropogenic sources, such as power 
generation from fossil fuels and other large industrial sources. Over the last decade, the U.S. 
Department of Energy (DOE) has invested millions of dollars developing carbon capture 
technologies and demonstrating safe and secure geologic carbon storage via a number of pilot-
scale projects sited throughout the United States (NETL 2015). To date, these projects have 
stored more than 16 million tonnes of CO2 (NETL 2018). 

Within the U.S., CO2 injection operations are generally regulated by the U.S. Environmental 
Protection Agency (EPA) within the Underground Injection Control program through the Class VI 
regulations promulgated under the Safe Drinking Water Act (USEPA 2010). The Class VI 
regulations are designed to protect underground sources of drinking water, and include strict 
requirements for site characterization, construction of CO2 injection wells, injection operations, 
site monitoring, financial liability, and recordkeeping/reporting. Key elements of the Class VI 
permitting process include delineating an area of review (AoR) and defining an appropriate post-
injection site care period for the project, both of which require simulating CO2 saturations and 
pressure distributions from computational models throughout the project’s life. These 
simulations are based on site-specific data and are updated periodically during the project’s 
lifetime to evaluate reservoir performance and evolution of the storage system. 

Despite the sophistication of today’s multi-physics reactive transport codes, significant 
uncertainty exists in predicting the performance of geologic storage reservoirs. Challenges 
associated with developing greenfield sites include (1) the inherit difficulty in scaling a few point 
source measurements of geological structure and reservoir permeability derived from 
characterization of borehole samples throughout the extensive area likely to be impacted by a 
commercial-scale CO2 injection; (2) a lack of site-specific data on the geometry of the porous 
media and resulting transport of the injected CO2 in the reservoir; and (3) understanding 
changes in the transport behavior of CO2 caused by changes in pressure and/or temperature 
and the buoyant nature of CO2 over the long time scales required for geologic sequestration to 
have long-term benefit to atmospheric CO2 concentration. Additionally, the computational 
resources required to run high-fidelity simulations limits their usefulness in performing sensitivity 
analysis for uncertainty reduction. 

To help address this need, DOE established the National Risk Assessment Partnership (NRAP), 
an initiative across five DOE national laboratories with the goal of developing defensible, 
science-based methodologies and platforms for quantifying risks amidst system uncertainty. In 
2017, the NRAP team released a set of 10 tools (i.e., the NRAP Toolset) that can be used to 
estimate risks associated with geological carbon sequestration (GCS) (NETL 2021a), including 
the open source integrated assessment model (NRAP-Open-IAM). The NRAP-Open-IAM tool 
adopts a system-level stochastic approach that includes uncertainties in components (e.g., 
storage reservoirs, leakage scenarios, and shallow groundwater impacts). The tool is derived 
from detailed physics and chemistry simulation results that are used to train more 
computationally efficient models, referred to here as reduced-order models (ROMs), for each 
component of the system. These tools can be used to help regulators and operators define the 
AoR and better understand the possible impacts to water quality caused by CO2 and brine 
leakage from a storage reservoir into drinking water aquifers to make informed decisions on 
monitoring and mitigation to reduce risks. 
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This report details the development and testing of one analytical reservoir model that can be 
used to (1) predict pressure and CO2 saturation changes caused by CO2 injection throughout 
CO2 storage reservoirs and (2) feed information to analyze the potential impacts that CO2 and 
brine leaking from the storage reservoirs might have on overlying monitoring units (e.g., 
aquifers). The analytical reservoir model is similar to the existing simple reservoir model within 
the NRAP-Open-IAM but extends the IAM’s capability to simulate additional boundary 
conditions and two-phase fluid behavior. In this report, the model is presented and validated 
using three different references for quality assurance. Further, an exhaustive sensitivity analysis 
is conducted, which allows users to understand the model’s capability and limitations and 
determine its appropriateness for use at their site. 

1.1 Analytical Reservoir Model 

The fundamental analytical solution was originally developed in Celia et al. (2011) and further 
modified in the present work to estimate pressure (𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 as in Eq. 16) and CO2 saturation 
(h’(χleak) as in Eq. 7) at an arbitrary distance r at time t for a single injection well in a horizontal, 
confined, homogeneous deep reservoir or saline aquifer (Figure 1).  

 
Figure 1. Conceptual schematic of CO2 plume evolution during CO2 injection (modified from 

Celia et al. 2011). 

The model was derived with the assumption of strong buoyant segregation, driven by the large 
density difference between the brine and CO2. So, once the fluids are separated by the buoyant 
override of CO2, they reach vertical equilibrium in their pressure distributions, showing a sharp 
interface as seen in the gray (CO2) and white (brine) regions in Figure 1. In the model, there is 
no vertical communication (i.e., no flow) at the top and bottom of the model, and constant 
pressure condition is applied at the lateral boundary (i.e., a Dirichlet boundary condition). The 
details of the model are presented below.  

First, relevant dimensionless variables are defined.  

𝛤𝛤 =  
2𝜋𝜋(𝜌𝜌𝐵𝐵 − 𝜌𝜌𝐶𝐶)𝑔𝑔𝑔𝑔𝐻𝐻2

𝜇𝜇𝐵𝐵𝑄𝑄𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙
=  
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑓𝑓𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓

𝑉𝑉𝐺𝐺𝑉𝑉𝑓𝑓𝐺𝐺𝑉𝑉𝑉𝑉 𝑓𝑓𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓
 (1) 

where Γ gravitational number (-) is a ratio of gravitational force to viscous force, ρB is brine 
density (kg/m3), ρC is CO2 density (kg/m3), g is acceleration of gravity (9.8 m/s2), k is reservoir 
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permeability (m2), H is reservoir thickness (m), µB is brine viscosity (Pa-sec), Qwell is volumetric 
CO2 injection rate (m3/sec). 

𝜆𝜆 =  
(1 − 𝑆𝑆𝐵𝐵𝑟𝑟𝑙𝑙𝑟𝑟)𝜇𝜇𝐵𝐵

𝜇𝜇𝐶𝐶
 (2) 

where λ is mobility ratio (-), µC is CO2 viscosity (Pa-sec), 𝑆𝑆𝐵𝐵𝑟𝑟𝑙𝑙𝑟𝑟 is brine residual saturation (-). 

𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺, 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ) =  
2𝜋𝜋𝐻𝐻𝜋𝜋(1 − 𝑆𝑆𝐵𝐵𝑟𝑟𝑙𝑙𝑟𝑟)𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

∫𝑄𝑄𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝐺𝐺
 (3) 

where χleak is the relative location of outer boundary of CO2 plume (-) at time t for given distance 
rleak, 𝜋𝜋 is porosity (-), rleak is distance from injection well to the leaky well (m), ∫𝑄𝑄𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝐺𝐺 is 
cumulative CO2 injection volume (m3) at a given time.  

Next, CO2 plume thickness, which leads to CO2 saturation, is calculated differently depending 
on the value of χleak. If 𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 <  2

𝜆𝜆�  

ℎ(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺, 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  )) =  (1 − 𝑆𝑆𝐵𝐵𝑟𝑟𝑙𝑙𝑟𝑟)𝐻𝐻 (4) 

where h(χleak(t, rleak)) is CO2 plume thickness at time t.   

Else if 𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 >  2𝜆𝜆  

ℎ(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺, 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  )) =  0 (5) 

else  

ℎ(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺, 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  )) =  
1

𝜆𝜆 − 1
��

2𝜆𝜆
𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

− 1�𝐻𝐻 (6) 

ℎ′(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺, 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  )) = min ( ℎ(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺, 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  )), 1 − 𝑆𝑆𝐵𝐵𝑟𝑟𝑙𝑙𝑟𝑟 ) (7) 

where h’(χleak) is the vertically averaged CO2 saturation at time t and at the leaky well location, 
rleak. 

According to whether the pressure propagation caused by CO2 injection reaches the boundary 
of the reservoir, the dimensionless variable for the location of the pressure front is determined 
differently.  

𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 =  
4.5𝜋𝜋𝐻𝐻𝜋𝜋𝑔𝑔(1 − 𝑆𝑆𝐵𝐵𝑟𝑟𝑙𝑙𝑟𝑟)

𝜇𝜇𝐵𝐵𝑓𝑓𝑙𝑙𝑖𝑖𝑖𝑖𝑄𝑄𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙
 (8) 

where Ψinfinite is the location of the outer boundary of pressure front at which the pressure has 
not changed relative to the initial pressure, ceff is the brine compressibility (1/Pa).  
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𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 =  
2𝜋𝜋𝐻𝐻𝜋𝜋(1 − 𝑆𝑆𝐵𝐵𝑟𝑟𝑙𝑙𝑟𝑟)𝐺𝐺𝑟𝑟𝑙𝑙𝑟𝑟2

∫𝑄𝑄𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝐺𝐺
 (9) 

where Ψfinite is the location of the outer boundary of pressure front at which the pressure has 
changed relative to the initial pressure, and rres is the distance from the injection well to 
reservoir boundary (m). 

𝜓𝜓 = min ( 𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 ,𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙  ) (10) 

This approach allows to handle both constant pressure boundary condition and infinite-acting 
flow reservoir boundary condition without specification as input setting.  

𝐹𝐹(ℎ′(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)) =  
−𝜆𝜆
𝜆𝜆 − 1

�ℎ′(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) +  
ln[(𝜆𝜆 − 1) ∙ ℎ′(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 1]

𝜆𝜆 − 1
� (11) 

where F is a pressure offset (Pa) associated with the vertical pressure distribution. 
If 𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≥  𝜓𝜓  

∆𝑝𝑝′(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 0 (12) 

where ΔP’(χleak) is the change in pressure (Pa) relative to the initial value.  
Else if 𝜓𝜓 > 𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 > 2𝜆𝜆  

∆𝑝𝑝′(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = −
1

2𝛤𝛤
ln �

𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝜓𝜓

� + 𝐹𝐹(ℎ′) (13) 

else if 2𝜆𝜆 > 𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 > 2
𝜆𝜆�   

∆𝑝𝑝′(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =
1
𝛤𝛤
−

1
𝛤𝛤
�
𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2𝜆𝜆
−

1
2𝛤𝛤

ln �
2𝜆𝜆
𝜓𝜓
� + 𝐹𝐹(ℎ′) (14) 

else 2 𝜆𝜆� > 𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  

∆𝑝𝑝′(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = −
1

2𝜆𝜆𝛤𝛤
ln �

𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆
2

� +
1
𝛤𝛤
−

1
𝛤𝛤𝜆𝜆

−
1

2𝛤𝛤
ln �

2𝜆𝜆
𝜓𝜓
� + 𝐹𝐹(ℎ′) (15) 

𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺) − 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 = max ( 0,∆𝑝𝑝′(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ∙ (𝜌𝜌𝐵𝐵 − 𝜌𝜌𝐶𝐶)𝑔𝑔𝐻𝐻 ∙ 𝑝𝑝𝑔𝑔𝑟𝑟𝑙𝑙𝑔𝑔  ) 

(16) 

 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺) = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 + max ( 0,∆𝑝𝑝′(𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ∙ (𝜌𝜌𝐵𝐵 − 𝜌𝜌𝐶𝐶)𝑔𝑔𝐻𝐻 ∙ 𝑝𝑝𝑔𝑔𝑟𝑟𝑙𝑙𝑔𝑔  ) 

where pleak(t) is the vertically averaged pressure (Pa) at the leaky well location at time t, pini is 
the initial reservoir pressure (Pa), pgrad is the pressure gradient (Pa/m). 
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2.0 Methodology 
This section describes the benchmark problem introduced in Ebigbo et al. (2007), parameter 
sampling, and numerical simulations for validation and sensitivity analysis of the developed 
analytical ROM. For the validation, three different references are used: 1) Princeton web 
simulator – an analytical calculation simulator developed by Princeton University Subsurface 
Hydrology Research Group, 2) STOMP (Subsurface Transport Over Multiple Phases Simulator) 
– a multi-phase flow simulator developed by Pacific Northwest National Laboratory (White et al. 
2012), and 3) Eclipse 100 – a black oil multi-phase flow simulator (Schlumberger n.d.). For the 
sensitivity analysis, Eclipse 100 is used. 

2.1 Benchmark Problem 

For model validation, one popular benchmark problem for CO2 leakage (Ebigbo et al. 2007) is 
adopted in this study. This problem consists of a 2D reservoir with one injection well and one 
leaky well and is shown in map view on Figure 2. The leaky well (observation well) is located 
100 m away from the injection well. The problem assumes that fluid properties such as density 
and viscosity are constant, all processes are isothermal, and mutual dissolution between CO2 
and brine is neglected. The Dirichlet boundary conditions (constant pressure) are used for 
lateral boundaries, and no flow is considered vertically. The model formation is isotropic and 
capillary pressure is negligible. The simulation parameters are summarized in Table 1. Based 
on this model problem, three different simulators were used (i.e., Princeton web simulator, 
STOMP, and Eclipse 100). 

 
Figure 2. Top view of the mesh and well locations for the benchmark problem used to validate 

our model. 
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Table 1. Simulation parameters for the benchmark problem. 

Parameter Units Value 
CO2 density kg/m3 479 
Brine density kg/m3 1,045 
CO2 viscosity Pa-sec 3.95 × 10-5 
Brine viscosity Pa-sec 2.54 × 10-4 
Reservoir permeability m2 2.0 × 10-14 
Reservoir thickness m 30 
Porosity - 0.15 
Mass injection rate kg/s 8.87 
Distance between wells m 100 
Dimensions of model domain m 1,000 × 1,000 × 30 
Simulation time days 1,000 

2.2 Case Generation for the Sensitivity Analysis 

In addition to the benchmark problem, the developed model was analyzed for wider ranges of 
conditions. A sensitivity analysis was conducted by comparing the analytical solution with full 
physics numerical simulation using Eclipse 100 (Schlumberger. n.d.) to determine which 
parameters impact errors in CO2 saturation and pressure. To generate simulation models for 
realistic conditions, the ranges of geological parameters (Figure 3) were set to cover the values 
used in studies that have been conducted for various GCS sites in the U.S. (Appendix A). 
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Figure 3. Ranges of geologic parameters used to generate 4,000 unique combinations using 
Latin hypercube sampling, and relationship (colored arrows) to model parameters 
which are calculated based on the geological parameters and relevant correlations.  
a Discrete values are sampled. b This range is 0.033 to 47.20 MT/yr. 

A total of 4,000 cases were generated with a near-random combination of the parameters based 
on Figure 3 and Latin hypercube sampling (Iman et al. 1981). The model parameters, which are 
directly used for both numerical and analytical calculations, were calculated from the geological 
parameters with relevant correlations and constitutive models linking independent to dependent 
variables. For the calculation of the fluid properties (e.g., brine density, brine viscosity, CO2 
density, and CO2 viscosity), the same methods to that of STOMP were used (White at al. 2012).  

2.3 Numerical Simulation 

For the sensitivity analysis, the automation of the numerical simulation with varying parameters 
is required. In this study, Eclipse 100 was used to generate the full physics simulations, followed 
by comparison with the results of the analytical ROM. The input file is generated for each case 
based on the parameters set above. The generation of the input file and its sequential execution 
were fully automated with a custom MATLAB script. 

A 3D homogeneous reservoir is modeled in the numerical simulation. In each model, there are 
two wells total: one for injection and one for observation. The injection well is located at the 
center of the model domain, while the location of the observation well varies with lateral 
dimension and distance ratio set differently in each case. (Figure 3 shows four examples of this 
ratio.) In the study, 5, 10, 25, 50 and 100 km in the lateral dimension and 0.2, 0.4, 0.6 and 0.8 of 
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the distance ratios were used respectively. For grids of the simulation, the predefined meshes 
were prepared with Abaqus (Dassault Systems. n.d.) and used. For speed and stability of the 
numerical simulation, tartan grids were used, and were focused (i.e., highly discretized) around 
the injection and observation wells (Figure 4). The automated process of input file generation 
first reads the lateral dimension and distance ratio of the distance between boundary and 
observation well and distance between injection well and observation well and then loads the 
corresponding mesh information from the predefined mesh files into the input file. Constant 
pressure boundary condition (i.e., a Dirichlet boundary condition) was adopted for lateral 
boundaries by setting the pore volume multiplier values to be large (i.e., 1 × 107) for the 
boundary cells. The diameter of the well is 0.00127 m for all cases, and the well is perforated 
through all cells at the center across the formation.  

 
Figure 4. Top view of the grids used for numerical simulation. 3D homogeneous reservoir is 

modeled. The injection well is at the center of the reservoir. For each case, the lateral 
dimension sizes, the location of the observation well, and distance ratio vary. The unit 
of dimension size is meters. 
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Figure 5. An example of relative permeability curves implemented in the numerical simulations. 

Relative brine permeability (krB) and relative CO2 permeability (krCO2) are plotted as a 
function of brine saturation(SB). The residual water saturation (SB

res) is 0.1. 

The model reservoir is initially saturated with only brine (SB = 1), and its residual brine saturation 
(SB

res) varies over cases between 0.001 and 0.20. For multiphase fluid flow, linear relative 
permeability curves were used (Figure 5). Accordingly, for numerical simulations, a different 
relative permeability lookup table was constructed with different residual brine saturation values 
for each case. The brine and CO2 fluid density and viscosity were calculated based on initial 
average pressure and temperature (i.e., values at the middle of the model reservoir in a vertical 
direction), which are dependent on formation depth, thickness, pressure gradient, and 
temperature gradient. No changes in density and viscosity associated with CO2 injection were 
considered. Capillary pressure was set to zero, and rock pore volume was considered 
incompressible. Gravity effect was considered.  

2.4 Data Filtering 

All parameters considered in the present work (Figure 3) are collected from literature and 
chosen within physically feasible ranges. However, the arbitrary combination of many 
parameters can lead to unacceptable operational conditions (e.g., an injection pressure above 
the maximum allowable CO2 injection pressure), and in such cases, an a posteriori data filtering 
approach is used.  

Regarding CO2 injection pressure change, under the Underground Injection Control Program for 
Carbon Dioxide Geologic Sequestration Wells (USEPA 2010), referred to as the Class VI Rule, 
the U.S. Environmental Protection Agency requires that the injection pressure not exceed 90% 
of the fracture pressure in the injection zone to ensure that CO2 injection does not initiate new 
fractures or propagate existing ones (40 CFR 146.88(a)) (Appriou 2019). Thus, the estimation of 
the fracture pressure is critical. However, fracture pressure is site-specific and is difficult to 
generalize. In the present study, the cases showing pressure increases two times higher than 
the absolute in-place hydrostatic pressure were removed. As a result, only 3,619 cases out of 
the total 4,000 cases were considered for further analysis. Fracture pressure gradient is 
between hydrostatic pressure gradient and overburden pressure gradient, and the general 
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assumption for the overburden pressure gradient (22.62 MPa/km = 1 psi/ft) is around 2.3 times 
of the hydrostatic pressure gradient (9.8 MPa/km = 0.44 psi/ft) (Eaton 1969). So, although 
allowing a pressure increase of up to two times the hydrostatic pressure can be considered 
optimistic, the analytical solution has freedom to be tested outside of the acceptable limitations, 
and users need to be cautious about the validity of the model input values. 

2.5 Error Calculation 

To analyze the accuracy of pressure and saturation predictions for the analytical solution, when 
compared to the numerical calculation, mean absolute error (MAE) [Eq. (17)] and relative 
percent error [Eq. (18))] were employed to quantify the error of the time-series pressure and 
saturation data respectively for each case.  

𝑀𝑀𝑓𝑓𝐺𝐺𝐺𝐺 𝐺𝐺𝑎𝑎𝑉𝑉𝐺𝐺𝐺𝐺𝑉𝑉𝐺𝐺𝑓𝑓 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝑀𝑀𝑀𝑀𝑀𝑀) =  
∑ �𝑃𝑃𝑖𝑖,𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙  (𝐺𝐺𝐺𝐺 𝑆𝑆𝐶𝐶𝐶𝐶2,𝑖𝑖,𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙) − 𝑃𝑃𝑖𝑖 ,𝑟𝑟𝑙𝑙𝑖𝑖 (𝐺𝐺𝐺𝐺 𝑆𝑆𝐶𝐶𝐶𝐶2,𝑖𝑖,𝑟𝑟𝑙𝑙𝑖𝑖)�𝑖𝑖𝑇𝑇
𝑖𝑖=1

𝐺𝐺𝑇𝑇
 (17) 

𝑅𝑅𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, % =  
�𝑃𝑃𝑖𝑖 ,𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙  (𝐺𝐺𝐺𝐺 𝑆𝑆𝐶𝐶𝐶𝐶2,𝑖𝑖,𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙) − 𝑃𝑃𝑖𝑖,𝑟𝑟𝑙𝑙𝑖𝑖 (𝐺𝐺𝐺𝐺 𝑆𝑆𝐶𝐶𝐶𝐶2,𝑖𝑖,𝑟𝑟𝑙𝑙𝑖𝑖)�

𝑃𝑃𝑖𝑖,𝑟𝑟𝑙𝑙𝑖𝑖 (𝐺𝐺𝐺𝐺 𝑆𝑆𝐶𝐶𝐶𝐶2,𝑖𝑖,𝑟𝑟𝑙𝑙𝑖𝑖)
× 100 (18) 

Pi,anal is vertically averaged pressure predicted by the analytical solution at the observation 
location at the timestep i, while Pi,ref is a reference value calculated by Eclipse 100. nT is the total 
number of the timesteps. MAE and relative errors for CO2 saturation were calculated in the 
same manner. 

2.6 Sensitivity Analysis 

Mutual information (MI) (Cover and Thomas 1991; Shannon and Weaver 1949) was used to 
analyze the impacts of associated parameters [Eq. (1) to Eq. (16)] on prediction accuracy of the 
analytical solution. MI is a measure of the mutual dependence between two variables. It is a 
dimensionless quantity and can be regarded as the reduction in uncertainty about one variable 
given knowledge of another. The value of MI is inversely proportional to the uncertainty, and 
thus zero MI indicates the two variables are independent. MI between the model input 
parameters or coupled parameters such as gravitational number (Γ) and MAE of each case was 
calculated for pressure and CO2 saturation, respectively. In addition, the concept of impurity-
based feature importance was applied to quantify the sensitivity of individual parameter with two 
different machine learning algorithms: decision tree (Breiman et al. 1984) and random forest 
(Breiman 2001). With each algorithm, the importance of one parameter is computed as the total 
reduction of the criterion brought by the parameter. Scikit-learn library (Pedregosa et al. 2011) 
was used for both MI and the impurity-based feature importance calculations. 
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3.0 Results & Discussion 
This section discusses the results of the validation and sensitivity analysis. Following the 
validation with the numerical simulation results, the predictive capability of the ROM and the 
impact of the associated parameters are investigated. 

3.1 Analytical ROM Validation  

 
Figure 6. Model validation with the benchmark problem. Comparison with the Princeton web 

simulator at 1 year of CO2 production for a) pressure and b) CO2 plume evolution in 
blue. Comparison with STOMP at the observation well location for c) pressure and 
d) CO2 saturation. 

The Subsurface Hydrology Research Group at Princeton University provides a web-based 
simulator, which is built based on the work by Celia et al. (2011) (Princeton University 
Subsurface Hydrology Research Group n.d.). Our analytical model is validated against the 
Princeton web simulator and STOMP (White et al. 2012) based on the benchmark problem 
(Ebigbo et al. 2007). For the comparison with the web simulator, 100 km of the reservoir’s later 
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boundary size was tested instead of 1 km. In Figure 6a and Figure 6b, pressure and CO2 plume 
profiles (blue line) are compared at 1 year of CO2 injection, which shows good agreement to the 
Princeton web simulator (red circles). Also, Figure 6c and Figure 6d show that the analytical 
model predicts well the results of the numerical calculation of STOMP over time. The pressure 
and CO2 saturation are vertically averaged values at the observation well location.  

 
Figure 7. Validation for different reservoir boundary sizes. Solid lines and open circles are 

calculated with Eclipse 100 and the analytical solution, respectively. 

Further validation was performed for different boundary sizes of the reservoir – 1, 10, 20, and 
50 km. Except for the boundary size, all parameters were kept the same as in Table 1. Figure 7 
shows that the analytical solution matches well the numerical results regardless of the boundary 
sizes. The pressure reduction is observed for 1, 10, and 20 km, which is a result of the constant 
pressure boundary condition applied. No pressure reduction, in contrast, is observed in the case 
of 50 km. This is because pressure does not reach the boundary, and thus it can be considered 
an infinite-acting reservoir. The good matching indicates that the developed analytical model 
can be applicable to both constant pressure and infinite boundary conditions. 
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3.2 Parameter Sensitivity – Pressure 

 
Figure 8. Sensitivity analysis for pressure. The relative importance (impacts) to the model 

accuracy is quantified. Gamma_Anal, gravitational number, is ranked top in three 
different analyses. 

The importance of each parameter to the model accuracy was analyzed on the basis of the 
impurity-based feature importance and MI. Figure 8 shows the relative importance, in 
descending order for key parameters, to accurately predicting pressure using the analytical 
model [Eq. (1) to Eq. (17)] as identified using three different statistical approaches. As expected, 
the gravitational number is the most impactful to the accuracy of the developed model.  

The gravitational number and MAE are plotted for 3,619 cases at log-log scale in Figure 9a. The 
clear dependency of the MAE on the gravitational number is observed, and a higher 
gravitational number results in a higher accuracy with the developed analytical approach. 
Physically, as described in Eq. (1), the dimensionless gravitational number indicates the ratio of 
the gravitational force to viscous force. With a high gravitational number (Figure 9b), the 
stronger gravitational forces drive a distinct gravity-driven segregation of the in-place brine and 
injected CO2. In contrast, with a low gravitational number, the stronger viscous forces lead to a 
more cylindrical plume shape (Figure 9c). The original analytical solution was mathematically 
derived with the assumption of a distinct buoyant override and segregation of the fluids as seen 
in Figure 9b. 
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Figure 9. Impacts of the gravitational number: a) the dependency of mean absolute error of 

pressure on gravitational number, b) plume evolution with high gravitational number, 
c) plume evolution with low gravitational number. 

3.3 Case Study – Pressure 

 
Figure 10. Pressure history comparison: a), b), and c) correspond to the cases 1, 2, and 3 in 

Figure 9a. Top row: pressure. Bottom row: CO2 saturation. The x-axis is normalized 
injection time, and the secondary axis is relative error. For numerical calculation, 
Eclipse 100 was used (E100). 
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Time-series pressure and CO2 saturation data are compared in Figure 10 for three cases 
marked in Figure 9a (magenta X’s) to provide a better sense of the degree of MAE over time. 
The top row of panels in Figure 10 shows the pressure comparison, and the saturation histories 
are given on the bottom row for completeness. The injection period varies by realization case, 
so it is normalized to the total injection interval. MAEs for pressure (Γ) are 4.248 (0.0583), 0.657 
(0.3020) and 0.017 MPa (1.0163) for Figure 10a, Figure 10b, and Figure 10c, respectively. It 
clearly shows that the overall error reduces with increasing gravitational number (left to right). 
Note that the pressure difference is distinct in Figure 10a although the relative error is less than 
15%. The larger relative error is observed for CO2 saturation, and this is because of the scale of 
the saturation. 

3.4 Parameter Sensitivity – CO2 Saturation 

 
Figure 11. Sensitivity analysis for CO2 saturation. The relative importance (i.e., impacts) to the 

model accuracy is quantified. The distance between injection well and observation 
location, denoted as dis_inj_leak, is ranked top in three different analysis. 

The importance of each parameter to model accuracy for CO2 saturation was analyzed in the 
same manner. Figure 11 shows the relative importance to saturation prediction accuracy of the 
analytical model [Eq. (1) to (16)] in descending order, and three different statistical approaches 
show that the distance between injection well and observation location, denoted as dis_inj_leak, 
is the most impactful to the accuracy of the developed model. 
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Figure 12. Impacts of the observation location: a) the dependency of mean absolute error of 

CO2 saturation on distance between observation and injection well, b) reservoir 
lateral size, c) distance ratio of the distance between observation and injection well to 
the distance between reservoir boundary and injection well. 

Figure 12 shows the impacts of the observation location. In the case of CO2 saturation, MAE is 
relatively small compared to that of pressure, and here only a portion of the 3,619 cases are 
shown, omitting cases with MAEs below 0.01. The clear dependency of the MAE on the 
distance between observation and injection well is observed in Figure 12a, and the longer 
distance results in less error between the analytical model and the numerical simulations. Figure 
12b and Figure 12c support the hypothesis that the relative position of the observation well 
against the injection well and boundary is important for model accuracy. The larger a reservoir’s 
lateral size is, and the farther away the observation location is from the injection well, the 
smaller the MAE is for CO2 saturation. Also, a relatively shorter distance between the 
observation and injection compared to the distance between the observation and domain 
boundary causes a larger MAE.  
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3.5 Case Study – CO2 Saturation 

 
Figure 13. Saturation history comparisons: a), b), and c) correspond to the cases 4, 5, and 6 in 

Figure 12. Top row: pressure. Bottom row: CO2 saturation. The x-axis is normalized 
injection time, and the secondary axis is relative error. For numerical calculation, 
Eclipse 100 was used (E100). 

Time-series data is compared in Figure 13 for three cases identified in Figure 12. The figure 
panels in the top row show the pressure histories at the observation locations and the figure 
panels in the bottom row show CO2 saturation for the corresponding cases at the observation 
location. The normalized injection period is used for case comparison. MAEs for saturation 
(distance between the injection and observation wells) are 0.0981 (500 m), 0.0588 (1,000 m), 
and 0.0381 (1,500 m) for Figure 13a, Figure 13b and Figure 13c, respectively. The MAE is 
relatively smaller than that of pressure because the scale of the saturation is smaller, while the 
relative error is larger. The comparison in Figure 13 shows that the overall error reduces with 
increasing distance between the injection and observation wells (left to right).  
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4.0 Conclusion 
The present work introduces the development and testing of a new analytical reservoir ROM 
that can be used to estimate CO2 saturation and pressure changes caused by CO2 injection 
throughout a CO2 storage reservoir and, when incorporated into the NRAP-Open-IAM, can be 
used to feed data to analyze the potential impacts that CO2 and brine leaking from the storage 
reservoirs might have on overlying aquifers or monitoring units for GCS applications. The 
original model in Celia et al. (2011) is elaborated on for code implementation and to improve its 
capabilities for different boundary conditions and over-pressured formations.  

Validation is performed via three approaches: 1) comparison with the Princeton web simulator 
(Princeton University Subsurface Hydrology Research Group n.d.), which was developed by the 
authors of the original model; 2) comparison with full-physics simulator STOMP (White et al. 
2012) based on the popular benchmark problem (Ebigbo et al. 2007); and 3) use of machine 
learning and stochastic realizations of a full physics simulator, Eclipse 100 (Schlumberger. n.d.), 
to inform the accuracy and sensitivity of the new model over a range of geologically relevant 
conditions.  

This process demonstrates that the prediction accuracy of this new model is quite high given its 
reduced-order nature and it can be used for different boundary conditions (i.e., constant 
pressure boundary and infinite-acting reservoir boundary) without a priori user specification. The 
sensitivity analysis conducted with machine learning further shows that gravitational number 
and distance between the injection well and observation location play a critical role in the model 
accuracy for pressure and CO2 saturation, respectively. From a practical perspective, when 
gravitational number is low and viscous forces dominate gravitational forces, there is a resulting 
larger error in pressure estimation, which is in line with the model’s assumptions of a strong 
buoyant segregation of fluids. Additionally, since error is reduced when the domain size is large, 
a user should pick a sufficiently large reservoir to avoid any boundary effects. These insights 
are useful when a user employs this new reservoir model in the larger NRAP-Open-IAM.  

Finally, this report provides readers with case studies and results that enable estimation of 
potential uncertainties in their site-specific studies. This model is subject to further 
improvements as the NRAP codes evolve to meet user needs, and the code implementation will 
be released as part of the NRAP-Open-IAM (NETL 2021b). 
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Appendix A – References for Geological Parameters 

Table A.1. Reference for the ranges of the parameters. 

Parameters Reference 

Permeability Doughty 2009; Birkholzer and Quanlin 2009; Celia et al. 2011; Finley 2014; 
Akinnikawe et al. 2016; Nguyen et al. 2017; Yonkofski et al. 2019 

Porosity Doughty 2009; Birkholzer et al. 2009; Celia et al. 2011; Finley 2014; Akinnikawe 
and Ehlig-Economides 2016; Nguyen et al. 2017 

Lateral size Doughty 2009; Celia et al. 2011; Nguyen et al. 2017; Cumming et al. 2019; 
Sminchak et al. 2016; Onishi et al. 2019 

Thickness Doughty 2009; Celia et al. 2011; Yonkofski et al. 2019; Onishi et al. 2019 
Bottom depth USGS 2013 
Temperature gradient Doughty 2009; Yonkofski et al. 2019 
Period Bacon et al. 2020; White et al. 2020 
Total injection amount Bacon et al. 2020; White et al. 2020 
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