

PNNL-31372 Rev 0 EWG-RPT-034 Rev 0

Low-Activity Waste Glass Standards Preparation and Characterization for Calibration of Analytical Instruments

July 2021

Jarrod Crum Ryan Kissinger Scott Cooley Joshua Silverstein John Vienna Dong-Sang Kim Derek Cutforth

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: <u>reports@adonis.osti.gov</u>

Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) email: orders@ntis.gov <<u>https://www.ntis.gov/about</u>> Online ordering: <u>http://www.ntis.gov</u>

Low-Activity Waste Glass Standards Preparation and Characterization for Calibration of Analytical Instruments

July 2021

Jarrod Crum Ryan Kissinger Scott Cooley Joshua Silverstein John Vienna Dong-Sang Kim Derek Cutforth

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99354

Summary

Seven standard glasses were fabricated and characterized for use as equipment/procedure standards for analysis of low-activity waste (LAW) glasses at the Hanford Waste Treatment and Immobilization Plant (WTP). The samples fabricated include monolithic bars and ≤ 70 mesh powdered glass. The bars could be used as standards for monolithic sample tests such as laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS), X-ray fluorescence, and electron probe microanalysis (EPMA). Powdered glass samples could be used as standards for powder analyses techniques such as ICP of fused and/or dissolved samples. The glasses were formulated to represent a range of compositions of LAW glasses forecast to be produced at the WTP.

Glasses were fabricated in 3-kg batches at Pacific Northwest National Laboratory (PNNL) using an induction-heated tilt-pour furnace to provide sufficient material for testing homogeneity and use as standards. Each glass batch produced 12 glass bars and approximately 1 kg of crushed glass. The glass bars were sectioned and characterized using EPMA at PNNL. The 1 kg of crushed glass was analyzed at Southwest Research Institute (SwRI) using fusion/dissolution process followed by ICP-MS and ion chromatography (IC) analyses of the solutions.

The compositions of these standard glasses were verified to be on target with the batched compositions after fabrication using EPMA, IC, and ICP-MS analyses of each of the seven glasses. Glass bars were systematically analyzed using EPMA to determine the variability across the batch. For each batch, 5 of the 12 glass bars were analyzed in three locations in the bar (close to each end and the middle), with nine spots at each location. Calculated percent differences and relative standard deviations increased as batched concentration decreased, for a given component. This trend has been observed in past studies conducted to characterize waste glass standards such as Approved Reference Material-1 (ARM-1), Analytical Reference Glass-1 (ARG-1), Environmental Assessment (EA) Glass, and Low-Activity Test Reference Material (LRM).^{1,2,3,4} All but four components showed analyzed values within $\pm 10\%$ relative difference from batch concentrations. The four components with higher relative differences were Cl, F, SO₃, and Y₂O₃, three of which (Cl, F, and SO₃) can be volatile in silicate melts. For these three components, the analyzed concentrations were biased low (consistent with volatile loss). The fourth component (Y_2O_3) was higher than targeted and had a concentration correlated with ZrO_2 in glass, suggesting an impurity in ZrO_2 source chemicals. All four components were also minor components (< 1 mass %) in the glass. It is recommended that the mean analyzed concentration of each of these four components be used for nominal composition of the standards.

Statistical plots were made from EPMA data to evaluate homogeneity within single bars and between bars for each of the seven glasses. Some visual indications of systematic variation at the bar-to-bar level were observed from these plots for components such as Al₂O₃ in glass LGS-19-01; however, overall, the variability from bar-to-bar within each of the seven glasses was determined to be statistically random. Further statistical analyses determined that most of the variability of the major components such as Al₂O₃,

¹ Mellinger GB and JL Daniel. 1984. *Materials Characterization Center (MCC) Approved Reference and Testing Materials for Use in Nuclear Waste Management Research and Development Programs*. PNL-4955-2, Pacific Northwest National Laboratory, Richland, WA.

² Smith GL. 1993. *Characterization of Analytical Reference Glass-1 (ARG-1)*. PNL-8992, Pacific Northwest National Laboratory, Richland, WA.

³ Jantzen CM, NE Bibler, and DC Beam. 1992. *Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) Glass Standard Reference Material (U)*. WSRC-TR-92-346, Westinghouse Savannah River Company, Aiken, SC.

⁴ Ebert WL and SF Wolf. 1999. *Round-Robin Testing of a Reference Glass for Low-Activity Waste Forms*. ANL-99/22, Argonne National Laboratory, Argonne, IL.

SiO₂, and Na₂O occurred at the bar-to-bar level. Because the EPMA instrument was calibrated prior to each bar analysis, the variability associated with repeated calibrations was correlated and likely contributed to the observed bar-to-bar variability. Therefore, the EPMA analyses from all locations (bars, coupons, and spots) were pooled together to calculate a mean analyzed concentration and standard deviation (SD) for each glass component that encompasses the variability of the glass analysis, see Table S.1. Also shown in Table S.1 are the mean analyzed concentration and SD from SwRI's triplicate analysis of the crushed glass using ICP-MS and IC.

We recommend using the overall mean composition for each glass and SD, given in Table S.1, to estimate variance for each glass by EPMA and ICP-MS when using these standards to verify that calibrated instruments perform within specification. The SwRI-analyzed composition and SD most appropriately match up with calibration of the fusion/dissolution ICP methods of crushed glass. The EPMA composition and SD show that the variability of robust localized analysis may be more appropriate for calibration of any method(s) that analyzes glass at localized spots within monolithic glass samples.

LGS19-01							LGS19-02					
SwRI		Balance						Balance				
Method	Batched	Error	SwRI	SD	EPMA	SD	Batched	Error	SwRI	SD	EPMA	SD
ICP	8.124	0.008	7.96	0.047	7.87	0.114	8.991	0.009	8.99	0.029	8.66	0.106
ICP	9.748	0.010	9.66	0.256	9.91	0.372	6.162	0.006	5.99	0.340	6.37	0.398
ICP	7.311	0.007	7.08	0.035	7.13	0.072	10.203	0.010	10.02	0.061	10.19	0.109
IC	0.102	0.000	UD	NA	0.07	0.006	0.202	0.000	UD	NA	0.09	0.010
ICP	0.102	0.000	0.10	0.000	0.10	0.014	0.202	0.000	0.19	0.002	0.19	0.017
IC	0.102	0.000	0.10	0.001	0.04	0.021	0.707	0.001	0.83	0.018	0.88	0.028
ICP	0.203	0.000	0.21	0.010	0.20	0.019	3.839	0.004	3.82	0.022	3.82	0.052
ICP	0.914	0.001	0.88	0.014	0.86	0.014	2.02	0.002	1.90	0.018	1.85	0.015
ICP	4.976	0.005	5.04	0.065	NM	NA	2.425	0.002	2.48	0.022	NM	NA
ICP	0.102	0.000	0.10	0.001	0.06	0.029	2.93	0.003	2.86	0.019	2.86	0.025
ICP	9.932	0.010	9.88	0.125	9.74	0.132	11.975	0.012	11.8	0.089	11.59	0.164
ICP	0.811	0.001	0.88	0.062	0.83	0.029	0.538	0.001	0.63	0.106	0.55	0.027
ICP	44.375	0.044	45.71	0.539	44.14	0.529	38.389	0.038	39.65	0.539	39.21	0.377
ICP	0.000	0.000	0.00	0.000	0.00	0.011	1.818	0.002	1.74	0.038	1.69	0.023
ICP	1.625	0.002	1.27	0.055	1.36	0.057	1.111	0.001	0.72	0.005	0.75	0.052
IC	1.625	0.002	1.18	0.039	NA	NA	1.111	0.001	0.78	0.014	NA	NA
ICP	1.929	0.002	1.87	0.029	1.88	0.053	1.111	0.001	1.12	0.019	1.11	0.042
ICP	3.960	0.004	3.93	0.036	3.85	0.094	3.031	0.003	3.05	0.036	2.92	0.070
ICP	0.782	0.001	0.68	0.006	0.63	0.045	0.347	0.000	0.31	0.001	0.28	0.039
ICP	0.000	0.000	0.00	0.000	0.00	0.025	1.818	0.002	1.81	0.007	1.81	0.066
ICP	4.905	0.005	4.58	0.024	4.73	0.101	2.178	0.002	2.04	0.039	2.15	0.084
	100.00		99.8 ^(b)		98.4 ^(c)		100.00		100.0 ^(b)		99.4 ^(c)	
	SwRI Method ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP	SwRI Batched ICP 8.124 ICP 9.748 ICP 7.311 IC 0.102 ICP 0.102 ICP 0.102 ICP 0.102 ICP 0.203 ICP 0.914 ICP 0.912 ICP 0.932 ICP 0.811 ICP 0.811 ICP 1.625 ICP 1.625 ICP 1.929 ICP 3.960 ICP 0.782 ICP 0.000 ICP 1.929 ICP 1.000	SwRI Balance Method Batched Error ICP 8.124 0.008 ICP 9.748 0.010 ICP 7.311 0.007 IC 0.102 0.000 ICP 0.203 0.000 ICP 0.914 0.001 ICP 0.914 0.001 ICP 0.914 0.001 ICP 0.932 0.010 ICP 9.932 0.010 ICP 0.811 0.001 ICP 0.811 0.001 ICP 1.625 0.002 ICP 1.625 0.002 ICP 1.929 0.002 ICP 3.960 0.004 ICP 0.782 0.001 ICP 0.000 0.000 </td <td>LGS19-01 SwRI Balance Method Batched Error SwRI ICP 8.124 0.008 7.96 ICP 9.748 0.010 9.66 ICP 7.311 0.007 7.08 IC 0.102 0.000 UD ICP 0.102 0.000 0.10 IC 0.102 0.000 0.10 ICP 0.203 0.000 0.21 ICP 0.914 0.001 0.88 ICP 0.923 0.000 0.10 ICP 0.914 0.001 0.88 ICP 0.932 0.010 9.88 ICP 0.811 0.001 0.88 ICP 0.811 0.001 0.88 ICP 0.625 0.002 1.27 IC 1.625 0.002 1.27 ICP 1.625 0.002 1.87 ICP 1.929 0.002 1.87</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td>	LGS19-01 SwRI Balance Method Batched Error SwRI ICP 8.124 0.008 7.96 ICP 9.748 0.010 9.66 ICP 7.311 0.007 7.08 IC 0.102 0.000 UD ICP 0.102 0.000 0.10 IC 0.102 0.000 0.10 ICP 0.203 0.000 0.21 ICP 0.914 0.001 0.88 ICP 0.923 0.000 0.10 ICP 0.914 0.001 0.88 ICP 0.932 0.010 9.88 ICP 0.811 0.001 0.88 ICP 0.811 0.001 0.88 ICP 0.625 0.002 1.27 IC 1.625 0.002 1.27 ICP 1.625 0.002 1.87 ICP 1.929 0.002 1.87	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table S.1. Summary table of batched, analyzed mean compositions (SwRI and EPMA), and standard deviations (SD) of analyses for LGS19-01 and -02 glass standards, in mass %.

	LGS19-03							LGS19-04	ļ				
SwRI		Balance						Balance					
nethod	Batched	Error	SwRI	SD	EPMA	SD	Batched	Error	SwRI	SD	EPMA	SD	
ICP	6.966	0.007	6.96	0.011	6.92	0.102	5.708	0.006	5.60	0.076	5.66	0.074	
ICP	13.527	0.014	13.15	0.565	13.24	0.384	8.913	0.009	8.84	0.226	8.81	0.372	
ICP	2.019	0.002	1.99	0.021	2.02	0.039	3.505	0.004	3.43	0.000	3.50	0.046	
IC	0.303	0.000	0.03	0.007	0.18	0.013	0.401	0.000	0.14	0.018	0.34	0.011	
ICP	0.505	0.001	0.47	0.005	0.49	0.017	0.601	0.001	0.57	0.005	0.60	0.026	
IC	0.404	0.000	0.45	0.015	0.40	0.027	0.3	0.000	0.35	0.013	0.32	0.023	
ICP	1.413	0.001	1.41	0.015	1.41	0.038	0.701	0.001	0.68	0.009	0.71	0.034	
ICP	5.047	0.005	4.76	0.000	4.75	0.042	0.100	0.000	0.11	0.000	0.11	0.009	
ICP	0.808	0.001	0.80	0.005	NM	NA	0.000	0.000	0.00	0.000	NM	NA	
ICP	0.505	0.001	0.50	0.005	0.49	0.019	1.803	0.002	1.73	0.019	1.84	0.027	
ICP	16.015	0.016	15.59	0.078	16.22	0.230	23.713	0.024	23.28	0.280	23.71	0.173	
ICP	0.499	0.001	0.59	0.013	0.52	0.023	0.076	0.000	0.08	0.003	0.08	0.015	
ICP	37.15	0.037	38.43	0.445	37.48	0.350	41.06	0.041	41.71	0.428	41.25	0.488	
ICP	1.009	0.001	0.95	0.015	0.93	0.020	3.104	0.003	2.94	0.039	2.89	0.057	
ICP	0.808	0.001	0.64	0.024	0.60	0.036	0.501	0.001	0.45	0.004	0.44	0.027	
IC	0.808	0.001	0.49	0.012	NA	NA	0.501	0.001	0.50	0.008	NA	NA	
ICP	0.505	0.001	0.51	0.003	0.50	0.032	1.502	0.002	1.50	0.014	1.50	0.072	
ICP	2.322	0.002	2.34	0.010	2.27	0.058	2.003	0.002	1.98	0.027	1.97	0.082	
ICP	0.916	0.001	0.81	0.004	0.76	0.050	0.578	0.001	0.50	0.005	0.50	0.044	
ICP	3.533	0.004	3.49	0.045	3.57	0.088	1.803	0.002	1.77	0.026	1.85	0.063	
ICP	5.747	0.006	5.46	0.061	5.72	0.138	3.628	0.004	3.37	0.039	3.68	0.122	
	100.00		99.2 ^(b)		99.3 ^(c)		100.00		99.1 ^(b)		99.8 ^(c)		
	SwRI IcP ICP ICP IC ICP IC ICP ICP ICP ICP ICP	SwRI Batched ICP 6.966 ICP 13.527 ICP 2.019 IC 0.303 ICP 0.505 IC 0.404 ICP 1.413 ICP 5.047 ICP 0.505 ICP 0.6015 ICP 0.409 ICP 0.499 ICP 37.15 ICP 0.808 ICP 0.808 ICP 0.808 ICP 0.505 ICP 0.808 ICP 0.505 ICP 0.808 ICP 0.505 ICP 2.322 ICP 0.916 ICP 3.533 ICP 5.747 100.00 0	SwRI Balance lethod Batched Error ICP 6.966 0.007 ICP 13.527 0.014 ICP 2.019 0.002 IC 0.303 0.000 ICP 0.505 0.001 IC 0.404 0.000 ICP 1.413 0.001 ICP 5.047 0.005 ICP 0.505 0.001 ICP 16.015 0.016 ICP 0.499 0.001 ICP 0.808 0.001 ICP 0.808 0.001 ICP 0.505 0.001 ICP 0.505 0.001 ICP 0.505 0.001 ICP 0.533 0.004 ICP 3.533 0.004 <	SwRI Balance iethod Batched Error SwRI ICP 6.966 0.007 6.96 ICP 13.527 0.014 13.15 ICP 2.019 0.002 1.99 IC 0.303 0.000 0.03 ICP 0.505 0.001 0.47 IC 0.404 0.000 0.45 ICP 1.413 0.001 1.41 ICP 5.047 0.005 4.76 ICP 0.505 0.001 0.80 ICP 0.505 0.001 0.50 ICP 0.409 0.001 0.50 ICP 0.808 0.001 0.50 ICP 16.015 0.016 15.59 ICP 0.499 0.001 0.59 ICP 0.808 0.001 0.95 ICP 0.808 0.001 0.64 IC 0.808 0.001 0.51 ICP <td>SwRI Balance iethod Batched Error SwRI SD ICP 6.966 0.007 6.96 0.011 ICP 13.527 0.014 13.15 0.565 ICP 2.019 0.002 1.99 0.021 IC 0.303 0.000 0.47 0.005 IC 0.404 0.000 0.45 0.015 ICP 1.413 0.001 1.41 0.015 ICP 5.047 0.005 4.76 0.000 ICP 0.505 0.001 0.80 0.005 ICP 0.505 0.001 0.50 0.005 ICP 0.808 0.001 0.80 0.005 ICP 0.499 0.001 0.59 0.013 ICP 10.09 0.001 0.95 0.015 ICP 1.009 0.001 0.95 0.015 ICP 0.808 0.001 0.64 0.024</td> <td>Balance Balance iethod Batched Error SwRI SD EPMA ICP 6.966 0.007 6.96 0.011 6.92 ICP 13.527 0.014 13.15 0.565 13.24 ICP 2.019 0.002 1.99 0.021 2.02 IC 0.303 0.000 0.03 0.007 0.18 ICP 0.505 0.001 0.47 0.005 0.49 IC 0.404 0.000 0.45 0.015 0.40 ICP 1.413 0.001 1.41 0.015 1.41 ICP 5.047 0.005 4.76 0.000 4.75 ICP 0.808 0.001 0.80 0.005 NM ICP 0.505 0.001 0.50 0.005 0.49 ICP 16.015 0.016 15.59 0.078 16.22 ICP 0.499 0.001 0.59 0.013 0.</td> <td>ICOST9-03 SwRI Balance nethod Batched Error SwRI SD EPMA SD ICP 6.966 0.007 6.96 0.011 6.92 0.102 ICP 13.527 0.014 13.15 0.565 13.24 0.384 ICP 2.019 0.002 1.99 0.021 2.02 0.039 IC 0.303 0.000 0.47 0.005 0.49 0.017 IC 0.404 0.000 0.45 0.015 0.40 0.027 ICP 1.413 0.001 1.41 0.015 1.41 0.038 ICP 5.047 0.005 4.76 0.000 4.75 0.042 ICP 0.808 0.001 0.80 0.005 NM NA ICP 0.6015 0.016 15.59 0.078 16.22 0.230 ICP 0.6015 0.010 0.59 0.013 0.52 0.023<</td> <td>Interpretable SwRI Balance iethod Batched Error SwRI SD EPMA SD Batched ICP 6.966 0.007 6.96 0.011 6.92 0.102 5.708 ICP 13.527 0.014 13.15 0.565 13.24 0.384 8.913 ICP 2.019 0.002 1.99 0.021 2.02 0.039 3.505 IC 0.303 0.000 0.03 0.007 0.18 0.013 0.401 ICP 0.505 0.001 0.47 0.005 0.49 0.017 0.601 IC 0.404 0.000 0.45 0.015 0.40 0.027 0.3 ICP 1.413 0.001 1.41 0.015 1.41 0.038 0.701 ICP 5.047 0.005 4.76 0.000 4.75 0.042 0.100 ICP 0.505 0.001 0.50 0.005</td> <td>Interview Balance Balance Balance Balance Balance ICP Balance Balance ICP 6.966 0.007 6.966 D.0102 5.708 0.006 ICP 6.966 0.014 13.52 0.014 13.52 0.014 13.52 0.014 13.52 0.002 1.99 0.21 2.02 0.039 3.505 0.004 ICP 2.019 0.002 1.202 0.039 3.505 0.004 ICP 2.019 0.001 0.40 0.007 0.3 0.000 ICP 0.505 0.001 0.47 0.000 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspa="2" td=""><td>Identify the second stress of the second stresecond stress of the second stress of the second stres</td><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>IEEE Toric Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance ICP 6.966 0.007 6.96 0.011 6.92 0.102 5.708 0.006 5.66 ICP 13.24 0.384 8.913 0.009 8.84 0.226 8.81 ICP 2.019 0.0021 2.02 0.393 3.050 0.004 3.43 0.000 3.50 ICP 0.001 0.47 0.005 0.401 0.001 0.47 0.002 1.73 0.013 0.32 ICP 0.002 <t< td=""></t<></td></th></td>	SwRI Balance iethod Batched Error SwRI SD ICP 6.966 0.007 6.96 0.011 ICP 13.527 0.014 13.15 0.565 ICP 2.019 0.002 1.99 0.021 IC 0.303 0.000 0.47 0.005 IC 0.404 0.000 0.45 0.015 ICP 1.413 0.001 1.41 0.015 ICP 5.047 0.005 4.76 0.000 ICP 0.505 0.001 0.80 0.005 ICP 0.505 0.001 0.50 0.005 ICP 0.808 0.001 0.80 0.005 ICP 0.499 0.001 0.59 0.013 ICP 10.09 0.001 0.95 0.015 ICP 1.009 0.001 0.95 0.015 ICP 0.808 0.001 0.64 0.024	Balance Balance iethod Batched Error SwRI SD EPMA ICP 6.966 0.007 6.96 0.011 6.92 ICP 13.527 0.014 13.15 0.565 13.24 ICP 2.019 0.002 1.99 0.021 2.02 IC 0.303 0.000 0.03 0.007 0.18 ICP 0.505 0.001 0.47 0.005 0.49 IC 0.404 0.000 0.45 0.015 0.40 ICP 1.413 0.001 1.41 0.015 1.41 ICP 5.047 0.005 4.76 0.000 4.75 ICP 0.808 0.001 0.80 0.005 NM ICP 0.505 0.001 0.50 0.005 0.49 ICP 16.015 0.016 15.59 0.078 16.22 ICP 0.499 0.001 0.59 0.013 0.	ICOST9-03 SwRI Balance nethod Batched Error SwRI SD EPMA SD ICP 6.966 0.007 6.96 0.011 6.92 0.102 ICP 13.527 0.014 13.15 0.565 13.24 0.384 ICP 2.019 0.002 1.99 0.021 2.02 0.039 IC 0.303 0.000 0.47 0.005 0.49 0.017 IC 0.404 0.000 0.45 0.015 0.40 0.027 ICP 1.413 0.001 1.41 0.015 1.41 0.038 ICP 5.047 0.005 4.76 0.000 4.75 0.042 ICP 0.808 0.001 0.80 0.005 NM NA ICP 0.6015 0.016 15.59 0.078 16.22 0.230 ICP 0.6015 0.010 0.59 0.013 0.52 0.023<	Interpretable SwRI Balance iethod Batched Error SwRI SD EPMA SD Batched ICP 6.966 0.007 6.96 0.011 6.92 0.102 5.708 ICP 13.527 0.014 13.15 0.565 13.24 0.384 8.913 ICP 2.019 0.002 1.99 0.021 2.02 0.039 3.505 IC 0.303 0.000 0.03 0.007 0.18 0.013 0.401 ICP 0.505 0.001 0.47 0.005 0.49 0.017 0.601 IC 0.404 0.000 0.45 0.015 0.40 0.027 0.3 ICP 1.413 0.001 1.41 0.015 1.41 0.038 0.701 ICP 5.047 0.005 4.76 0.000 4.75 0.042 0.100 ICP 0.505 0.001 0.50 0.005	Interview Balance Balance Balance Balance Balance ICP Balance Balance ICP 6.966 0.007 6.966 D.0102 5.708 0.006 ICP 6.966 0.014 13.52 0.014 13.52 0.014 13.52 0.014 13.52 0.002 1.99 0.21 2.02 0.039 3.505 0.004 ICP 2.019 0.002 1.202 0.039 3.505 0.004 ICP 2.019 0.001 0.40 0.007 0.3 0.000 ICP 0.505 0.001 0.47 0.000 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspa="2" td=""><td>Identify the second stress of the second stresecond stress of the second stress of the second stres</td><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td><td>IEEE Toric Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance ICP 6.966 0.007 6.96 0.011 6.92 0.102 5.708 0.006 5.66 ICP 13.24 0.384 8.913 0.009 8.84 0.226 8.81 ICP 2.019 0.0021 2.02 0.393 3.050 0.004 3.43 0.000 3.50 ICP 0.001 0.47 0.005 0.401 0.001 0.47 0.002 1.73 0.013 0.32 ICP 0.002 <t< td=""></t<></td></th>	<td>Identify the second stress of the second stresecond stress of the second stress of the second stres</td> <td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td> <td>IEEE Toric Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance ICP 6.966 0.007 6.96 0.011 6.92 0.102 5.708 0.006 5.66 ICP 13.24 0.384 8.913 0.009 8.84 0.226 8.81 ICP 2.019 0.0021 2.02 0.393 3.050 0.004 3.43 0.000 3.50 ICP 0.001 0.47 0.005 0.401 0.001 0.47 0.002 1.73 0.013 0.32 ICP 0.002 <t< td=""></t<></td>	Identify the second stress of the second stresecond stress of the second stress of the second stres	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IEEE Toric Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance ICP 6.966 0.007 6.96 0.011 6.92 0.102 5.708 0.006 5.66 ICP 13.24 0.384 8.913 0.009 8.84 0.226 8.81 ICP 2.019 0.0021 2.02 0.393 3.050 0.004 3.43 0.000 3.50 ICP 0.001 0.47 0.005 0.401 0.001 0.47 0.002 1.73 0.013 0.32 ICP 0.002 <t< td=""></t<>

Table S.1 (continued). Summary table of batched, analyzed mean compositions (SwRI and EPMA), and standard deviations (SD) of analyses for LGS19-03 and -04 glass standards, in mass %.

1		LGS19 -05						LGS19-06					
	SwRI		Balance						Balance				
Oxide	method	Batched	Error	SwRI	SD	EPMA	SD	Batched	Error	SwRI	SD	EPMA	SD
Al ₂ O ₃	ICP	10.035	0.010	10.09	0.332	9.92	0.096	6.337	0.006	6.24	0.029	6.15	0.057
B_2O_3	ICP	8.045	0.008	8.00	0.049	7.65	0.346	11.064	0.011	10.91	0.555	10.92	0.381
CaO	ICP	5.419	0.005	5.36	0.032	5.51	0.069	8.348	0.008	8.22	0.021	8.32	0.082
Cl	IC	0.201	0.000	0.02 ^(a)	NA	0.14	0.008	0.603	0.001	0.09	0.016	0.26	0.012
Cr_2O_3	ICP	0.301	0.000	0.29	0.001	0.30	0.016	0.402	0.000	0.38	0.004	0.39	0.018
F	IC	1.104	0.001	1.31	0.681	1.39	0.059	0.201	0.000	0.22	0.003	0.16	0.025
Fe ₂ O ₃	ICP	2.609	0.003	2.54	0.030	2.65	0.047	5.532	0.006	5.43	0.044	5.47	0.063
K ₂ O	ICP	2.408	0.002	2.27	0.014	2.26	0.018	3.319	0.003	3.08	0.007	3.00	0.023
Li ₂ O	ICP	0.702	0.001	0.70	0.004	NA	NA	4.224	0.004	4.26	0.022	NA	NA
MgO	ICP	1.104	0.001	1.07	0.008	1.05	0.034	2.515	0.003	2.42	0.017	2.37	0.022
Na ₂ O	ICP	19.415	0.019	18.83	0.078	19.26	0.258	5.347	0.005	5.20	0.034	5.16	0.092
P_2O_5	ICP	0.191	0.000	0.17	0.001	0.20	0.019	0.306	0.000	0.40	0.017	0.32	0.020
SiO ₂	ICP	38.132	0.038	39.22	0.988	38.49	0.320	46.268	0.046	47.85	0.247	46.37	0.571
SnO ₂	ICP	4.516	0.005	3.64	0.516	4.25	0.037	0.503	0.001	0.44	0.005	0.47	0.015
SO_3	ICP	0.201	0.000	0.15	0.001	0.19	0.023	0.402	0.000	0.21	0.009	0.24	0.024
SO ₃	IC	0.201	0.000	0.20	0.011	NA	NA	0.402	0.000	0.13	0.004	NA	NA
TiO ₂	ICP	0.100	0.000	0.09	0.009	0.10	0.022	0.201	0.000	0.20	0.001	0.20	0.025
V_2O_5	ICP	0.100	0.000	0.20	0.202	0.10	0.020	0.905	0.001	0.90	0.005	0.88	0.038
Y_2O_3	ICP	0.428	0.000	0.39	0.032	0.35	0.042	0.401	0.000	0.35	0.001	0.32	0.036
ZnO	ICP	2.308	0.002	2.26	0.026	2.37	0.075	0.603	0.001	0.60	0.005	0.60	0.043
ZrO_2	ICP	2.683	0.003	2.59	0.020	2.68	0.100	2.516	0.003	2.38	0.020	2.46	0.088
Sum		100.00		99.2 ^(b)		99.6 ^(c)		100.00		99.7 ^(b)		98.3 ^(c)	

Table S.1 (continued). Summary table of batched, analyzed mean compositions (SwRI and EPMA), and standard deviations (SD) of analyses for LGS19-05 and -06 glass standards, in mass %.

	SwRI			LGS19-07			
Oxide	method	Batched	Balance Error	SwRI	SD	EPMA	SD
Al ₂ O ₃	ICP	8.106	0.008	7.92	0.033	7.94	0.091
B_2O_3	ICP	6.586	0.007	6.58	0.081	6.44	0.400
CaO	ICP	5.775	0.006	5.68	0.043	5.74	0.050
Cl	IC	0.203	0.000	0.02 ^(a)	NA	0.14	0.015
Cr ₂ O ₃	ICP	0.507	0.001	0.48	0.002	0.50	0.018
F	IC	0.304	0.000	0.35	0.006	0.33	0.021
Fe ₂ O ₃	ICP	1.013	0.001	0.98	0.011	1.01	0.034
K ₂ O	ICP	1.013	0.001	0.94	0.007	0.96	0.013
Li ₂ O	ICP	1.52	0.002	1.50	0.003	NM	NA
MgO	ICP	2.026	0.002	1.91	0.020	1.99	0.023
Na ₂ O	ICP	21.087	0.021	20.62	0.135	20.94	0.162
P_2O_5	ICP	0.694	0.001	0.75	0.035	0.72	0.030
SiO ₂	ICP	40.022	0.040	41.22	0.124	40.03	0.518
SnO_2	ICP	2.026	0.002	1.86	0.032	1.89	0.023
SO ₃	ICP	0.709	0.001	0.60	0.001	0.59	0.036
SO ₃	IC	0.709	0.001	0.65	0.052	NA	NA
TiO ₂	ICP	1.52	0.002	1.48	0.023	1.51	0.045
V_2O_5	ICP	1.52	0.002	1.49	0.018	1.49	0.046
Y_2O_3	ICP	0.571	0.001	0.49	0.000	0.47	0.047
ZnO	ICP	1.216	0.001	1.18	0.018	1.23	0.059
ZrO ₂	ICP	3.583	0.004	3.25	0.096	3.56	0.118
Sum		100.00		99.3 ^(b)		99.0 ^(c)	

Table S.1 (continued). Summary table of batched, analyzed mean compositions (SwRI and EPMA), and standard deviations (SD) of analyses for LGS19-07 glass standards, in mass %.

Acknowledgments

The authors would like to thank Albert Kruger and the Office of River Protection for supporting the development and characterization of this set of LAW glass standards. We would also like to thank Southwest Research Institute for the expert analysis of the glasses, Matt Wilburn for editing the report, and Jeff Bonnett is acknowledged for help preparing the glass batches. Peter Benson and David Aubry (WTCC) assisted in determining the appropriate glass composition ranges and test matrix design to support WTP laboratory requirements. Brad Johnson (ORNL) and Greg Piepel (retired) were instrumental in the planning of this testing. PNNL is operated for the U.S. Department of Energy by Battelle under contract DE-AC05-76RL01830

Acronyms and Abbreviations

ARG-1	Analytical Reference Glass-1
ARM-1	Approved Reference Material-1
DOE	U.S. Department of Energy
EA	Environmental Assessment
EDS	energy dispersive spectroscopy
EPMA	electron probe microanalysis
FEG	field-emission gun
IC	ion chromatography
ICP	inductively coupled plasma
ILAW	immobilized low-activity waste
LA	laser ablation
LAW	low-activity waste
LGS-19	LAW Glass Standard 2019
LRM	Low-Activity Reference Material
MS	mass spectroscopy
NQAP	Nuclear Quality Assurance Program
PNNL	Pacific Northwest National Laboratory
QA	quality assurance
RSD	relative standard deviation
SD	standard deviation
SEM	scanning electron microscopy
SwRI	Southwest Research Institute
WTP	Hanford Waste Treatment and Immobilization Plant

Contents

Summa	ıry			ii					
Acknow	vledgme	nts		viii					
Acrony	ms and A	Abbreviat	ions	ix					
1.0	Introduction								
	1.1	Quality Assurance							
2.0	Experimental								
	2.1	Glass For	rmulation and Fabrication	2.1					
	2.2	Glass Ch	aracterization Methodology						
		2.2.1	Electron Microprobe Analysis						
		2.2.2	EDS Analysis						
		2.2.3	Fusion ICP/IC Analysis						
3.0	Results	and Discu	ussion						
	3.1	Glass Me	elting Observations						
	3.2	EPMA A	nalysis Results						
	3.3	Qualitativ	ve EDS Analysis						
	3.4	IC and IC	CP Analysis						
	3.5	Statistica	l Analysis						
4.0	Summa	ry and Co	nclusions						
5.0	Referen	ices							
Append	lix A – S	Statistical	Analysis of EPMA Data	A.1					

Figures

Figure 3.1. Log	¹⁰ -Log ₁₀ plot of the relative percent difference of batched and mean EPMA- measured compositions versus the batched concentration in wt% oxide for each component. All seven glasses were plotted together. Plot shown for information only (FIO).	3.3
Figure 3.2. Log	¹⁰ -Log ₁₀ plot of the percent relative standard deviation of the EPMA measurements versus the batched concentration in wt% oxide for each component. All seven glasses were plotted together. Plot shown FIO	3.3
Figure 3.3. EPN	AA-measured versus batched composition plots for components with high percent difference with trendlines with y-intercepts set to 0. Plot shown FIO	3.6
Figure 3.4. Log	¹⁰ -Log ₁₀ plot of the percent relative difference (absolute values) of measured mean by ICP and IC versus the batched concentration in mass % oxide for each component. All seven glasses were plotted together. Plot shown FIO.	3.9
Figure 3.5. Log	⁽¹⁰ -Log ₁₀ plot of the relative standard deviation of compositions measured by ICP and IC, versus the batched concentration in mass % oxide for each component. All seven glasses were plotted together. Plot shown FIO	3.9
Figure 3.6. Perc	cent relative standard deviation of measured values versus target concentration for existing waste glass standards: LRM, ARG-1, ARM-1, and EA glasses (Mellinger et al., 1984, Jantzen et al., 1992, Smith, 1993, Ebert et al., 1999). RR is round robin, MCC is Materials Characterization Center, SRS is Savannah River Site, and NBS is National Bureau of Standards. Plot shown FIO	3.11
Figure 3.7. All	analysis points plotted by row number on the y-axis versus EPMA-measured concentration (mass fraction) on the x-axis. Row numbers were sequentially increased by analysis spot and bar number analyzed. Nominally 9 analysis spots per coupon, 3 coupons per bar, 12 bars per glass, leading to 135 spots/rows per glass.	3.12
Figure 3.8. Seq	uential spot analysis of EPMA data plotted versus measured concentration (mass fraction) for LGS19-01 glass with each bar uniquely colored: bar 1 (black), bar 4 (red), bar 6 (green), bar 8 (blue), and bar 11 (cyan). ICP measurements of bulk glass in triplicate are shown in pink. The black line is the batched concentration	3.13
Figure 3.9. Seq	uential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-02 glass, with each bar uniquely colored: bar 1(black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink.	3.14
Figure 3.10. See	quential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-03 glass, with each bar uniquely colored: bar 1 (black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink.	3.15
Figure 3.11. See	quential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-04 glass, with each bar uniquely colored: bar 1 (black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink	3.16
Figure 3.12. See	quential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-05 glass, with each bar uniquely colored: bar 1 (black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink.	3.17

Figure 3.13. Sequential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-06 glass, with each bar uniquely colored: bar 1 (black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink	.18
Figure 3.14. Sequential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-07 glass, with each bar uniquely colored: bar 1(black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink	.19
 Figure 3.15. Al₂O₃ mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space	.20
 Figure 3.16. B₂O₃ mass fraction measured by EPMA versus coupon position(1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space	.20
 Figure 3.17. CaO mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space	.21
 Fe₂O₃ mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space	.21
 Sigure 3.19. Na₂O mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space. 	.22
 SiO₂ mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space. 	.22
 Sigure 3.21. SnO₂ mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space	.23
Figure 3.22. Percent of variance in EPMA measurement values attributed to bar-to-bar (red), coupon-to-coupon position in bar (black), or random error spot-to-spot (gold), calculated by component analysis of the variance. Glass ID simplified due to space limits from LSG19-01 to -07 down to last digit of the name. Plot shown FIO	.24

Tables

Table 2.1. Target composition of LAW glass standards given in mass %	2.1
Table 2.2. Batched composition of LAW glass standards given in mass % oxides	2.2
Table 2.3. List of balances (2-, 3-, or 4-decimal place) used for glass batching to ±0.1% of thetarget masses, along with acceptable accuracy of each mass range and range ofcheck masses used to verify balance performance	2.2
Table 2.4. EPMA data collection conditions: primary standard, crystal type, on/off peak locations and collection times, and background function type	2.4
Table 3.1. Melting conditions and observations	3.1
Table 3.2. Batched and average measured compositions from EPMA analysis in mass %. Average means the average of measurements from all bars for a given glass standard. ^(a)	3.4
Table 3.3. Absolute relative difference between measured mean and batched values by EPMA, in percent.	3.5
Table 3.4. Percent relative standard deviation of measurements of each glass composition (on oxide mass basis) using EPMA	3.6
Table 3.5. Batched and measured mean glass compositions by IC and ICP analyses, in mass %	3.8
Table 4.1. Summary table of batched, analyzed mean compositions (SwRI and EPMA), and standard deviations (SD) of analyses for LGS19-01 and -02 glass standards.	4.2

1.0 Introduction

The U.S. Department of Energy (DOE) Office of River Protection is constructing and commissioning the Hanford Waste Treatment and Immobilization Plant (WTP) to vitrify low-activity waste (LAW) that is currently stored in underground tanks on the Hanford Site to form borosilicate glass. LAW glass melt will be poured into stainless steel containers, welded shut, and disposed of as immobilized low-activity waste (ILAW) glass at the Integrated Disposal Facility, located at the Hanford Site. ILAW glass will be produced using a feed forward process, whereby a glass composition must be pre-qualified, with a series of glass property-composition models that demonstrate that each batch will produce a melt and a glass that satisfy processing, performance, and contract constraints (Vienna et al. 2020). Properties that are dependent on composition include (but are not limited to) melt viscosity, melt electrical conductivity, crystallinity, sulfate solubility, product consistency test response, vapor hydration test response, and melter refractory corrosion (Vienna et al. 2020).

The compositions of the ILAW glass produced by the WTP will be verified at the WTP analytical laboratory using techniques such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and fusion/dissolution ICP. The LA-ICP-MS technique uses a focused laser beam to vaporize a spot(s) on the glass surface, which is then analyzed by the coupled ICP-MS instrument. When measuring glass samples, LA-ICP-MS offers advantages of reduced handling procedures and localized measurements. However, the LA-ICP-MS technique suffers from elemental fractionation effects within the instrument, which requires matrix matching standards, like those produced in this work, to accurately measure each component of the LAW glass (Günther et al., 2005). Traditionally, bulk analysis of glass has been performed by grinding a glass sample, dissolving it into solution, using microwave digestion or fusion techniques, and analyzing the solution by ICP coupled with optical emission spectroscopy or MS, following a procedure such as ASTM C1463-19. Fusion/dissolution ICP techniques have been used to analyze glasses for decades and to characterize several reference waste glasses in the past, such as Approved Reference Material-1 ARM-1), Environmental Assessment (EA) Glass, Analytical Reference Glass-1 (ARG-1), and Low-Activity Test Reference Material (LRM) (Mellinger et al. 1984, Jantzen et al. 1992, Smith 1993, Ebert et al. 1999). Before these analytical instruments can be used to measure ILAW glass samples, they require calibration using primary standards and verification of the instrument calibration using secondary standards. Therefore, this set of glass standards (secondary) was synthesized to be used for analysis of ILAW glasses produced at the WTP.

Traceable reference material of known composition is fundamental for accurate ICP analyses of complex chemistries for samples like dissolved LAW glasses. Ideally, standards should also resemble the chemistry of analyzed samples to account for matrix effects. To satisfy the requirement from WTP for standard material, a series of seven LAW glass standards that varied key components over the applicable composition space was designed, produced, and analyzed.

In this work, these seven glasses were analyzed using two different techniques: (1) electron probe microanalysis (EPMA) and (2) fusion ICP to provide a robust measured composition of each glass, on target with the batched compositions.

EPMA was used to systematically examine the glasses for changes in glass composition versus location on a glass sample. A total of 135 discrete measurements for each glass standard were made by EPMA, as follows:

• The EPMA measurements were performed on 5 bars evenly distributed within the 12 glass bars produced for each glass batch.

- These five bars (1, 4, 6, 8, and 12) were cross sectioned at three locations (each end and the middle) and polished to produce sample coupons.
- Coupons were analyzed using a three-by-three grid, resulting in nine analysis spots.

Fusion/dissolution ICP analysis was performed to measure glass compositions of three representative samples of ground glass powder for each glass.

Following analysis of the glasses, the measured data was statistically evaluated to provide the means, standard deviations (SDs), and relative standard deviations (RSDs) of each glass composition and individual glass bar. Variabilities among glass bars and coupon location within bars, and variability within coupons, were statistically evaluated. This was done to determine if systematic variability exists within the glass batches or if the variability should be treated as random variation. The analysis provided measured compositions and estimated uncertainties for each glass component in each standard glass that can be used for calibration of analytical instruments or verification of analytical results.

1.1 Quality Assurance

This work was performed in accordance with the Pacific Northwest National Laboratory (PNNL) Nuclear Quality Assurance Program (NQAP). The NQAP complies with DOE Order 414.1D, *Quality Assurance*, and 10 CFR 830 Subpart A, Quality Assurance Requirements. The NQAP uses NQA-1-2012, *Quality Assurance Requirements for Nuclear Facility Application*, as its consensus standard and NQA-1-2012, Subpart 4.2.1, as the basis for its graded approach to quality.

The NQAP works in conjunction with PNNL's laboratory-level Quality Management Program, which is based upon the requirements as defined in DOE Order 414.1D, *Quality Assurance*, and 10 CFR 830, *Nuclear Safety Management*, Subpart A, Quality Assurance Requirements.

The work of this report was performed to the quality assurance (QA) level of applied research with a technology readiness level of 6. This work was performed to support technology development. Data obtained may be used to support design input.

2.0 Experimental

2.1 Glass Formulation and Fabrication

The glass formulations included a suite of components found in typical LAW glasses. The compositions for each sample are given in Table 2.1. Samples are named LGS-19-0A where A ranges from 1-7 and LGS-19 is short for "LAW Glass Standard 2019." The seven glasses were formulated so that, for each component, the series of glasses would represent a distribution of major component concentrations across the anticipated range of glasses that could be produced (Vienna et al. 2020). Additionally, glasses were required to have compositions that produced acceptable values of viscosity, electrical conductivity, durability, SO₃ solubility, and K-3 refractory corrosion such that the ratios of components would be representative of LAW glasses likely to be produced. Three kilograms of each glass composition was fabricated so that enough standard material would be generated for multiple characterization methods.

	LGS19-01	LGS19-02	LGS19-03	LGS19-04	LGS19-05	LGS19-06	LGS19-07
Al ₂ O ₃	8.00	8.90	6.90	5.70	10.00	6.30	8.00
B_2O_3	9.60	6.10	13.40	8.90	8.00	11.00	6.50
CaO	7.20	10.10	2.00	3.50	5.40	8.30	5.70
Cl	0.10	0.20	0.30	0.40	0.20	0.60	0.20
Cr_2O_3	0.10	0.20	0.50	0.60	0.30	0.40	0.50
F	0.10	0.70	0.40	0.30	1.10	0.20	0.30
Fe_2O_3	0.20	3.80	1.40	0.70	2.60	5.50	1.00
K ₂ O	0.90	2.00	5.00	0.10	2.40	3.30	1.00
Li ₂ O	4.90	2.40	0.80	0.00	0.70	4.20	1.50
MgO	0.10	2.90	0.50	1.80	1.10	2.50	2.00
Na ₂ O	10.00	12.00	16.00	23.70	19.40	5.40	21.00
P_2O_5	2.10	1.40	1.30	0.20	0.50	0.80	1.80
SiO_2	43.70	38.00	36.80	41.00	38.00	46.00	39.50
SnO ₂	0.00	1.80	1.00	3.10	4.50	0.50	2.00
SO_3	1.60	1.10	0.80	0.50	0.20	0.40	0.70
TiO ₂	1.90	1.10	0.50	1.50	0.10	0.20	1.50
V_2O_5	3.90	3.00	2.30	2.00	0.10	0.90	1.50
ZnO	0.00	1.80	3.50	1.80	2.30	0.60	1.20
ZrO_2	5.60	2.50	6.60	4.20	3.10	2.90	4.10
Sum	100.00	100.00	100.00	100.00	100.00	100.00	100.00

Table 2.1. Target composition of LAW glass standards given in mass %

Target compositions were adjusted to account for impurities in raw materials identified on the certificates of analysis, as shown in Table 2.2. Components primarily affected were P_2O_5 and ZrO_2 . Y_2O_3 was also included in the batched compositions due to its presence in the ZrO_2 source chemical. The batched compositions were used throughout the report to compare to the measured compositions.

Batched	LGS19-01	LGS19-02	LGS19-03	LGS19-04	LGS19-05	LGS19-06	LGS19-07
Al ₂ O ₃	8.124	8.991	6.966	5.708	10.035	6.337	8.106
B_2O_3	9.748	6.162	13.527	8.913	8.045	11.064	6.586
CaO	7.311	10.203	2.019	3.505	5.419	8.348	5.775
Cl	0.102	0.202	0.303	0.401	0.201	0.603	0.203
Cr_2O_3	0.102	0.202	0.505	0.601	0.301	0.402	0.507
F	0.102	0.707	0.404	0.300	1.104	0.201	0.304
Fe ₂ O ₃	0.203	3.839	1.413	0.701	2.609	5.532	1.013
K ₂ O	0.914	2.020	5.047	0.100	2.408	3.319	1.013
Li ₂ O	4.976	2.425	0.808	0.000	0.702	4.224	1.520
MgO	0.102	2.930	0.505	1.803	1.104	2.515	2.026
Na ₂ O	9.932	11.975	16.015	23.713	19.415	5.347	21.087
P_2O_5	0.811	0.538	0.499	0.076	0.191	0.306	0.694
SiO ₂	44.375	38.389	37.150	41.060	38.132	46.268	40.022
SnO ₂	0.000	1.818	1.009	3.104	4.516	0.503	2.026
SO_3	1.625	1.111	0.808	0.501	0.201	0.402	0.709
TiO ₂	1.929	1.111	0.505	1.502	0.100	0.201	1.520
V_2O_5	3.960	3.031	2.322	2.003	0.100	0.905	1.520
Y_2O_3	0.782	0.347	0.916	0.578	0.428	0.401	0.571
ZnO	0.000	1.818	3.533	1.803	2.308	0.603	1.216
ZrO ₂	4.905	2.178	5.747	3.628	2.683	2.516	3.583
Sum	100.00	100.00	100.00	100.00	100.00	100.00	100.00

Table 2.2. Batched composition of LAW glass standards given in mass % oxides

Multiple balances with variable sensitivity were used to batch chemicals with $\pm 0.1\%$ accuracy. The balance types used for different mass ranges and associated accuracies are given in Table 2.3. Measuring equipment was calibrated according to the project QA implementing procedure. The balances were verified to operate properly and within batching specification with calibrated balance check weights (see Table 2.3) of known mass, before each glass batch was prepared.

Table 2.3. List of balances (2-, 3-, or 4-decimal place) used for glass batching to ±0.1% of the target masses, along with acceptable accuracy of each mass range and range of check masses used to verify balance performance.

		Balance Acceptable	Balance Check
Balance	Target Mass, X	Accuracy	Masses
2-place	$X \ge 50 \text{ g}$	± 0.05 g	2kg, 50g
3-place	$50 \text{ g} \ge X \ge 5 \text{ g}$	$\pm 0.005 g$	50g, 5g
4-place	$X \le 5 \text{ g}$	± 0.0005 g	5g, 0.5g

Glasses were batched using reagent grade chemicals. Special precautions in terms of batch order and weighing technique were adopted for certain chemicals such as H₃BO₃ and NaF due to problems such as electro-static attraction between the chemical and measuring equipment, and loss of mass while weighing, respectively. For example, H₃BO₃ was weighed on a plastic weigh boat and added to the tared container (bag + support container) first, and then the container plus the H₃BO₃ was reweighed after the chemical was added. Any amount lost during transfer from the weigh boat due to static attraction was compensated for by weighing out and adding more of said chemical to the batch.

Scoping studies were performed before glasses were produced in large quantity, by melting small batches of each composition. During scoping studies, SnO_2 was batched as the oxide, which led to undissolved SnO_2 in the glass. However, when batched using the source chemical sodium stannate, no undissolved SnO_2 was observed in the glasses. Therefore, sodium stannate was used in all of the glasses.

Chemicals were batched into a large, custom-made bag and then shaken by hand to mix. Each batch was then further homogenized for 15 minutes inside a V-blender equipped with an intensifier bar. Batches were then placed into a 90% platinum/10% rhodium crucible with a lid and nominally melted at 1150 °C for 1 hour with an induction-heated tilt-pour furnace (Ultra-MELT, TLT-2P). The melt temperature was monitored using an optical pyrometer.

To minimize melt segregation, each melt was stirred with a Pt rod. Glasses were examined visually for signs of segregated salts or undissolved materials during the melting process (top of melt) and after pouring. Each melt was poured into twelve 2.5-cm x 2.5-cm x 9.6-cm steel molds on a heated stainless-steel plate. An exception was LGS19-01, which was poured into 11 bars. The glass bars were annealed for 5 hours at 500 °C and cooled at 1 °C/min to room temperature. In between melts of the different glass compositions, this crucible was cleaned with an alkali borate cleaning glass, followed by a concentrated HF acid leach and water rinse.

2.2 Glass Characterization Methodology

2.2.1 Electron Microprobe Analysis

Glass bars were cross-sectioned and cut into coupons. Three coupons were cut for each bar. Each coupon was embedded into epoxy and polished to a finish of 1 μ m using a series of diamond abrasives: 15-um diamond-impregnated disk, followed by progressively smaller diamond suspensions on polishing pads (9, 3, and 1 μ m). Samples were cleaned with soap and water and coated with 20 nm of carbon to dissipate charging in the EPMA instrument and match the coating applied to analytical standards.

The elemental composition of each LAW glass was measured by EPMA using a JEOL 8530F HyperProbe, made by JEOL USA (Peabody, MA). The EPMA instrument uses a field-emission gun (FEG) equipped with five wavelength dispersive spectrometers, each with a take-off angle of 40°. The microprobe data was collected at an accelerating voltage of 15 kV, beam current of 20 nA, and beam size of 100 µm. These scan parameters were chosen based on results of samples from preliminary test measurements that were performed to determine element mobility under the electron beam. The microprobe data was collected and analyzed with "Probe for EPMA" software, version 12.6.1, from Probe Software Inc. (Eugene, OR). The standards used, collection times, on/off peak locations, and background fit functions are provided in Table 2.4 for each element analyzed. Standard assignments for certain elements differed in some cases between different glass compositions (e.g., Al, Si), but for coupons of the same glass composition, standards remained the same. Interferences were identified and corrected for by applying interference standards for each element. Wavescans were collected using arbitrarily chosen coupons to fit background functions for each glass composition. Application of time-dependent intensity corrections, using a method described by Nielsen et al. (1981), was limited to the first element analyzed by each spectrometer (B, Zn, Si, Ca, and Na), which is a restriction built into the Probe for EPMA software. Oxygen and lithium were not directly analyzed. Instead, oxygen was calculated based on stoichiometry of the oxides analyzed. Lithium was added based on the "as-batched" composition of each standard glass, which was confirmed to be appropriate based on ICP measurements of Li. Each coupon was measured in nine different locations in an approximate square grid with the intention of maximizing representation of the sample. Spots where charging was observed or where the polish was inadequate were avoided.

						High Off-	Low Off-	
					On Peak	Peak	Peak	
					Location,	Location,	Location,	
					L-value /	Offset /	Offset /	Background
		Spectrometer		Run	Time	Time	Time	Function
Element	Standard ^(a)	Crystal ^(b)	Spectrometer	Order	(s)	(s)	(s)	Type
A1	#4006 Albite	ТАР	5	2	90 3030 /	4 3125 /	-2 8083 /	Linear
	#1002 Albite		0	-	25	6	6	2
В	#7001 EA glass	LDE-B	1	1	129 102 /	94 353 /	-20.003 /	Exponential
D	n / 001, Eri glubb		1	1	90	25	25	Emponontial
Са	#4010	PET	4	1	107 513 /	6.01/7	-3 925 / 7	Linear
eu	Wollastonite	121	•	1	30	0.0177	5.52577	Emour
C1	#5027	PFT	4	4	151 413 /	3 97701 /	-6.913 /	Linear
01	Pyromorphite	111	•		40	10	10	Linear
Cr	#4024 Cr2O3	LiF	3	3	150 210 /	5.8/3 /	_1 3/15 /	Linear
CI	π +02+, C12O3	LII	5	5	40	10	10	Linear
F	#4016 Elucrite	IDE 1	1	2	86.0170 /	2 5827 /	11.61 /	Exponential
1	#4010, Pluome	LDL-I	1	2	40	10	-11.017	Exponential
Fa	#4011 Homotita	LE	2	2	124 601 /	5 24701 /	2 126 / 6	Lincor
re	#4011, mematile	LII	2	2	134.0017	5.247017	-3.12070	Linear
V	#1009	DET	Λ	2	23	0 2 7001 /	2 0 9 1 /	Evenential
ĸ	#1006, Ortheselses	PEI	4	3	119.8017	8./001/	-2.081/	Exponential
N 4	Urthoclase	TAD	E	2	40	10	10	F (* 1
Mg	#1003, Periclase	IAP	5	3	107.2037	12.4977	-9.12227	Exponential
27	11400C 111	T + D	-		35	1	/	* *
Na	#4006, Albite	TAP	5	1	129.202 /	9.104 / 6	-11.19/6	Linear
_			-		25			- ·
Р	#4005,	PET	3	4	196.844 /	5.304 /	-6.142 /	Linear
	Apatite(natural)				40	10	10	
S	# 4008, Barite	PET	3	3	171.717 /	7.10501 /	-6.845 /	Linear
	BaSO ₄				40	10	10	
Si	#4010,	PET	3	1	77.4460 /	9.6005 /	-9.6004 /	Linear
	Wollastonite,				25	6	6	
	#1008							
	Orthoclase							
Sn	#1026,	PET	4	2	115.229 /	2.53101 /	-1.971 /	Linear
	Cassiterite				40	10	10	
Ti	#4007 TiO2	LiF	2	5	191.185 /	4.782 / 6	-1.171 / 6	Linear
	Rutile				25			
V	#1033, V metal	LiF	2	4	174.106 /	5.72 / 7	-2.028 / 7	Linear
					25			
Zn	#2016, Zn metal	LiF	2	1	99.6820 /	6.288 / 6	-6.0722 /	Exponential
					25		6	-
Zr	#4001, Zircon	PET	3	5	194.136 /	6.83901 /	-5.325 / 6	Linear
	(ZrSiO4)				25	6		
Y	#5008, Yttrium	TAP	3	2	70.057 /	10.0921 /	-8.7919 /	Linear
	Aluminum				30	7	7	
	Garnet							
0	Calculated stoichi	ometrically using	other analyzed e	lemental	oxides based	on target oxi	idation states	
(a) The 1	1000s place in the st	andard number d	enotes the standa	rd block	that each star	idard is from	where 1000	s refers to

Table 2.4. EPMA data collection conditions: primary standard, crystal type, on/off peak locations and collection times, and background function type.

(a) The 1000s place in the standard number denotes the standard block that each standard is from, where 1000s refers to GP40 standard block produced by P&H, 2000s refers to standard block SPI #02751-AB produced by SPI Supplies, 3000s refers to borosilicate glass standards assembled at PNNL, and 4000s refers to standard block Geo Mk II produced by P&H.

(b) Crystal abbreviations: thallium acid phthalate (TAP), layered dispersive element (LDE-1, LDE-B), lithium fluoride (LiF), pentaerythritol (PET)

2.2.2 EDS Analysis

Qualitative elemental glass composition analysis by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) was performed using a JEOL JSM-7001F FEG SEM instrument (Peabody, MA) equipped with a Bruker XFlash 6|60 EDS detector (Madison, WI). EDS analysis was conducted using the following microscope parameters: 15 kV accelerating voltage, 10 mm working distance, and 5 nA probe current, resulting in an average of 100 kcps through the detector. EDS analysis was performed on the same set of samples analyzed by EPMA. Three sample coupons, or 1 bar (each end and middle), were loaded into the SEM instrument at a time and analyzed using a square analysis grid (1.5 mm²), resulting in 81 analysis spots per coupon.

Note that Li cannot be measured as an oxide with this EDS detector. Boron, which can be detected by this detector, was not measured because of interferences by other elements in the glass, the most significant being Ca and Zr, and because of the low signal generated by B from these glass samples.

2.2.3 Fusion ICP/IC Analysis

Approximately 1 kg of each standard glass was crushed and sieved to -70 mesh. Three representative samples of each glass were analyzed using ion chromatography (IC) and ICP-MS at SwRI. Samples were analyzed for Br⁻, F⁻, Cl⁻, and SO₄²⁻ using IC. In sample preparation for IC, approximately 0.200 g of each sample was first fused with Na₂CO₃. Fusions were diluted to 50 mL with deionized water. Samples were pretreated with OnGuard II H to eliminate the matrix interference caused at the fluoride retention time. Samples were prepared for ICP-MS using three digestion techniques. First, a closed vessel digestion using nitric, hydrochloric, and hydrofluoric acids was used to prepare samples for measurement of B (for all samples) and P (for samples LGS-10-04-end1, mid, and end2, and LGS-19-05-end1, mid, and end2). Second, a lithium metaborate/tetraborate fusion was used to prepare samples for measurement of Ca, Cr, Si, and Zr. Third, a nitric, perchloric, hydrofluoric, and hydrochloric digestion in an open vessel was used to prepare samples for P. Loss on ignition was measured and applied for all samples to normalize out any absorbed moisture in the ground glass samples.

3.0 Results and Discussion

3.1 Glass Melting Observations

Large convection cells were observed during melting in the tilt-pour crucible. These cells cycled molten salts, which are slow to incorporate into the melt, to the top of the melt, and in certain samples a gall layer was formed. For one glass (LGS19-02), the gall layer that formed in sample could not be integrated with normal stirring. Milling and remelting is used in smaller and less-sensitive batches to help integrate segregated components into the glass; however, in this case, milling would have likely contributed to batch contamination, and therefore was avoided. Instead, an extended melt time of 4 hours and continued stirring were used to integrate the molten salt layer into the melt (and potentially volatilize salt components) to produce a homogenous glass. As the gall layer contains volatile components, the loss of these components was considered a risk during this extended melting time; however, since the glass was intended to be a standard, obtaining a homogenous glass was deemed most important. The melting times, furnace conditions, and notable melting observations for each sample are given in Table 3.1.

Failures associated with the tilt-pour's electrical controller resulted in some melts being interrupted or receiving different melt histories. It was discovered when first using the tilt-pour that higher power levels resulted in furnace shutoffs. The melting of sample LGS19-04 was most affected by lower power levels (see Table 3.1). To maximize the heating capability of the furnace for subsequent heat treatments, patches were applied to the heating coil, and coolant flow to the tilt-pour was increased. A heating program was also adopted that employed lower power levels at the beginning and gradually increased power levels toward the end of the melt. Temperatures recorded in Table 3.1 were taken from the top of the melt with an optical pyrometer while stirring. The limit of the optical pyrometer is 1200 °C, and therefore, material in the middle of all melts exceeded that temperature, except for LGS19-04. During hold times when the melt was not being stirred, temperatures at the top of the melts were between 1050 and 1175 °C, except for LGS19-04.

	Total Time	Hold Time	Max Temp. (when stirred)		Furnace	
Batch	(hr:min:sec)	(hr:min:sec)	(°C)	Power	Failure	Notes
LGS19-01	2:50:00	1:30:00	≥1200 °C	75-90%	Yes	Poured 11 bars instead of normal 12
LGS19-02	5:40:00	4:00:00	≥1200 °C	70-80%	No	Gall layer, extended melting time
LGS19-03	3:15:00	1:25:00	≥1200 °C	80-85%	No	Refractory removed from melt
LGS19-04	4:45:00	1:00:00	900 °C	55-75%	Yes	High foam, crack in one bar from mold
LGS19-05	3:00:00	1:10:00	≥1200 °C	80-85%	No	
LGS19-06	3:20:00	1:30:00	≥1200 °C	75-85%	No	High volatility and segregation
LGS19-07	2:50:00	1:30:00	≥1200 °C	80-90%	No	Small amount of precipitated sulfur

Table 3.1. Melting conditions and observations

3.2 EPMA Analysis Results

The batched compositions and the measured overall mean glass compositions by EPMA are provided in Table 3.2. The measured overall mean glass composition is the mean of all 135 measurements for each glass composition. These 135 discrete analyses for each glass are broken down as follows: 5 bars per glass \times 3 coupons per bar \times 9 positions per coupon. The totals for measured means range from 98.3 to 99.8 mass %, with Li₂O included as batched. Li₂O was given as an as-batched composition because of the inability of EPMA to detect Li. Totals approximated 100 mass %, which indicated the analyses accounted for all the expected components in the glass. Specific component measurements were also on target with the batched compositions.

Table 3.3 lists the percent relative difference between the measured mean and batched compositions for each element analyzed. The percent difference between the batched and measured mean compositions was also plotted versus the batched mass fraction (Log₁₀-Log₁₀ plot, Figure 3.1), which showed that the relative difference decreased with batched component concentration. Similarly, the RSDs of the measurements, given in Table 3.4, decrease with concentrations of batched components, as shown on the Log₁₀-Log₁₀ scale in Figure 3.2. In contrast to Figure 3.1, Figure 3.2 also shows independent trends for three major components (B₂O₃, SiO₂, and Na₂O) and one minor component (K₂O). The RSD of B₂O₃ is shifted above other glass components of similar batch concentration because of its low atomic mass. Atomic mass of the analyzed component affects signal strength by EPMA, so light components, especially B, have low signal strength while K has higher-than-average signal strength. In contrast, the RSDs of SiO₂ and Na₂O are nearly concentration independent. The RSD for SiO₂ was independent of concentration because it was collected on a PET-J crystal, which is the most sensitive to environmental temperature changes in the lab. The changes in RSD for Na₂O were likely due to alkali mobility under the electron beam that required the TDI correction to determine the Na₂O concentration before Na₂O migrates. This TDI fit adds an additional source of error that was not dependent on Na₂O concentration but was most likely linked to differences in the Na bonding environment in the seven different glasses. While the data collection process was optimized for the seven glasses analyzed, it was not optimized for each glass composition and therefore the RSD of Na₂O is independent of concentration.

Figure 3.1 and Figure 3.2 both indicate a general trend that measurements were less precise as concentrations decreased. This is in line with basic principles of EPMA, where component concentration drives signal strength and, as signal strength decreases, the relative variability contributed by counting electronics in the EPMA instrument increases. To improve the counting statistics at low concentrations, the counting times would need to be increased significantly based on the Log₁₀-Log₁₀ relationship shown in Figure 3.1. However, increasing the counting time per analysis spot for the minor and trace components would have been impractical for the number of measurements required in this study. In addition, increased counting times may have introduced more environmental variability because the analyzing crystals in an EPMA instrument expand and contract slightly with changes in lab temperature, which impacts the counts.

Some components of the glass (Cl, K, F, S) can be subject to volatility during melting, and in some cases the measured means were significantly different from target compositions. These differences are reflected in Table 3.4. Additionally, difficulties in weighing the fluoride source chemical, NaF, may have contributed to the difference in F between the target and the measured compositions. Yttrium oxide, another component with a high calculated percent difference, was a component used to stabilize the ZrO_2 in the cubic structure in source chemicals, and therefore is not important to LAW glass. The target amount is based on the given fraction (2.00 wt%) of Y_2O_3 present in the source chemical. The accuracy of EPMA measurements for the highlighted high difference components is also represented graphically in 1:1 plots in Figure 3.3. These plots help to illustrate the differences between measured and targeted values of volatile and hard-to-incorporate components.

Figure 3.1. Log₁₀-Log₁₀ plot of the relative percent difference of batched and mean EPMA-measured compositions versus the batched concentration in wt% oxide for each component. All seven glasses were plotted together. Plot shown for information only (FIO).

Figure 3.2. Log₁₀-Log₁₀ plot of the percent relative standard deviation of the EPMA measurements versus the batched concentration in wt% oxide for each component. All seven glasses were plotted together. Plot shown FIO.

	LGS19-01		LGS19-02		LGS19-03		LGS19-04		LGS19-05		LGS19-06		LGS19-07	
	Meas.	Batched	Meas.	Batched	Meas.	Batched	Meas.	Batched	Meas.	Batched	Meas.	Batched	Meas.	Batched
Al_2O_3	7.87	8.124	8.66	8.991	6.92	6.966	5.66	5.708	9.92	10.035	6.15	6.337	7.94	8.106
B_2O_3	9.91	9.748	6.37	6.162	13.24	13.527	8.81	8.913	7.65	8.045	10.92	11.064	6.44	6.586
CaO	7.13	7.311	10.19	10.203	2.02	2.019	3.5	3.505	5.51	5.419	8.32	8.348	5.74	5.775
Cl	0.07	0.102	0.09	0.202	0.18	0.303	0.34	0.401	0.14	0.201	0.26	0.603	0.14	0.203
Cr_2O_3	0.1	0.102	0.19	0.202	0.49	0.505	0.6	0.601	0.3	0.301	0.39	0.402	0.5	0.507
F	0.04	0.102	0.88	0.707	0.4	0.404	0.32	0.3	1.39	1.104	0.16	0.201	0.33	0.304
Fe ₂ O ₃	0.2	0.203	3.82	3.839	1.41	1.413	0.71	0.701	2.65	2.609	5.47	5.532	1.01	1.013
K ₂ O	0.86	0.914	1.85	2.02	4.75	5.047	0.11	0.1	2.26	2.408	3	3.319	0.96	1.013
Li ₂ O ^(a)	4.98	4.976	2.43	2.425	0.81	0.808	0	0	0.7	0.702	4.22	4.224	1.52	1.52
MgO	0.06	0.102	2.86	2.93	0.49	0.505	1.84	1.803	1.05	1.104	2.37	2.515	1.99	2.026
Na ₂ O	9.74	9.932	11.59	11.975	16.22	16.015	23.71	23.713	19.26	19.415	5.16	5.347	20.94	21.087
P_2O_5	0.83	0.811	0.55	0.538	0.52	0.499	0.08	0.076	0.2	0.191	0.32	0.306	0.72	0.694
SiO_2	44.14	44.375	39.21	38.389	37.49	37.15	41.25	41.06	38.49	38.132	46.37	46.268	40.03	40.022
SnO ₂	0	0	1.69	1.818	0.93	1.009	2.89	3.104	4.25	4.516	0.47	0.503	1.89	2.026
SO ₃	1.36	1.625	0.75	1.111	0.6	0.808	0.44	0.501	0.19	0.201	0.24	0.402	0.59	0.709
TiO ₂	1.88	1.929	1.11	1.111	0.5	0.505	1.5	1.502	0.1	0.1	0.2	0.201	1.51	1.52
V_2O_5	3.85	3.96	2.92	3.031	2.27	2.322	1.97	2.003	0.1	0.1	0.88	0.905	1.49	1.52
Y_2O_3	0.63	0.782	0.28	0.347	0.76	0.916	0.5	0.578	0.35	0.428	0.32	0.401	0.47	0.571
ZnO	0	0	1.81	1.818	3.57	3.533	1.85	1.803	2.37	2.308	0.6	0.603	1.23	1.216
ZrO ₂	4.73	4.905	2.15	2.178	5.72	5.747	3.68	3.628	2.68	2.683	2.46	2.516	3.56	3.583
Sum	98.4	100.00	99.4	100.00	99.3	100.00	99.8	100.00	99.6	100.00	98.3	100.00	99.0	100.00
(a) Li ₂ O	(a) Li_2O was not measured but was given at the batched values to evaluate sum.													

Table 3.2. Batched and average measured compositions from EPMA analysis in mass %. Average means the average of measurements from all bars for a given glass standard.^(a)

High relative differences generally correlated with low batched concentrations of elements in the glasses, as shown in Table 3.3. Minor components close to 0.1 wt% approached the limit of detection for EPMA, and therefore had proportionally more variable data when measured. Limits of detection vary by element for EPMA, but generally are within the range 0.05-0.20 oxide mass % when using counting times selected for this work.

Component	LGS19-01	LGS19-02	LGS19-03	LGS19-04	LGS19-05	LGS19-06	LGS19-07
Al ₂ O ₃	3.14	3.66	0.71	0.88	1.17	2.97	2.08
B_2O_3	1.68	3.38	2.11	1.12	4.71	1.28	2.25
CaO	2.55	0.16	0.08	0.02	1.61	0.36	0.58
Cl	28.47	57.28	41.66	14.93	31.60	56.10	29.03
Cr_2O_3	2.81	5.61	2.09	0.66	1.17	2.91	1.39
F	64.46	23.75	0.60	7.87	26.17	19.36	7.58
Fe_2O_3	1.05	0.54	0.03	0.86	1.57	1.18	0.15
K ₂ O	5.71	8.59	5.97	10.69	6.12	9.74	5.24
Li ₂ O	NM						
MgO	38.00	2.42	2.61	2.14	4.93	5.59	1.96
Na ₂ O	1.92	3.23	1.26	0.01	0.81	3.47	0.71
P_2O_5	1.72	2.97	3.37	8.95	2.89	3.14	3.42
SiO ₂	0.52	2.14	0.92	0.47	0.93	0.22	0.02
SnO ₂	0.00	6.88	7.59	6.85	5.96	7.42	6.96
SO_3	16.47	32.26	25.18	11.53	7.64	40.37	16.42
TiO ₂	2.56	0.11	0.20	0.40	1.53	0.34	0.41
V_2O_5	2.76	3.49	2.34	1.62	3.25	2.53	2.00
Y_2O_3	19.76	20.48	16.93	13.39	19.00	19.99	17.12
ZnO	0.00	0.62	0.91	2.87	2.78	0.45	1.53
ZrO ₂	3.60	1.49	0.45	1.36	0.22	2.06	0.76
NM = not me	easured						

Table 3.3. Absolute relative difference between measured mean and batched values by EPMA, in percent.

Figure 3.3. EPMA-measured versus batched composition plots for components with high percent difference with trendlines with y-intercepts set to 0. Plot shown FIO.

Component	LGS19-01	LGS19-02	LGS19-03	LGS19-04	LGS19-05	LGS19-06	LGS19-07		
Al ₂ O ₃	1.45	1.23	1.45	1.30	0.96	0.93	1.14		
B_2O_3	3.76	6.25	2.91	4.22	4.53	3.49	6.22		
CaO	1.01	1.07	1.93	1.32	1.26	0.99	0.87		
Cl	8.55	11.38	7.46	3.33	5.96	4.69	10.08		
Cr_2O_3	14.29	8.93	3.35	4.39	5.40	4.72	3.52		
F	58.88	3.17	6.63	7.16	4.23	15.11	6.39		
Fe ₂ O ₃	9.41	1.36	2.69	4.76	1.77	1.15	3.34		
K ₂ O	1.60	0.80	0.89	7.96	0.82	0.78	1.37		
Li ₂ O	NM								
MgO	46.55	0.89	3.81	1.47	3.27	0.94	1.17		
Na ₂ O	1.35	1.42	1.40	0.73	1.34	1.78	0.78		
P_2O_5	3.56	4.79	4.54	18.63	9.82	6.31	4.12		
SiO_2	1.20	0.96	0.86	1.18	0.83	1.23	1.29		
SnO ₂	0.00	1.35	2.18	1.98	0.87	3.30	1.21		
SO_3	4.23	6.85	5.99	6.11	12.36	9.99	6.09		
TiO ₂	2.81	3.79	6.29	4.81	21.62	12.15	3.00		
V_2O_5	2.43	2.39	2.55	4.18	17.13	4.26	3.08		
Y_2O_3	7.15	14.23	6.51	8.75	12.07	11.15	9.84		
ZnO	0.00	3.65	2.47	3.40	3.17	7.12	4.78		
ZrO ₂	2.13	3.93	2.35	3.33	3.74	3.57	3.32		

Table 3.4. Percent relative standard deviation of measurements of each glass composition (on oxide mass basis) using EPMA.

3.3 Qualitative EDS Analysis

Qualitative analysis of the glass samples was performed to look for relative differences in component concentrations with the same systematic sampling approach as EPMA but with significantly more analysis spots, 81 by EDS versus 9 by EPMA. EDS was a faster qualitative analysis process used to screen for inhomogeneous regions. Qualitative EDS analysis did not reveal any systematic changes within coupons. SEM images of the samples showed glass that was devoid of unique features, which also indirectly supports a homogeneous sample.

In some coupons, the variability of Na₂O and SiO₂ between analysis spots increased relative to other coupons of the same glass batch analyzed. Unlike EPMA, this analysis technique does not collect TDI data and therefore it's impossible to correct for Na₂O migration caused by the electron beam. Some of the coupons were repolished and reanalyzed at a lower (by one magnitude) beam current to reduce possible Na₂O migration and the increased variability still occurred, but on a different coupon that previously showed smaller, more typical variability from spot-to-spot. This small reanalysis set confirmed that the original measurements were not affected by the electron beam conditions and that the effect appeared to be random. Another possible reason for the increased variance within a sample could be a poorly grounded sample, which would allow the sample to periodically charge and discharge under the electron beam. However, charging was not directly observed while running the samples.

3.4 IC and ICP Analysis

The measured mean bulk glass compositions (mean of triplicate samples) along with the batched compositions are given in Table 3.5. The measured totals range from 100.01 to 99.08 mass %, which on average is roughly 1% higher than the totals determined by EPMA. As with EPMA, these results indicate that ICP and IC bulk analysis of the glasses captures all the components present in the glasses. Li₂O was detected using ICP and was found to be present and on target with the batched composition.

As was done with EPMA data, the percent difference between batched and measured mass % from IC/ICP was plotted versus batch concentration (Figure 3.4). As was observed with EPMA, the errors decrease with increasing component concentrations. In addition, the magnitude of relative errors at small concentrations is comparable between the two methods. RSDs of IC/ICP components were also plotted versus concentration (Figure 3.5), and a trend similar to the one from EPMA was observed. In contrast to the data from EPMA, however, variation in IC/ICP data at low concentrations was nearly twice as large. The components that occurred in smaller concentrations, and thus had larger error and variability, have also been identified as volatile components. Therefore, errors in components such as Cl, F, P₂O₅, and SO₃ may also be due in part to their volatility.

		LGS19-01		LGS19-02 LGS19-03		19-03	LGS19-04		LGS19 -05		LGS19-06		LGS19-07		
Oxide	Method	Batch	Meas.	Batch	Meas.	Batch	Meas.	Batch	Meas.	Batch	Meas.	Batch	Meas.	Batch	Meas.
Al ₂ O ₃	ICP	8.124	7.96	8.991	8.99	6.966	6.96	5.708	5.6	10.035	10.09	6.337	6.24	8.106	7.92
B ₂ O ₃	ICP	9.748	9.66	6.162	5.99	13.527	13.15	8.913	8.84	8.045	8	11.064	10.91	6.586	6.58
CaO	ICP	7.311	7.08	10.203	10.02	2.019	1.99	3.505	3.43	5.419	5.36	8.348	8.22	5.775	5.68
Cl	IC	0.102	(a)	0.202	(a)	0.303	0.03	0.401	0.14	0.201	$0.02^{(b)}$	0.603	0.09	0.203	$0.02^{(b)}$
Cr ₂ O ₃	ICP	0.102	0.1	0.202	0.19	0.505	0.47	0.601	0.57	0.301	0.29	0.402	0.38	0.507	0.48
F	IC	0.102	0.1	0.707	0.83	0.404	0.45	0.300	0.35	1.104	1.31	0.201	0.22	0.304	0.35
Fe ₂ O ₃	ICP	0.203	0.21	3.839	3.82	1.413	1.41	0.701	0.68	2.609	2.54	5.532	5.43	1.013	0.98
K ₂ O	ICP	0.914	0.88	2.020	1.9	5.047	4.76	0.100	0.11	2.408	2.27	3.319	3.08	1.013	0.94
Li ₂ O	ICP	4.976	5.04	2.425	2.48	0.808	0.8	0.000	0	0.702	0.7	4.224	4.26	1.520	1.5
MgO	ICP	0.102	0.1	2.930	2.86	0.505	0.5	1.803	1.73	1.104	1.07	2.515	2.42	2.026	1.91
Na ₂ O	ICP	9.932	9.88	11.975	11.8	16.015	15.59	23.713	23.28	19.415	18.83	5.347	5.2	21.087	20.62
P ₂ O ₅	ICP	0.811	0.88	0.538	0.63	0.499	0.59	0.076	0.08	0.191	0.17	0.306	0.4	0.694	0.75
SiO ₂	ICP	44.375	45.71	38.389	39.65	37.150	38.43	41.060	41.71	38.132	39.22	46.268	47.85	40.022	41.22
SnO ₂	ICP	0.000	0	1.818	1.74	1.009	0.95	3.104	2.94	4.516	3.64	0.503	0.44	2.026	1.86
SO ₃	IC	1.625	1.27	1.111	0.72	0.808	0.64	0.501	0.45	0.201	0.15	0.402	0.21	0.709	0.6
$SO_3^{(c)}$	ICP	1.625	1.18	1.111	0.78	0.808	0.49	0.501	0.5	0.201	0.2	0.402	0.13	0.709	0.65
TiO ₂	ICP	1.929	1.87	1.111	1.12	0.505	0.51	1.502	1.5	0.100	0.09	0.201	0.2	1.520	1.48
V_2O_5	ICP	3.960	3.93	3.031	3.05	2.322	2.34	2.003	1.98	0.100	0.2	0.905	0.9	1.520	1.49
Y_2O_3	ICP	0.782	0.68	0.347	0.31	0.916	0.81	0.578	0.5	0.428	0.39	0.401	0.35	0.571	0.49
ZnO	ICP	0.000	0	1.818	1.81	3.533	3.49	1.803	1.77	2.308	2.26	0.603	0.6	1.216	1.18
ZrO_2	ICP	4.905	4.58	2.178	2.04	5.747	5.46	3.628	3.37	2.683	2.59	2.516	2.38	3.583	3.25
Sum		100.00	99.84	100.0	100.01	100.00	99.18	100.00	99.08	100.00	99.22	100.00	99.70	100.00	99.33

Table 3.5. Batched and measured mean glass compositions by IC and ICP analyses, in mass %.

(a) One or more analytes from this sample were not detected above SwRI's limit of detection (LOD).

(b) Analyte was detected at or above SwRI's LOD but below SwRI's limit of quantitation.

(c) SO₃ measured by IC was used for sum calculations. SO₃ measured by ICP not used for sum calculations

Figure 3.4. Log₁₀-Log₁₀ plot of the percent relative difference (absolute values) of measured mean by ICP and IC versus the batched concentration in mass % oxide for each component. All seven glasses were plotted together. Plot shown FIO.

Figure 3.5. Log₁₀-Log₁₀ plot of the relative standard deviation of compositions measured by ICP and IC, versus the batched concentration in mass % oxide for each component. All seven glasses were plotted together. Plot shown FIO.

3.5 Statistical Analysis

The EPMA data was collected systematically (see Section 2.0) to determine the following for each glass standard:

- 1. Is the standard glass composition on target with the as-batched composition?
- 2. Do systematic differences exist from bar-to-bar within the glass standard batch?
- 3. Do systematic differences exist from spot-to-spot within a sample coupon?

Four EPMA data points were removed as outliers from the dataset:

- LGS-19-03-bar12-end2-spot1 was removed because the sum of all components was 41 mass %, indicating that this analysis spot likely had a physical defect that drastically reduced total counts for all components. This was the only low total recovery in the dataset.
- LGS-19-03-bar10-middle-spot6 and LGS-19-03-bar12-middle-spot6 were both removed because measured concentrations were significantly shifted (low Na₂O and high K₂O) from other measurements of LGS19-03.
- LGS-19-04-1-bar12-middle-spot 3 was removed because the concentrations of CaO, Cl, K₂O, and SnO₂ were all significantly lower than other measurements on this glass.

Additional outliers were observed in the EPMA data set, where single components were outside the variability of their data set. An example is shown in Figure 3.7, where LGS-19-06 has one low Cl measurement that is an outlier. However, they were not removed from the data set as an outlier unless multiple components were collectively outliers, as discussed above for a given analysis spot. The decision to keep spots when individual components were outliers was made to preserve the full variability of each component analyzed in the EPMA data sets.

The analysis of each glass batch by EPMA and fusion/dissolution ICP showed that the major components were all within \pm 10 % (absolute relative difference) of the batch concentrations. Only five components (Cl, F, SO₃, MgO, and Y₂O₃) had absolute relative differences between the measured and batched concentrations that exceeded \pm 10 mass % on an oxide basis by ICP and EPMA, see Figure 3.1 and Figure 3.4. Three of these components (Cl, F, and SO₃) may be volatile in borosilicate waste glass melts. LGS-19-1 had a high absolute relative difference for MgO (38.8 %) that was attributed to the low batched concentration (0.102 wt%) in this glass. Higher concentrations of MgO in other glasses had absolute relative differences \leq 5.6 %. Like MgO, The increased difference in measured Y₂O₃ was attributed to the small concentration in the glasses (0.35 to 0.92 mass %).

From a practical point of view, the analyzed compositions show relative standard deviations of the analyzed concentrations similar to those that have been shown during round robin studies conducted on past standard glasses such as LRM, ARG-1, EA, and ARM-1 glasses, which provides confidence in the glass preparation and analysis of these seven new LAW glass standards (Mellinger et al., 1984, Jantzen et al., 1992, Smith, 1993, Ebert et al., 1999). The RSDs of the measured values for LRM, ARG-1, EA, and ARM-1 glasses, shown in Figure 3.6, are also similar in magnitude and trend to that observed in this work done by ICP and EPMA, shown in Figure 3.2 and Figure 3.5 (Mellinger et al. 1984, Jantzen et al. 1992, Smith 1993, Ebert et al. 1999).

Figure 3.6. Percent relative standard deviation of measured values versus target concentration for existing waste glass standards: LRM, ARG-1, ARM-1, and EA glasses (Mellinger et al., 1984, Jantzen et al., 1992, Smith, 1993, Ebert et al., 1999). RR is round robin, MCC is Materials Characterization Center, SRS is Savannah River Site, and NBS is National Bureau of Standards. Plot shown FIO.

To visualize the variability in the analysis data collected by EPMA for each component, all analysis spots were first plotted versus the measured concentration for the seven standard glass compositions produced (Figure 3.7). The y-axis shows the analysis number, which sequentially increases, beginning with bar 1, spot 1 and ending with bar 12, spot 9 for each glass. Glasses are all uniquely colored. This figure shows there are shifts in the variability that are linked to row number.

In similar fashion, the analyzed concentrations, by EPMA and ICP, were plotted (Figure 3.8 through Figure 3.14) vertically by row number to visualize the differences in the measured values between techniques relative to the as-batched values (vertical lines). The EPMA data in these plots is colored by bar number and the ICP is colored pink.

Next, to better visualize where the variability occurs, the data was plotted as mass fraction versus the coupon position within each bar and bar position within each standard glass for each glass standard (Figure 3.15 through Figure 3.21). These plots show that the shift generally occurs at the bar-to-bar level. This shift at the bar-to-bar level was mostly random, meaning the shift occurred randomly anywhere between the five bars analyzed. In some cases, such as for Al₂O₃ measurements from glasses LSG19-01, - 03, and -07, the shift in measured concentration of a component happened to appear more systematic from the first to last bar. Calculations were made using component analysis to determine what fraction of the variance in the data was linked to bar-to-bar versus coupon-to-coupon location in a bar versus random error. The percent variance due to each component analyzed is plotted for each glass composition in Figure 3.22. The contribution to variance linked to the bar-to-bar variable fluctuates widely among the glasses but was mostly present in the major components: Al₂O₃, Na₂O, SiO₂, B₂O₃, and CaO. SnO₂ and Fe₂O₃ were also examined, but the variability of those two components was mainly due to error.

Figure 3.7. All analysis points plotted by row number on the y-axis versus EPMA-measured concentration (mass fraction) on the x-axis. Row numbers were sequentially increased by analysis spot and bar number analyzed. Nominally 9 analysis spots per coupon, 3 coupons per bar, 12 bars per glass, leading to 135 spots/rows per glass.

Figure 3.8. Sequential spot analysis of EPMA data plotted versus measured concentration (mass fraction) for LGS19-01 glass with each bar uniquely colored: bar 1 (black), bar 4 (red), bar 6 (green), bar 8 (blue), and bar 11 (cyan). ICP measurements of bulk glass in triplicate are shown in pink. The black line is the batched concentration.

Figure 3.9. Sequential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-02 glass, with each bar uniquely colored: bar 1(black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink.

Figure 3.10. Sequential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-03 glass, with each bar uniquely colored: bar 1 (black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink.

Figure 3.11. Sequential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-04 glass, with each bar uniquely colored: bar 1 (black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink

Figure 3.12. Sequential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-05 glass, with each bar uniquely colored: bar 1 (black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink.

Figure 3.13. Sequential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-06 glass, with each bar uniquely colored: bar 1 (black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink.

Figure 3.14. Sequential spot analysis by EPMA plotted versus measured concentration (mass fraction) for LGS19-07 glass, with each bar uniquely colored: bar 1(black), bar 4 (red), bar 7 (green), bar 10 (blue), and bar 12 (cyan). ICP measurements of bulk glass in triplicate are shown in pink.

Figure 3.15. Al₂O₃ mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space.

Figure 3.16. B₂O₃ mass fraction measured by EPMA versus coupon position(1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space.

Figure 3.17. CaO mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space.

Figure 3.18. Fe₂O₃ mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space.

Figure 3.19. Na₂O mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space.

Figure 3.20. SiO₂ mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space.

Figure 3.21. SnO₂ mass fraction measured by EPMA versus coupon position (1 = end 1, 2 = end 2, 3 = middle), bar number for each glass standard. Individual data points shown as black dots, means of analysis denoted at each level of analysis: red cross for coupon, pink line for bar, and blue line for each glass. Glass ID shortened from LGS-19-0X to the last digit for space.

Figure 3.22. Percent of variance in EPMA measurement values attributed to bar-to-bar (red), coupon-to-coupon position in bar (black), or random error spot-to-spot (gold), calculated by component analysis of the variance. Glass ID simplified due to space limits from LSG19-01 to - 07 down to last digit of the name. Plot shown FIO.

4.0 Summary and Conclusions

Seven LAW standard glasses were fabricated and characterized to be used by the WTP as traceable standards for analytical instrument calibration and method verification during measurement of LAW glass compositions. The glasses were formulated to represent the compositions of LAW glass that are anticipated be generated by the WTP. Large (3-kg) batches were made using an induction-heated tilt-pour furnace to provide sufficient material for verifying composition and homogeneity of the glass standards and for use as standards.

To verify that the compositions of these standard glasses were on target with the batched compositions after melting, samples from each of the seven compositions were measured using EPMA, IC, and ICP-MS. Glasses were systematically analyzed by EPMA to determine the variability across each batch by analyzing 5 of the 12 glass bars produced. Within each bar, three coupons were taken, and nine spots were analyzed on each coupon. Percent differences and RSDs were calculated to evaluate the accuracy and homogeneity of the samples. These values decrease with increasing component concentrations. IC/ICP measurements also showed decreasing RSDs with increasing concentrations. This same trend was reported in previously developed waste glass standards. In comparison to EPMA, variability for components at low concentrations was slightly higher using IC/ICP measurements. Values for Li were exclusively obtained by ICP and were close to those of batched compositions. Components that generally occurred in small concentrations in the glass matrix, and as a result had higher error (>10%) and variability, included Cl, F, SO₃, and Y₂O₃.

In most cases, the same components that occurred in minor fractions in the glass standards were also components that can volatilize during melting. Therefore, relative differences from the batched compositions or measurement variability may have also been influenced by volatile behavior. Two glasses where the most volatilization was observed, LGS-19-02 and LGS-19-06, also had higher percent differences and SDs in volatile components, such as Cl and F, compared to other glasses. Therefore, it is possible that volatilization contributed to differences in glass compositions compared to batched compositions.

Statistical plots were made from EPMA data to evaluate homogeneity within single bars and whole compositions for each of the seven glasses. For some isolated components, such as Al₂O₃ in glass LGS-19-03, there appeared to be small systematic trends across bars. Furthermore, for major components such as Al, Si, and Na, it was determined that a high proportion of the variability in glass samples occurs at the bar-to-bar level. However, these trends occur at a range in concentrations (approximately 0.2 wt% difference in Al₂O₃ in LGS-19-03) that make them inconclusive based on the sensitivity of the EPMA. Since the EPMA instrument was calibrated when each bar was analyzed, the variability caused by repeated calibrations is correlated and likely contributed to the observed variability from bar-to-bar. This bar-to-bar variability occurred randomly and doesn't show a clear trend with bar order.

Based on these analyses, we recommend using the overall mean analyzed composition for each glass and the overall (pooled) variance for each glass by EPMA and ICP (given in Table 4.1) when using these standards to verify that a calibrated instrument/procedure is performing within specification or calibrating instruments.

		LGS19-01								LGS19-02			
	SwRI		Balance						Balance				
Oxide	Method	Batched	Error	SwRI	SD	EPMA	SD	Batched	Error	SwRI	SD	EPMA	SD
Al ₂ O ₃	ICP	8.124	0.008	7.96	0.047	7.87	0.114	8.991	0.009	8.99	0.029	8.66	0.106
B_2O_3	ICP	9.748	0.010	9.66	0.256	9.91	0.372	6.162	0.006	5.99	0.340	6.37	0.398
CaO	ICP	7.311	0.007	7.08	0.035	7.13	0.072	10.203	0.010	10.02	0.061	10.19	0.109
Cl	IC	0.102	0.000	UD	NA	0.07	0.006	0.202	0.000	UD	NA	0.09	0.010
Cr_2O_3	ICP	0.102	0.000	0.10	0.000	0.10	0.014	0.202	0.000	0.19	0.002	0.19	0.017
F	IC	0.102	0.000	0.10	0.001	0.04	0.021	0.707	0.001	0.83	0.018	0.88	0.028
Fe ₂ O ₃	ICP	0.203	0.000	0.21	0.010	0.20	0.019	3.839	0.004	3.82	0.022	3.82	0.052
K ₂ O	ICP	0.914	0.001	0.88	0.014	0.86	0.014	2.02	0.002	1.90	0.018	1.85	0.015
Li ₂ O	ICP	4.976	0.005	5.04	0.065	NM	NA	2.425	0.002	2.48	0.022	NM	NA
MgO	ICP	0.102	0.000	0.10	0.001	0.06	0.029	2.93	0.003	2.86	0.019	2.86	0.025
Na ₂ O	ICP	9.932	0.010	9.88	0.125	9.74	0.132	11.975	0.012	11.8	0.089	11.59	0.164
P_2O_5	ICP	0.811	0.001	0.88	0.062	0.83	0.029	0.538	0.001	0.63	0.106	0.55	0.027
SiO ₂	ICP	44.375	0.044	45.71	0.539	44.14	0.529	38.389	0.038	39.65	0.539	39.21	0.377
SnO ₂	ICP	0.000	0.000	0.00	0.000	0.00	0.011	1.818	0.002	1.74	0.038	1.69	0.023
SO ₃	ICP	1.625	0.002	1.27	0.055	1.36	0.057	1.111	0.001	0.72	0.005	0.75	0.052
SO ₃	IC	1.625	0.002	1.18	0.039	NA	NA	1.111	0.001	0.78	0.014	NA	NA
TiO ₂	ICP	1.929	0.002	1.87	0.029	1.88	0.053	1.111	0.001	1.12	0.019	1.11	0.042
V_2O_5	ICP	3.960	0.004	3.93	0.036	3.85	0.094	3.031	0.003	3.05	0.036	2.92	0.070
Y_2O_3	ICP	0.782	0.001	0.68	0.006	0.63	0.045	0.347	0.000	0.31	0.001	0.28	0.039
ZnO	ICP	0.000	0.000	0.00	0.000	0.00	0.025	1.818	0.002	1.81	0.007	1.81	0.066
ZrO_2	ICP	4.905	0.005	4.58	0.024	4.73	0.101	2.178	0.002	2.04	0.039	2.15	0.084
Sum		100.00		99.8 ^(b)		98.4 ^(c)		100.00		$100.0^{(b)}$		99.4 ^(c)	

Table 4.1. Summary table of batched, analyzed mean compositions (SwRI and EPMA), and standard deviations (SD) of analyses for LGS19-01 and -02 glass standards.

UD = below detection limit, NM = not measured, NA = not applicable, a) below quantification limit, b) sum doesn't include SO₃ by ICP, and c) sum includes batched Li₂O

		LGS19-03								LGS19-04	ļ		
	SwRI		Balance						Balance				
Oxide	method	Batched	Error	SwRI	SD	EPMA	SD	Batched	Error	SwRI	SD	EPMA	SD
Al ₂ O ₃	ICP	6.966	0.007	6.96	0.011	6.92	0.102	5.708	0.006	5.60	0.076	5.66	0.074
B_2O_3	ICP	13.527	0.014	13.15	0.565	13.24	0.384	8.913	0.009	8.84	0.226	8.81	0.372
CaO	ICP	2.019	0.002	1.99	0.021	2.02	0.039	3.505	0.004	3.43	0.000	3.50	0.046
Cl	IC	0.303	0.000	0.03	0.007	0.18	0.013	0.401	0.000	0.14	0.018	0.34	0.011
Cr_2O_3	ICP	0.505	0.001	0.47	0.005	0.49	0.017	0.601	0.001	0.57	0.005	0.60	0.026
F	IC	0.404	0.000	0.45	0.015	0.40	0.027	0.300	0.000	0.35	0.013	0.32	0.023
Fe_2O_3	ICP	1.413	0.001	1.41	0.015	1.41	0.038	0.701	0.001	0.68	0.009	0.71	0.034
K ₂ O	ICP	5.047	0.005	4.76	0.000	4.75	0.042	0.100	0.000	0.11	0.000	0.11	0.009
Li ₂ O	ICP	0.808	0.001	0.80	0.005	NM	NA	0.000	0.000	0.00	0.000	NM	NA
MgO	ICP	0.505	0.001	0.50	0.005	0.49	0.019	1.803	0.002	1.73	0.019	1.84	0.027
Na ₂ O	ICP	16.015	0.016	15.59	0.078	16.22	0.230	23.713	0.024	23.28	0.280	23.71	0.173
P_2O_5	ICP	0.499	0.001	0.59	0.013	0.52	0.023	0.076	0.000	0.08	0.003	0.08	0.015
SiO_2	ICP	37.15	0.037	38.43	0.445	37.48	0.350	41.06	0.041	41.71	0.428	41.25	0.488
SnO ₂	ICP	1.009	0.001	0.95	0.015	0.93	0.020	3.104	0.003	2.94	0.039	2.89	0.057
SO_3	ICP	0.808	0.001	0.64	0.024	0.60	0.036	0.501	0.001	0.45	0.004	0.44	0.027
SO ₃	IC	0.808	0.001	0.49	0.012	NA	NA	0.501	0.001	0.50	0.008	NA	NA
TiO ₂	ICP	0.505	0.001	0.51	0.003	0.50	0.032	1.502	0.002	1.50	0.014	1.50	0.072
V_2O_5	ICP	2.322	0.002	2.34	0.010	2.27	0.058	2.003	0.002	1.98	0.027	1.97	0.082
Y_2O_3	ICP	0.916	0.001	0.81	0.004	0.76	0.050	0.578	0.001	0.50	0.005	0.50	0.044
ZnO	ICP	3.533	0.004	3.49	0.045	3.57	0.088	1.803	0.002	1.77	0.026	1.85	0.063
ZrO_2	ICP	5.747	0.006	5.46	0.061	5.72	0.138	3.628	0.004	3.37	0.039	3.68	0.122
Sum		100.00		99.2 ^(b)		99.3 ^(c)		100.00		99.1 ^(b)		99.8 ^(c)	
UD = holey detection limit NM = not many and NA = not amplicable of holey quantification limit h) sum descripting budge SQ has LCD and a) sum includes													

Table 4.1 (continued). Summary table of batched, analyzed mean compositions (SwRI and EPMA), and standard deviations (SD) of analyses for LGS19-01 and -02 glass standards.

UD = below detection limit, NM = not measured, NA = not applicable, a) below quantification limit, b) sum doesn't include SO₃ by ICP, and c) sum includes batched Li₂O

1				LGS19 -05	5		LGS19-06						
	SwRI		Balance						Balance				
Oxide	method	Batched	Error	SwRI	SD	EPMA	SD	Batched	Error	SwRI	SD	EPMA	SD
Al ₂ O ₃	ICP	10.035	0.010	10.09	0.332	9.92	0.096	6.337	0.006	6.24	0.029	6.15	0.057
B_2O_3	ICP	8.045	0.008	8.00	0.049	7.65	0.346	11.064	0.011	10.91	0.555	10.92	0.381
CaO	ICP	5.419	0.005	5.36	0.032	5.51	0.069	8.348	0.008	8.22	0.021	8.32	0.082
Cl	IC	0.201	0.000	0.02 ^(a)	NA	0.14	0.008	0.603	0.001	0.09	0.016	0.26	0.012
Cr_2O_3	ICP	0.301	0.000	0.29	0.001	0.30	0.016	0.402	0.000	0.38	0.004	0.39	0.018
F	IC	1.104	0.001	1.31	0.681	1.39	0.059	0.201	0.000	0.22	0.003	0.16	0.025
Fe ₂ O ₃	ICP	2.609	0.003	2.54	0.030	2.65	0.047	5.532	0.006	5.43	0.044	5.47	0.063
K ₂ O	ICP	2.408	0.002	2.27	0.014	2.26	0.018	3.319	0.003	3.08	0.007	3.00	0.023
Li ₂ O	ICP	0.702	0.001	0.70	0.004	NA	NA	4.224	0.004	4.26	0.022	NA	NA
MgO	ICP	1.104	0.001	1.07	0.008	1.05	0.034	2.515	0.003	2.42	0.017	2.37	0.022
Na ₂ O	ICP	19.415	0.019	18.83	0.078	19.26	0.258	5.347	0.005	5.20	0.034	5.16	0.092
P_2O_5	ICP	0.191	0.000	0.17	0.001	0.20	0.019	0.306	0.000	0.40	0.017	0.32	0.020
SiO ₂	ICP	38.132	0.038	39.22	0.988	38.49	0.320	46.268	0.046	47.85	0.247	46.37	0.571
SnO ₂	ICP	4.516	0.005	3.64	0.516	4.25	0.037	0.503	0.001	0.44	0.005	0.47	0.015
SO_3	ICP	0.201	0.000	0.15	0.001	0.19	0.023	0.402	0.000	0.21	0.009	0.24	0.024
SO ₃	IC	0.201	0.000	0.20	0.011	NA	NA	0.402	0.000	0.13	0.004	NA	NA
TiO ₂	ICP	0.100	0.000	0.09	0.009	0.10	0.022	0.201	0.000	0.20	0.001	0.20	0.025
V_2O_5	ICP	0.100	0.000	0.20	0.202	0.10	0.020	0.905	0.001	0.90	0.005	0.88	0.038
Y_2O_3	ICP	0.428	0.000	0.39	0.032	0.35	0.042	0.401	0.000	0.35	0.001	0.32	0.036
ZnO	ICP	2.308	0.002	2.26	0.026	2.37	0.075	0.603	0.001	0.60	0.005	0.60	0.043
ZrO_2	ICP	2.683	0.003	2.59	0.020	2.68	0.100	2.516	0.003	2.38	0.020	2.46	0.088
Sum		100.00		99.2 ^(b)		99.6 ^(c)		100.00		99.7 ^(b)		98.3 ^(c)	

Table 4.1 (continued). Summary table of batched, analyzed mean compositions (SwRI and EPMA), and standard deviations (SD) of analyses for LGS19-01 and -02 glass standards.

UD = below detection limit, NM = not measured, NA = not applicable, a) below quantification limit, b) sum doesn't include SO₃ by ICP, and c) sum includes batched Li₂O

	SwRI			LGS19-07			
Oxide	method	Batched	Balance Error	SwRI	SD	EPMA	SD
Al ₂ O ₃	ICP	8.106	0.008	7.92	0.033	7.94	0.09
B_2O_3	ICP	6.586	0.007	6.58	0.081	6.44	0.400
CaO	ICP	5.775	0.006	5.68	0.043	5.74	0.05
Cl	IC	0.203	0.000	0.02 ^(a)	NA	0.14	0.01
Cr_2O_3	ICP	0.507	0.001	0.48	0.002	0.50	0.013
F	IC	0.304	0.000	0.35	0.006	0.33	0.02
Fe ₂ O ₃	ICP	1.013	0.001	0.98	0.011	1.01	0.03
K ₂ O	ICP	1.013	0.001	0.94	0.007	0.96	0.01
Li ₂ O	ICP	1.520	0.002	1.50	0.003	NM	NA
MgO	ICP	2.026	0.002	1.91	0.020	1.99	0.02
Na ₂ O	ICP	21.087	0.021	20.62	0.135	20.94	0.16
P_2O_5	ICP	0.694	0.001	0.75	0.035	0.72	0.03
SiO ₂	ICP	40.022	0.040	41.22	0.124	40.03	0.51
SnO ₂	ICP	2.026	0.002	1.86	0.032	1.89	0.02
SO ₃	ICP	0.709	0.001	0.60	0.001	0.59	0.03
SO ₃	IC	0.709	0.001	0.65	0.052	NA	NA
TiO ₂	ICP	1.520	0.002	1.48	0.023	1.51	0.04
V_2O_5	ICP	1.520	0.002	1.49	0.018	1.49	0.04
Y_2O_3	ICP	0.571	0.001	0.49	0.000	0.47	0.04
ZnO	ICP	1.216	0.001	1.18	0.018	1.23	0.05
ZrO ₂	ICP	3.583	0.004	3.25	0.096	3.56	0.11
Sum		100.00		99.3 ^(b)		99.0 ^(c)	

Table 4.1 (c	continued). Summary	/ table of batched,	analyzed mean	compositions	(SwRI and	EPMA),	and standard	deviations (SD) of	analyses for
L	LGS19-01 and -02 gla	ass standards.								

UD = below detection limit, NM = not measured, NA = not applicable, a) below quantification limit, b) sum doesn't include SO₃ by ICP, and c) sum includes batched Li_2O

5.0 References

10 CFR 830, *Nuclear Safety Management*, Subpart A, Quality Assurance Requirements. U.S. Code of Federal Regulations.

ASTM C1463-19, Standard Practices for Dissolving Glass Containing Radioactive and Mixed Waste for Chemical and Radiochemical Analysis. ASTM International, West Conshohocken, PA.

DOE Order 414.1D, Quality Assurance. U.S. Department of Energy, Washington, DC.

Ebert WL and SF Wolf. 1999. *Round-Robin Testing of a Reference Glass for Low-Activity Waste Forms*. ANL-99/22, Argonne National Laboratory, Argonne, IL.

Günther D and B Hattendorf. 2005. "Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry." *Trends in Analytical Chemistry* 24(3):255-265.

Jantzen CM, NE Bibler and DC Beam. 1992. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) Glass Standard Reference Material (U). WSRC-TR-92-346, Westinghouse Savannah River Company, Aiken, SC.

Mellinger GB and JL Daniel. 1984. *Materials Characterization Center (MCC) Approved Reference and Testing Materials for Use in Nuclear Waste Management Research and Development Programs*. PNL-4955-2, Pacific Northwest National Laboratory, Richland, WA.

Nielsen CH and H Sigurdsson. 1981. "Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses." *American Mineralogist* 66(5-6):547-552.

NQA-1-2012, *Quality Assurance Requirements for Nuclear Facility Application*. American Society of Mechanical Engineers, New York, NY.

Smith GL. 1993. Characterization of Analytical Reference Glass-1 (ARG-1). PNL-8992, Pacific Northwest National Laboratory, Richland, WA.

Vienna JD, A Heredia-Langner, SK Cooley, AE Holmes, DS Kim, and NA Lumetta. 2020. *Glass Property-Composition Models for Support of Hanford WTP LAW Facility Operation*. PNNL-30932, Pacific Northwest National Laboratory, Richland, WA.

Appendix A – Statistical Analysis of EPMA Data

This appendix provides additional statistical plots for each standard glass and component analysis of variance for measurements made by electron probe microanalysis (EPMA). The plots and component analysis are arranged by increasing glass number identification. The plots were generated to show the variation in component distribution from bar-to-bar for a given glass (e.g., Figure A.1), and the variation in component distribution from coupon-to-coupon location within a bar was plotted (e.g., Figure A.2).

Figure A.1. Component distribution plots for LGS19-01 glass measured by EPMA, plotted by bar number on the y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

Figure A.2. Component distribution plots for LGS19-01 glass measured by EPMA, plotted by coupon location within bars (end1, middle and end2) on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

```
[LGS-19-01] "Al203"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 14.8973 0 100 0.0012 1.5241
2 Bar 4 0.0001 0 0 33.4262 0.0007 0.8812
3 Bar: Position 10 0.0001 0 0 41.4449 0.0008 0.9812
4 error 120 0 0 0 25.1289 0.0006 0.764
Mean: 0.0787 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-01] "B203"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 43.3203 0 100 0.0038 3.8483
2 Bar 4 0.0004 0.0001 0 21.5697 0.0018 1.7873
3 Bar: Position 10 0.0002 0 0 9.5647 0.0012 1.1902
4 error 120 0.0012 0 0 68.8656 0.0032 3.1935
Mean: 0.0991 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-01] "CaO"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 18.8876 0 100 0.0008 1.0611
2 Bar 4 0 0 0 42.8812 0.0005 0.6948
3 Bar:Position 10 0 0 0* 0* 0* 0*
4 error 120 0 0 0 57.1188 0.0006 0.8019
Mean: 0.0713 (N = 135)
Experimental Design: balanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
```

```
[LGS-19-01] "Fe2O3"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 116.9995 0 100 0.0002 9.6797
2 Bar 4 0 0 0* 0* 0* 0*
3 Bar:Position 10 0 0 0 12.1386 0.0001 3.3724
4 error 120 0 0 0 87.8614 0.0002 9.0732
Mean: 0.002 (N = 135)
Experimental Design: balanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
[LGS-19-01] "Na2O"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 10.5863 0 100 0.0014 1.4385
2 Bar 4 0.0001 0 0 58.1546 0.0011 1.097
3 Bar: Position 10 0 0 0 4.5764 0.0003 0.3077
4 error 120 0.0001 0 0 37.269 0.0009 0.8782
Mean: 0.0974 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-01] "SiO2"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 10.1244 0 100 0.0056 1.2757
2 Bar 4 0.0021 0.0005 0 60.3954 0.0044 0.9914
3 Bar: Position 10 0.0002 0 0 2.1679 0.0008 0.1878
4 error 120 0.0014 0 0 37.4368 0.0034 0.7805
Mean: 0.4414 (N = 135)
Experimental Design: balanced | Method: ANOVA
```

[LGS-19-01] "SnO2"

Experimental Design: balanced | Method: ANOVA | * VC set to 0 | adapted MS used for total DF

Figure A.3. Measured Al₂O₃ concentrations of LGS-19-01 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points on the far left are inductively coupled plasma (ICP). Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white line is the batched concentration.

Figure A.4. Measured B_2O_3 concentrations of LGS-19-01 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.5. Measured CaO concentrations of LGS-19-01 glass plotted (y-axis) versus coupon location and bar number, where position 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.6. Measured Fe₂O₃ concentrations of LGS-19-01 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

EPMA - Standard Glass 1 - Na2O : 0.100 0.099 Value 0.098 : 0.097 0.096 : 0.095 3 2 3 2 3 2 1 3 2 2 Position 1 1 3 Bai 1 4 6 8 11 1 Glass

Figure A.7. Measured Na₂O concentrations of LGS-19-01 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.8. Measured SiO₂ concentrations of LGS-19-01 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.9. Measured SnO₂ concentrations of LGS-19-01 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.10. Component distribution plots for LGS19-02 glass measured by EPMA, plotted by bar number on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

Figure A.11. Component distribution plots for LGS19-02 glass measured by EPMA, plotted by coupon position within bars (end 1, middle and end 2) on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

```
[LGS-19-02] "Al203"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 7.2357 0 100 0.0011 1.3233
2 Bar 4 0.0001 0 0 72.4667 0.001 1.1265
3 Bar: Position 10 0 0 0 2.4328 0.0002 0.2064
4 error 120 0 0 0 25.1005 0.0006 0.663
Mean: 0.0866 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-02] "B2O3"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 30.7394 0 100 0.0041 6.4556
2 Bar 4 0.0006 0.0002 0 30.9947 0.0023 3.594
3 Bar:Position 10 0.0001 0 0 2.0715 0.0006 0.9291
4 error 120 0.0014 0 0 66.9338 0.0034 5.2816
Mean: 0.0637 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-02] "CaO"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 8.7557 0 100 0.0012 1.1475
2 Bar 4 0.0001 0 0 66.0914 0.001 0.9329
3 Bar:Position 10 0 0 0* 0* 0* 0*
4 error 120 0.0001 0 0 33.9086 0.0007 0.6682
Mean: 0.1019 (N = 135)
Experimental Design: balanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
```

```
[LGS-19-02] "Fe2O3"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 105.6219 0 100 0.0005 1.3694
2 Bar 4 0 0 0 3.4198 0.0001 0.2532
3 Bar: Position 10 0 0 0 11.7108 0.0002 0.4686
4 error 120 0 0 0 84.8695 0.0005 1.2615
Mean: 0.0382 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-02] "Na2O"
Result Variance Component Analysis:
Name DF SS MS VC %Total SD CV[%]
1 total 12.9982 0 100 0.0017 1.5081
2 Bar 4 0.0002 0 0 53.1727 0.0013 1.0997
3 Bar: Position 10 0 0 0* 0* 0* 0*
4 error 120 0.0002 0 0 46.8273 0.0012 1.032
Mean: 0.1159 (N = 135)
Experimental Design: balanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
[LGS-19-02] "SiO2"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 39.7602 0 100 0.0039 0.9866
2 Bar 4 0.0005 0.0001 0 23.3361 0.0019 0.4766
3 Bar: Position 10 0.0002 0 0 9.2695 0.0012 0.3004
4 error 120 0.0012 0 0 67.3944 0.0032 0.81
Mean: 0.3921 (N = 135)
Experimental Design: balanced | Method: ANOVA
```

[LGS-19-02] "SnO2"

Result Variance Component Analysis: Name DF SS MS VC %Total SD CV[%] 1 total 116.0041 0 100 0.0002 1.3917 2 Bar 4 0 0 0 6.2142 0.0001 0.3469 3 Bar:Position 10 0 0 0* 0* 0* 0* 4 error 120 0 0 0 93.7858 0.0002 1.3478

Mean: 0.0169 (N = 135) Experimental Design: balanced | Method: ANOVA | * VC set to 0 | adapted MS used for total DF

Figure A.12. Measured Al₂O₃ concentrations of LGS-19-02 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.13. Measured B₂O₃ concentrations of LGS-19-02 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.14. Measured CaO concentrations of LGS-19-02 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.15. Measured Fe₂O₃ concentrations of LGS-19-02 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.16. Measured Na₂O concentrations of LGS-19-02 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.17. Measured SiO₂ concentrations of LGS-19-02 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.18. Measured SnO₂ concentrations of LGS-19-02 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.19. Component distribution plots for LGS19-03 glass measured by EPMA, plotted by bar number on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

Figure A.20. Component distribution plots for LGS19-03 glass measured by EPMA, plotted by coupon position within bars (end 1, middle and end 2) on y-axis. Component concentration ion the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.
```
[LGS-19-03] "Al203"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 8.5592 0 100 0.0011 1.5767
2 Bar 4 0.0001 0 0 64.9075 0.0009 1.2702
3 Bar: Position 10 0 0 0 6.2981 0.0003 0.3957
4 error 119 0 0 0 28.7945 0.0006 0.846
Mean: 0.0692 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
[LGS-19-03] "B203"
Result Variance Component Analysis:
Name DF SS MS VC %Total SD CV[%]
1 total 64.9003 0 100 0.0039 2.9508
2 Bar 4 0.0003 0.0001 0 15.123 0.0015 1.1475
3 Bar: Position 10 0.0002 0 0 6.764 0.001 0.7674
4 error 119 0.0014 0 0 78.1131 0.0035 2.608
Mean: 0.1324 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
[LGS-19-03] "CaO"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 17.4668 0 100 0.0004 2.0499
2 Bar 4 0 0 0 44.8764 0.0003 1.3732
3 Bar:Position 10 0 0 0* 0* 0* 0*
4 error 119 0 0 0 55.1236 0.0003 1.5219
Mean: 0.0202 (N = 134)
Experimental Design: unbalanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
```

```
[LGS-19-03] "Fe203"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 115.9158 0 100 0.0004 2.6919
2 Bar 4 0 0 0 2.6928 0.0001 0.4417
3 Bar: Position 10 0 0 0 8.0823 0.0001 0.7653
4 error 119 0 0 0 89.225 0.0004 2.5427
Mean: 0.0141 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
[LGS-19-03] "Na2O"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 10.0318 0 100 0.0025 1.5122
2 Bar 4 0.0004 0.0001 0 60.9197 0.0019 1.1803
3 Bar: Position 10 0 0 0 1.4314 0.0003 0.1809
4 error 119 0.0003 0 0 37.6489 0.0015 0.9279
Mean: 0.1622 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
[LGS-19-03] "SiO2"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 47.6139 0 100 0.0036 0.9639
2 Bar 4 0.0004 0.0001 0 23.0062 0.0017 0.4623
3 Bar: Position 10 0.0001 0 0* 0* 0* 0*
4 error 119 0.0012 0 0 76.9938 0.0032 0.8458
Mean: 0.3748 (N = 134)
Experimental Design: unbalanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
```

```
[LGS-19-03] "SnO2"
```

Result Variance Component Analysis: Name DF SS MS VC %Total SD CV[%] 1 total 107.2251 0 100 0.0002 2.1991 2 Bar 4 0 0 0 7.1327 0.0001 0.5873 3 Bar:Position 10 0 0 0 2.451 0 0.3443 4 error 119 0 0 0 90.4163 0.0002 2.0911

Mean: 0.0093 (N = 134)
Experimental Design: unbalanced | Method: ANOVA

Figure A.21. Measured Al₂O₃ concentrations of LGS-19-03 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.22. Measured B₂O₃ concentrations of LGS-19-03 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.23. Measured CaO concentrations of LGS-19-03 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.24. Measured Fe₂O₃ concentrations of LGS-19-03 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.25. Measured Na₂O concentrations of LGS-19-03 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.26. Measured SiO₂ concentrations of LGS-19-03 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.27. Measured SnO₂ concentrations of LGS-19-03 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.28. Component distribution plots for LGS19-04 glass measured by EPMA, plotted by bar number on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

Figure A.29. Component distribution plots for LGS19-04 glass measured by EPMA, plotted by coupon position within bars (end 1, middle and end 2) on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

```
[LGS-19-04] "Al203"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 18.257 0 100 0.0008 1.3613
2 Bar 4 0 0 0 42.8482 0.0005 0.8911
3 Bar: Position 10 0 0 0 2.8008 0.0001 0.2278
4 error 119 0 0 0 54.351 0.0006 1.0036
Mean: 0.0566 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
[LGS-19-04] "B203"
Result Variance Component Analysis:
Name DF SS MS VC %Total SD CV[%]
1 total 33.077 0 100 0.0038 4.3439
2 Bar 4 0.0005 0.0001 0 28.37 0.002 2.3137
3 Bar: Position 10 0.0002 0 0 5.3146 0.0009 1.0014
4 error 119 0.0012 0 0 66.3154 0.0031 3.5374
Mean: 0.0881 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
[LGS-19-04] "CaO"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 25.0065 0 100 0.0005 1.3788
2 Bar 4 0 0 0 36.1169 0.0003 0.8286
3 Bar:Position 10 0 0 0* 0* 0* 0*
4 error 119 0 0 0 63.8831 0.0004 1.102
Mean: 0.035 (N = 134)
Experimental Design: unbalanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
[LGS-19-04] "Fe203"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 121.952 0 100 0.0003 4.7802
2 Bar 4 0 0 0 3.6383 0.0001 0.9118
3 Bar: Position 10 0 0 0 2.701 0.0001 0.7856
4 error 119 0 0 0 93.6607 0.0003 4.6262
```

```
Mean: 0.0071 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
[LGS-19-04] "Na2O"
Result Variance Component Analysis:
------
Name DF SS MS VC %Total SD CV[%]
1 total 97.9197 0 100 0.0018 0.7512
2 Bar 4 0 0 0* 0* 0* 0*
3 Bar: Position 10 0.0001 0 0 19.6788 0.0008 0.3332
4 error 119 0.0003 0 0 80.3212 0.0016 0.6732
Mean: 0.2371 (N = 134)
Experimental Design: unbalanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
[LGS-19-04] "SiO2"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 16.5442 0 100 0.0051 1.2397
2 Bar 4 0.0014 0.0003 0 45.4259 0.0034 0.8355
3 Bar: Position 10 0.0002 0 0 2.8516 0.0009 0.2093
4 error 119 0.0016 0 0 51.7225 0.0037 0.8916
Mean: 0.4125 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
[LGS-19-04] "SnO2"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 132.7614 0 100 0.0006 1.9971
2 Bar 4 0 0 0* 0* 0* 0*
3 Bar: Position 10 0 0 0* 0* 0* 0*
4 error 119 0 0 0 100 0.0006 1.9971
Mean: 0.0289 (N = 134)
Experimental Design: unbalanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
```


Figure A.30. Measured Al₂O₃ concentrations of LGS-19-04 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.31. Measured B₂O₃ concentrations of LGS-19-04 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.32. Measured CaO concentrations of LGS-19-04 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.33. Measured Fe₂O₃ concentrations of LGS-19-04 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.34. Measured Na₂O concentrations of LGS-19-04 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.35. Measured SiO₂ concentrations of LGS-19-04 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.36. Measured SnO_2 concentrations of LGS-19-04 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.37. Component distribution plots for LGS19-05 glass measured by EPMA, plotted by bar number on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

Figure A.38. Component distribution plots for LGS19-05 glass measured by EPMA, plotted by coupon position within bars (end 1, middle and end 2) on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

```
[LGS-19-05] "Al203"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 53.7052 0 100 0.001 0.9771
2 Bar 4 0 0 0 2.9386 0.0002 0.1675
3 Bar:Position 10 0 0 0 37.12 0.0006 0.5953
4 error 119 0.0001 0 0 59.9415 0.0008 0.7565
Mean: 0.0992 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
[LGS-19-05] "B203"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 82.0655 0 100 0.0035 4.5799
2 Bar 4 0.0002 0 0 6.8928 0.0009 1.2024
3 Bar: Position 10 0.0003 0 0 15.5027 0.0014 1.8033
4 error 119 0.0011 0 0 77.6045 0.0031 4.0346
Mean: 0.0765 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
[LGS-19-05] "CaO"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 25.9437 0 100 0.0007 1.2925
2 Bar 4 0 0 0 8.5431 0.0002 0.3778
3 Bar:Position 10 0 0 0 57.5931 0.0005 0.9809
4 error 119 0 0 0 33.8639 0.0004 0.7522
Mean: 0.0551 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
```

```
[LGS-19-05] "Fe2O3"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 100.046 0 100 0.0005 1.7954
2 Bar 4 0 0 0 9.4301 0.0001 0.5514
3 Bar:Position 10 0 0 0* 0* 0* 0*
4 error 119 0 0 0 90.5699 0.0005 1.7087
Mean: 0.0265 (N = 134)
Experimental Design: unbalanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
[LGS-19-05] "Na2O"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 6.8827 0 100 0.0028 1.4481
2 Bar 4 0.0006 0.0002 0 74.2304 0.0024 1.2476
3 Bar: Position 10 0 0 0 3.0915 0.0005 0.2546
4 error 119 0.0002 0 0 22.6781 0.0013 0.6896
Mean: 0.1926 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
[LGS-19-05]"SiO2"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 111.8291 0 100 0.0032 0.8348
2 Bar 4 0.0001 0 0 2.8444 0.0005 0.1408
3 Bar: Position 10 0.0002 0 0 9.7187 0.001 0.2603
4 error 119 0.0011 0 0 87.4369 0.003 0.7806
Mean: 0.3849 (N = 134)
Experimental Design: unbalanced | Method: ANOVA
```

```
[LGS-19-05] "SnO2"
```

Result Variance Component Analysis: Name DF SS MS VC %Total SD CV[%] 1 total 113.1141 0 100 0.0004 0.8845 2 Bar 4 0 0 0* 0* 0* 0* 3 Bar:Position 10 0 0 13.5007 0.0001 0.325 4 error 119 0 0 0 86.4993 0.0003 0.8226

Mean: 0.0425 (N = 134) Experimental Design: unbalanced | Method: ANOVA | * VC set to 0 | adapted MS used for total DF

Figure A.39. Measured Al₂O₃ concentrations of LGS-19-05 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.40. Measured B₂O₃ concentrations of LGS-19-05 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.41. Measured CaO concentrations of LGS-19-05 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.42. Measured Fe₂O₃ concentrations of LGS-19-05 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.43. Measured Na₂O concentrations of LGS-19-05 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.44. Measured SiO₂ concentrations of LGS-19-05 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.45. Measured SnO_2 concentrations of LGS-19-05 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.46. Component distribution plots for LGS19-06 glass measured by EPMA, plotted by bar number on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

Figure A.47. Component distribution plots for LGS19-06 glass measured by EPMA, plotted by coupon position within bars (end 1, middle and end 2) on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

```
[LGS-19-06] "Al203"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 18.2461 0 100 0.0006 0.9683
2 Bar 4 0 0 0 39.4724 0.0004 0.6084
3 Bar:Position 10 0 0 0 12.9036 0.0002 0.3478
4 error 120 0 0 0 47.624 0.0004 0.6683
Mean: 0.0615 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-06] "B2O3"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 52.6963 0 100 0.0039 3.5727
2 Bar 4 0.0004 0.0001 0 21.2046 0.0018 1.6452
3 Bar:Position 10 0.0001 0 0* 0* 0* 0*
4 error 120 0.0014 0 0 78.7954 0.0035 3.1714
Mean: 0.1092 (N = 135)
Experimental Design: balanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
[LGS-19-06] "CaO"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 26.389 0 100 0.0009 1.0225
2 Bar 4 0 0 0 31.8566 0.0005 0.5771
3 Bar: Position 10 0 0 0 9.3383 0.0003 0.3125
4 error 120 0.0001 0 0 58.8051 0.0007 0.7841
Mean: 0.0832 (N = 135)
Experimental Design: balanced | Method: ANOVA
```

```
[LGS-19-06] "Fe2O3"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 63.8082 0 100 0.0006 1.1665
2 Bar 4 0 0 0 16.1258 0.0003 0.4684
3 Bar:Position 10 0 0 0 5.0234 0.0001 0.2615
4 error 120 0 0 0 78.8508 0.0006 1.0359
Mean: 0.0547 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-06] "Na2O"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 18.2468 0 100 0.001 1.8933
2 Bar 4 0 0 0 43.764 0.0006 1.2525
3 Bar: Position 10 0 0 0* 0* 0* 0*
4 error 120 0.0001 0 0 56.236 0.0007 1.4198
Mean: 0.0516 (N = 135)
Experimental Design: balanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
[LGS-19-06] "SiO2"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 10.5756 0 100 0.0061 1.3106
2 Bar 4 0.0024 0.0006 0 59.1232 0.0047 1.0077
3 Bar: Position 10 0.0002 0 0 1.6214 0.0008 0.1669
4 error 120 0.0017 0 0 39.2555 0.0038 0.8211
Mean: 0.4637 (N = 135)
Experimental Design: balanced | Method: ANOVA
```

[LGS-19-06] "SnO2"

Result Variance Component Analysis: Name DF SS MS VC %Total SD CV[%] 1 total 133.0493 0 100 0.0002 3.3374 2 Bar 4 0 0 0 0.7475 0 0.2885 3 Bar:Position 10 0 0 0* 0* 0* 0* 4 error 120 0 0 0 99.2525 0.0002 3.3249 Mean: 0.0047 (N = 135)

Experimental Design: balanced | Method: ANOVA | * VC set to 0 | adapted MS used for total DF

Figure A.48. Measured Al₂O₃ concentrations of LGS-19-06 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.49. Measured B₂O₃ concentrations of LGS-19-06 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.50. Measured CaO concentrations of LGS-19-06 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.51. Measured Fe₂O₃ concentrations of LGS-19-06 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.52. Measured Na₂O concentrations of LGS-19-06 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.53. Measured SiO₂ concentrations of LGS-19-06 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.54. Measured SnO₂ concentrations of LGS-19-06 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

LGS-19-07 Compare Bars

Figure A.55. Component distribution plots for LGS19-07 glass measured by EPMA, plotted by bar number on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

Figure A.56. Component distribution plots for LGS19-07 glass measured by EPMA, plotted by coupon position within bars (end 1, middle and end 2) on y-axis. Component concentration is on the x-axis, in mass fraction. The thick line inside the box is the median. The box shows 25% (left) and 75% (right) percentiles. The outer whiskers extend to the min and max of the dataset or the most extreme non-outlier values. Outliers are marked with a dot.

```
[LGS-19-07] "Al203"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 7.2507 0 100 0.001 1.2344
2 Bar 4 0.0001 0 0 72.7725 0.0008 1.053
3 Bar: Position 10 0 0 0 1.1929 0.0001 0.1348
4 error 120 0 0 0 26.0346 0.0005 0.6299
Mean: 0.0794 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-07] "B203"
Result Variance Component Analysis:
Name DF SS MS VC %Total SD CV[%]
1 total 92.9955 0 100 0.004 6.2819
2 Bar 4 0.0003 0.0001 0 9.6976 0.0013 1.9562
3 Bar: Position 10 0.0002 0 0 3.8425 0.0008 1.2314
4 error 120 0.0017 0 0 86.4599 0.0038 5.8411
Mean: 0.0644 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-07] "CaO"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 110.6491 0 100 0.0005 0.8943
2 Bar 4 0 0 0 7.372 0.0001 0.2428
3 Bar: Position 10 0 0 0* 0* 0* 0*
4 error 120 0 0 0 92.628 0.0005 0.8607
Mean: 0.0574 (N = 135)
Experimental Design: balanced | Method: ANOVA | * VC set to 0 |
adapted MS used for total DF
```
```
[LGS-19-07] "Fe2O3"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 109.1925 0 100 0.0003 3.3694
2 Bar 4 0 0 0 7.1523 0.0001 0.9011
3 Bar:Position 10 0 0 0 1.6186 0 0.4287
4 error 120 0 0 0 91.2291 0.0003 3.2183
Mean: 0.0101 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-07] "Na2O"
Result Variance Component Analysis:
-----
Name DF SS MS VC %Total SD CV[%]
1 total 98.7327 0 100 0.0016 0.7818
2 Bar 4 0 0 0 3.6282 0.0003 0.1489
3 Bar: Position 10 0.0001 0 0 14.2471 0.0006 0.2951
4 error 120 0.0003 0 0 82.1247 0.0015 0.7084
Mean: 0.2094 (N = 135)
Experimental Design: balanced | Method: ANOVA
[LGS-19-07] "SiO2"
Result Variance Component Analysis:
_____
Name DF SS MS VC %Total SD CV[%]
1 total 8.3379 0 100 0.0056 1.3889
2 Bar 4 0.0023 0.0006 0 66.2652 0.0045 1.1306
3 Bar: Position 10 0.0002 0 0 5.0769 0.0013 0.313
4 error 120 0.0011 0 0 28.6579 0.003 0.7435
Mean: 0.4003 (N = 135)
Experimental Design: balanced | Method: ANOVA
```

```
[LGS-19-07] "SnO2"
```

Result Variance Component Analysis: Name DF SS MS VC %Total SD CV[%] 1 total 107.7785 0 100 0.0002 1.2147 2 Bar 4 0 0 0 4.7273 0 0.2641 3 Bar:Position 10 0 0 0 8.2631 0.0001 0.3492 4 error 120 0 0 0 87.0096 0.0002 1.133

Mean: 0.0189 (N = 135)
Experimental Design: balanced | Method: ANOVA

Figure A.57. Measured Al₂O₃ concentrations of LGS-19-07 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.58. Measured B₂O₃ concentrations of LGS-19-07 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.59. Measured CaO concentrations of LGS-19-07 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.60. Measured Fe₂O₃ concentrations of LGS-19-07 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.61. Measured Na₂O concentrations of LGS-19-07 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.62. Measured SiO₂ concentrations of LGS-19-07 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Figure A.63. Measured SnO₂ concentrations of LGS-19-07 glass plotted (y-axis) versus coupon location and bar number, where positions 1 and 2 are end coupons and 3 is the middle coupon. Black data points are individual measurements by EPMA and green points are ICP. Pink lines are the mean value of each bar analyzed, blue line is the mean of all bars analyzed, and the white bar is the batched concentration.

Pacific Northwest National Laboratory

902 Battelle Boulevard P.O. Box 999 Richland, WA 99354 1-888-375-PNNL (7665)

www.pnnl.gov